1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * isp.c
4 *
5 * TI OMAP3 ISP - Core
6 *
7 * Copyright (C) 2006-2010 Nokia Corporation
8 * Copyright (C) 2007-2009 Texas Instruments, Inc.
9 *
10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11 *	     Sakari Ailus <sakari.ailus@iki.fi>
12 *
13 * Contributors:
14 *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15 *	Sakari Ailus <sakari.ailus@iki.fi>
16 *	David Cohen <dacohen@gmail.com>
17 *	Stanimir Varbanov <svarbanov@mm-sol.com>
18 *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19 *	Tuukka Toivonen <tuukkat76@gmail.com>
20 *	Sergio Aguirre <saaguirre@ti.com>
21 *	Antti Koskipaa <akoskipa@gmail.com>
22 *	Ivan T. Ivanov <iivanov@mm-sol.com>
23 *	RaniSuneela <r-m@ti.com>
24 *	Atanas Filipov <afilipov@mm-sol.com>
25 *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26 *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
27 *	Nayden Kanchev <nkanchev@mm-sol.com>
28 *	Phil Carmody <ext-phil.2.carmody@nokia.com>
29 *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
30 *	Dominic Curran <dcurran@ti.com>
31 *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32 *	Pallavi Kulkarni <p-kulkarni@ti.com>
33 *	Vaibhav Hiremath <hvaibhav@ti.com>
34 *	Mohit Jalori <mjalori@ti.com>
35 *	Sameer Venkatraman <sameerv@ti.com>
36 *	Senthilvadivu Guruswamy <svadivu@ti.com>
37 *	Thara Gopinath <thara@ti.com>
38 *	Toni Leinonen <toni.leinonen@nokia.com>
39 *	Troy Laramy <t-laramy@ti.com>
40 */
41
42#include <linux/clk.h>
43#include <linux/clkdev.h>
44#include <linux/delay.h>
45#include <linux/device.h>
46#include <linux/dma-mapping.h>
47#include <linux/i2c.h>
48#include <linux/interrupt.h>
49#include <linux/mfd/syscon.h>
50#include <linux/module.h>
51#include <linux/omap-iommu.h>
52#include <linux/platform_device.h>
53#include <linux/property.h>
54#include <linux/regulator/consumer.h>
55#include <linux/slab.h>
56#include <linux/sched.h>
57#include <linux/vmalloc.h>
58
59#ifdef CONFIG_ARM_DMA_USE_IOMMU
60#include <asm/dma-iommu.h>
61#endif
62
63#include <media/v4l2-common.h>
64#include <media/v4l2-fwnode.h>
65#include <media/v4l2-device.h>
66#include <media/v4l2-mc.h>
67
68#include "isp.h"
69#include "ispreg.h"
70#include "ispccdc.h"
71#include "isppreview.h"
72#include "ispresizer.h"
73#include "ispcsi2.h"
74#include "ispccp2.h"
75#include "isph3a.h"
76#include "isphist.h"
77
78static unsigned int autoidle;
79module_param(autoidle, int, 0444);
80MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
81
82static void isp_save_ctx(struct isp_device *isp);
83
84static void isp_restore_ctx(struct isp_device *isp);
85
86static const struct isp_res_mapping isp_res_maps[] = {
87	{
88		.isp_rev = ISP_REVISION_2_0,
89		.offset = {
90			/* first MMIO area */
91			0x0000, /* base, len 0x0070 */
92			0x0400, /* ccp2, len 0x01f0 */
93			0x0600, /* ccdc, len 0x00a8 */
94			0x0a00, /* hist, len 0x0048 */
95			0x0c00, /* h3a, len 0x0060 */
96			0x0e00, /* preview, len 0x00a0 */
97			0x1000, /* resizer, len 0x00ac */
98			0x1200, /* sbl, len 0x00fc */
99			/* second MMIO area */
100			0x0000, /* csi2a, len 0x0170 */
101			0x0170, /* csiphy2, len 0x000c */
102		},
103		.phy_type = ISP_PHY_TYPE_3430,
104	},
105	{
106		.isp_rev = ISP_REVISION_15_0,
107		.offset = {
108			/* first MMIO area */
109			0x0000, /* base, len 0x0070 */
110			0x0400, /* ccp2, len 0x01f0 */
111			0x0600, /* ccdc, len 0x00a8 */
112			0x0a00, /* hist, len 0x0048 */
113			0x0c00, /* h3a, len 0x0060 */
114			0x0e00, /* preview, len 0x00a0 */
115			0x1000, /* resizer, len 0x00ac */
116			0x1200, /* sbl, len 0x00fc */
117			/* second MMIO area */
118			0x0000, /* csi2a, len 0x0170 (1st area) */
119			0x0170, /* csiphy2, len 0x000c */
120			0x01c0, /* csi2a, len 0x0040 (2nd area) */
121			0x0400, /* csi2c, len 0x0170 (1st area) */
122			0x0570, /* csiphy1, len 0x000c */
123			0x05c0, /* csi2c, len 0x0040 (2nd area) */
124		},
125		.phy_type = ISP_PHY_TYPE_3630,
126	},
127};
128
129/* Structure for saving/restoring ISP module registers */
130static struct isp_reg isp_reg_list[] = {
131	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
132	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
133	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
134	{0, ISP_TOK_TERM, 0}
135};
136
137/*
138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
139 * @isp: OMAP3 ISP device
140 *
141 * In order to force posting of pending writes, we need to write and
142 * readback the same register, in this case the revision register.
143 *
144 * See this link for reference:
145 *   https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
146 */
147void omap3isp_flush(struct isp_device *isp)
148{
149	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
150	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151}
152
153/* -----------------------------------------------------------------------------
154 * XCLK
155 */
156
157#define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
158
159static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
160{
161	switch (xclk->id) {
162	case ISP_XCLK_A:
163		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
164				ISPTCTRL_CTRL_DIVA_MASK,
165				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
166		break;
167	case ISP_XCLK_B:
168		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169				ISPTCTRL_CTRL_DIVB_MASK,
170				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
171		break;
172	}
173}
174
175static int isp_xclk_prepare(struct clk_hw *hw)
176{
177	struct isp_xclk *xclk = to_isp_xclk(hw);
178
179	omap3isp_get(xclk->isp);
180
181	return 0;
182}
183
184static void isp_xclk_unprepare(struct clk_hw *hw)
185{
186	struct isp_xclk *xclk = to_isp_xclk(hw);
187
188	omap3isp_put(xclk->isp);
189}
190
191static int isp_xclk_enable(struct clk_hw *hw)
192{
193	struct isp_xclk *xclk = to_isp_xclk(hw);
194	unsigned long flags;
195
196	spin_lock_irqsave(&xclk->lock, flags);
197	isp_xclk_update(xclk, xclk->divider);
198	xclk->enabled = true;
199	spin_unlock_irqrestore(&xclk->lock, flags);
200
201	return 0;
202}
203
204static void isp_xclk_disable(struct clk_hw *hw)
205{
206	struct isp_xclk *xclk = to_isp_xclk(hw);
207	unsigned long flags;
208
209	spin_lock_irqsave(&xclk->lock, flags);
210	isp_xclk_update(xclk, 0);
211	xclk->enabled = false;
212	spin_unlock_irqrestore(&xclk->lock, flags);
213}
214
215static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
216					  unsigned long parent_rate)
217{
218	struct isp_xclk *xclk = to_isp_xclk(hw);
219
220	return parent_rate / xclk->divider;
221}
222
223static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
224{
225	u32 divider;
226
227	if (*rate >= parent_rate) {
228		*rate = parent_rate;
229		return ISPTCTRL_CTRL_DIV_BYPASS;
230	}
231
232	if (*rate == 0)
233		*rate = 1;
234
235	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
236	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
237		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
238
239	*rate = parent_rate / divider;
240	return divider;
241}
242
243static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
244				unsigned long *parent_rate)
245{
246	isp_xclk_calc_divider(&rate, *parent_rate);
247	return rate;
248}
249
250static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
251			     unsigned long parent_rate)
252{
253	struct isp_xclk *xclk = to_isp_xclk(hw);
254	unsigned long flags;
255	u32 divider;
256
257	divider = isp_xclk_calc_divider(&rate, parent_rate);
258
259	spin_lock_irqsave(&xclk->lock, flags);
260
261	xclk->divider = divider;
262	if (xclk->enabled)
263		isp_xclk_update(xclk, divider);
264
265	spin_unlock_irqrestore(&xclk->lock, flags);
266
267	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
268		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
269	return 0;
270}
271
272static const struct clk_ops isp_xclk_ops = {
273	.prepare = isp_xclk_prepare,
274	.unprepare = isp_xclk_unprepare,
275	.enable = isp_xclk_enable,
276	.disable = isp_xclk_disable,
277	.recalc_rate = isp_xclk_recalc_rate,
278	.round_rate = isp_xclk_round_rate,
279	.set_rate = isp_xclk_set_rate,
280};
281
282static const char *isp_xclk_parent_name = "cam_mclk";
283
284static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
285{
286	unsigned int idx = clkspec->args[0];
287	struct isp_device *isp = data;
288
289	if (idx >= ARRAY_SIZE(isp->xclks))
290		return ERR_PTR(-ENOENT);
291
292	return isp->xclks[idx].clk;
293}
294
295static int isp_xclk_init(struct isp_device *isp)
296{
297	struct device_node *np = isp->dev->of_node;
298	struct clk_init_data init = {};
299	unsigned int i;
300
301	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
302		isp->xclks[i].clk = ERR_PTR(-EINVAL);
303
304	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
305		struct isp_xclk *xclk = &isp->xclks[i];
306
307		xclk->isp = isp;
308		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
309		xclk->divider = 1;
310		spin_lock_init(&xclk->lock);
311
312		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
313		init.ops = &isp_xclk_ops;
314		init.parent_names = &isp_xclk_parent_name;
315		init.num_parents = 1;
316
317		xclk->hw.init = &init;
318		/*
319		 * The first argument is NULL in order to avoid circular
320		 * reference, as this driver takes reference on the
321		 * sensor subdevice modules and the sensors would take
322		 * reference on this module through clk_get().
323		 */
324		xclk->clk = clk_register(NULL, &xclk->hw);
325		if (IS_ERR(xclk->clk))
326			return PTR_ERR(xclk->clk);
327	}
328
329	if (np)
330		of_clk_add_provider(np, isp_xclk_src_get, isp);
331
332	return 0;
333}
334
335static void isp_xclk_cleanup(struct isp_device *isp)
336{
337	struct device_node *np = isp->dev->of_node;
338	unsigned int i;
339
340	if (np)
341		of_clk_del_provider(np);
342
343	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
344		struct isp_xclk *xclk = &isp->xclks[i];
345
346		if (!IS_ERR(xclk->clk))
347			clk_unregister(xclk->clk);
348	}
349}
350
351/* -----------------------------------------------------------------------------
352 * Interrupts
353 */
354
355/*
356 * isp_enable_interrupts - Enable ISP interrupts.
357 * @isp: OMAP3 ISP device
358 */
359static void isp_enable_interrupts(struct isp_device *isp)
360{
361	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
362			     | IRQ0ENABLE_CSIB_IRQ
363			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
364			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
365			     | IRQ0ENABLE_CCDC_VD0_IRQ
366			     | IRQ0ENABLE_CCDC_VD1_IRQ
367			     | IRQ0ENABLE_HS_VS_IRQ
368			     | IRQ0ENABLE_HIST_DONE_IRQ
369			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
370			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
371			     | IRQ0ENABLE_PRV_DONE_IRQ
372			     | IRQ0ENABLE_RSZ_DONE_IRQ;
373
374	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
375	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
376}
377
378/*
379 * isp_disable_interrupts - Disable ISP interrupts.
380 * @isp: OMAP3 ISP device
381 */
382static void isp_disable_interrupts(struct isp_device *isp)
383{
384	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
385}
386
387/*
388 * isp_core_init - ISP core settings
389 * @isp: OMAP3 ISP device
390 * @idle: Consider idle state.
391 *
392 * Set the power settings for the ISP and SBL bus and configure the HS/VS
393 * interrupt source.
394 *
395 * We need to configure the HS/VS interrupt source before interrupts get
396 * enabled, as the sensor might be free-running and the ISP default setting
397 * (HS edge) would put an unnecessary burden on the CPU.
398 */
399static void isp_core_init(struct isp_device *isp, int idle)
400{
401	isp_reg_writel(isp,
402		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
403				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
404			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
405			((isp->revision == ISP_REVISION_15_0) ?
406			  ISP_SYSCONFIG_AUTOIDLE : 0),
407		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
408
409	isp_reg_writel(isp,
410		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
411		       ISPCTRL_SYNC_DETECT_VSRISE,
412		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
413}
414
415/*
416 * Configure the bridge and lane shifter. Valid inputs are
417 *
418 * CCDC_INPUT_PARALLEL: Parallel interface
419 * CCDC_INPUT_CSI2A: CSI2a receiver
420 * CCDC_INPUT_CCP2B: CCP2b receiver
421 * CCDC_INPUT_CSI2C: CSI2c receiver
422 *
423 * The bridge and lane shifter are configured according to the selected input
424 * and the ISP platform data.
425 */
426void omap3isp_configure_bridge(struct isp_device *isp,
427			       enum ccdc_input_entity input,
428			       const struct isp_parallel_cfg *parcfg,
429			       unsigned int shift, unsigned int bridge)
430{
431	u32 ispctrl_val;
432
433	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
434	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
435	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
436	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
437	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
438	ispctrl_val |= bridge;
439
440	switch (input) {
441	case CCDC_INPUT_PARALLEL:
442		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
443		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
444		shift += parcfg->data_lane_shift;
445		break;
446
447	case CCDC_INPUT_CSI2A:
448		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
449		break;
450
451	case CCDC_INPUT_CCP2B:
452		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
453		break;
454
455	case CCDC_INPUT_CSI2C:
456		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
457		break;
458
459	default:
460		return;
461	}
462
463	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
464
465	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
466}
467
468void omap3isp_hist_dma_done(struct isp_device *isp)
469{
470	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
471	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
472		/* Histogram cannot be enabled in this frame anymore */
473		atomic_set(&isp->isp_hist.buf_err, 1);
474		dev_dbg(isp->dev,
475			"hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
476	}
477}
478
479static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp,
480					      u32 irqstatus)
481{
482	static const char *name[] = {
483		"CSIA_IRQ",
484		"res1",
485		"res2",
486		"CSIB_LCM_IRQ",
487		"CSIB_IRQ",
488		"res5",
489		"res6",
490		"res7",
491		"CCDC_VD0_IRQ",
492		"CCDC_VD1_IRQ",
493		"CCDC_VD2_IRQ",
494		"CCDC_ERR_IRQ",
495		"H3A_AF_DONE_IRQ",
496		"H3A_AWB_DONE_IRQ",
497		"res14",
498		"res15",
499		"HIST_DONE_IRQ",
500		"CCDC_LSC_DONE",
501		"CCDC_LSC_PREFETCH_COMPLETED",
502		"CCDC_LSC_PREFETCH_ERROR",
503		"PRV_DONE_IRQ",
504		"CBUFF_IRQ",
505		"res22",
506		"res23",
507		"RSZ_DONE_IRQ",
508		"OVF_IRQ",
509		"res26",
510		"res27",
511		"MMU_ERR_IRQ",
512		"OCP_ERR_IRQ",
513		"SEC_ERR_IRQ",
514		"HS_VS_IRQ",
515	};
516	int i;
517
518	dev_dbg(isp->dev, "ISP IRQ: ");
519
520	for (i = 0; i < ARRAY_SIZE(name); i++) {
521		if ((1 << i) & irqstatus)
522			printk(KERN_CONT "%s ", name[i]);
523	}
524	printk(KERN_CONT "\n");
525}
526
527static void isp_isr_sbl(struct isp_device *isp)
528{
529	struct device *dev = isp->dev;
530	struct isp_pipeline *pipe;
531	u32 sbl_pcr;
532
533	/*
534	 * Handle shared buffer logic overflows for video buffers.
535	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
536	 */
537	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
538	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
539	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
540
541	if (sbl_pcr)
542		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
543
544	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
545		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
546		if (pipe != NULL)
547			pipe->error = true;
548	}
549
550	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
551		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
552		if (pipe != NULL)
553			pipe->error = true;
554	}
555
556	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
557		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
558		if (pipe != NULL)
559			pipe->error = true;
560	}
561
562	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
563		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
564		if (pipe != NULL)
565			pipe->error = true;
566	}
567
568	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
569		       | ISPSBL_PCR_RSZ2_WBL_OVF
570		       | ISPSBL_PCR_RSZ3_WBL_OVF
571		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
572		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
573		if (pipe != NULL)
574			pipe->error = true;
575	}
576
577	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
578		omap3isp_stat_sbl_overflow(&isp->isp_af);
579
580	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
581		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
582}
583
584/*
585 * isp_isr - Interrupt Service Routine for Camera ISP module.
586 * @irq: Not used currently.
587 * @_isp: Pointer to the OMAP3 ISP device
588 *
589 * Handles the corresponding callback if plugged in.
590 */
591static irqreturn_t isp_isr(int irq, void *_isp)
592{
593	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
594				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
595				       IRQ0STATUS_CCDC_VD0_IRQ |
596				       IRQ0STATUS_CCDC_VD1_IRQ |
597				       IRQ0STATUS_HS_VS_IRQ;
598	struct isp_device *isp = _isp;
599	u32 irqstatus;
600
601	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
602	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
603
604	isp_isr_sbl(isp);
605
606	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
607		omap3isp_csi2_isr(&isp->isp_csi2a);
608
609	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
610		omap3isp_ccp2_isr(&isp->isp_ccp2);
611
612	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
613		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
614			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
615		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
616			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
617		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
618		omap3isp_stat_isr_frame_sync(&isp->isp_af);
619		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
620	}
621
622	if (irqstatus & ccdc_events)
623		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
624
625	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
626		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
627			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
628		omap3isp_preview_isr(&isp->isp_prev);
629	}
630
631	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
632		omap3isp_resizer_isr(&isp->isp_res);
633
634	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
635		omap3isp_stat_isr(&isp->isp_aewb);
636
637	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
638		omap3isp_stat_isr(&isp->isp_af);
639
640	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
641		omap3isp_stat_isr(&isp->isp_hist);
642
643	omap3isp_flush(isp);
644
645#if defined(DEBUG) && defined(ISP_ISR_DEBUG)
646	isp_isr_dbg(isp, irqstatus);
647#endif
648
649	return IRQ_HANDLED;
650}
651
652static const struct media_device_ops isp_media_ops = {
653	.link_notify = v4l2_pipeline_link_notify,
654};
655
656/* -----------------------------------------------------------------------------
657 * Pipeline stream management
658 */
659
660/*
661 * isp_pipeline_enable - Enable streaming on a pipeline
662 * @pipe: ISP pipeline
663 * @mode: Stream mode (single shot or continuous)
664 *
665 * Walk the entities chain starting at the pipeline output video node and start
666 * all modules in the chain in the given mode.
667 *
668 * Return 0 if successful, or the return value of the failed video::s_stream
669 * operation otherwise.
670 */
671static int isp_pipeline_enable(struct isp_pipeline *pipe,
672			       enum isp_pipeline_stream_state mode)
673{
674	struct isp_device *isp = pipe->output->isp;
675	struct media_entity *entity;
676	struct media_pad *pad;
677	struct v4l2_subdev *subdev;
678	unsigned long flags;
679	int ret;
680
681	/* Refuse to start streaming if an entity included in the pipeline has
682	 * crashed. This check must be performed before the loop below to avoid
683	 * starting entities if the pipeline won't start anyway (those entities
684	 * would then likely fail to stop, making the problem worse).
685	 */
686	if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
687		return -EIO;
688
689	spin_lock_irqsave(&pipe->lock, flags);
690	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
691	spin_unlock_irqrestore(&pipe->lock, flags);
692
693	pipe->do_propagation = false;
694
695	mutex_lock(&isp->media_dev.graph_mutex);
696
697	entity = &pipe->output->video.entity;
698	while (1) {
699		pad = &entity->pads[0];
700		if (!(pad->flags & MEDIA_PAD_FL_SINK))
701			break;
702
703		pad = media_pad_remote_pad_first(pad);
704		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
705			break;
706
707		entity = pad->entity;
708		subdev = media_entity_to_v4l2_subdev(entity);
709
710		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
711		if (ret < 0 && ret != -ENOIOCTLCMD) {
712			mutex_unlock(&isp->media_dev.graph_mutex);
713			return ret;
714		}
715
716		if (subdev == &isp->isp_ccdc.subdev) {
717			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
718					s_stream, mode);
719			v4l2_subdev_call(&isp->isp_af.subdev, video,
720					s_stream, mode);
721			v4l2_subdev_call(&isp->isp_hist.subdev, video,
722					s_stream, mode);
723			pipe->do_propagation = true;
724		}
725
726		/* Stop at the first external sub-device. */
727		if (subdev->dev != isp->dev)
728			break;
729	}
730
731	mutex_unlock(&isp->media_dev.graph_mutex);
732
733	return 0;
734}
735
736static int isp_pipeline_wait_resizer(struct isp_device *isp)
737{
738	return omap3isp_resizer_busy(&isp->isp_res);
739}
740
741static int isp_pipeline_wait_preview(struct isp_device *isp)
742{
743	return omap3isp_preview_busy(&isp->isp_prev);
744}
745
746static int isp_pipeline_wait_ccdc(struct isp_device *isp)
747{
748	return omap3isp_stat_busy(&isp->isp_af)
749	    || omap3isp_stat_busy(&isp->isp_aewb)
750	    || omap3isp_stat_busy(&isp->isp_hist)
751	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
752}
753
754#define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
755
756static int isp_pipeline_wait(struct isp_device *isp,
757			     int(*busy)(struct isp_device *isp))
758{
759	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
760
761	while (!time_after(jiffies, timeout)) {
762		if (!busy(isp))
763			return 0;
764	}
765
766	return 1;
767}
768
769/*
770 * isp_pipeline_disable - Disable streaming on a pipeline
771 * @pipe: ISP pipeline
772 *
773 * Walk the entities chain starting at the pipeline output video node and stop
774 * all modules in the chain. Wait synchronously for the modules to be stopped if
775 * necessary.
776 *
777 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
778 * can't be stopped (in which case a software reset of the ISP is probably
779 * necessary).
780 */
781static int isp_pipeline_disable(struct isp_pipeline *pipe)
782{
783	struct isp_device *isp = pipe->output->isp;
784	struct media_entity *entity;
785	struct media_pad *pad;
786	struct v4l2_subdev *subdev;
787	int failure = 0;
788	int ret;
789
790	/*
791	 * We need to stop all the modules after CCDC first or they'll
792	 * never stop since they may not get a full frame from CCDC.
793	 */
794	entity = &pipe->output->video.entity;
795	while (1) {
796		pad = &entity->pads[0];
797		if (!(pad->flags & MEDIA_PAD_FL_SINK))
798			break;
799
800		pad = media_pad_remote_pad_first(pad);
801		if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
802			break;
803
804		entity = pad->entity;
805		subdev = media_entity_to_v4l2_subdev(entity);
806
807		if (subdev == &isp->isp_ccdc.subdev) {
808			v4l2_subdev_call(&isp->isp_aewb.subdev,
809					 video, s_stream, 0);
810			v4l2_subdev_call(&isp->isp_af.subdev,
811					 video, s_stream, 0);
812			v4l2_subdev_call(&isp->isp_hist.subdev,
813					 video, s_stream, 0);
814		}
815
816		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
817
818		/* Stop at the first external sub-device. */
819		if (subdev->dev != isp->dev)
820			break;
821
822		if (subdev == &isp->isp_res.subdev)
823			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
824		else if (subdev == &isp->isp_prev.subdev)
825			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
826		else if (subdev == &isp->isp_ccdc.subdev)
827			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
828
829		/* Handle stop failures. An entity that fails to stop can
830		 * usually just be restarted. Flag the stop failure nonetheless
831		 * to trigger an ISP reset the next time the device is released,
832		 * just in case.
833		 *
834		 * The preview engine is a special case. A failure to stop can
835		 * mean a hardware crash. When that happens the preview engine
836		 * won't respond to read/write operations on the L4 bus anymore,
837		 * resulting in a bus fault and a kernel oops next time it gets
838		 * accessed. Mark it as crashed to prevent pipelines including
839		 * it from being started.
840		 */
841		if (ret) {
842			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
843			isp->stop_failure = true;
844			if (subdev == &isp->isp_prev.subdev)
845				media_entity_enum_set(&isp->crashed,
846						      &subdev->entity);
847			failure = -ETIMEDOUT;
848		}
849	}
850
851	return failure;
852}
853
854/*
855 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
856 * @pipe: ISP pipeline
857 * @state: Stream state (stopped, single shot or continuous)
858 *
859 * Set the pipeline to the given stream state. Pipelines can be started in
860 * single-shot or continuous mode.
861 *
862 * Return 0 if successful, or the return value of the failed video::s_stream
863 * operation otherwise. The pipeline state is not updated when the operation
864 * fails, except when stopping the pipeline.
865 */
866int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
867				 enum isp_pipeline_stream_state state)
868{
869	int ret;
870
871	if (state == ISP_PIPELINE_STREAM_STOPPED)
872		ret = isp_pipeline_disable(pipe);
873	else
874		ret = isp_pipeline_enable(pipe, state);
875
876	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
877		pipe->stream_state = state;
878
879	return ret;
880}
881
882/*
883 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
884 * @pipe: ISP pipeline
885 *
886 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
887 * erroneous and makes sure no new buffer can be queued. This function is called
888 * when a fatal error that prevents any further operation on the pipeline
889 * occurs.
890 */
891void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
892{
893	if (pipe->input)
894		omap3isp_video_cancel_stream(pipe->input);
895	if (pipe->output)
896		omap3isp_video_cancel_stream(pipe->output);
897}
898
899/*
900 * isp_pipeline_resume - Resume streaming on a pipeline
901 * @pipe: ISP pipeline
902 *
903 * Resume video output and input and re-enable pipeline.
904 */
905static void isp_pipeline_resume(struct isp_pipeline *pipe)
906{
907	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
908
909	omap3isp_video_resume(pipe->output, !singleshot);
910	if (singleshot)
911		omap3isp_video_resume(pipe->input, 0);
912	isp_pipeline_enable(pipe, pipe->stream_state);
913}
914
915/*
916 * isp_pipeline_suspend - Suspend streaming on a pipeline
917 * @pipe: ISP pipeline
918 *
919 * Suspend pipeline.
920 */
921static void isp_pipeline_suspend(struct isp_pipeline *pipe)
922{
923	isp_pipeline_disable(pipe);
924}
925
926/*
927 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
928 *			  video node
929 * @me: ISP module's media entity
930 *
931 * Returns 1 if the entity has an enabled link to the output video node or 0
932 * otherwise. It's true only while pipeline can have no more than one output
933 * node.
934 */
935static int isp_pipeline_is_last(struct media_entity *me)
936{
937	struct isp_pipeline *pipe;
938	struct media_pad *pad;
939
940	pipe = to_isp_pipeline(me);
941	if (!pipe || pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
942		return 0;
943	pad = media_pad_remote_pad_first(&pipe->output->pad);
944	return pad->entity == me;
945}
946
947/*
948 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
949 * @me: ISP module's media entity
950 *
951 * Suspend the whole pipeline if module's entity has an enabled link to the
952 * output video node. It works only while pipeline can have no more than one
953 * output node.
954 */
955static void isp_suspend_module_pipeline(struct media_entity *me)
956{
957	if (isp_pipeline_is_last(me))
958		isp_pipeline_suspend(to_isp_pipeline(me));
959}
960
961/*
962 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
963 * @me: ISP module's media entity
964 *
965 * Resume the whole pipeline if module's entity has an enabled link to the
966 * output video node. It works only while pipeline can have no more than one
967 * output node.
968 */
969static void isp_resume_module_pipeline(struct media_entity *me)
970{
971	if (isp_pipeline_is_last(me))
972		isp_pipeline_resume(to_isp_pipeline(me));
973}
974
975/*
976 * isp_suspend_modules - Suspend ISP submodules.
977 * @isp: OMAP3 ISP device
978 *
979 * Returns 0 if suspend left in idle state all the submodules properly,
980 * or returns 1 if a general Reset is required to suspend the submodules.
981 */
982static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
983{
984	unsigned long timeout;
985
986	omap3isp_stat_suspend(&isp->isp_aewb);
987	omap3isp_stat_suspend(&isp->isp_af);
988	omap3isp_stat_suspend(&isp->isp_hist);
989	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
990	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
991	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
992	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
993	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
994
995	timeout = jiffies + ISP_STOP_TIMEOUT;
996	while (omap3isp_stat_busy(&isp->isp_af)
997	    || omap3isp_stat_busy(&isp->isp_aewb)
998	    || omap3isp_stat_busy(&isp->isp_hist)
999	    || omap3isp_preview_busy(&isp->isp_prev)
1000	    || omap3isp_resizer_busy(&isp->isp_res)
1001	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1002		if (time_after(jiffies, timeout)) {
1003			dev_info(isp->dev, "can't stop modules.\n");
1004			return 1;
1005		}
1006		msleep(1);
1007	}
1008
1009	return 0;
1010}
1011
1012/*
1013 * isp_resume_modules - Resume ISP submodules.
1014 * @isp: OMAP3 ISP device
1015 */
1016static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1017{
1018	omap3isp_stat_resume(&isp->isp_aewb);
1019	omap3isp_stat_resume(&isp->isp_af);
1020	omap3isp_stat_resume(&isp->isp_hist);
1021	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1022	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1023	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1024	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1025	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1026}
1027
1028/*
1029 * isp_reset - Reset ISP with a timeout wait for idle.
1030 * @isp: OMAP3 ISP device
1031 */
1032static int isp_reset(struct isp_device *isp)
1033{
1034	unsigned long timeout = 0;
1035
1036	isp_reg_writel(isp,
1037		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1038		       | ISP_SYSCONFIG_SOFTRESET,
1039		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1040	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1041			       ISP_SYSSTATUS) & 0x1)) {
1042		if (timeout++ > 10000) {
1043			dev_alert(isp->dev, "cannot reset ISP\n");
1044			return -ETIMEDOUT;
1045		}
1046		udelay(1);
1047	}
1048
1049	isp->stop_failure = false;
1050	media_entity_enum_zero(&isp->crashed);
1051	return 0;
1052}
1053
1054/*
1055 * isp_save_context - Saves the values of the ISP module registers.
1056 * @isp: OMAP3 ISP device
1057 * @reg_list: Structure containing pairs of register address and value to
1058 *            modify on OMAP.
1059 */
1060static void
1061isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1062{
1063	struct isp_reg *next = reg_list;
1064
1065	for (; next->reg != ISP_TOK_TERM; next++)
1066		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1067}
1068
1069/*
1070 * isp_restore_context - Restores the values of the ISP module registers.
1071 * @isp: OMAP3 ISP device
1072 * @reg_list: Structure containing pairs of register address and value to
1073 *            modify on OMAP.
1074 */
1075static void
1076isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1077{
1078	struct isp_reg *next = reg_list;
1079
1080	for (; next->reg != ISP_TOK_TERM; next++)
1081		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1082}
1083
1084/*
1085 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1086 * @isp: OMAP3 ISP device
1087 *
1088 * Routine for saving the context of each module in the ISP.
1089 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1090 */
1091static void isp_save_ctx(struct isp_device *isp)
1092{
1093	isp_save_context(isp, isp_reg_list);
1094	omap_iommu_save_ctx(isp->dev);
1095}
1096
1097/*
1098 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1099 * @isp: OMAP3 ISP device
1100 *
1101 * Routine for restoring the context of each module in the ISP.
1102 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1103 */
1104static void isp_restore_ctx(struct isp_device *isp)
1105{
1106	isp_restore_context(isp, isp_reg_list);
1107	omap_iommu_restore_ctx(isp->dev);
1108	omap3isp_ccdc_restore_context(isp);
1109	omap3isp_preview_restore_context(isp);
1110}
1111
1112/* -----------------------------------------------------------------------------
1113 * SBL resources management
1114 */
1115#define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1116				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1117				 OMAP3_ISP_SBL_PREVIEW_READ | \
1118				 OMAP3_ISP_SBL_RESIZER_READ)
1119#define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1120				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1121				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1122				 OMAP3_ISP_SBL_CCDC_WRITE | \
1123				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1124
1125void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1126{
1127	u32 sbl = 0;
1128
1129	isp->sbl_resources |= res;
1130
1131	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1132		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1133
1134	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1135		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1136
1137	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1138		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1139
1140	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1141		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1142
1143	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1144		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1145
1146	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1147		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1148
1149	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1150}
1151
1152void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1153{
1154	u32 sbl = 0;
1155
1156	isp->sbl_resources &= ~res;
1157
1158	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1159		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1160
1161	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1162		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1163
1164	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1165		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1166
1167	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1168		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1169
1170	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1171		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1172
1173	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1174		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1175
1176	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1177}
1178
1179/*
1180 * isp_module_sync_idle - Helper to sync module with its idle state
1181 * @me: ISP submodule's media entity
1182 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1183 * @stopping: flag which tells module wants to stop
1184 *
1185 * This function checks if ISP submodule needs to wait for next interrupt. If
1186 * yes, makes the caller to sleep while waiting for such event.
1187 */
1188int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1189			      atomic_t *stopping)
1190{
1191	struct isp_pipeline *pipe = to_isp_pipeline(me);
1192
1193	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1194	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1195	     !isp_pipeline_ready(pipe)))
1196		return 0;
1197
1198	/*
1199	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1200	 * scenario. We'll call it here to avoid race conditions.
1201	 */
1202	atomic_set(stopping, 1);
1203	smp_mb();
1204
1205	/*
1206	 * If module is the last one, it's writing to memory. In this case,
1207	 * it's necessary to check if the module is already paused due to
1208	 * DMA queue underrun or if it has to wait for next interrupt to be
1209	 * idle.
1210	 * If it isn't the last one, the function won't sleep but *stopping
1211	 * will still be set to warn next submodule caller's interrupt the
1212	 * module wants to be idle.
1213	 */
1214	if (isp_pipeline_is_last(me)) {
1215		struct isp_video *video = pipe->output;
1216		unsigned long flags;
1217		spin_lock_irqsave(&video->irqlock, flags);
1218		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1219			spin_unlock_irqrestore(&video->irqlock, flags);
1220			atomic_set(stopping, 0);
1221			smp_mb();
1222			return 0;
1223		}
1224		spin_unlock_irqrestore(&video->irqlock, flags);
1225		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1226					msecs_to_jiffies(1000))) {
1227			atomic_set(stopping, 0);
1228			smp_mb();
1229			return -ETIMEDOUT;
1230		}
1231	}
1232
1233	return 0;
1234}
1235
1236/*
1237 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1238 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1239 * @stopping: flag which tells module wants to stop
1240 *
1241 * This function checks if ISP submodule was stopping. In case of yes, it
1242 * notices the caller by setting stopping to 0 and waking up the wait queue.
1243 * Returns 1 if it was stopping or 0 otherwise.
1244 */
1245int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1246				     atomic_t *stopping)
1247{
1248	if (atomic_cmpxchg(stopping, 1, 0)) {
1249		wake_up(wait);
1250		return 1;
1251	}
1252
1253	return 0;
1254}
1255
1256/* --------------------------------------------------------------------------
1257 * Clock management
1258 */
1259
1260#define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1261				 ISPCTRL_HIST_CLK_EN | \
1262				 ISPCTRL_RSZ_CLK_EN | \
1263				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1264				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1265
1266static void __isp_subclk_update(struct isp_device *isp)
1267{
1268	u32 clk = 0;
1269
1270	/* AEWB and AF share the same clock. */
1271	if (isp->subclk_resources &
1272	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1273		clk |= ISPCTRL_H3A_CLK_EN;
1274
1275	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1276		clk |= ISPCTRL_HIST_CLK_EN;
1277
1278	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1279		clk |= ISPCTRL_RSZ_CLK_EN;
1280
1281	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1282	 *       RAM as well.
1283	 */
1284	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1285		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1286
1287	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1288		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1289
1290	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1291			ISPCTRL_CLKS_MASK, clk);
1292}
1293
1294void omap3isp_subclk_enable(struct isp_device *isp,
1295			    enum isp_subclk_resource res)
1296{
1297	isp->subclk_resources |= res;
1298
1299	__isp_subclk_update(isp);
1300}
1301
1302void omap3isp_subclk_disable(struct isp_device *isp,
1303			     enum isp_subclk_resource res)
1304{
1305	isp->subclk_resources &= ~res;
1306
1307	__isp_subclk_update(isp);
1308}
1309
1310/*
1311 * isp_enable_clocks - Enable ISP clocks
1312 * @isp: OMAP3 ISP device
1313 *
1314 * Return 0 if successful, or clk_prepare_enable return value if any of them
1315 * fails.
1316 */
1317static int isp_enable_clocks(struct isp_device *isp)
1318{
1319	int r;
1320	unsigned long rate;
1321
1322	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1323	if (r) {
1324		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1325		goto out_clk_enable_ick;
1326	}
1327	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1328	if (r) {
1329		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1330		goto out_clk_enable_mclk;
1331	}
1332	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1333	if (r) {
1334		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1335		goto out_clk_enable_mclk;
1336	}
1337	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1338	if (rate != CM_CAM_MCLK_HZ)
1339		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1340				   " expected : %d\n"
1341				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1342	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1343	if (r) {
1344		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1345		goto out_clk_enable_csi2_fclk;
1346	}
1347	return 0;
1348
1349out_clk_enable_csi2_fclk:
1350	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1351out_clk_enable_mclk:
1352	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1353out_clk_enable_ick:
1354	return r;
1355}
1356
1357/*
1358 * isp_disable_clocks - Disable ISP clocks
1359 * @isp: OMAP3 ISP device
1360 */
1361static void isp_disable_clocks(struct isp_device *isp)
1362{
1363	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1364	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1365	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1366}
1367
1368static const char *isp_clocks[] = {
1369	"cam_ick",
1370	"cam_mclk",
1371	"csi2_96m_fck",
1372	"l3_ick",
1373};
1374
1375static int isp_get_clocks(struct isp_device *isp)
1376{
1377	struct clk *clk;
1378	unsigned int i;
1379
1380	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1381		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1382		if (IS_ERR(clk)) {
1383			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1384			return PTR_ERR(clk);
1385		}
1386
1387		isp->clock[i] = clk;
1388	}
1389
1390	return 0;
1391}
1392
1393/*
1394 * omap3isp_get - Acquire the ISP resource.
1395 *
1396 * Initializes the clocks for the first acquire.
1397 *
1398 * Increment the reference count on the ISP. If the first reference is taken,
1399 * enable clocks and power-up all submodules.
1400 *
1401 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1402 */
1403static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1404{
1405	struct isp_device *__isp = isp;
1406
1407	if (isp == NULL)
1408		return NULL;
1409
1410	mutex_lock(&isp->isp_mutex);
1411	if (isp->ref_count > 0)
1412		goto out;
1413
1414	if (isp_enable_clocks(isp) < 0) {
1415		__isp = NULL;
1416		goto out;
1417	}
1418
1419	/* We don't want to restore context before saving it! */
1420	if (isp->has_context)
1421		isp_restore_ctx(isp);
1422
1423	if (irq)
1424		isp_enable_interrupts(isp);
1425
1426out:
1427	if (__isp != NULL)
1428		isp->ref_count++;
1429	mutex_unlock(&isp->isp_mutex);
1430
1431	return __isp;
1432}
1433
1434struct isp_device *omap3isp_get(struct isp_device *isp)
1435{
1436	return __omap3isp_get(isp, true);
1437}
1438
1439/*
1440 * omap3isp_put - Release the ISP
1441 *
1442 * Decrement the reference count on the ISP. If the last reference is released,
1443 * power-down all submodules, disable clocks and free temporary buffers.
1444 */
1445static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1446{
1447	if (isp == NULL)
1448		return;
1449
1450	mutex_lock(&isp->isp_mutex);
1451	BUG_ON(isp->ref_count == 0);
1452	if (--isp->ref_count == 0) {
1453		isp_disable_interrupts(isp);
1454		if (save_ctx) {
1455			isp_save_ctx(isp);
1456			isp->has_context = 1;
1457		}
1458		/* Reset the ISP if an entity has failed to stop. This is the
1459		 * only way to recover from such conditions.
1460		 */
1461		if (!media_entity_enum_empty(&isp->crashed) ||
1462		    isp->stop_failure)
1463			isp_reset(isp);
1464		isp_disable_clocks(isp);
1465	}
1466	mutex_unlock(&isp->isp_mutex);
1467}
1468
1469void omap3isp_put(struct isp_device *isp)
1470{
1471	__omap3isp_put(isp, true);
1472}
1473
1474/* --------------------------------------------------------------------------
1475 * Platform device driver
1476 */
1477
1478/*
1479 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1480 * @isp: OMAP3 ISP device
1481 */
1482#define ISP_PRINT_REGISTER(isp, name)\
1483	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1484		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1485#define SBL_PRINT_REGISTER(isp, name)\
1486	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1487		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1488
1489void omap3isp_print_status(struct isp_device *isp)
1490{
1491	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1492
1493	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1494	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1495	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1496	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1497	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1498	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1499	ISP_PRINT_REGISTER(isp, CTRL);
1500	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1501	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1502	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1503	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1504	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1505	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1506	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1507	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1508
1509	SBL_PRINT_REGISTER(isp, PCR);
1510	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1511
1512	dev_dbg(isp->dev, "--------------------------------------------\n");
1513}
1514
1515#ifdef CONFIG_PM
1516
1517/*
1518 * Power management support.
1519 *
1520 * As the ISP can't properly handle an input video stream interruption on a non
1521 * frame boundary, the ISP pipelines need to be stopped before sensors get
1522 * suspended. However, as suspending the sensors can require a running clock,
1523 * which can be provided by the ISP, the ISP can't be completely suspended
1524 * before the sensor.
1525 *
1526 * To solve this problem power management support is split into prepare/complete
1527 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1528 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1529 * resume(), and the pipelines are restarted in complete().
1530 *
1531 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1532 * yet.
1533 */
1534static int isp_pm_prepare(struct device *dev)
1535{
1536	struct isp_device *isp = dev_get_drvdata(dev);
1537	int reset;
1538
1539	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1540
1541	if (isp->ref_count == 0)
1542		return 0;
1543
1544	reset = isp_suspend_modules(isp);
1545	isp_disable_interrupts(isp);
1546	isp_save_ctx(isp);
1547	if (reset)
1548		isp_reset(isp);
1549
1550	return 0;
1551}
1552
1553static int isp_pm_suspend(struct device *dev)
1554{
1555	struct isp_device *isp = dev_get_drvdata(dev);
1556
1557	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1558
1559	if (isp->ref_count)
1560		isp_disable_clocks(isp);
1561
1562	return 0;
1563}
1564
1565static int isp_pm_resume(struct device *dev)
1566{
1567	struct isp_device *isp = dev_get_drvdata(dev);
1568
1569	if (isp->ref_count == 0)
1570		return 0;
1571
1572	return isp_enable_clocks(isp);
1573}
1574
1575static void isp_pm_complete(struct device *dev)
1576{
1577	struct isp_device *isp = dev_get_drvdata(dev);
1578
1579	if (isp->ref_count == 0)
1580		return;
1581
1582	isp_restore_ctx(isp);
1583	isp_enable_interrupts(isp);
1584	isp_resume_modules(isp);
1585}
1586
1587#else
1588
1589#define isp_pm_prepare	NULL
1590#define isp_pm_suspend	NULL
1591#define isp_pm_resume	NULL
1592#define isp_pm_complete	NULL
1593
1594#endif /* CONFIG_PM */
1595
1596static void isp_unregister_entities(struct isp_device *isp)
1597{
1598	media_device_unregister(&isp->media_dev);
1599
1600	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1601	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1602	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1603	omap3isp_preview_unregister_entities(&isp->isp_prev);
1604	omap3isp_resizer_unregister_entities(&isp->isp_res);
1605	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1606	omap3isp_stat_unregister_entities(&isp->isp_af);
1607	omap3isp_stat_unregister_entities(&isp->isp_hist);
1608
1609	v4l2_device_unregister(&isp->v4l2_dev);
1610	media_device_cleanup(&isp->media_dev);
1611}
1612
1613static int isp_link_entity(
1614	struct isp_device *isp, struct media_entity *entity,
1615	enum isp_interface_type interface)
1616{
1617	struct media_entity *input;
1618	unsigned int flags;
1619	unsigned int pad;
1620	unsigned int i;
1621
1622	/* Connect the sensor to the correct interface module.
1623	 * Parallel sensors are connected directly to the CCDC, while
1624	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1625	 * receiver through CSIPHY1 or CSIPHY2.
1626	 */
1627	switch (interface) {
1628	case ISP_INTERFACE_PARALLEL:
1629		input = &isp->isp_ccdc.subdev.entity;
1630		pad = CCDC_PAD_SINK;
1631		flags = 0;
1632		break;
1633
1634	case ISP_INTERFACE_CSI2A_PHY2:
1635		input = &isp->isp_csi2a.subdev.entity;
1636		pad = CSI2_PAD_SINK;
1637		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1638		break;
1639
1640	case ISP_INTERFACE_CCP2B_PHY1:
1641	case ISP_INTERFACE_CCP2B_PHY2:
1642		input = &isp->isp_ccp2.subdev.entity;
1643		pad = CCP2_PAD_SINK;
1644		flags = 0;
1645		break;
1646
1647	case ISP_INTERFACE_CSI2C_PHY1:
1648		input = &isp->isp_csi2c.subdev.entity;
1649		pad = CSI2_PAD_SINK;
1650		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1651		break;
1652
1653	default:
1654		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1655			interface);
1656		return -EINVAL;
1657	}
1658
1659	/*
1660	 * Not all interfaces are available on all revisions of the
1661	 * ISP. The sub-devices of those interfaces aren't initialised
1662	 * in such a case. Check this by ensuring the num_pads is
1663	 * non-zero.
1664	 */
1665	if (!input->num_pads) {
1666		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1667			interface);
1668		return -EINVAL;
1669	}
1670
1671	for (i = 0; i < entity->num_pads; i++) {
1672		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1673			break;
1674	}
1675	if (i == entity->num_pads) {
1676		dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1677			__func__, entity->name);
1678		return -EINVAL;
1679	}
1680
1681	return media_create_pad_link(entity, i, input, pad, flags);
1682}
1683
1684static int isp_register_entities(struct isp_device *isp)
1685{
1686	int ret;
1687
1688	isp->media_dev.dev = isp->dev;
1689	strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1690		sizeof(isp->media_dev.model));
1691	isp->media_dev.hw_revision = isp->revision;
1692	isp->media_dev.ops = &isp_media_ops;
1693	media_device_init(&isp->media_dev);
1694
1695	isp->v4l2_dev.mdev = &isp->media_dev;
1696	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1697	if (ret < 0) {
1698		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1699			__func__, ret);
1700		goto done;
1701	}
1702
1703	/* Register internal entities */
1704	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1705	if (ret < 0)
1706		goto done;
1707
1708	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1709	if (ret < 0)
1710		goto done;
1711
1712	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1713	if (ret < 0)
1714		goto done;
1715
1716	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1717						 &isp->v4l2_dev);
1718	if (ret < 0)
1719		goto done;
1720
1721	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1722	if (ret < 0)
1723		goto done;
1724
1725	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1726	if (ret < 0)
1727		goto done;
1728
1729	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1730	if (ret < 0)
1731		goto done;
1732
1733	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1734	if (ret < 0)
1735		goto done;
1736
1737done:
1738	if (ret < 0)
1739		isp_unregister_entities(isp);
1740
1741	return ret;
1742}
1743
1744/*
1745 * isp_create_links() - Create links for internal and external ISP entities
1746 * @isp : Pointer to ISP device
1747 *
1748 * This function creates all links between ISP internal and external entities.
1749 *
1750 * Return: A negative error code on failure or zero on success. Possible error
1751 * codes are those returned by media_create_pad_link().
1752 */
1753static int isp_create_links(struct isp_device *isp)
1754{
1755	int ret;
1756
1757	/* Create links between entities and video nodes. */
1758	ret = media_create_pad_link(
1759			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1760			&isp->isp_csi2a.video_out.video.entity, 0, 0);
1761	if (ret < 0)
1762		return ret;
1763
1764	ret = media_create_pad_link(
1765			&isp->isp_ccp2.video_in.video.entity, 0,
1766			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1767	if (ret < 0)
1768		return ret;
1769
1770	ret = media_create_pad_link(
1771			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1772			&isp->isp_ccdc.video_out.video.entity, 0, 0);
1773	if (ret < 0)
1774		return ret;
1775
1776	ret = media_create_pad_link(
1777			&isp->isp_prev.video_in.video.entity, 0,
1778			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1779	if (ret < 0)
1780		return ret;
1781
1782	ret = media_create_pad_link(
1783			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1784			&isp->isp_prev.video_out.video.entity, 0, 0);
1785	if (ret < 0)
1786		return ret;
1787
1788	ret = media_create_pad_link(
1789			&isp->isp_res.video_in.video.entity, 0,
1790			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1791	if (ret < 0)
1792		return ret;
1793
1794	ret = media_create_pad_link(
1795			&isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1796			&isp->isp_res.video_out.video.entity, 0, 0);
1797
1798	if (ret < 0)
1799		return ret;
1800
1801	/* Create links between entities. */
1802	ret = media_create_pad_link(
1803			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1804			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1805	if (ret < 0)
1806		return ret;
1807
1808	ret = media_create_pad_link(
1809			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1810			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1811	if (ret < 0)
1812		return ret;
1813
1814	ret = media_create_pad_link(
1815			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1816			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1817	if (ret < 0)
1818		return ret;
1819
1820	ret = media_create_pad_link(
1821			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1822			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1823	if (ret < 0)
1824		return ret;
1825
1826	ret = media_create_pad_link(
1827			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1828			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1829	if (ret < 0)
1830		return ret;
1831
1832	ret = media_create_pad_link(
1833			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1834			&isp->isp_aewb.subdev.entity, 0,
1835			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1836	if (ret < 0)
1837		return ret;
1838
1839	ret = media_create_pad_link(
1840			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1841			&isp->isp_af.subdev.entity, 0,
1842			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1843	if (ret < 0)
1844		return ret;
1845
1846	ret = media_create_pad_link(
1847			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1848			&isp->isp_hist.subdev.entity, 0,
1849			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1850	if (ret < 0)
1851		return ret;
1852
1853	return 0;
1854}
1855
1856static void isp_cleanup_modules(struct isp_device *isp)
1857{
1858	omap3isp_h3a_aewb_cleanup(isp);
1859	omap3isp_h3a_af_cleanup(isp);
1860	omap3isp_hist_cleanup(isp);
1861	omap3isp_resizer_cleanup(isp);
1862	omap3isp_preview_cleanup(isp);
1863	omap3isp_ccdc_cleanup(isp);
1864	omap3isp_ccp2_cleanup(isp);
1865	omap3isp_csi2_cleanup(isp);
1866	omap3isp_csiphy_cleanup(isp);
1867}
1868
1869static int isp_initialize_modules(struct isp_device *isp)
1870{
1871	int ret;
1872
1873	ret = omap3isp_csiphy_init(isp);
1874	if (ret < 0) {
1875		dev_err(isp->dev, "CSI PHY initialization failed\n");
1876		return ret;
1877	}
1878
1879	ret = omap3isp_csi2_init(isp);
1880	if (ret < 0) {
1881		dev_err(isp->dev, "CSI2 initialization failed\n");
1882		goto error_csi2;
1883	}
1884
1885	ret = omap3isp_ccp2_init(isp);
1886	if (ret < 0) {
1887		dev_err_probe(isp->dev, ret, "CCP2 initialization failed\n");
1888		goto error_ccp2;
1889	}
1890
1891	ret = omap3isp_ccdc_init(isp);
1892	if (ret < 0) {
1893		dev_err(isp->dev, "CCDC initialization failed\n");
1894		goto error_ccdc;
1895	}
1896
1897	ret = omap3isp_preview_init(isp);
1898	if (ret < 0) {
1899		dev_err(isp->dev, "Preview initialization failed\n");
1900		goto error_preview;
1901	}
1902
1903	ret = omap3isp_resizer_init(isp);
1904	if (ret < 0) {
1905		dev_err(isp->dev, "Resizer initialization failed\n");
1906		goto error_resizer;
1907	}
1908
1909	ret = omap3isp_hist_init(isp);
1910	if (ret < 0) {
1911		dev_err(isp->dev, "Histogram initialization failed\n");
1912		goto error_hist;
1913	}
1914
1915	ret = omap3isp_h3a_aewb_init(isp);
1916	if (ret < 0) {
1917		dev_err(isp->dev, "H3A AEWB initialization failed\n");
1918		goto error_h3a_aewb;
1919	}
1920
1921	ret = omap3isp_h3a_af_init(isp);
1922	if (ret < 0) {
1923		dev_err(isp->dev, "H3A AF initialization failed\n");
1924		goto error_h3a_af;
1925	}
1926
1927	return 0;
1928
1929error_h3a_af:
1930	omap3isp_h3a_aewb_cleanup(isp);
1931error_h3a_aewb:
1932	omap3isp_hist_cleanup(isp);
1933error_hist:
1934	omap3isp_resizer_cleanup(isp);
1935error_resizer:
1936	omap3isp_preview_cleanup(isp);
1937error_preview:
1938	omap3isp_ccdc_cleanup(isp);
1939error_ccdc:
1940	omap3isp_ccp2_cleanup(isp);
1941error_ccp2:
1942	omap3isp_csi2_cleanup(isp);
1943error_csi2:
1944	omap3isp_csiphy_cleanup(isp);
1945
1946	return ret;
1947}
1948
1949static void isp_detach_iommu(struct isp_device *isp)
1950{
1951#ifdef CONFIG_ARM_DMA_USE_IOMMU
1952	arm_iommu_detach_device(isp->dev);
1953	arm_iommu_release_mapping(isp->mapping);
1954	isp->mapping = NULL;
1955#endif
1956}
1957
1958static int isp_attach_iommu(struct isp_device *isp)
1959{
1960#ifdef CONFIG_ARM_DMA_USE_IOMMU
1961	struct dma_iommu_mapping *mapping;
1962	int ret;
1963
1964	/*
1965	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1966	 * VAs. This will allocate a corresponding IOMMU domain.
1967	 */
1968	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1969	if (IS_ERR(mapping)) {
1970		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1971		return PTR_ERR(mapping);
1972	}
1973
1974	isp->mapping = mapping;
1975
1976	/* Attach the ARM VA mapping to the device. */
1977	ret = arm_iommu_attach_device(isp->dev, mapping);
1978	if (ret < 0) {
1979		dev_err(isp->dev, "failed to attach device to VA mapping\n");
1980		goto error;
1981	}
1982
1983	return 0;
1984
1985error:
1986	arm_iommu_release_mapping(isp->mapping);
1987	isp->mapping = NULL;
1988	return ret;
1989#else
1990	return -ENODEV;
1991#endif
1992}
1993
1994/*
1995 * isp_remove - Remove ISP platform device
1996 * @pdev: Pointer to ISP platform device
1997 *
1998 * Always returns 0.
1999 */
2000static void isp_remove(struct platform_device *pdev)
2001{
2002	struct isp_device *isp = platform_get_drvdata(pdev);
2003
2004	v4l2_async_nf_unregister(&isp->notifier);
2005	v4l2_async_nf_cleanup(&isp->notifier);
2006	isp_unregister_entities(isp);
2007	isp_cleanup_modules(isp);
2008	isp_xclk_cleanup(isp);
2009
2010	__omap3isp_get(isp, false);
2011	isp_detach_iommu(isp);
2012	__omap3isp_put(isp, false);
2013
2014	media_entity_enum_cleanup(&isp->crashed);
2015
2016	kfree(isp);
2017}
2018
2019enum isp_of_phy {
2020	ISP_OF_PHY_PARALLEL = 0,
2021	ISP_OF_PHY_CSIPHY1,
2022	ISP_OF_PHY_CSIPHY2,
2023};
2024
2025static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async,
2026				     struct v4l2_subdev *sd,
2027				     struct v4l2_async_connection *asc)
2028{
2029	struct isp_device *isp = container_of(async, struct isp_device,
2030					      notifier);
2031	struct isp_bus_cfg *bus_cfg =
2032		&container_of(asc, struct isp_async_subdev, asd)->bus;
2033	int ret;
2034
2035	mutex_lock(&isp->media_dev.graph_mutex);
2036	ret = isp_link_entity(isp, &sd->entity, bus_cfg->interface);
2037	mutex_unlock(&isp->media_dev.graph_mutex);
2038
2039	return ret;
2040}
2041
2042static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2043{
2044	struct isp_device *isp = container_of(async, struct isp_device,
2045					      notifier);
2046	int ret;
2047
2048	mutex_lock(&isp->media_dev.graph_mutex);
2049	ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2050	mutex_unlock(&isp->media_dev.graph_mutex);
2051	if (ret)
2052		return ret;
2053
2054	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2055	if (ret < 0)
2056		return ret;
2057
2058	return media_device_register(&isp->media_dev);
2059}
2060
2061static void isp_parse_of_parallel_endpoint(struct device *dev,
2062					   struct v4l2_fwnode_endpoint *vep,
2063					   struct isp_bus_cfg *buscfg)
2064{
2065	buscfg->interface = ISP_INTERFACE_PARALLEL;
2066	buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2067	buscfg->bus.parallel.clk_pol =
2068		!!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2069	buscfg->bus.parallel.hs_pol =
2070		!!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2071	buscfg->bus.parallel.vs_pol =
2072		!!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2073	buscfg->bus.parallel.fld_pol =
2074		!!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2075	buscfg->bus.parallel.data_pol =
2076		!!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2077	buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2078}
2079
2080static void isp_parse_of_csi2_endpoint(struct device *dev,
2081				       struct v4l2_fwnode_endpoint *vep,
2082				       struct isp_bus_cfg *buscfg)
2083{
2084	unsigned int i;
2085
2086	buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2087	buscfg->bus.csi2.lanecfg.clk.pol =
2088		vep->bus.mipi_csi2.lane_polarities[0];
2089	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2090		buscfg->bus.csi2.lanecfg.clk.pol,
2091		buscfg->bus.csi2.lanecfg.clk.pos);
2092
2093	buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2094
2095	for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2096		buscfg->bus.csi2.lanecfg.data[i].pos =
2097			vep->bus.mipi_csi2.data_lanes[i];
2098		buscfg->bus.csi2.lanecfg.data[i].pol =
2099			vep->bus.mipi_csi2.lane_polarities[i + 1];
2100		dev_dbg(dev,
2101			"data lane %u polarity %u, pos %u\n", i,
2102			buscfg->bus.csi2.lanecfg.data[i].pol,
2103			buscfg->bus.csi2.lanecfg.data[i].pos);
2104	}
2105	/*
2106	 * FIXME: now we assume the CRC is always there. Implement a way to
2107	 * obtain this information from the sensor. Frame descriptors, perhaps?
2108	 */
2109	buscfg->bus.csi2.crc = 1;
2110}
2111
2112static void isp_parse_of_csi1_endpoint(struct device *dev,
2113				       struct v4l2_fwnode_endpoint *vep,
2114				       struct isp_bus_cfg *buscfg)
2115{
2116	buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2117	buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2118	dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2119		buscfg->bus.ccp2.lanecfg.clk.pol,
2120	buscfg->bus.ccp2.lanecfg.clk.pos);
2121
2122	buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2123	buscfg->bus.ccp2.lanecfg.data[0].pol =
2124		vep->bus.mipi_csi1.lane_polarity[1];
2125
2126	dev_dbg(dev, "data lane polarity %u, pos %u\n",
2127		buscfg->bus.ccp2.lanecfg.data[0].pol,
2128		buscfg->bus.ccp2.lanecfg.data[0].pos);
2129
2130	buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2131	buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2132	buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2133	buscfg->bus.ccp2.vp_clk_pol = 1;
2134
2135	buscfg->bus.ccp2.crc = 1;
2136}
2137
2138static struct {
2139	u32 phy;
2140	u32 csi2_if;
2141	u32 csi1_if;
2142} isp_bus_interfaces[2] = {
2143	{ ISP_OF_PHY_CSIPHY1,
2144	  ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2145	{ ISP_OF_PHY_CSIPHY2,
2146	  ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2147};
2148
2149static int isp_parse_of_endpoints(struct isp_device *isp)
2150{
2151	struct fwnode_handle *ep;
2152	struct isp_async_subdev *isd = NULL;
2153	unsigned int i;
2154
2155	ep = fwnode_graph_get_endpoint_by_id(
2156		dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2157		FWNODE_GRAPH_ENDPOINT_NEXT);
2158
2159	if (ep) {
2160		struct v4l2_fwnode_endpoint vep = {
2161			.bus_type = V4L2_MBUS_PARALLEL
2162		};
2163		int ret;
2164
2165		dev_dbg(isp->dev, "parsing parallel interface\n");
2166
2167		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2168
2169		if (!ret) {
2170			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
2171							      ep, struct
2172							      isp_async_subdev);
2173			if (!IS_ERR(isd))
2174				isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
2175		}
2176
2177		fwnode_handle_put(ep);
2178	}
2179
2180	for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2181		struct v4l2_fwnode_endpoint vep = {
2182			.bus_type = V4L2_MBUS_CSI2_DPHY
2183		};
2184		int ret;
2185
2186		ep = fwnode_graph_get_endpoint_by_id(
2187			dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2188			FWNODE_GRAPH_ENDPOINT_NEXT);
2189
2190		if (!ep)
2191			continue;
2192
2193		dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2194			to_of_node(ep));
2195
2196		ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2197		if (ret == -ENXIO) {
2198			vep = (struct v4l2_fwnode_endpoint)
2199				{ .bus_type = V4L2_MBUS_CSI1 };
2200			ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2201
2202			if (ret == -ENXIO) {
2203				vep = (struct v4l2_fwnode_endpoint)
2204					{ .bus_type = V4L2_MBUS_CCP2 };
2205				ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2206			}
2207		}
2208
2209		if (!ret) {
2210			isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier,
2211							      ep,
2212							      struct
2213							      isp_async_subdev);
2214
2215			if (!IS_ERR(isd)) {
2216				switch (vep.bus_type) {
2217				case V4L2_MBUS_CSI2_DPHY:
2218					isd->bus.interface =
2219						isp_bus_interfaces[i].csi2_if;
2220					isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
2221					break;
2222				case V4L2_MBUS_CSI1:
2223				case V4L2_MBUS_CCP2:
2224					isd->bus.interface =
2225						isp_bus_interfaces[i].csi1_if;
2226					isp_parse_of_csi1_endpoint(isp->dev, &vep,
2227								   &isd->bus);
2228					break;
2229				default:
2230					break;
2231				}
2232			}
2233		}
2234
2235		fwnode_handle_put(ep);
2236	}
2237
2238	return 0;
2239}
2240
2241static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2242	.bound = isp_subdev_notifier_bound,
2243	.complete = isp_subdev_notifier_complete,
2244};
2245
2246/*
2247 * isp_probe - Probe ISP platform device
2248 * @pdev: Pointer to ISP platform device
2249 *
2250 * Returns 0 if successful,
2251 *   -ENOMEM if no memory available,
2252 *   -ENODEV if no platform device resources found
2253 *     or no space for remapping registers,
2254 *   -EINVAL if couldn't install ISR,
2255 *   or clk_get return error value.
2256 */
2257static int isp_probe(struct platform_device *pdev)
2258{
2259	struct isp_device *isp;
2260	struct resource *mem;
2261	int ret;
2262	int i, m;
2263
2264	isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2265	if (!isp) {
2266		dev_err(&pdev->dev, "could not allocate memory\n");
2267		return -ENOMEM;
2268	}
2269
2270	ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2271				       "ti,phy-type", &isp->phy_type);
2272	if (ret)
2273		goto error_release_isp;
2274
2275	isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2276						      "syscon");
2277	if (IS_ERR(isp->syscon)) {
2278		ret = PTR_ERR(isp->syscon);
2279		goto error_release_isp;
2280	}
2281
2282	ret = of_property_read_u32_index(pdev->dev.of_node,
2283					 "syscon", 1, &isp->syscon_offset);
2284	if (ret)
2285		goto error_release_isp;
2286
2287	isp->autoidle = autoidle;
2288
2289	mutex_init(&isp->isp_mutex);
2290	spin_lock_init(&isp->stat_lock);
2291	isp->dev = &pdev->dev;
2292
2293	isp->ref_count = 0;
2294
2295	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2296	if (ret)
2297		goto error;
2298
2299	platform_set_drvdata(pdev, isp);
2300
2301	/* Regulators */
2302	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2303	if (IS_ERR(isp->isp_csiphy1.vdd)) {
2304		ret = PTR_ERR(isp->isp_csiphy1.vdd);
2305		goto error;
2306	}
2307
2308	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2309	if (IS_ERR(isp->isp_csiphy2.vdd)) {
2310		ret = PTR_ERR(isp->isp_csiphy2.vdd);
2311		goto error;
2312	}
2313
2314	/* Clocks
2315	 *
2316	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2317	 * manually to read the revision before calling __omap3isp_get().
2318	 *
2319	 * Start by mapping the ISP MMIO area, which is in two pieces.
2320	 * The ISP IOMMU is in between. Map both now, and fill in the
2321	 * ISP revision specific portions a little later in the
2322	 * function.
2323	 */
2324	for (i = 0; i < 2; i++) {
2325		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2326
2327		isp->mmio_base[map_idx] =
2328			devm_platform_get_and_ioremap_resource(pdev, i, &mem);
2329		if (IS_ERR(isp->mmio_base[map_idx])) {
2330			ret = PTR_ERR(isp->mmio_base[map_idx]);
2331			goto error;
2332		}
2333	}
2334
2335	ret = isp_get_clocks(isp);
2336	if (ret < 0)
2337		goto error;
2338
2339	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2340	if (ret < 0)
2341		goto error;
2342
2343	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2344	dev_info(isp->dev, "Revision %d.%d found\n",
2345		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2346
2347	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2348
2349	if (__omap3isp_get(isp, false) == NULL) {
2350		ret = -ENODEV;
2351		goto error;
2352	}
2353
2354	ret = isp_reset(isp);
2355	if (ret < 0)
2356		goto error_isp;
2357
2358	ret = isp_xclk_init(isp);
2359	if (ret < 0)
2360		goto error_isp;
2361
2362	/* Memory resources */
2363	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2364		if (isp->revision == isp_res_maps[m].isp_rev)
2365			break;
2366
2367	if (m == ARRAY_SIZE(isp_res_maps)) {
2368		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2369			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2370		ret = -ENODEV;
2371		goto error_isp;
2372	}
2373
2374	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2375		isp->mmio_base[i] =
2376			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2377
2378	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2379		isp->mmio_base[i] =
2380			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2381			+ isp_res_maps[m].offset[i];
2382
2383	isp->mmio_hist_base_phys =
2384		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2385
2386	/* IOMMU */
2387	ret = isp_attach_iommu(isp);
2388	if (ret < 0) {
2389		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2390		goto error_isp;
2391	}
2392
2393	/* Interrupt */
2394	ret = platform_get_irq(pdev, 0);
2395	if (ret < 0)
2396		goto error_iommu;
2397	isp->irq_num = ret;
2398
2399	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2400			     "OMAP3 ISP", isp)) {
2401		dev_err(isp->dev, "Unable to request IRQ\n");
2402		ret = -EINVAL;
2403		goto error_iommu;
2404	}
2405
2406	/* Entities */
2407	ret = isp_initialize_modules(isp);
2408	if (ret < 0)
2409		goto error_iommu;
2410
2411	ret = isp_register_entities(isp);
2412	if (ret < 0)
2413		goto error_modules;
2414
2415	ret = isp_create_links(isp);
2416	if (ret < 0)
2417		goto error_register_entities;
2418
2419	isp->notifier.ops = &isp_subdev_notifier_ops;
2420
2421	v4l2_async_nf_init(&isp->notifier, &isp->v4l2_dev);
2422
2423	ret = isp_parse_of_endpoints(isp);
2424	if (ret < 0)
2425		goto error_register_entities;
2426
2427	ret = v4l2_async_nf_register(&isp->notifier);
2428	if (ret)
2429		goto error_register_entities;
2430
2431	isp_core_init(isp, 1);
2432	omap3isp_put(isp);
2433
2434	return 0;
2435
2436error_register_entities:
2437	v4l2_async_nf_cleanup(&isp->notifier);
2438	isp_unregister_entities(isp);
2439error_modules:
2440	isp_cleanup_modules(isp);
2441error_iommu:
2442	isp_detach_iommu(isp);
2443error_isp:
2444	isp_xclk_cleanup(isp);
2445	__omap3isp_put(isp, false);
2446error:
2447	mutex_destroy(&isp->isp_mutex);
2448error_release_isp:
2449	kfree(isp);
2450
2451	return ret;
2452}
2453
2454static const struct dev_pm_ops omap3isp_pm_ops = {
2455	.prepare = isp_pm_prepare,
2456	.suspend = isp_pm_suspend,
2457	.resume = isp_pm_resume,
2458	.complete = isp_pm_complete,
2459};
2460
2461static const struct platform_device_id omap3isp_id_table[] = {
2462	{ "omap3isp", 0 },
2463	{ },
2464};
2465MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2466
2467static const struct of_device_id omap3isp_of_table[] = {
2468	{ .compatible = "ti,omap3-isp" },
2469	{ },
2470};
2471MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2472
2473static struct platform_driver omap3isp_driver = {
2474	.probe = isp_probe,
2475	.remove_new = isp_remove,
2476	.id_table = omap3isp_id_table,
2477	.driver = {
2478		.name = "omap3isp",
2479		.pm	= &omap3isp_pm_ops,
2480		.of_match_table = omap3isp_of_table,
2481	},
2482};
2483
2484module_platform_driver(omap3isp_driver);
2485
2486MODULE_AUTHOR("Nokia Corporation");
2487MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2488MODULE_LICENSE("GPL");
2489MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2490