1/*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3 *
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
6 *
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 * General Public License for more details.
21 */
22
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/pnp.h>
28#include <linux/io.h>
29#include <linux/interrupt.h>
30#include <linux/sched.h>
31#include <linux/slab.h>
32#include <media/rc-core.h>
33#include <linux/pci_ids.h>
34
35#include "nuvoton-cir.h"
36
37static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38
39static const struct nvt_chip nvt_chips[] = {
40	{ "w83667hg", NVT_W83667HG },
41	{ "NCT6775F", NVT_6775F },
42	{ "NCT6776F", NVT_6776F },
43	{ "NCT6779D", NVT_6779D },
44};
45
46static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47{
48	return nvt->rdev->dev.parent;
49}
50
51static inline bool is_w83667hg(struct nvt_dev *nvt)
52{
53	return nvt->chip_ver == NVT_W83667HG;
54}
55
56/* write val to config reg */
57static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58{
59	outb(reg, nvt->cr_efir);
60	outb(val, nvt->cr_efdr);
61}
62
63/* read val from config reg */
64static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65{
66	outb(reg, nvt->cr_efir);
67	return inb(nvt->cr_efdr);
68}
69
70/* update config register bit without changing other bits */
71static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72{
73	u8 tmp = nvt_cr_read(nvt, reg) | val;
74	nvt_cr_write(nvt, tmp, reg);
75}
76
77/* enter extended function mode */
78static inline int nvt_efm_enable(struct nvt_dev *nvt)
79{
80	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
81		return -EBUSY;
82
83	/* Enabling Extended Function Mode explicitly requires writing 2x */
84	outb(EFER_EFM_ENABLE, nvt->cr_efir);
85	outb(EFER_EFM_ENABLE, nvt->cr_efir);
86
87	return 0;
88}
89
90/* exit extended function mode */
91static inline void nvt_efm_disable(struct nvt_dev *nvt)
92{
93	outb(EFER_EFM_DISABLE, nvt->cr_efir);
94
95	release_region(nvt->cr_efir, 2);
96}
97
98/*
99 * When you want to address a specific logical device, write its logical
100 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
101 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
102 */
103static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
104{
105	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
106}
107
108/* select and enable logical device with setting EFM mode*/
109static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
110{
111	nvt_efm_enable(nvt);
112	nvt_select_logical_dev(nvt, ldev);
113	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
114	nvt_efm_disable(nvt);
115}
116
117/* select and disable logical device with setting EFM mode*/
118static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
119{
120	nvt_efm_enable(nvt);
121	nvt_select_logical_dev(nvt, ldev);
122	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
123	nvt_efm_disable(nvt);
124}
125
126/* write val to cir config register */
127static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
128{
129	outb(val, nvt->cir_addr + offset);
130}
131
132/* read val from cir config register */
133static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
134{
135	return inb(nvt->cir_addr + offset);
136}
137
138/* write val to cir wake register */
139static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
140					  u8 val, u8 offset)
141{
142	outb(val, nvt->cir_wake_addr + offset);
143}
144
145/* read val from cir wake config register */
146static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
147{
148	return inb(nvt->cir_wake_addr + offset);
149}
150
151/* don't override io address if one is set already */
152static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
153{
154	unsigned long old_addr;
155
156	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
157	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
158
159	if (old_addr)
160		*ioaddr = old_addr;
161	else {
162		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
163		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
164	}
165}
166
167static void nvt_write_wakeup_codes(struct rc_dev *dev,
168				   const u8 *wbuf, int count)
169{
170	u8 tolerance, config;
171	struct nvt_dev *nvt = dev->priv;
172	unsigned long flags;
173	int i;
174
175	/* hardcode the tolerance to 10% */
176	tolerance = DIV_ROUND_UP(count, 10);
177
178	spin_lock_irqsave(&nvt->lock, flags);
179
180	nvt_clear_cir_wake_fifo(nvt);
181	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
182	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
183
184	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
185
186	/* enable writes to wake fifo */
187	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
188			       CIR_WAKE_IRCON);
189
190	if (count)
191		pr_info("Wake samples (%d) =", count);
192	else
193		pr_info("Wake sample fifo cleared");
194
195	for (i = 0; i < count; i++)
196		nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
197
198	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
199
200	spin_unlock_irqrestore(&nvt->lock, flags);
201}
202
203static ssize_t wakeup_data_show(struct device *dev,
204				struct device_attribute *attr,
205				char *buf)
206{
207	struct rc_dev *rc_dev = to_rc_dev(dev);
208	struct nvt_dev *nvt = rc_dev->priv;
209	int fifo_len, duration;
210	unsigned long flags;
211	ssize_t buf_len = 0;
212	int i;
213
214	spin_lock_irqsave(&nvt->lock, flags);
215
216	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
217	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
218
219	/* go to first element to be read */
220	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
221		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
222
223	for (i = 0; i < fifo_len; i++) {
224		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
225		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
226		buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
227				    "%d ", duration);
228	}
229	buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
230
231	spin_unlock_irqrestore(&nvt->lock, flags);
232
233	return buf_len;
234}
235
236static ssize_t wakeup_data_store(struct device *dev,
237				 struct device_attribute *attr,
238				 const char *buf, size_t len)
239{
240	struct rc_dev *rc_dev = to_rc_dev(dev);
241	u8 wake_buf[WAKEUP_MAX_SIZE];
242	char **argv;
243	int i, count;
244	unsigned int val;
245	ssize_t ret;
246
247	argv = argv_split(GFP_KERNEL, buf, &count);
248	if (!argv)
249		return -ENOMEM;
250	if (!count || count > WAKEUP_MAX_SIZE) {
251		ret = -EINVAL;
252		goto out;
253	}
254
255	for (i = 0; i < count; i++) {
256		ret = kstrtouint(argv[i], 10, &val);
257		if (ret)
258			goto out;
259		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
260		if (!val || val > 0x7f) {
261			ret = -EINVAL;
262			goto out;
263		}
264		wake_buf[i] = val;
265		/* sequence must start with a pulse */
266		if (i % 2 == 0)
267			wake_buf[i] |= BUF_PULSE_BIT;
268	}
269
270	nvt_write_wakeup_codes(rc_dev, wake_buf, count);
271
272	ret = len;
273out:
274	argv_free(argv);
275	return ret;
276}
277static DEVICE_ATTR_RW(wakeup_data);
278
279/* dump current cir register contents */
280static void cir_dump_regs(struct nvt_dev *nvt)
281{
282	nvt_efm_enable(nvt);
283	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
284
285	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
286	pr_info(" * CR CIR ACTIVE :   0x%x\n",
287		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
288	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
289		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
290		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
291	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
292		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
293
294	nvt_efm_disable(nvt);
295
296	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
297	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
298	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
299	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
300	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
301	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
302	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
303	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
304	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
305	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
306	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
307	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
308	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
309	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
310	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
311	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
312	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
313}
314
315/* dump current cir wake register contents */
316static void cir_wake_dump_regs(struct nvt_dev *nvt)
317{
318	u8 i, fifo_len;
319
320	nvt_efm_enable(nvt);
321	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
322
323	pr_info("%s: Dump CIR WAKE logical device registers:\n",
324		NVT_DRIVER_NAME);
325	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
326		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
327	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
328		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
329		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
330	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
331		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
332
333	nvt_efm_disable(nvt);
334
335	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
336	pr_info(" * IRCON:          0x%x\n",
337		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
338	pr_info(" * IRSTS:          0x%x\n",
339		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
340	pr_info(" * IREN:           0x%x\n",
341		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
342	pr_info(" * FIFO CMP DEEP:  0x%x\n",
343		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
344	pr_info(" * FIFO CMP TOL:   0x%x\n",
345		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
346	pr_info(" * FIFO COUNT:     0x%x\n",
347		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
348	pr_info(" * SLCH:           0x%x\n",
349		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
350	pr_info(" * SLCL:           0x%x\n",
351		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
352	pr_info(" * FIFOCON:        0x%x\n",
353		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
354	pr_info(" * SRXFSTS:        0x%x\n",
355		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
356	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
357		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
358	pr_info(" * WR FIFO DATA:   0x%x\n",
359		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
360	pr_info(" * RD FIFO ONLY:   0x%x\n",
361		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
362	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
363		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
364	pr_info(" * FIFO IGNORE:    0x%x\n",
365		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
366	pr_info(" * IRFSM:          0x%x\n",
367		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
368
369	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
370	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
371	pr_info("* Contents =");
372	for (i = 0; i < fifo_len; i++)
373		pr_cont(" %02x",
374			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
375	pr_cont("\n");
376}
377
378static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
379{
380	int i;
381
382	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
383		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
384			nvt->chip_ver = nvt_chips[i].chip_ver;
385			return nvt_chips[i].name;
386		}
387
388	return NULL;
389}
390
391
392/* detect hardware features */
393static int nvt_hw_detect(struct nvt_dev *nvt)
394{
395	struct device *dev = nvt_get_dev(nvt);
396	const char *chip_name;
397	int chip_id;
398
399	nvt_efm_enable(nvt);
400
401	/* Check if we're wired for the alternate EFER setup */
402	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
403	if (nvt->chip_major == 0xff) {
404		nvt_efm_disable(nvt);
405		nvt->cr_efir = CR_EFIR2;
406		nvt->cr_efdr = CR_EFDR2;
407		nvt_efm_enable(nvt);
408		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
409	}
410	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
411
412	nvt_efm_disable(nvt);
413
414	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
415	if (chip_id == NVT_INVALID) {
416		dev_err(dev, "No device found on either EFM port\n");
417		return -ENODEV;
418	}
419
420	chip_name = nvt_find_chip(nvt, chip_id);
421
422	/* warn, but still let the driver load, if we don't know this chip */
423	if (!chip_name)
424		dev_warn(dev,
425			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
426			 nvt->chip_major, nvt->chip_minor);
427	else
428		dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
429			 chip_name, nvt->chip_major, nvt->chip_minor);
430
431	return 0;
432}
433
434static void nvt_cir_ldev_init(struct nvt_dev *nvt)
435{
436	u8 val, psreg, psmask, psval;
437
438	if (is_w83667hg(nvt)) {
439		psreg = CR_MULTIFUNC_PIN_SEL;
440		psmask = MULTIFUNC_PIN_SEL_MASK;
441		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
442	} else {
443		psreg = CR_OUTPUT_PIN_SEL;
444		psmask = OUTPUT_PIN_SEL_MASK;
445		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
446	}
447
448	/* output pin selection: enable CIR, with WB sensor enabled */
449	val = nvt_cr_read(nvt, psreg);
450	val &= psmask;
451	val |= psval;
452	nvt_cr_write(nvt, val, psreg);
453
454	/* Select CIR logical device */
455	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
456
457	nvt_set_ioaddr(nvt, &nvt->cir_addr);
458
459	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
460
461	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
462		nvt->cir_addr, nvt->cir_irq);
463}
464
465static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
466{
467	/* Select ACPI logical device and anable it */
468	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
469	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
470
471	/* Enable CIR Wake via PSOUT# (Pin60) */
472	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
473
474	/* enable pme interrupt of cir wakeup event */
475	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
476
477	/* Select CIR Wake logical device */
478	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
479
480	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
481
482	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
483		nvt->cir_wake_addr);
484}
485
486/* clear out the hardware's cir rx fifo */
487static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
488{
489	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
490	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
491}
492
493/* clear out the hardware's cir wake rx fifo */
494static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
495{
496	u8 val, config;
497
498	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
499
500	/* clearing wake fifo works in learning mode only */
501	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
502			       CIR_WAKE_IRCON);
503
504	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
505	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
506			       CIR_WAKE_FIFOCON);
507
508	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
509}
510
511/* clear out the hardware's cir tx fifo */
512static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
513{
514	u8 val;
515
516	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
517	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
518}
519
520/* enable RX Trigger Level Reach and Packet End interrupts */
521static void nvt_set_cir_iren(struct nvt_dev *nvt)
522{
523	u8 iren;
524
525	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
526	nvt_cir_reg_write(nvt, iren, CIR_IREN);
527}
528
529static void nvt_cir_regs_init(struct nvt_dev *nvt)
530{
531	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
532
533	/* set sample limit count (PE interrupt raised when reached) */
534	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
535	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
536
537	/* set fifo irq trigger levels */
538	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
539			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
540
541	/* clear hardware rx and tx fifos */
542	nvt_clear_cir_fifo(nvt);
543	nvt_clear_tx_fifo(nvt);
544
545	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
546}
547
548static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
549{
550	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
551
552	/*
553	 * Disable RX, set specific carrier on = low, off = high,
554	 * and sample period (currently 50us)
555	 */
556	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
557			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
558			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
559			       CIR_WAKE_IRCON);
560
561	/* clear any and all stray interrupts */
562	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
563}
564
565static void nvt_enable_wake(struct nvt_dev *nvt)
566{
567	unsigned long flags;
568
569	nvt_efm_enable(nvt);
570
571	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
572	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
573	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
574
575	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
576	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
577
578	nvt_efm_disable(nvt);
579
580	spin_lock_irqsave(&nvt->lock, flags);
581
582	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
583			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
584			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
585			       CIR_WAKE_IRCON);
586	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
587	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
588
589	spin_unlock_irqrestore(&nvt->lock, flags);
590}
591
592#if 0 /* Currently unused */
593/* rx carrier detect only works in learning mode, must be called w/lock */
594static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
595{
596	u32 count, carrier, duration = 0;
597	int i;
598
599	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
600		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
601
602	for (i = 0; i < nvt->pkts; i++) {
603		if (nvt->buf[i] & BUF_PULSE_BIT)
604			duration += nvt->buf[i] & BUF_LEN_MASK;
605	}
606
607	duration *= SAMPLE_PERIOD;
608
609	if (!count || !duration) {
610		dev_notice(nvt_get_dev(nvt),
611			   "Unable to determine carrier! (c:%u, d:%u)",
612			   count, duration);
613		return 0;
614	}
615
616	carrier = MS_TO_NS(count) / duration;
617
618	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
619		nvt_dbg("WTF? Carrier frequency out of range!");
620
621	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
622		carrier, count, duration);
623
624	return carrier;
625}
626#endif
627
628static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
629					struct rc_scancode_filter *sc_filter)
630{
631	u8 buf_val;
632	int i, ret, count;
633	unsigned int val;
634	struct ir_raw_event *raw;
635	u8 wake_buf[WAKEUP_MAX_SIZE];
636	bool complete;
637
638	/* Require mask to be set */
639	if (!sc_filter->mask)
640		return 0;
641
642	raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
643	if (!raw)
644		return -ENOMEM;
645
646	ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
647				     raw, WAKEUP_MAX_SIZE);
648	complete = (ret != -ENOBUFS);
649	if (!complete)
650		ret = WAKEUP_MAX_SIZE;
651	else if (ret < 0)
652		goto out_raw;
653
654	/* Inspect the ir samples */
655	for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
656		val = raw[i].duration / SAMPLE_PERIOD;
657
658		/* Split too large values into several smaller ones */
659		while (val > 0 && count < WAKEUP_MAX_SIZE) {
660			/* Skip last value for better comparison tolerance */
661			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
662				break;
663
664			/* Clamp values to BUF_LEN_MASK at most */
665			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
666
667			wake_buf[count] = buf_val;
668			val -= buf_val;
669			if ((raw[i]).pulse)
670				wake_buf[count] |= BUF_PULSE_BIT;
671			count++;
672		}
673	}
674
675	nvt_write_wakeup_codes(dev, wake_buf, count);
676	ret = 0;
677out_raw:
678	kfree(raw);
679
680	return ret;
681}
682
683/* dump contents of the last rx buffer we got from the hw rx fifo */
684static void nvt_dump_rx_buf(struct nvt_dev *nvt)
685{
686	int i;
687
688	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
689	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
690		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
691	printk(KERN_CONT "\n");
692}
693
694/*
695 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
696 * trigger decode when appropriate.
697 *
698 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
699 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
700 * (default 50us) intervals for that pulse/space. A discrete signal is
701 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
702 * to signal more IR coming (repeats) or end of IR, respectively. We store
703 * sample data in the raw event kfifo until we see 0x7<something> (except f)
704 * or 0x80, at which time, we trigger a decode operation.
705 */
706static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
707{
708	struct ir_raw_event rawir = {};
709	u8 sample;
710	int i;
711
712	nvt_dbg_verbose("%s firing", __func__);
713
714	if (debug)
715		nvt_dump_rx_buf(nvt);
716
717	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
718
719	for (i = 0; i < nvt->pkts; i++) {
720		sample = nvt->buf[i];
721
722		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
723		rawir.duration = (sample & BUF_LEN_MASK) * SAMPLE_PERIOD;
724
725		nvt_dbg("Storing %s with duration %d",
726			rawir.pulse ? "pulse" : "space", rawir.duration);
727
728		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
729	}
730
731	nvt->pkts = 0;
732
733	nvt_dbg("Calling ir_raw_event_handle\n");
734	ir_raw_event_handle(nvt->rdev);
735
736	nvt_dbg_verbose("%s done", __func__);
737}
738
739static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
740{
741	dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
742
743	nvt->pkts = 0;
744	nvt_clear_cir_fifo(nvt);
745	ir_raw_event_overflow(nvt->rdev);
746}
747
748/* copy data from hardware rx fifo into driver buffer */
749static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
750{
751	u8 fifocount;
752	int i;
753
754	/* Get count of how many bytes to read from RX FIFO */
755	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
756
757	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
758
759	/* Read fifocount bytes from CIR Sample RX FIFO register */
760	for (i = 0; i < fifocount; i++)
761		nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
762
763	nvt->pkts = fifocount;
764	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
765
766	nvt_process_rx_ir_data(nvt);
767}
768
769static void nvt_cir_log_irqs(u8 status, u8 iren)
770{
771	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
772		status, iren,
773		status & CIR_IRSTS_RDR	? " RDR"	: "",
774		status & CIR_IRSTS_RTR	? " RTR"	: "",
775		status & CIR_IRSTS_PE	? " PE"		: "",
776		status & CIR_IRSTS_RFO	? " RFO"	: "",
777		status & CIR_IRSTS_TE	? " TE"		: "",
778		status & CIR_IRSTS_TTR	? " TTR"	: "",
779		status & CIR_IRSTS_TFU	? " TFU"	: "",
780		status & CIR_IRSTS_GH	? " GH"		: "",
781		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
782			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
783			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
784}
785
786/* interrupt service routine for incoming and outgoing CIR data */
787static irqreturn_t nvt_cir_isr(int irq, void *data)
788{
789	struct nvt_dev *nvt = data;
790	u8 status, iren;
791
792	nvt_dbg_verbose("%s firing", __func__);
793
794	spin_lock(&nvt->lock);
795
796	/*
797	 * Get IR Status register contents. Write 1 to ack/clear
798	 *
799	 * bit: reg name      - description
800	 *   7: CIR_IRSTS_RDR - RX Data Ready
801	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
802	 *   5: CIR_IRSTS_PE  - Packet End
803	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
804	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
805	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
806	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
807	 *   0: CIR_IRSTS_GH  - Min Length Detected
808	 */
809	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
810	iren = nvt_cir_reg_read(nvt, CIR_IREN);
811
812	/* At least NCT6779D creates a spurious interrupt when the
813	 * logical device is being disabled.
814	 */
815	if (status == 0xff && iren == 0xff) {
816		spin_unlock(&nvt->lock);
817		nvt_dbg_verbose("Spurious interrupt detected");
818		return IRQ_HANDLED;
819	}
820
821	/* IRQ may be shared with CIR WAKE, therefore check for each
822	 * status bit whether the related interrupt source is enabled
823	 */
824	if (!(status & iren)) {
825		spin_unlock(&nvt->lock);
826		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
827		return IRQ_NONE;
828	}
829
830	/* ack/clear all irq flags we've got */
831	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
832	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
833
834	nvt_cir_log_irqs(status, iren);
835
836	if (status & CIR_IRSTS_RFO)
837		nvt_handle_rx_fifo_overrun(nvt);
838	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
839		nvt_get_rx_ir_data(nvt);
840
841	spin_unlock(&nvt->lock);
842
843	nvt_dbg_verbose("%s done", __func__);
844	return IRQ_HANDLED;
845}
846
847static void nvt_enable_cir(struct nvt_dev *nvt)
848{
849	unsigned long flags;
850
851	/* enable the CIR logical device */
852	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
853
854	spin_lock_irqsave(&nvt->lock, flags);
855
856	/*
857	 * Enable TX and RX, specify carrier on = low, off = high, and set
858	 * sample period (currently 50us)
859	 */
860	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
861			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
862			  CIR_IRCON);
863
864	/* clear all pending interrupts */
865	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
866
867	/* enable interrupts */
868	nvt_set_cir_iren(nvt);
869
870	spin_unlock_irqrestore(&nvt->lock, flags);
871}
872
873static void nvt_disable_cir(struct nvt_dev *nvt)
874{
875	unsigned long flags;
876
877	spin_lock_irqsave(&nvt->lock, flags);
878
879	/* disable CIR interrupts */
880	nvt_cir_reg_write(nvt, 0, CIR_IREN);
881
882	/* clear any and all pending interrupts */
883	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
884
885	/* clear all function enable flags */
886	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
887
888	/* clear hardware rx and tx fifos */
889	nvt_clear_cir_fifo(nvt);
890	nvt_clear_tx_fifo(nvt);
891
892	spin_unlock_irqrestore(&nvt->lock, flags);
893
894	/* disable the CIR logical device */
895	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
896}
897
898static int nvt_open(struct rc_dev *dev)
899{
900	struct nvt_dev *nvt = dev->priv;
901
902	nvt_enable_cir(nvt);
903
904	return 0;
905}
906
907static void nvt_close(struct rc_dev *dev)
908{
909	struct nvt_dev *nvt = dev->priv;
910
911	nvt_disable_cir(nvt);
912}
913
914/* Allocate memory, probe hardware, and initialize everything */
915static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
916{
917	struct nvt_dev *nvt;
918	struct rc_dev *rdev;
919	int ret;
920
921	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
922	if (!nvt)
923		return -ENOMEM;
924
925	/* input device for IR remote */
926	nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
927	if (!nvt->rdev)
928		return -ENOMEM;
929	rdev = nvt->rdev;
930
931	/* activate pnp device */
932	ret = pnp_activate_dev(pdev);
933	if (ret) {
934		dev_err(&pdev->dev, "Could not activate PNP device!\n");
935		return ret;
936	}
937
938	/* validate pnp resources */
939	if (!pnp_port_valid(pdev, 0) ||
940	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
941		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
942		return -EINVAL;
943	}
944
945	if (!pnp_irq_valid(pdev, 0)) {
946		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
947		return -EINVAL;
948	}
949
950	if (!pnp_port_valid(pdev, 1) ||
951	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
952		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
953		return -EINVAL;
954	}
955
956	nvt->cir_addr = pnp_port_start(pdev, 0);
957	nvt->cir_irq  = pnp_irq(pdev, 0);
958
959	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
960
961	nvt->cr_efir = CR_EFIR;
962	nvt->cr_efdr = CR_EFDR;
963
964	spin_lock_init(&nvt->lock);
965
966	pnp_set_drvdata(pdev, nvt);
967
968	ret = nvt_hw_detect(nvt);
969	if (ret)
970		return ret;
971
972	/* Initialize CIR & CIR Wake Logical Devices */
973	nvt_efm_enable(nvt);
974	nvt_cir_ldev_init(nvt);
975	nvt_cir_wake_ldev_init(nvt);
976	nvt_efm_disable(nvt);
977
978	/*
979	 * Initialize CIR & CIR Wake Config Registers
980	 * and enable logical devices
981	 */
982	nvt_cir_regs_init(nvt);
983	nvt_cir_wake_regs_init(nvt);
984
985	/* Set up the rc device */
986	rdev->priv = nvt;
987	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
988	rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
989	rdev->encode_wakeup = true;
990	rdev->open = nvt_open;
991	rdev->close = nvt_close;
992	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
993	rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
994	rdev->input_phys = "nuvoton/cir0";
995	rdev->input_id.bustype = BUS_HOST;
996	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
997	rdev->input_id.product = nvt->chip_major;
998	rdev->input_id.version = nvt->chip_minor;
999	rdev->driver_name = NVT_DRIVER_NAME;
1000	rdev->map_name = RC_MAP_RC6_MCE;
1001	rdev->timeout = MS_TO_US(100);
1002	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1003	rdev->rx_resolution = CIR_SAMPLE_PERIOD;
1004#if 0
1005	rdev->min_timeout = XYZ;
1006	rdev->max_timeout = XYZ;
1007#endif
1008	ret = devm_rc_register_device(&pdev->dev, rdev);
1009	if (ret)
1010		return ret;
1011
1012	/* now claim resources */
1013	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1014			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1015		return -EBUSY;
1016
1017	ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1018			       IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1019	if (ret)
1020		return ret;
1021
1022	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1023			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1024		return -EBUSY;
1025
1026	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1027	if (ret)
1028		return ret;
1029
1030	device_init_wakeup(&pdev->dev, true);
1031
1032	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1033	if (debug) {
1034		cir_dump_regs(nvt);
1035		cir_wake_dump_regs(nvt);
1036	}
1037
1038	return 0;
1039}
1040
1041static void nvt_remove(struct pnp_dev *pdev)
1042{
1043	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1044
1045	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1046
1047	nvt_disable_cir(nvt);
1048
1049	/* enable CIR Wake (for IR power-on) */
1050	nvt_enable_wake(nvt);
1051}
1052
1053static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1054{
1055	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1056
1057	nvt_dbg("%s called", __func__);
1058
1059	mutex_lock(&nvt->rdev->lock);
1060	if (nvt->rdev->users)
1061		nvt_disable_cir(nvt);
1062	mutex_unlock(&nvt->rdev->lock);
1063
1064	/* make sure wake is enabled */
1065	nvt_enable_wake(nvt);
1066
1067	return 0;
1068}
1069
1070static int nvt_resume(struct pnp_dev *pdev)
1071{
1072	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1073
1074	nvt_dbg("%s called", __func__);
1075
1076	nvt_cir_regs_init(nvt);
1077	nvt_cir_wake_regs_init(nvt);
1078
1079	mutex_lock(&nvt->rdev->lock);
1080	if (nvt->rdev->users)
1081		nvt_enable_cir(nvt);
1082	mutex_unlock(&nvt->rdev->lock);
1083
1084	return 0;
1085}
1086
1087static void nvt_shutdown(struct pnp_dev *pdev)
1088{
1089	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1090
1091	nvt_enable_wake(nvt);
1092}
1093
1094static const struct pnp_device_id nvt_ids[] = {
1095	{ "WEC0530", 0 },   /* CIR */
1096	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1097	{ "", 0 },
1098};
1099
1100static struct pnp_driver nvt_driver = {
1101	.name		= NVT_DRIVER_NAME,
1102	.id_table	= nvt_ids,
1103	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1104	.probe		= nvt_probe,
1105	.remove		= nvt_remove,
1106	.suspend	= nvt_suspend,
1107	.resume		= nvt_resume,
1108	.shutdown	= nvt_shutdown,
1109};
1110
1111module_param(debug, int, S_IRUGO | S_IWUSR);
1112MODULE_PARM_DESC(debug, "Enable debugging output");
1113
1114MODULE_DEVICE_TABLE(pnp, nvt_ids);
1115MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1116
1117MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1118MODULE_LICENSE("GPL");
1119
1120module_pnp_driver(nvt_driver);
1121