xref: /kernel/linux/linux-6.6/drivers/memory/emif.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10#include <linux/err.h>
11#include <linux/kernel.h>
12#include <linux/reboot.h>
13#include <linux/platform_data/emif_plat.h>
14#include <linux/io.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/interrupt.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/debugfs.h>
21#include <linux/seq_file.h>
22#include <linux/module.h>
23#include <linux/list.h>
24#include <linux/spinlock.h>
25#include <linux/pm.h>
26
27#include "emif.h"
28#include "jedec_ddr.h"
29#include "of_memory.h"
30
31/**
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate:			Whether the DDR devices attached to this EMIF
34 *				instance are exactly same as that on EMIF1. In
35 *				this case we can save some memory and processing
36 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
37 *				to this EMIF - read from MR4 register. If there
38 *				are two devices attached to this EMIF, this
39 *				value is the maximum of the two temperature
40 *				levels.
41 * @node:			node in the device list
42 * @base:			base address of memory-mapped IO registers.
43 * @dev:			device pointer.
44 * @regs_cache:			An array of 'struct emif_regs' that stores
45 *				calculated register values for different
46 *				frequencies, to avoid re-calculating them on
47 *				each DVFS transition.
48 * @curr_regs:			The set of register values used in the last
49 *				frequency change (i.e. corresponding to the
50 *				frequency in effect at the moment)
51 * @plat_data:			Pointer to saved platform data.
52 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
53 * @np_ddr:			Pointer to ddr device tree node
54 */
55struct emif_data {
56	u8				duplicate;
57	u8				temperature_level;
58	u8				lpmode;
59	struct list_head		node;
60	unsigned long			irq_state;
61	void __iomem			*base;
62	struct device			*dev;
63	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
64	struct emif_regs		*curr_regs;
65	struct emif_platform_data	*plat_data;
66	struct dentry			*debugfs_root;
67	struct device_node		*np_ddr;
68};
69
70static struct emif_data *emif1;
71static DEFINE_SPINLOCK(emif_lock);
72static unsigned long	irq_state;
73static LIST_HEAD(device_list);
74
75#ifdef CONFIG_DEBUG_FS
76static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
77	struct emif_regs *regs)
78{
79	u32 type = emif->plat_data->device_info->type;
80	u32 ip_rev = emif->plat_data->ip_rev;
81
82	seq_printf(s, "EMIF register cache dump for %dMHz\n",
83		regs->freq/1000000);
84
85	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
86	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
87	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
88	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
89
90	if (ip_rev == EMIF_4D) {
91		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
92			regs->read_idle_ctrl_shdw_normal);
93		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
94			regs->read_idle_ctrl_shdw_volt_ramp);
95	} else if (ip_rev == EMIF_4D5) {
96		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
97			regs->dll_calib_ctrl_shdw_normal);
98		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99			regs->dll_calib_ctrl_shdw_volt_ramp);
100	}
101
102	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
103		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
104			regs->ref_ctrl_shdw_derated);
105		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
106			regs->sdram_tim1_shdw_derated);
107		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
108			regs->sdram_tim3_shdw_derated);
109	}
110}
111
112static int emif_regdump_show(struct seq_file *s, void *unused)
113{
114	struct emif_data	*emif	= s->private;
115	struct emif_regs	**regs_cache;
116	int			i;
117
118	if (emif->duplicate)
119		regs_cache = emif1->regs_cache;
120	else
121		regs_cache = emif->regs_cache;
122
123	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
124		do_emif_regdump_show(s, emif, regs_cache[i]);
125		seq_putc(s, '\n');
126	}
127
128	return 0;
129}
130
131DEFINE_SHOW_ATTRIBUTE(emif_regdump);
132
133static int emif_mr4_show(struct seq_file *s, void *unused)
134{
135	struct emif_data *emif = s->private;
136
137	seq_printf(s, "MR4=%d\n", emif->temperature_level);
138	return 0;
139}
140
141DEFINE_SHOW_ATTRIBUTE(emif_mr4);
142
143static int __init_or_module emif_debugfs_init(struct emif_data *emif)
144{
145	emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
146	debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
147			    &emif_regdump_fops);
148	debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
149			    &emif_mr4_fops);
150	return 0;
151}
152
153static void __exit emif_debugfs_exit(struct emif_data *emif)
154{
155	debugfs_remove_recursive(emif->debugfs_root);
156	emif->debugfs_root = NULL;
157}
158#else
159static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
160{
161	return 0;
162}
163
164static inline void __exit emif_debugfs_exit(struct emif_data *emif)
165{
166}
167#endif
168
169/*
170 * Get bus width used by EMIF. Note that this may be different from the
171 * bus width of the DDR devices used. For instance two 16-bit DDR devices
172 * may be connected to a given CS of EMIF. In this case bus width as far
173 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
174 */
175static u32 get_emif_bus_width(struct emif_data *emif)
176{
177	u32		width;
178	void __iomem	*base = emif->base;
179
180	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
181			>> NARROW_MODE_SHIFT;
182	width = width == 0 ? 32 : 16;
183
184	return width;
185}
186
187static void set_lpmode(struct emif_data *emif, u8 lpmode)
188{
189	u32 temp;
190	void __iomem *base = emif->base;
191
192	/*
193	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
194	 * Efficient
195	 *
196	 * i743 DESCRIPTION:
197	 * The EMIF supports power-down state for low power. The EMIF
198	 * automatically puts the SDRAM into power-down after the memory is
199	 * not accessed for a defined number of cycles and the
200	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
201	 * As the EMIF supports automatic output impedance calibration, a ZQ
202	 * calibration long command is issued every time it exits active
203	 * power-down and precharge power-down modes. The EMIF waits and
204	 * blocks any other command during this calibration.
205	 * The EMIF does not allow selective disabling of ZQ calibration upon
206	 * exit of power-down mode. Due to very short periods of power-down
207	 * cycles, ZQ calibration overhead creates bandwidth issues and
208	 * increases overall system power consumption. On the other hand,
209	 * issuing ZQ calibration long commands when exiting self-refresh is
210	 * still required.
211	 *
212	 * WORKAROUND
213	 * Because there is no power consumption benefit of the power-down due
214	 * to the calibration and there is a performance risk, the guideline
215	 * is to not allow power-down state and, therefore, to not have set
216	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
217	 */
218	if ((emif->plat_data->ip_rev == EMIF_4D) &&
219	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
220		WARN_ONCE(1,
221			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
222		/* rollback LP_MODE to Self-refresh mode */
223		lpmode = EMIF_LP_MODE_SELF_REFRESH;
224	}
225
226	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
227	temp &= ~LP_MODE_MASK;
228	temp |= (lpmode << LP_MODE_SHIFT);
229	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
230}
231
232static void do_freq_update(void)
233{
234	struct emif_data *emif;
235
236	/*
237	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
238	 *
239	 * i728 DESCRIPTION:
240	 * The EMIF automatically puts the SDRAM into self-refresh mode
241	 * after the EMIF has not performed accesses during
242	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
243	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
244	 * to 0x2. If during a small window the following three events
245	 * occur:
246	 * - The SR_TIMING counter expires
247	 * - And frequency change is requested
248	 * - And OCP access is requested
249	 * Then it causes instable clock on the DDR interface.
250	 *
251	 * WORKAROUND
252	 * To avoid the occurrence of the three events, the workaround
253	 * is to disable the self-refresh when requesting a frequency
254	 * change. Before requesting a frequency change the software must
255	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
256	 * frequency change has been done, the software can reprogram
257	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
258	 */
259	list_for_each_entry(emif, &device_list, node) {
260		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
261			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
262	}
263
264	/*
265	 * TODO: Do FREQ_UPDATE here when an API
266	 * is available for this as part of the new
267	 * clock framework
268	 */
269
270	list_for_each_entry(emif, &device_list, node) {
271		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
272			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
273	}
274}
275
276/* Find addressing table entry based on the device's type and density */
277static const struct lpddr2_addressing *get_addressing_table(
278	const struct ddr_device_info *device_info)
279{
280	u32		index, type, density;
281
282	type = device_info->type;
283	density = device_info->density;
284
285	switch (type) {
286	case DDR_TYPE_LPDDR2_S4:
287		index = density - 1;
288		break;
289	case DDR_TYPE_LPDDR2_S2:
290		switch (density) {
291		case DDR_DENSITY_1Gb:
292		case DDR_DENSITY_2Gb:
293			index = density + 3;
294			break;
295		default:
296			index = density - 1;
297		}
298		break;
299	default:
300		return NULL;
301	}
302
303	return &lpddr2_jedec_addressing_table[index];
304}
305
306static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
307		bool cs1_used, bool cal_resistors_per_cs)
308{
309	u32 zq = 0, val = 0;
310
311	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
312	zq |= val << ZQ_REFINTERVAL_SHIFT;
313
314	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
315	zq |= val << ZQ_ZQCL_MULT_SHIFT;
316
317	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
318	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
319
320	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
321
322	if (cal_resistors_per_cs)
323		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
324	else
325		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
326
327	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
328
329	val = cs1_used ? 1 : 0;
330	zq |= val << ZQ_CS1EN_SHIFT;
331
332	return zq;
333}
334
335static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
336		const struct emif_custom_configs *custom_configs, bool cs1_used,
337		u32 sdram_io_width, u32 emif_bus_width)
338{
339	u32 alert = 0, interval, devcnt;
340
341	if (custom_configs && (custom_configs->mask &
342				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
343		interval = custom_configs->temp_alert_poll_interval_ms;
344	else
345		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
346
347	interval *= 1000000;			/* Convert to ns */
348	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
349	alert |= (interval << TA_REFINTERVAL_SHIFT);
350
351	/*
352	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
353	 * also to this form and subtract to get TA_DEVCNT, which is
354	 * in log2(x) form.
355	 */
356	emif_bus_width = __fls(emif_bus_width) - 1;
357	devcnt = emif_bus_width - sdram_io_width;
358	alert |= devcnt << TA_DEVCNT_SHIFT;
359
360	/* DEVWDT is in 'log2(x) - 3' form */
361	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
362
363	alert |= 1 << TA_SFEXITEN_SHIFT;
364	alert |= 1 << TA_CS0EN_SHIFT;
365	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
366
367	return alert;
368}
369
370static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
371{
372	u32 pwr_mgmt_ctrl	= 0, timeout;
373	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
374	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
375	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
376	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
377	u32 mask;
378	u8 shift;
379
380	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
381
382	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
383		lpmode		= cust_cfgs->lpmode;
384		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
385		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
386		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
387	}
388
389	/* Timeout based on DDR frequency */
390	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
391
392	/*
393	 * The value to be set in register is "log2(timeout) - 3"
394	 * if timeout < 16 load 0 in register
395	 * if timeout is not a power of 2, round to next highest power of 2
396	 */
397	if (timeout < 16) {
398		timeout = 0;
399	} else {
400		if (timeout & (timeout - 1))
401			timeout <<= 1;
402		timeout = __fls(timeout) - 3;
403	}
404
405	switch (lpmode) {
406	case EMIF_LP_MODE_CLOCK_STOP:
407		shift = CS_TIM_SHIFT;
408		mask = CS_TIM_MASK;
409		break;
410	case EMIF_LP_MODE_SELF_REFRESH:
411		/* Workaround for errata i735 */
412		if (timeout < 6)
413			timeout = 6;
414
415		shift = SR_TIM_SHIFT;
416		mask = SR_TIM_MASK;
417		break;
418	case EMIF_LP_MODE_PWR_DN:
419		shift = PD_TIM_SHIFT;
420		mask = PD_TIM_MASK;
421		break;
422	case EMIF_LP_MODE_DISABLE:
423	default:
424		mask = 0;
425		shift = 0;
426		break;
427	}
428	/* Round to maximum in case of overflow, BUT warn! */
429	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
430		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
431		       lpmode,
432		       timeout_perf,
433		       timeout_pwr,
434		       freq_threshold);
435		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
436		     timeout, mask >> shift);
437		timeout = mask >> shift;
438	}
439
440	/* Setup required timing */
441	pwr_mgmt_ctrl = (timeout << shift) & mask;
442	/* setup a default mask for rest of the modes */
443	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
444			  ~mask;
445
446	/* No CS_TIM in EMIF_4D5 */
447	if (ip_rev == EMIF_4D5)
448		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
449
450	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
451
452	return pwr_mgmt_ctrl;
453}
454
455/*
456 * Get the temperature level of the EMIF instance:
457 * Reads the MR4 register of attached SDRAM parts to find out the temperature
458 * level. If there are two parts attached(one on each CS), then the temperature
459 * level for the EMIF instance is the higher of the two temperatures.
460 */
461static void get_temperature_level(struct emif_data *emif)
462{
463	u32		temp, temperature_level;
464	void __iomem	*base;
465
466	base = emif->base;
467
468	/* Read mode register 4 */
469	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
470	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
471	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
472				MR4_SDRAM_REF_RATE_SHIFT;
473
474	if (emif->plat_data->device_info->cs1_used) {
475		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
476		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
477		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
478				>> MR4_SDRAM_REF_RATE_SHIFT;
479		temperature_level = max(temp, temperature_level);
480	}
481
482	/* treat everything less than nominal(3) in MR4 as nominal */
483	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
484		temperature_level = SDRAM_TEMP_NOMINAL;
485
486	/* if we get reserved value in MR4 persist with the existing value */
487	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
488		emif->temperature_level = temperature_level;
489}
490
491/*
492 * setup_temperature_sensitive_regs() - set the timings for temperature
493 * sensitive registers. This happens once at initialisation time based
494 * on the temperature at boot time and subsequently based on the temperature
495 * alert interrupt. Temperature alert can happen when the temperature
496 * increases or drops. So this function can have the effect of either
497 * derating the timings or going back to nominal values.
498 */
499static void setup_temperature_sensitive_regs(struct emif_data *emif,
500		struct emif_regs *regs)
501{
502	u32		tim1, tim3, ref_ctrl, type;
503	void __iomem	*base = emif->base;
504	u32		temperature;
505
506	type = emif->plat_data->device_info->type;
507
508	tim1 = regs->sdram_tim1_shdw;
509	tim3 = regs->sdram_tim3_shdw;
510	ref_ctrl = regs->ref_ctrl_shdw;
511
512	/* No de-rating for non-lpddr2 devices */
513	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
514		goto out;
515
516	temperature = emif->temperature_level;
517	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
518		ref_ctrl = regs->ref_ctrl_shdw_derated;
519	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
520		tim1 = regs->sdram_tim1_shdw_derated;
521		tim3 = regs->sdram_tim3_shdw_derated;
522		ref_ctrl = regs->ref_ctrl_shdw_derated;
523	}
524
525out:
526	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
527	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
528	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
529}
530
531static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
532{
533	u32		old_temp_level;
534	irqreturn_t	ret = IRQ_HANDLED;
535	struct emif_custom_configs *custom_configs;
536
537	spin_lock_irqsave(&emif_lock, irq_state);
538	old_temp_level = emif->temperature_level;
539	get_temperature_level(emif);
540
541	if (unlikely(emif->temperature_level == old_temp_level)) {
542		goto out;
543	} else if (!emif->curr_regs) {
544		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
545		goto out;
546	}
547
548	custom_configs = emif->plat_data->custom_configs;
549
550	/*
551	 * IF we detect higher than "nominal rating" from DDR sensor
552	 * on an unsupported DDR part, shutdown system
553	 */
554	if (custom_configs && !(custom_configs->mask &
555				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
556		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
557			dev_err(emif->dev,
558				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
559				__func__, emif->temperature_level);
560			/*
561			 * Temperature far too high - do kernel_power_off()
562			 * from thread context
563			 */
564			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
565			ret = IRQ_WAKE_THREAD;
566			goto out;
567		}
568	}
569
570	if (emif->temperature_level < old_temp_level ||
571		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
572		/*
573		 * Temperature coming down - defer handling to thread OR
574		 * Temperature far too high - do kernel_power_off() from
575		 * thread context
576		 */
577		ret = IRQ_WAKE_THREAD;
578	} else {
579		/* Temperature is going up - handle immediately */
580		setup_temperature_sensitive_regs(emif, emif->curr_regs);
581		do_freq_update();
582	}
583
584out:
585	spin_unlock_irqrestore(&emif_lock, irq_state);
586	return ret;
587}
588
589static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
590{
591	u32			interrupts;
592	struct emif_data	*emif = dev_id;
593	void __iomem		*base = emif->base;
594	struct device		*dev = emif->dev;
595	irqreturn_t		ret = IRQ_HANDLED;
596
597	/* Save the status and clear it */
598	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
599	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
600
601	/*
602	 * Handle temperature alert
603	 * Temperature alert should be same for all ports
604	 * So, it's enough to process it only for one of the ports
605	 */
606	if (interrupts & TA_SYS_MASK)
607		ret = handle_temp_alert(base, emif);
608
609	if (interrupts & ERR_SYS_MASK)
610		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
611
612	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
613		/* Save the status and clear it */
614		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
615		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
616
617		if (interrupts & ERR_LL_MASK)
618			dev_err(dev, "Access error from LL port - %x\n",
619				interrupts);
620	}
621
622	return ret;
623}
624
625static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
626{
627	struct emif_data	*emif = dev_id;
628
629	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
630		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
631
632		/* If we have Power OFF ability, use it, else try restarting */
633		if (kernel_can_power_off()) {
634			kernel_power_off();
635		} else {
636			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
637			kernel_restart("SDRAM Over-temp Emergency restart");
638		}
639		return IRQ_HANDLED;
640	}
641
642	spin_lock_irqsave(&emif_lock, irq_state);
643
644	if (emif->curr_regs) {
645		setup_temperature_sensitive_regs(emif, emif->curr_regs);
646		do_freq_update();
647	} else {
648		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
649	}
650
651	spin_unlock_irqrestore(&emif_lock, irq_state);
652
653	return IRQ_HANDLED;
654}
655
656static void clear_all_interrupts(struct emif_data *emif)
657{
658	void __iomem	*base = emif->base;
659
660	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
661		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
662	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
663		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
664			base + EMIF_LL_OCP_INTERRUPT_STATUS);
665}
666
667static void disable_and_clear_all_interrupts(struct emif_data *emif)
668{
669	void __iomem		*base = emif->base;
670
671	/* Disable all interrupts */
672	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
673		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
674	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
675		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
676			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
677
678	/* Clear all interrupts */
679	clear_all_interrupts(emif);
680}
681
682static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
683{
684	u32		interrupts, type;
685	void __iomem	*base = emif->base;
686
687	type = emif->plat_data->device_info->type;
688
689	clear_all_interrupts(emif);
690
691	/* Enable interrupts for SYS interface */
692	interrupts = EN_ERR_SYS_MASK;
693	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
694		interrupts |= EN_TA_SYS_MASK;
695	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
696
697	/* Enable interrupts for LL interface */
698	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
699		/* TA need not be enabled for LL */
700		interrupts = EN_ERR_LL_MASK;
701		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
702	}
703
704	/* setup IRQ handlers */
705	return devm_request_threaded_irq(emif->dev, irq,
706				    emif_interrupt_handler,
707				    emif_threaded_isr,
708				    0, dev_name(emif->dev),
709				    emif);
710
711}
712
713static void __init_or_module emif_onetime_settings(struct emif_data *emif)
714{
715	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
716	void __iomem			*base = emif->base;
717	const struct lpddr2_addressing	*addressing;
718	const struct ddr_device_info	*device_info;
719
720	device_info = emif->plat_data->device_info;
721	addressing = get_addressing_table(device_info);
722
723	/*
724	 * Init power management settings
725	 * We don't know the frequency yet. Use a high frequency
726	 * value for a conservative timeout setting
727	 */
728	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
729			emif->plat_data->ip_rev);
730	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
731	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
732
733	/* Init ZQ calibration settings */
734	zq = get_zq_config_reg(addressing, device_info->cs1_used,
735		device_info->cal_resistors_per_cs);
736	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
737
738	/* Check temperature level temperature level*/
739	get_temperature_level(emif);
740	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
741		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
742
743	/* Init temperature polling */
744	temp_alert_cfg = get_temp_alert_config(addressing,
745		emif->plat_data->custom_configs, device_info->cs1_used,
746		device_info->io_width, get_emif_bus_width(emif));
747	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
748
749	/*
750	 * Program external PHY control registers that are not frequency
751	 * dependent
752	 */
753	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
754		return;
755	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
756	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
757	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
758	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
759	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
760	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
761	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
762	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
763	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
764	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
765	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
766	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
767	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
768	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
769	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
770	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
771	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
772	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
773	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
774	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
775	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
776}
777
778static void get_default_timings(struct emif_data *emif)
779{
780	struct emif_platform_data *pd = emif->plat_data;
781
782	pd->timings		= lpddr2_jedec_timings;
783	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
784
785	dev_warn(emif->dev, "%s: using default timings\n", __func__);
786}
787
788static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
789		u32 ip_rev, struct device *dev)
790{
791	int valid;
792
793	valid = (type == DDR_TYPE_LPDDR2_S4 ||
794			type == DDR_TYPE_LPDDR2_S2)
795		&& (density >= DDR_DENSITY_64Mb
796			&& density <= DDR_DENSITY_8Gb)
797		&& (io_width >= DDR_IO_WIDTH_8
798			&& io_width <= DDR_IO_WIDTH_32);
799
800	/* Combinations of EMIF and PHY revisions that we support today */
801	switch (ip_rev) {
802	case EMIF_4D:
803		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
804		break;
805	case EMIF_4D5:
806		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
807		break;
808	default:
809		valid = 0;
810	}
811
812	if (!valid)
813		dev_err(dev, "%s: invalid DDR details\n", __func__);
814	return valid;
815}
816
817static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
818		struct device *dev)
819{
820	int valid = 1;
821
822	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
823		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
824		valid = cust_cfgs->lpmode_freq_threshold &&
825			cust_cfgs->lpmode_timeout_performance &&
826			cust_cfgs->lpmode_timeout_power;
827
828	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
829		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
830
831	if (!valid)
832		dev_warn(dev, "%s: invalid custom configs\n", __func__);
833
834	return valid;
835}
836
837#if defined(CONFIG_OF)
838static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
839		struct emif_data *emif)
840{
841	struct emif_custom_configs	*cust_cfgs = NULL;
842	int				len;
843	const __be32			*lpmode, *poll_intvl;
844
845	lpmode = of_get_property(np_emif, "low-power-mode", &len);
846	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
847
848	if (lpmode || poll_intvl)
849		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
850			GFP_KERNEL);
851
852	if (!cust_cfgs)
853		return;
854
855	if (lpmode) {
856		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
857		cust_cfgs->lpmode = be32_to_cpup(lpmode);
858		of_property_read_u32(np_emif,
859				"low-power-mode-timeout-performance",
860				&cust_cfgs->lpmode_timeout_performance);
861		of_property_read_u32(np_emif,
862				"low-power-mode-timeout-power",
863				&cust_cfgs->lpmode_timeout_power);
864		of_property_read_u32(np_emif,
865				"low-power-mode-freq-threshold",
866				&cust_cfgs->lpmode_freq_threshold);
867	}
868
869	if (poll_intvl) {
870		cust_cfgs->mask |=
871				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
872		cust_cfgs->temp_alert_poll_interval_ms =
873						be32_to_cpup(poll_intvl);
874	}
875
876	if (of_find_property(np_emif, "extended-temp-part", &len))
877		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
878
879	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
880		devm_kfree(emif->dev, cust_cfgs);
881		return;
882	}
883
884	emif->plat_data->custom_configs = cust_cfgs;
885}
886
887static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
888		struct device_node *np_ddr,
889		struct ddr_device_info *dev_info)
890{
891	u32 density = 0, io_width = 0;
892	int len;
893
894	if (of_find_property(np_emif, "cs1-used", &len))
895		dev_info->cs1_used = true;
896
897	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
898		dev_info->cal_resistors_per_cs = true;
899
900	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
901		dev_info->type = DDR_TYPE_LPDDR2_S4;
902	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
903		dev_info->type = DDR_TYPE_LPDDR2_S2;
904
905	of_property_read_u32(np_ddr, "density", &density);
906	of_property_read_u32(np_ddr, "io-width", &io_width);
907
908	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
909	if (density & (density - 1))
910		dev_info->density = 0;
911	else
912		dev_info->density = __fls(density) - 5;
913
914	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
915	if (io_width & (io_width - 1))
916		dev_info->io_width = 0;
917	else
918		dev_info->io_width = __fls(io_width) - 1;
919}
920
921static struct emif_data * __init_or_module of_get_memory_device_details(
922		struct device_node *np_emif, struct device *dev)
923{
924	struct emif_data		*emif = NULL;
925	struct ddr_device_info		*dev_info = NULL;
926	struct emif_platform_data	*pd = NULL;
927	struct device_node		*np_ddr;
928	int				len;
929
930	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
931	if (!np_ddr)
932		goto error;
933	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
934	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
935	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
936
937	if (!emif || !pd || !dev_info) {
938		dev_err(dev, "%s: Out of memory!!\n",
939			__func__);
940		goto error;
941	}
942
943	emif->plat_data		= pd;
944	pd->device_info		= dev_info;
945	emif->dev		= dev;
946	emif->np_ddr		= np_ddr;
947	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
948
949	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
950		emif->plat_data->ip_rev = EMIF_4D;
951	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
952		emif->plat_data->ip_rev = EMIF_4D5;
953
954	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
955
956	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
957		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
958
959	of_get_ddr_info(np_emif, np_ddr, dev_info);
960	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
961			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
962			emif->dev)) {
963		dev_err(dev, "%s: invalid device data!!\n", __func__);
964		goto error;
965	}
966	/*
967	 * For EMIF instances other than EMIF1 see if the devices connected
968	 * are exactly same as on EMIF1(which is typically the case). If so,
969	 * mark it as a duplicate of EMIF1. This will save some memory and
970	 * computation.
971	 */
972	if (emif1 && emif1->np_ddr == np_ddr) {
973		emif->duplicate = true;
974		goto out;
975	} else if (emif1) {
976		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
977			__func__);
978	}
979
980	of_get_custom_configs(np_emif, emif);
981	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
982					emif->plat_data->device_info->type,
983					&emif->plat_data->timings_arr_size);
984
985	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
986	goto out;
987
988error:
989	return NULL;
990out:
991	return emif;
992}
993
994#else
995
996static struct emif_data * __init_or_module of_get_memory_device_details(
997		struct device_node *np_emif, struct device *dev)
998{
999	return NULL;
1000}
1001#endif
1002
1003static struct emif_data *__init_or_module get_device_details(
1004		struct platform_device *pdev)
1005{
1006	u32				size;
1007	struct emif_data		*emif = NULL;
1008	struct ddr_device_info		*dev_info;
1009	struct emif_custom_configs	*cust_cfgs;
1010	struct emif_platform_data	*pd;
1011	struct device			*dev;
1012	void				*temp;
1013
1014	pd = pdev->dev.platform_data;
1015	dev = &pdev->dev;
1016
1017	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1018			pd->device_info->density, pd->device_info->io_width,
1019			pd->phy_type, pd->ip_rev, dev))) {
1020		dev_err(dev, "%s: invalid device data\n", __func__);
1021		goto error;
1022	}
1023
1024	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1025	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1026	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1027
1028	if (!emif || !temp || !dev_info)
1029		goto error;
1030
1031	memcpy(temp, pd, sizeof(*pd));
1032	pd = temp;
1033	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1034
1035	pd->device_info		= dev_info;
1036	emif->plat_data		= pd;
1037	emif->dev		= dev;
1038	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1039
1040	/*
1041	 * For EMIF instances other than EMIF1 see if the devices connected
1042	 * are exactly same as on EMIF1(which is typically the case). If so,
1043	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1044	 * This will save some memory and some computation later.
1045	 */
1046	emif->duplicate = emif1 && (memcmp(dev_info,
1047		emif1->plat_data->device_info,
1048		sizeof(struct ddr_device_info)) == 0);
1049
1050	if (emif->duplicate) {
1051		pd->timings = NULL;
1052		pd->min_tck = NULL;
1053		goto out;
1054	} else if (emif1) {
1055		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1056			__func__);
1057	}
1058
1059	/*
1060	 * Copy custom configs - ignore allocation error, if any, as
1061	 * custom_configs is not very critical
1062	 */
1063	cust_cfgs = pd->custom_configs;
1064	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1065		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1066		if (temp)
1067			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1068		pd->custom_configs = temp;
1069	}
1070
1071	/*
1072	 * Copy timings and min-tck values from platform data. If it is not
1073	 * available or if memory allocation fails, use JEDEC defaults
1074	 */
1075	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1076	if (pd->timings) {
1077		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1078		if (temp) {
1079			memcpy(temp, pd->timings, size);
1080			pd->timings = temp;
1081		} else {
1082			get_default_timings(emif);
1083		}
1084	} else {
1085		get_default_timings(emif);
1086	}
1087
1088	if (pd->min_tck) {
1089		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1090		if (temp) {
1091			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1092			pd->min_tck = temp;
1093		} else {
1094			pd->min_tck = &lpddr2_jedec_min_tck;
1095		}
1096	} else {
1097		pd->min_tck = &lpddr2_jedec_min_tck;
1098	}
1099
1100out:
1101	return emif;
1102
1103error:
1104	return NULL;
1105}
1106
1107static int __init_or_module emif_probe(struct platform_device *pdev)
1108{
1109	struct emif_data	*emif;
1110	int			irq, ret;
1111
1112	if (pdev->dev.of_node)
1113		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1114	else
1115		emif = get_device_details(pdev);
1116
1117	if (!emif) {
1118		pr_err("%s: error getting device data\n", __func__);
1119		goto error;
1120	}
1121
1122	list_add(&emif->node, &device_list);
1123
1124	/* Save pointers to each other in emif and device structures */
1125	emif->dev = &pdev->dev;
1126	platform_set_drvdata(pdev, emif);
1127
1128	emif->base = devm_platform_ioremap_resource(pdev, 0);
1129	if (IS_ERR(emif->base))
1130		goto error;
1131
1132	irq = platform_get_irq(pdev, 0);
1133	if (irq < 0)
1134		goto error;
1135
1136	emif_onetime_settings(emif);
1137	emif_debugfs_init(emif);
1138	disable_and_clear_all_interrupts(emif);
1139	ret = setup_interrupts(emif, irq);
1140	if (ret)
1141		goto error;
1142
1143	/* One-time actions taken on probing the first device */
1144	if (!emif1) {
1145		emif1 = emif;
1146
1147		/*
1148		 * TODO: register notifiers for frequency and voltage
1149		 * change here once the respective frameworks are
1150		 * available
1151		 */
1152	}
1153
1154	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1155		__func__, emif->base, irq);
1156
1157	return 0;
1158error:
1159	return -ENODEV;
1160}
1161
1162static int __exit emif_remove(struct platform_device *pdev)
1163{
1164	struct emif_data *emif = platform_get_drvdata(pdev);
1165
1166	emif_debugfs_exit(emif);
1167
1168	return 0;
1169}
1170
1171static void emif_shutdown(struct platform_device *pdev)
1172{
1173	struct emif_data	*emif = platform_get_drvdata(pdev);
1174
1175	disable_and_clear_all_interrupts(emif);
1176}
1177
1178#if defined(CONFIG_OF)
1179static const struct of_device_id emif_of_match[] = {
1180		{ .compatible = "ti,emif-4d" },
1181		{ .compatible = "ti,emif-4d5" },
1182		{},
1183};
1184MODULE_DEVICE_TABLE(of, emif_of_match);
1185#endif
1186
1187static struct platform_driver emif_driver = {
1188	.remove		= __exit_p(emif_remove),
1189	.shutdown	= emif_shutdown,
1190	.driver = {
1191		.name = "emif",
1192		.of_match_table = of_match_ptr(emif_of_match),
1193	},
1194};
1195
1196module_platform_driver_probe(emif_driver, emif_probe);
1197
1198MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1199MODULE_LICENSE("GPL");
1200MODULE_ALIAS("platform:emif");
1201MODULE_AUTHOR("Texas Instruments Inc");
1202