1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  FM Driver for Connectivity chip of Texas Instruments.
4 *
5 *  This sub-module of FM driver is common for FM RX and TX
6 *  functionality. This module is responsible for:
7 *  1) Forming group of Channel-8 commands to perform particular
8 *     functionality (eg., frequency set require more than
9 *     one Channel-8 command to be sent to the chip).
10 *  2) Sending each Channel-8 command to the chip and reading
11 *     response back over Shared Transport.
12 *  3) Managing TX and RX Queues and Tasklets.
13 *  4) Handling FM Interrupt packet and taking appropriate action.
14 *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
15 *     firmware files based on mode selection)
16 *
17 *  Copyright (C) 2011 Texas Instruments
18 *  Author: Raja Mani <raja_mani@ti.com>
19 *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 */
21
22#include <linux/delay.h>
23#include <linux/firmware.h>
24#include <linux/module.h>
25#include <linux/nospec.h>
26#include <linux/jiffies.h>
27
28#include "fmdrv.h"
29#include "fmdrv_v4l2.h"
30#include "fmdrv_common.h"
31#include <linux/ti_wilink_st.h>
32#include "fmdrv_rx.h"
33#include "fmdrv_tx.h"
34
35/* Region info */
36static struct region_info region_configs[] = {
37	/* Europe/US */
38	{
39	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40	 .bot_freq = 87500,	/* 87.5 MHz */
41	 .top_freq = 108000,	/* 108 MHz */
42	 .fm_band = 0,
43	 },
44	/* Japan */
45	{
46	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47	 .bot_freq = 76000,	/* 76 MHz */
48	 .top_freq = 90000,	/* 90 MHz */
49	 .fm_band = 1,
50	 },
51};
52
53/* Band selection */
54static u8 default_radio_region;	/* Europe/US */
55module_param(default_radio_region, byte, 0);
56MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57
58/* RDS buffer blocks */
59static u32 default_rds_buf = 300;
60module_param(default_rds_buf, uint, 0444);
61MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62
63/* Radio Nr */
64static u32 radio_nr = -1;
65module_param(radio_nr, int, 0444);
66MODULE_PARM_DESC(radio_nr, "Radio Nr");
67
68/* FM irq handlers forward declaration */
69static void fm_irq_send_flag_getcmd(struct fmdev *);
70static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71static void fm_irq_handle_hw_malfunction(struct fmdev *);
72static void fm_irq_handle_rds_start(struct fmdev *);
73static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75static void fm_irq_handle_rds_finish(struct fmdev *);
76static void fm_irq_handle_tune_op_ended(struct fmdev *);
77static void fm_irq_handle_power_enb(struct fmdev *);
78static void fm_irq_handle_low_rssi_start(struct fmdev *);
79static void fm_irq_afjump_set_pi(struct fmdev *);
80static void fm_irq_handle_set_pi_resp(struct fmdev *);
81static void fm_irq_afjump_set_pimask(struct fmdev *);
82static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83static void fm_irq_afjump_setfreq(struct fmdev *);
84static void fm_irq_handle_setfreq_resp(struct fmdev *);
85static void fm_irq_afjump_enableint(struct fmdev *);
86static void fm_irq_afjump_enableint_resp(struct fmdev *);
87static void fm_irq_start_afjump(struct fmdev *);
88static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89static void fm_irq_afjump_rd_freq(struct fmdev *);
90static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92static void fm_irq_send_intmsk_cmd(struct fmdev *);
93static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94
95/*
96 * When FM common module receives interrupt packet, following handlers
97 * will be executed one after another to service the interrupt(s)
98 */
99enum fmc_irq_handler_index {
100	FM_SEND_FLAG_GETCMD_IDX,
101	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102
103	/* HW malfunction irq handler */
104	FM_HW_MAL_FUNC_IDX,
105
106	/* RDS threshold reached irq handler */
107	FM_RDS_START_IDX,
108	FM_RDS_SEND_RDS_GETCMD_IDX,
109	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110	FM_RDS_FINISH_IDX,
111
112	/* Tune operation ended irq handler */
113	FM_HW_TUNE_OP_ENDED_IDX,
114
115	/* TX power enable irq handler */
116	FM_HW_POWER_ENB_IDX,
117
118	/* Low RSSI irq handler */
119	FM_LOW_RSSI_START_IDX,
120	FM_AF_JUMP_SETPI_IDX,
121	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122	FM_AF_JUMP_SETPI_MASK_IDX,
123	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124	FM_AF_JUMP_SET_AF_FREQ_IDX,
125	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126	FM_AF_JUMP_ENABLE_INT_IDX,
127	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128	FM_AF_JUMP_START_AFJUMP_IDX,
129	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130	FM_AF_JUMP_RD_FREQ_IDX,
131	FM_AF_JUMP_RD_FREQ_RESP_IDX,
132	FM_LOW_RSSI_FINISH_IDX,
133
134	/* Interrupt process post action */
135	FM_SEND_INTMSK_CMD_IDX,
136	FM_HANDLE_INTMSK_CMD_RESP_IDX,
137};
138
139/* FM interrupt handler table */
140static int_handler_prototype int_handler_table[] = {
141	fm_irq_send_flag_getcmd,
142	fm_irq_handle_flag_getcmd_resp,
143	fm_irq_handle_hw_malfunction,
144	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145	fm_irq_send_rdsdata_getcmd,
146	fm_irq_handle_rdsdata_getcmd_resp,
147	fm_irq_handle_rds_finish,
148	fm_irq_handle_tune_op_ended,
149	fm_irq_handle_power_enb, /* TX power enable irq handler */
150	fm_irq_handle_low_rssi_start,
151	fm_irq_afjump_set_pi,
152	fm_irq_handle_set_pi_resp,
153	fm_irq_afjump_set_pimask,
154	fm_irq_handle_set_pimask_resp,
155	fm_irq_afjump_setfreq,
156	fm_irq_handle_setfreq_resp,
157	fm_irq_afjump_enableint,
158	fm_irq_afjump_enableint_resp,
159	fm_irq_start_afjump,
160	fm_irq_handle_start_afjump_resp,
161	fm_irq_afjump_rd_freq,
162	fm_irq_afjump_rd_freq_resp,
163	fm_irq_handle_low_rssi_finish,
164	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165	fm_irq_handle_intmsk_cmd_resp
166};
167
168static long (*g_st_write) (struct sk_buff *skb);
169static struct completion wait_for_fmdrv_reg_comp;
170
171static inline void fm_irq_call(struct fmdev *fmdev)
172{
173	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174}
175
176/* Continue next function in interrupt handler table */
177static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178{
179	fmdev->irq_info.stage = stage;
180	fm_irq_call(fmdev);
181}
182
183static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184{
185	fmdev->irq_info.stage = stage;
186	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187}
188
189#ifdef FM_DUMP_TXRX_PKT
190 /* To dump outgoing FM Channel-8 packets */
191inline void dump_tx_skb_data(struct sk_buff *skb)
192{
193	int len, len_org;
194	u8 index;
195	struct fm_cmd_msg_hdr *cmd_hdr;
196
197	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200	       cmd_hdr->len, cmd_hdr->op,
201	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202
203	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204	if (len_org > 0) {
205		printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
206		len = min(len_org, 14);
207		for (index = 0; index < len; index++)
208			printk(KERN_CONT "%x ",
209			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211	}
212	printk(KERN_CONT "\n");
213}
214
215 /* To dump incoming FM Channel-8 packets */
216inline void dump_rx_skb_data(struct sk_buff *skb)
217{
218	int len, len_org;
219	u8 index;
220	struct fm_event_msg_hdr *evt_hdr;
221
222	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224	       evt_hdr->hdr, evt_hdr->len,
225	       evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226	       (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227
228	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229	if (len_org > 0) {
230		printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
231		len = min(len_org, 14);
232		for (index = 0; index < len; index++)
233			printk(KERN_CONT "%x ",
234			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236	}
237	printk(KERN_CONT "\n");
238}
239#endif
240
241void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242{
243	fmdev->rx.region = region_configs[region_to_set];
244}
245
246/*
247 * FM common sub-module will schedule this tasklet whenever it receives
248 * FM packet from ST driver.
249 */
250static void recv_tasklet(struct tasklet_struct *t)
251{
252	struct fmdev *fmdev;
253	struct fm_irq *irq_info;
254	struct fm_event_msg_hdr *evt_hdr;
255	struct sk_buff *skb;
256	u8 num_fm_hci_cmds;
257	unsigned long flags;
258
259	fmdev = from_tasklet(fmdev, t, tx_task);
260	irq_info = &fmdev->irq_info;
261	/* Process all packets in the RX queue */
262	while ((skb = skb_dequeue(&fmdev->rx_q))) {
263		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264			fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265			      skb,
266			      skb->len, sizeof(struct fm_event_msg_hdr));
267			kfree_skb(skb);
268			continue;
269		}
270
271		evt_hdr = (void *)skb->data;
272		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273
274		/* FM interrupt packet? */
275		if (evt_hdr->op == FM_INTERRUPT) {
276			/* FM interrupt handler started already? */
277			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279				if (irq_info->stage != 0) {
280					fmerr("Inval stage resetting to zero\n");
281					irq_info->stage = 0;
282				}
283
284				/*
285				 * Execute first function in interrupt handler
286				 * table.
287				 */
288				irq_info->handlers[irq_info->stage](fmdev);
289			} else {
290				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291			}
292			kfree_skb(skb);
293		}
294		/* Anyone waiting for this with completion handler? */
295		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296
297			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298			fmdev->resp_skb = skb;
299			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300			complete(fmdev->resp_comp);
301
302			fmdev->resp_comp = NULL;
303			atomic_set(&fmdev->tx_cnt, 1);
304		}
305		/* Is this for interrupt handler? */
306		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307			if (fmdev->resp_skb != NULL)
308				fmerr("Response SKB ptr not NULL\n");
309
310			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311			fmdev->resp_skb = skb;
312			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313
314			/* Execute interrupt handler where state index points */
315			irq_info->handlers[irq_info->stage](fmdev);
316
317			kfree_skb(skb);
318			atomic_set(&fmdev->tx_cnt, 1);
319		} else {
320			fmerr("Nobody claimed SKB(%p),purging\n", skb);
321		}
322
323		/*
324		 * Check flow control field. If Num_FM_HCI_Commands field is
325		 * not zero, schedule FM TX tasklet.
326		 */
327		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328			if (!skb_queue_empty(&fmdev->tx_q))
329				tasklet_schedule(&fmdev->tx_task);
330	}
331}
332
333/* FM send tasklet: is scheduled when FM packet has to be sent to chip */
334static void send_tasklet(struct tasklet_struct *t)
335{
336	struct fmdev *fmdev;
337	struct sk_buff *skb;
338	int len;
339
340	fmdev = from_tasklet(fmdev, t, tx_task);
341
342	if (!atomic_read(&fmdev->tx_cnt))
343		return;
344
345	/* Check, is there any timeout happened to last transmitted packet */
346	if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347		fmerr("TX timeout occurred\n");
348		atomic_set(&fmdev->tx_cnt, 1);
349	}
350
351	/* Send queued FM TX packets */
352	skb = skb_dequeue(&fmdev->tx_q);
353	if (!skb)
354		return;
355
356	atomic_dec(&fmdev->tx_cnt);
357	fmdev->pre_op = fm_cb(skb)->fm_op;
358
359	if (fmdev->resp_comp != NULL)
360		fmerr("Response completion handler is not NULL\n");
361
362	fmdev->resp_comp = fm_cb(skb)->completion;
363
364	/* Write FM packet to ST driver */
365	len = g_st_write(skb);
366	if (len < 0) {
367		kfree_skb(skb);
368		fmdev->resp_comp = NULL;
369		fmerr("TX tasklet failed to send skb(%p)\n", skb);
370		atomic_set(&fmdev->tx_cnt, 1);
371	} else {
372		fmdev->last_tx_jiffies = jiffies;
373	}
374}
375
376/*
377 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
378 * transmission
379 */
380static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
381		int payload_len, struct completion *wait_completion)
382{
383	struct sk_buff *skb;
384	struct fm_cmd_msg_hdr *hdr;
385	int size;
386
387	if (fm_op >= FM_INTERRUPT) {
388		fmerr("Invalid fm opcode - %d\n", fm_op);
389		return -EINVAL;
390	}
391	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392		fmerr("Payload data is NULL during fw download\n");
393		return -EINVAL;
394	}
395	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396		size =
397		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398	else
399		size = payload_len;
400
401	skb = alloc_skb(size, GFP_ATOMIC);
402	if (!skb) {
403		fmerr("No memory to create new SKB\n");
404		return -ENOMEM;
405	}
406	/*
407	 * Don't fill FM header info for the commands which come from
408	 * FM firmware file.
409	 */
410	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412		/* Fill command header info */
413		hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
415
416		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418
419		/* FM opcode */
420		hdr->op = fm_op;
421
422		/* read/write type */
423		hdr->rd_wr = type;
424		hdr->dlen = payload_len;
425		fm_cb(skb)->fm_op = fm_op;
426
427		/*
428		 * If firmware download has finished and the command is
429		 * not a read command then payload is != NULL - a write
430		 * command with u16 payload - convert to be16
431		 */
432		if (payload != NULL)
433			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434
435	} else if (payload != NULL) {
436		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437	}
438	if (payload != NULL)
439		skb_put_data(skb, payload, payload_len);
440
441	fm_cb(skb)->completion = wait_completion;
442	skb_queue_tail(&fmdev->tx_q, skb);
443	tasklet_schedule(&fmdev->tx_task);
444
445	return 0;
446}
447
448/* Sends FM Channel-8 command to the chip and waits for the response */
449int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450		unsigned int payload_len, void *response, int *response_len)
451{
452	struct sk_buff *skb;
453	struct fm_event_msg_hdr *evt_hdr;
454	unsigned long flags;
455	int ret;
456
457	init_completion(&fmdev->maintask_comp);
458	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459			    &fmdev->maintask_comp);
460	if (ret)
461		return ret;
462
463	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464					 FM_DRV_TX_TIMEOUT)) {
465		fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
466			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467		return -ETIMEDOUT;
468	}
469	if (!fmdev->resp_skb) {
470		fmerr("Response SKB is missing\n");
471		return -EFAULT;
472	}
473	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
474	skb = fmdev->resp_skb;
475	fmdev->resp_skb = NULL;
476	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
477
478	evt_hdr = (void *)skb->data;
479	if (evt_hdr->status != 0) {
480		fmerr("Received event pkt status(%d) is not zero\n",
481			   evt_hdr->status);
482		kfree_skb(skb);
483		return -EIO;
484	}
485	/* Send response data to caller */
486	if (response != NULL && response_len != NULL && evt_hdr->dlen &&
487	    evt_hdr->dlen <= payload_len) {
488		/* Skip header info and copy only response data */
489		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
490		memcpy(response, skb->data, evt_hdr->dlen);
491		*response_len = evt_hdr->dlen;
492	} else if (response_len != NULL && evt_hdr->dlen == 0) {
493		*response_len = 0;
494	}
495	kfree_skb(skb);
496
497	return 0;
498}
499
500/* --- Helper functions used in FM interrupt handlers ---*/
501static inline int check_cmdresp_status(struct fmdev *fmdev,
502		struct sk_buff **skb)
503{
504	struct fm_event_msg_hdr *fm_evt_hdr;
505	unsigned long flags;
506
507	del_timer(&fmdev->irq_info.timer);
508
509	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
510	*skb = fmdev->resp_skb;
511	fmdev->resp_skb = NULL;
512	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
513
514	fm_evt_hdr = (void *)(*skb)->data;
515	if (fm_evt_hdr->status != 0) {
516		fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
517				fm_evt_hdr->op);
518
519		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
520		return -1;
521	}
522
523	return 0;
524}
525
526static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
527{
528	struct sk_buff *skb;
529
530	if (!check_cmdresp_status(fmdev, &skb))
531		fm_irq_call_stage(fmdev, stage);
532}
533
534/*
535 * Interrupt process timeout handler.
536 * One of the irq handler did not get proper response from the chip. So take
537 * recovery action here. FM interrupts are disabled in the beginning of
538 * interrupt process. Therefore reset stage index to re-enable default
539 * interrupts. So that next interrupt will be processed as usual.
540 */
541static void int_timeout_handler(struct timer_list *t)
542{
543	struct fmdev *fmdev;
544	struct fm_irq *fmirq;
545
546	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
547	fmdev = from_timer(fmdev, t, irq_info.timer);
548	fmirq = &fmdev->irq_info;
549	fmirq->retry++;
550
551	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
552		/* Stop recovery action (interrupt reenable process) and
553		 * reset stage index & retry count values */
554		fmirq->stage = 0;
555		fmirq->retry = 0;
556		fmerr("Recovery action failed duringirq processing, max retry reached\n");
557		return;
558	}
559	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
560}
561
562/* --------- FM interrupt handlers ------------*/
563static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
564{
565	u16 flag;
566
567	/* Send FLAG_GET command , to know the source of interrupt */
568	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
569		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
570}
571
572static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
573{
574	struct sk_buff *skb;
575	struct fm_event_msg_hdr *fm_evt_hdr;
576
577	if (check_cmdresp_status(fmdev, &skb))
578		return;
579
580	fm_evt_hdr = (void *)skb->data;
581	if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
582		return;
583
584	/* Skip header info and copy only response data */
585	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
586	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
587
588	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
589	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
590
591	/* Continue next function in interrupt handler table */
592	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
593}
594
595static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
596{
597	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
598		fmerr("irq: HW MAL int received - do nothing\n");
599
600	/* Continue next function in interrupt handler table */
601	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
602}
603
604static void fm_irq_handle_rds_start(struct fmdev *fmdev)
605{
606	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
607		fmdbg("irq: rds threshold reached\n");
608		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
609	} else {
610		/* Continue next function in interrupt handler table */
611		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
612	}
613
614	fm_irq_call(fmdev);
615}
616
617static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
618{
619	/* Send the command to read RDS data from the chip */
620	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
621			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
622		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
623}
624
625/* Keeps track of current RX channel AF (Alternate Frequency) */
626static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
627{
628	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
629	u8 reg_idx = fmdev->rx.region.fm_band;
630	u8 index;
631	u32 freq;
632
633	/* First AF indicates the number of AF follows. Reset the list */
634	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
635		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
636		fmdev->rx.stat_info.afcache_size = 0;
637		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
638		return;
639	}
640
641	if (af < FM_RDS_MIN_AF)
642		return;
643	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
644		return;
645	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
646		return;
647
648	freq = fmdev->rx.region.bot_freq + (af * 100);
649	if (freq == fmdev->rx.freq) {
650		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
651				fmdev->rx.freq, freq);
652		return;
653	}
654	/* Do check in AF cache */
655	for (index = 0; index < stat_info->afcache_size; index++) {
656		if (stat_info->af_cache[index] == freq)
657			break;
658	}
659	/* Reached the limit of the list - ignore the next AF */
660	if (index == stat_info->af_list_max) {
661		fmdbg("AF cache is full\n");
662		return;
663	}
664	/*
665	 * If we reached the end of the list then this AF is not
666	 * in the list - add it.
667	 */
668	if (index == stat_info->afcache_size) {
669		fmdbg("Storing AF %d to cache index %d\n", freq, index);
670		stat_info->af_cache[index] = freq;
671		stat_info->afcache_size++;
672	}
673}
674
675/*
676 * Converts RDS buffer data from big endian format
677 * to little endian format.
678 */
679static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
680		struct fm_rdsdata_format *rds_format)
681{
682	u8 index = 0;
683	u8 *rds_buff;
684
685	/*
686	 * Since in Orca the 2 RDS Data bytes are in little endian and
687	 * in Dolphin they are in big endian, the parsing of the RDS data
688	 * is chip dependent
689	 */
690	if (fmdev->asci_id != 0x6350) {
691		rds_buff = &rds_format->data.groupdatabuff.buff[0];
692		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
693			swap(rds_buff[index], rds_buff[index + 1]);
694			index += 2;
695		}
696	}
697}
698
699static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
700{
701	struct sk_buff *skb;
702	struct fm_rdsdata_format rds_fmt;
703	struct fm_rds *rds = &fmdev->rx.rds;
704	unsigned long group_idx, flags;
705	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
706	u8 type, blk_idx, idx;
707	u16 cur_picode;
708	u32 rds_len;
709
710	if (check_cmdresp_status(fmdev, &skb))
711		return;
712
713	/* Skip header info */
714	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
715	rds_data = skb->data;
716	rds_len = skb->len;
717
718	/* Parse the RDS data */
719	while (rds_len >= FM_RDS_BLK_SIZE) {
720		meta_data = rds_data[2];
721		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
722		type = (meta_data & 0x07);
723
724		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
725		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
726		fmdbg("Block index:%d(%s)\n", blk_idx,
727			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
728
729		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
730			break;
731
732		if (blk_idx > FM_RDS_BLK_IDX_D) {
733			fmdbg("Block sequence mismatch\n");
734			rds->last_blk_idx = -1;
735			break;
736		}
737
738		/* Skip checkword (control) byte and copy only data byte */
739		idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
740					 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
741
742		memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
743		       FM_RDS_BLK_SIZE - 1);
744
745		rds->last_blk_idx = blk_idx;
746
747		/* If completed a whole group then handle it */
748		if (blk_idx == FM_RDS_BLK_IDX_D) {
749			fmdbg("Good block received\n");
750			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
751
752			/*
753			 * Extract PI code and store in local cache.
754			 * We need this during AF switch processing.
755			 */
756			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
757			if (fmdev->rx.stat_info.picode != cur_picode)
758				fmdev->rx.stat_info.picode = cur_picode;
759
760			fmdbg("picode:%d\n", cur_picode);
761
762			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
763			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
764					(group_idx % 2) ? "B" : "A");
765
766			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
768				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
769				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
770			}
771		}
772		rds_len -= FM_RDS_BLK_SIZE;
773		rds_data += FM_RDS_BLK_SIZE;
774	}
775
776	/* Copy raw rds data to internal rds buffer */
777	rds_data = skb->data;
778	rds_len = skb->len;
779
780	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
781	while (rds_len > 0) {
782		/*
783		 * Fill RDS buffer as per V4L2 specification.
784		 * Store control byte
785		 */
786		type = (rds_data[2] & 0x07);
787		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
788		tmpbuf[2] = blk_idx;	/* Offset name */
789		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
790
791		/* Store data byte */
792		tmpbuf[0] = rds_data[0];
793		tmpbuf[1] = rds_data[1];
794
795		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
796		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
797
798		/* Check for overflow & start over */
799		if (rds->wr_idx == rds->rd_idx) {
800			fmdbg("RDS buffer overflow\n");
801			rds->wr_idx = 0;
802			rds->rd_idx = 0;
803			break;
804		}
805		rds_len -= FM_RDS_BLK_SIZE;
806		rds_data += FM_RDS_BLK_SIZE;
807	}
808	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
809
810	/* Wakeup read queue */
811	if (rds->wr_idx != rds->rd_idx)
812		wake_up_interruptible(&rds->read_queue);
813
814	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
815}
816
817static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
818{
819	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
820}
821
822static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
823{
824	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
825	    irq_info.mask) {
826		fmdbg("irq: tune ended/bandlimit reached\n");
827		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
828			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
829		} else {
830			complete(&fmdev->maintask_comp);
831			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
832		}
833	} else
834		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
835
836	fm_irq_call(fmdev);
837}
838
839static void fm_irq_handle_power_enb(struct fmdev *fmdev)
840{
841	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
842		fmdbg("irq: Power Enabled/Disabled\n");
843		complete(&fmdev->maintask_comp);
844	}
845
846	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
847}
848
849static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
850{
851	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
852	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
853	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
854	    (fmdev->rx.stat_info.afcache_size != 0)) {
855		fmdbg("irq: rssi level has fallen below threshold level\n");
856
857		/* Disable further low RSSI interrupts */
858		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
859
860		fmdev->rx.afjump_idx = 0;
861		fmdev->rx.freq_before_jump = fmdev->rx.freq;
862		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
863	} else {
864		/* Continue next function in interrupt handler table */
865		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
866	}
867
868	fm_irq_call(fmdev);
869}
870
871static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
872{
873	u16 payload;
874
875	/* Set PI code - must be updated if the AF list is not empty */
876	payload = fmdev->rx.stat_info.picode;
877	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
878		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
879}
880
881static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
882{
883	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
884}
885
886/*
887 * Set PI mask.
888 * 0xFFFF = Enable PI code matching
889 * 0x0000 = Disable PI code matching
890 */
891static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
892{
893	u16 payload;
894
895	payload = 0x0000;
896	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
897		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
898}
899
900static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
901{
902	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
903}
904
905static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
906{
907	u16 frq_index;
908	u16 payload;
909
910	fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
911	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
912	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
913
914	payload = frq_index;
915	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
916		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
917}
918
919static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
920{
921	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
922}
923
924static void fm_irq_afjump_enableint(struct fmdev *fmdev)
925{
926	u16 payload;
927
928	/* Enable FR (tuning operation ended) interrupt */
929	payload = FM_FR_EVENT;
930	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
931		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
932}
933
934static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
935{
936	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
937}
938
939static void fm_irq_start_afjump(struct fmdev *fmdev)
940{
941	u16 payload;
942
943	payload = FM_TUNER_AF_JUMP_MODE;
944	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
945			sizeof(payload), NULL))
946		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
947}
948
949static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
950{
951	struct sk_buff *skb;
952
953	if (check_cmdresp_status(fmdev, &skb))
954		return;
955
956	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
957	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
958	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
959}
960
961static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
962{
963	u16 payload;
964
965	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
966		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
967}
968
969static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
970{
971	struct sk_buff *skb;
972	u16 read_freq;
973	u32 curr_freq, jumped_freq;
974
975	if (check_cmdresp_status(fmdev, &skb))
976		return;
977
978	/* Skip header info and copy only response data */
979	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
980	memcpy(&read_freq, skb->data, sizeof(read_freq));
981	read_freq = be16_to_cpu((__force __be16)read_freq);
982	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
983
984	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
985
986	/* If the frequency was changed the jump succeeded */
987	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
988		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
989		fmdev->rx.freq = curr_freq;
990		fm_rx_reset_rds_cache(fmdev);
991
992		/* AF feature is on, enable low level RSSI interrupt */
993		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
994			fmdev->irq_info.mask |= FM_LEV_EVENT;
995
996		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
997	} else {		/* jump to the next freq in the AF list */
998		fmdev->rx.afjump_idx++;
999
1000		/* If we reached the end of the list - stop searching */
1001		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1002			fmdbg("AF switch processing failed\n");
1003			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1004		} else {	/* AF List is not over - try next one */
1005
1006			fmdbg("Trying next freq in AF cache\n");
1007			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1008		}
1009	}
1010	fm_irq_call(fmdev);
1011}
1012
1013static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1014{
1015	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1016}
1017
1018static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1019{
1020	u16 payload;
1021
1022	/* Re-enable FM interrupts */
1023	payload = fmdev->irq_info.mask;
1024
1025	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1026			sizeof(payload), NULL))
1027		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1028}
1029
1030static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1031{
1032	struct sk_buff *skb;
1033
1034	if (check_cmdresp_status(fmdev, &skb))
1035		return;
1036	/*
1037	 * This is last function in interrupt table to be executed.
1038	 * So, reset stage index to 0.
1039	 */
1040	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1041
1042	/* Start processing any pending interrupt */
1043	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1044		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1045	else
1046		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1047}
1048
1049/* Returns availability of RDS data in internal buffer */
1050int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1051				struct poll_table_struct *pts)
1052{
1053	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1054	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1055		return 0;
1056
1057	return -EAGAIN;
1058}
1059
1060/* Copies RDS data from internal buffer to user buffer */
1061int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1062		u8 __user *buf, size_t count)
1063{
1064	u32 block_count;
1065	u8 tmpbuf[FM_RDS_BLK_SIZE];
1066	unsigned long flags;
1067	int ret;
1068
1069	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1070		if (file->f_flags & O_NONBLOCK)
1071			return -EWOULDBLOCK;
1072
1073		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1074				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1075		if (ret)
1076			return -EINTR;
1077	}
1078
1079	/* Calculate block count from byte count */
1080	count /= FM_RDS_BLK_SIZE;
1081	block_count = 0;
1082	ret = 0;
1083
1084	while (block_count < count) {
1085		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1086
1087		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1088			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1089			break;
1090		}
1091		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1092					FM_RDS_BLK_SIZE);
1093		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1094		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1095			fmdev->rx.rds.rd_idx = 0;
1096
1097		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1098
1099		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1100			break;
1101
1102		block_count++;
1103		buf += FM_RDS_BLK_SIZE;
1104		ret += FM_RDS_BLK_SIZE;
1105	}
1106	return ret;
1107}
1108
1109int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1110{
1111	switch (fmdev->curr_fmmode) {
1112	case FM_MODE_RX:
1113		return fm_rx_set_freq(fmdev, freq_to_set);
1114
1115	case FM_MODE_TX:
1116		return fm_tx_set_freq(fmdev, freq_to_set);
1117
1118	default:
1119		return -EINVAL;
1120	}
1121}
1122
1123int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1124{
1125	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1126		fmerr("RX frequency is not set\n");
1127		return -EPERM;
1128	}
1129	if (cur_tuned_frq == NULL) {
1130		fmerr("Invalid memory\n");
1131		return -ENOMEM;
1132	}
1133
1134	switch (fmdev->curr_fmmode) {
1135	case FM_MODE_RX:
1136		*cur_tuned_frq = fmdev->rx.freq;
1137		return 0;
1138
1139	case FM_MODE_TX:
1140		*cur_tuned_frq = 0;	/* TODO : Change this later */
1141		return 0;
1142
1143	default:
1144		return -EINVAL;
1145	}
1146
1147}
1148
1149int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1150{
1151	switch (fmdev->curr_fmmode) {
1152	case FM_MODE_RX:
1153		return fm_rx_set_region(fmdev, region_to_set);
1154
1155	case FM_MODE_TX:
1156		return fm_tx_set_region(fmdev, region_to_set);
1157
1158	default:
1159		return -EINVAL;
1160	}
1161}
1162
1163int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1164{
1165	switch (fmdev->curr_fmmode) {
1166	case FM_MODE_RX:
1167		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1168
1169	case FM_MODE_TX:
1170		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1171
1172	default:
1173		return -EINVAL;
1174	}
1175}
1176
1177int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1178{
1179	switch (fmdev->curr_fmmode) {
1180	case FM_MODE_RX:
1181		return fm_rx_set_stereo_mono(fmdev, mode);
1182
1183	case FM_MODE_TX:
1184		return fm_tx_set_stereo_mono(fmdev, mode);
1185
1186	default:
1187		return -EINVAL;
1188	}
1189}
1190
1191int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1192{
1193	switch (fmdev->curr_fmmode) {
1194	case FM_MODE_RX:
1195		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1196
1197	case FM_MODE_TX:
1198		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1199
1200	default:
1201		return -EINVAL;
1202	}
1203}
1204
1205/* Sends power off command to the chip */
1206static int fm_power_down(struct fmdev *fmdev)
1207{
1208	u16 payload;
1209	int ret;
1210
1211	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1212		fmerr("FM core is not ready\n");
1213		return -EPERM;
1214	}
1215	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1216		fmdbg("FM chip is already in OFF state\n");
1217		return 0;
1218	}
1219
1220	payload = 0x0;
1221	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1222		sizeof(payload), NULL, NULL);
1223	if (ret < 0)
1224		return ret;
1225
1226	return fmc_release(fmdev);
1227}
1228
1229/* Reads init command from FM firmware file and loads to the chip */
1230static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1231{
1232	const struct firmware *fw_entry;
1233	struct bts_header *fw_header;
1234	struct bts_action *action;
1235	struct bts_action_delay *delay;
1236	u8 *fw_data;
1237	int ret, fw_len;
1238
1239	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240
1241	ret = request_firmware(&fw_entry, fw_name,
1242				&fmdev->radio_dev->dev);
1243	if (ret < 0) {
1244		fmerr("Unable to read firmware(%s) content\n", fw_name);
1245		return ret;
1246	}
1247	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248
1249	fw_data = (void *)fw_entry->data;
1250	fw_len = fw_entry->size;
1251
1252	fw_header = (struct bts_header *)fw_data;
1253	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254		fmerr("%s not a legal TI firmware file\n", fw_name);
1255		ret = -EINVAL;
1256		goto rel_fw;
1257	}
1258	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259
1260	/* Skip file header info , we already verified it */
1261	fw_data += sizeof(struct bts_header);
1262	fw_len -= sizeof(struct bts_header);
1263
1264	while (fw_data && fw_len > 0) {
1265		action = (struct bts_action *)fw_data;
1266
1267		switch (action->type) {
1268		case ACTION_SEND_COMMAND:	/* Send */
1269			ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270					   action->size, NULL, NULL);
1271			if (ret)
1272				goto rel_fw;
1273
1274			break;
1275
1276		case ACTION_DELAY:	/* Delay */
1277			delay = (struct bts_action_delay *)action->data;
1278			mdelay(delay->msec);
1279			break;
1280		}
1281
1282		fw_data += (sizeof(struct bts_action) + (action->size));
1283		fw_len -= (sizeof(struct bts_action) + (action->size));
1284	}
1285	fmdbg("Transferred only %d of %d bytes of the firmware to chip\n",
1286	      fw_entry->size - fw_len, fw_entry->size);
1287rel_fw:
1288	release_firmware(fw_entry);
1289	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1290
1291	return ret;
1292}
1293
1294/* Loads default RX configuration to the chip */
1295static int load_default_rx_configuration(struct fmdev *fmdev)
1296{
1297	int ret;
1298
1299	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1300	if (ret < 0)
1301		return ret;
1302
1303	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1304}
1305
1306/* Does FM power on sequence */
1307static int fm_power_up(struct fmdev *fmdev, u8 mode)
1308{
1309	u16 payload;
1310	__be16 asic_id = 0, asic_ver = 0;
1311	int resp_len, ret;
1312	u8 fw_name[50];
1313
1314	if (mode >= FM_MODE_ENTRY_MAX) {
1315		fmerr("Invalid firmware download option\n");
1316		return -EINVAL;
1317	}
1318
1319	/*
1320	 * Initialize FM common module. FM GPIO toggling is
1321	 * taken care in Shared Transport driver.
1322	 */
1323	ret = fmc_prepare(fmdev);
1324	if (ret < 0) {
1325		fmerr("Unable to prepare FM Common\n");
1326		return ret;
1327	}
1328
1329	payload = FM_ENABLE;
1330	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1331			sizeof(payload), NULL, NULL))
1332		goto rel;
1333
1334	/* Allow the chip to settle down in Channel-8 mode */
1335	msleep(20);
1336
1337	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1338			sizeof(asic_id), &asic_id, &resp_len))
1339		goto rel;
1340
1341	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1342			sizeof(asic_ver), &asic_ver, &resp_len))
1343		goto rel;
1344
1345	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1346		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1347
1348	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1349		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1350
1351	ret = fm_download_firmware(fmdev, fw_name);
1352	if (ret < 0) {
1353		fmdbg("Failed to download firmware file %s\n", fw_name);
1354		goto rel;
1355	}
1356	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1357			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1358			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360	ret = fm_download_firmware(fmdev, fw_name);
1361	if (ret < 0) {
1362		fmdbg("Failed to download firmware file %s\n", fw_name);
1363		goto rel;
1364	} else
1365		return ret;
1366rel:
1367	return fmc_release(fmdev);
1368}
1369
1370/* Set FM Modes(TX, RX, OFF) */
1371int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1372{
1373	int ret = 0;
1374
1375	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1376		fmerr("Invalid FM mode\n");
1377		return -EINVAL;
1378	}
1379	if (fmdev->curr_fmmode == fm_mode) {
1380		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1381		return ret;
1382	}
1383
1384	switch (fm_mode) {
1385	case FM_MODE_OFF:	/* OFF Mode */
1386		ret = fm_power_down(fmdev);
1387		if (ret < 0) {
1388			fmerr("Failed to set OFF mode\n");
1389			return ret;
1390		}
1391		break;
1392
1393	case FM_MODE_TX:	/* TX Mode */
1394	case FM_MODE_RX:	/* RX Mode */
1395		/* Power down before switching to TX or RX mode */
1396		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1397			ret = fm_power_down(fmdev);
1398			if (ret < 0) {
1399				fmerr("Failed to set OFF mode\n");
1400				return ret;
1401			}
1402			msleep(30);
1403		}
1404		ret = fm_power_up(fmdev, fm_mode);
1405		if (ret < 0) {
1406			fmerr("Failed to load firmware\n");
1407			return ret;
1408		}
1409	}
1410	fmdev->curr_fmmode = fm_mode;
1411
1412	/* Set default configuration */
1413	if (fmdev->curr_fmmode == FM_MODE_RX) {
1414		fmdbg("Loading default rx configuration..\n");
1415		ret = load_default_rx_configuration(fmdev);
1416		if (ret < 0)
1417			fmerr("Failed to load default values\n");
1418	}
1419
1420	return ret;
1421}
1422
1423/* Returns current FM mode (TX, RX, OFF) */
1424int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1425{
1426	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1427		fmerr("FM core is not ready\n");
1428		return -EPERM;
1429	}
1430	if (fmmode == NULL) {
1431		fmerr("Invalid memory\n");
1432		return -ENOMEM;
1433	}
1434
1435	*fmmode = fmdev->curr_fmmode;
1436	return 0;
1437}
1438
1439/* Called by ST layer when FM packet is available */
1440static long fm_st_receive(void *arg, struct sk_buff *skb)
1441{
1442	struct fmdev *fmdev;
1443
1444	fmdev = arg;
1445
1446	if (skb == NULL) {
1447		fmerr("Invalid SKB received from ST\n");
1448		return -EFAULT;
1449	}
1450
1451	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1452		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1453		return -EINVAL;
1454	}
1455
1456	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1457	skb_queue_tail(&fmdev->rx_q, skb);
1458	tasklet_schedule(&fmdev->rx_task);
1459
1460	return 0;
1461}
1462
1463/*
1464 * Called by ST layer to indicate protocol registration completion
1465 * status.
1466 */
1467static void fm_st_reg_comp_cb(void *arg, int data)
1468{
1469	struct fmdev *fmdev;
1470
1471	fmdev = (struct fmdev *)arg;
1472	fmdev->streg_cbdata = data;
1473	complete(&wait_for_fmdrv_reg_comp);
1474}
1475
1476/*
1477 * This function will be called from FM V4L2 open function.
1478 * Register with ST driver and initialize driver data.
1479 */
1480int fmc_prepare(struct fmdev *fmdev)
1481{
1482	static struct st_proto_s fm_st_proto;
1483	int ret;
1484
1485	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1486		fmdbg("FM Core is already up\n");
1487		return 0;
1488	}
1489
1490	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1491	fm_st_proto.recv = fm_st_receive;
1492	fm_st_proto.match_packet = NULL;
1493	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1494	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1495	fm_st_proto.priv_data = fmdev;
1496	fm_st_proto.chnl_id = 0x08;
1497	fm_st_proto.max_frame_size = 0xff;
1498	fm_st_proto.hdr_len = 1;
1499	fm_st_proto.offset_len_in_hdr = 0;
1500	fm_st_proto.len_size = 1;
1501	fm_st_proto.reserve = 1;
1502
1503	ret = st_register(&fm_st_proto);
1504	if (ret == -EINPROGRESS) {
1505		init_completion(&wait_for_fmdrv_reg_comp);
1506		fmdev->streg_cbdata = -EINPROGRESS;
1507		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1508
1509		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1510						 FM_ST_REG_TIMEOUT)) {
1511			fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1512					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1513			return -ETIMEDOUT;
1514		}
1515		if (fmdev->streg_cbdata != 0) {
1516			fmerr("ST reg comp CB called with error status %d\n",
1517			      fmdev->streg_cbdata);
1518			return -EAGAIN;
1519		}
1520
1521		ret = 0;
1522	} else if (ret < 0) {
1523		fmerr("st_register failed %d\n", ret);
1524		return -EAGAIN;
1525	}
1526
1527	if (fm_st_proto.write != NULL) {
1528		g_st_write = fm_st_proto.write;
1529	} else {
1530		fmerr("Failed to get ST write func pointer\n");
1531		ret = st_unregister(&fm_st_proto);
1532		if (ret < 0)
1533			fmerr("st_unregister failed %d\n", ret);
1534		return -EAGAIN;
1535	}
1536
1537	spin_lock_init(&fmdev->rds_buff_lock);
1538	spin_lock_init(&fmdev->resp_skb_lock);
1539
1540	/* Initialize TX queue and TX tasklet */
1541	skb_queue_head_init(&fmdev->tx_q);
1542	tasklet_setup(&fmdev->tx_task, send_tasklet);
1543
1544	/* Initialize RX Queue and RX tasklet */
1545	skb_queue_head_init(&fmdev->rx_q);
1546	tasklet_setup(&fmdev->rx_task, recv_tasklet);
1547
1548	fmdev->irq_info.stage = 0;
1549	atomic_set(&fmdev->tx_cnt, 1);
1550	fmdev->resp_comp = NULL;
1551
1552	timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1553	/*TODO: add FM_STIC_EVENT later */
1554	fmdev->irq_info.mask = FM_MAL_EVENT;
1555
1556	/* Region info */
1557	fmdev->rx.region = region_configs[default_radio_region];
1558
1559	fmdev->rx.mute_mode = FM_MUTE_OFF;
1560	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1561	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1562	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1563	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1564	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1565	fmdev->irq_info.retry = 0;
1566
1567	fm_rx_reset_rds_cache(fmdev);
1568	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1569
1570	fm_rx_reset_station_info(fmdev);
1571	set_bit(FM_CORE_READY, &fmdev->flag);
1572
1573	return ret;
1574}
1575
1576/*
1577 * This function will be called from FM V4L2 release function.
1578 * Unregister from ST driver.
1579 */
1580int fmc_release(struct fmdev *fmdev)
1581{
1582	static struct st_proto_s fm_st_proto;
1583	int ret;
1584
1585	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1586		fmdbg("FM Core is already down\n");
1587		return 0;
1588	}
1589	/* Service pending read */
1590	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1591
1592	tasklet_kill(&fmdev->tx_task);
1593	tasklet_kill(&fmdev->rx_task);
1594
1595	skb_queue_purge(&fmdev->tx_q);
1596	skb_queue_purge(&fmdev->rx_q);
1597
1598	fmdev->resp_comp = NULL;
1599	fmdev->rx.freq = 0;
1600
1601	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1602	fm_st_proto.chnl_id = 0x08;
1603
1604	ret = st_unregister(&fm_st_proto);
1605
1606	if (ret < 0)
1607		fmerr("Failed to de-register FM from ST %d\n", ret);
1608	else
1609		fmdbg("Successfully unregistered from ST\n");
1610
1611	clear_bit(FM_CORE_READY, &fmdev->flag);
1612	return ret;
1613}
1614
1615/*
1616 * Module init function. Ask FM V4L module to register video device.
1617 * Allocate memory for FM driver context and RX RDS buffer.
1618 */
1619static int __init fm_drv_init(void)
1620{
1621	struct fmdev *fmdev = NULL;
1622	int ret = -ENOMEM;
1623
1624	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1625
1626	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1627	if (NULL == fmdev) {
1628		fmerr("Can't allocate operation structure memory\n");
1629		return ret;
1630	}
1631	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1632	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1633	if (NULL == fmdev->rx.rds.buff) {
1634		fmerr("Can't allocate rds ring buffer\n");
1635		goto rel_dev;
1636	}
1637
1638	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1639	if (ret < 0)
1640		goto rel_rdsbuf;
1641
1642	fmdev->irq_info.handlers = int_handler_table;
1643	fmdev->curr_fmmode = FM_MODE_OFF;
1644	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1645	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1646	return ret;
1647
1648rel_rdsbuf:
1649	kfree(fmdev->rx.rds.buff);
1650rel_dev:
1651	kfree(fmdev);
1652
1653	return ret;
1654}
1655
1656/* Module exit function. Ask FM V4L module to unregister video device */
1657static void __exit fm_drv_exit(void)
1658{
1659	struct fmdev *fmdev = NULL;
1660
1661	fmdev = fm_v4l2_deinit_video_device();
1662	if (fmdev != NULL) {
1663		kfree(fmdev->rx.rds.buff);
1664		kfree(fmdev);
1665	}
1666}
1667
1668module_init(fm_drv_init);
1669module_exit(fm_drv_exit);
1670
1671/* ------------- Module Info ------------- */
1672MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1673MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1674MODULE_VERSION(FM_DRV_VERSION);
1675MODULE_LICENSE("GPL");
1676