162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *  Stereo and SAP detection for cx88
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci#include "cx88.h"
962306a36Sopenharmony_ci#include "cx88-reg.h"
1062306a36Sopenharmony_ci
1162306a36Sopenharmony_ci#include <linux/slab.h>
1262306a36Sopenharmony_ci#include <linux/kernel.h>
1362306a36Sopenharmony_ci#include <linux/module.h>
1462306a36Sopenharmony_ci#include <linux/jiffies.h>
1562306a36Sopenharmony_ci#include <asm/div64.h>
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_ci#define INT_PI			((s32)(3.141592653589 * 32768.0))
1862306a36Sopenharmony_ci
1962306a36Sopenharmony_ci#define compat_remainder(a, b) \
2062306a36Sopenharmony_ci	 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
2162306a36Sopenharmony_ci
2262306a36Sopenharmony_ci#define baseband_freq(carrier, srate, tone) ((s32)( \
2362306a36Sopenharmony_ci	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci/*
2662306a36Sopenharmony_ci * We calculate the baseband frequencies of the carrier and the pilot tones
2762306a36Sopenharmony_ci * based on the sampling rate of the audio rds fifo.
2862306a36Sopenharmony_ci */
2962306a36Sopenharmony_ci
3062306a36Sopenharmony_ci#define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
3162306a36Sopenharmony_ci#define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
3262306a36Sopenharmony_ci#define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci/*
3562306a36Sopenharmony_ci * The frequencies below are from the reference driver. They probably need
3662306a36Sopenharmony_ci * further adjustments, because they are not tested at all. You may even need
3762306a36Sopenharmony_ci * to play a bit with the registers of the chip to select the proper signal
3862306a36Sopenharmony_ci * for the input of the audio rds fifo, and measure it's sampling rate to
3962306a36Sopenharmony_ci * calculate the proper baseband frequencies...
4062306a36Sopenharmony_ci */
4162306a36Sopenharmony_ci
4262306a36Sopenharmony_ci#define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
4362306a36Sopenharmony_ci#define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
4462306a36Sopenharmony_ci#define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci#define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
4762306a36Sopenharmony_ci#define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
4862306a36Sopenharmony_ci#define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
4962306a36Sopenharmony_ci
5062306a36Sopenharmony_ci#define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
5162306a36Sopenharmony_ci#define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci#define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
5462306a36Sopenharmony_ci#define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
5562306a36Sopenharmony_ci
5662306a36Sopenharmony_ci/* The spectrum of the signal should be empty between these frequencies. */
5762306a36Sopenharmony_ci#define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
5862306a36Sopenharmony_ci#define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_cistatic unsigned int dsp_debug;
6162306a36Sopenharmony_cimodule_param(dsp_debug, int, 0644);
6262306a36Sopenharmony_ciMODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci#define dprintk(level, fmt, arg...) do {				\
6562306a36Sopenharmony_ci	if (dsp_debug >= level)						\
6662306a36Sopenharmony_ci		printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt),		\
6762306a36Sopenharmony_ci			__func__, ##arg);				\
6862306a36Sopenharmony_ci} while (0)
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_cistatic s32 int_cos(u32 x)
7162306a36Sopenharmony_ci{
7262306a36Sopenharmony_ci	u32 t2, t4, t6, t8;
7362306a36Sopenharmony_ci	s32 ret;
7462306a36Sopenharmony_ci	u16 period = x / INT_PI;
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci	if (period % 2)
7762306a36Sopenharmony_ci		return -int_cos(x - INT_PI);
7862306a36Sopenharmony_ci	x = x % INT_PI;
7962306a36Sopenharmony_ci	if (x > INT_PI / 2)
8062306a36Sopenharmony_ci		return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
8162306a36Sopenharmony_ci	/*
8262306a36Sopenharmony_ci	 * Now x is between 0 and INT_PI/2.
8362306a36Sopenharmony_ci	 * To calculate cos(x) we use it's Taylor polinom.
8462306a36Sopenharmony_ci	 */
8562306a36Sopenharmony_ci	t2 = x * x / 32768 / 2;
8662306a36Sopenharmony_ci	t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
8762306a36Sopenharmony_ci	t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
8862306a36Sopenharmony_ci	t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
8962306a36Sopenharmony_ci	ret = 32768 - t2 + t4 - t6 + t8;
9062306a36Sopenharmony_ci	return ret;
9162306a36Sopenharmony_ci}
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_cistatic u32 int_goertzel(s16 x[], u32 N, u32 freq)
9462306a36Sopenharmony_ci{
9562306a36Sopenharmony_ci	/*
9662306a36Sopenharmony_ci	 * We use the Goertzel algorithm to determine the power of the
9762306a36Sopenharmony_ci	 * given frequency in the signal
9862306a36Sopenharmony_ci	 */
9962306a36Sopenharmony_ci	s32 s_prev = 0;
10062306a36Sopenharmony_ci	s32 s_prev2 = 0;
10162306a36Sopenharmony_ci	s32 coeff = 2 * int_cos(freq);
10262306a36Sopenharmony_ci	u32 i;
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci	u64 tmp;
10562306a36Sopenharmony_ci	u32 divisor;
10662306a36Sopenharmony_ci
10762306a36Sopenharmony_ci	for (i = 0; i < N; i++) {
10862306a36Sopenharmony_ci		s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci		s_prev2 = s_prev;
11162306a36Sopenharmony_ci		s_prev = s;
11262306a36Sopenharmony_ci	}
11362306a36Sopenharmony_ci
11462306a36Sopenharmony_ci	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
11562306a36Sopenharmony_ci		      (s64)coeff * s_prev2 * s_prev / 32768;
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_ci	/*
11862306a36Sopenharmony_ci	 * XXX: N must be low enough so that N*N fits in s32.
11962306a36Sopenharmony_ci	 * Else we need two divisions.
12062306a36Sopenharmony_ci	 */
12162306a36Sopenharmony_ci	divisor = N * N;
12262306a36Sopenharmony_ci	do_div(tmp, divisor);
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci	return (u32)tmp;
12562306a36Sopenharmony_ci}
12662306a36Sopenharmony_ci
12762306a36Sopenharmony_cistatic u32 freq_magnitude(s16 x[], u32 N, u32 freq)
12862306a36Sopenharmony_ci{
12962306a36Sopenharmony_ci	u32 sum = int_goertzel(x, N, freq);
13062306a36Sopenharmony_ci
13162306a36Sopenharmony_ci	return (u32)int_sqrt(sum);
13262306a36Sopenharmony_ci}
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_cistatic u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
13562306a36Sopenharmony_ci{
13662306a36Sopenharmony_ci	int i;
13762306a36Sopenharmony_ci	u32 sum = 0;
13862306a36Sopenharmony_ci	u32 freq_step;
13962306a36Sopenharmony_ci	int samples = 5;
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	if (N > 192) {
14262306a36Sopenharmony_ci		/* The last 192 samples are enough for noise detection */
14362306a36Sopenharmony_ci		x += (N - 192);
14462306a36Sopenharmony_ci		N = 192;
14562306a36Sopenharmony_ci	}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci	freq_step = (freq_end - freq_start) / (samples - 1);
14862306a36Sopenharmony_ci
14962306a36Sopenharmony_ci	for (i = 0; i < samples; i++) {
15062306a36Sopenharmony_ci		sum += int_goertzel(x, N, freq_start);
15162306a36Sopenharmony_ci		freq_start += freq_step;
15262306a36Sopenharmony_ci	}
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci	return (u32)int_sqrt(sum / samples);
15562306a36Sopenharmony_ci}
15662306a36Sopenharmony_ci
15762306a36Sopenharmony_cistatic s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
15862306a36Sopenharmony_ci{
15962306a36Sopenharmony_ci	s32 carrier, stereo, dual, noise;
16062306a36Sopenharmony_ci	s32 carrier_freq, stereo_freq, dual_freq;
16162306a36Sopenharmony_ci	s32 ret;
16262306a36Sopenharmony_ci
16362306a36Sopenharmony_ci	switch (core->tvaudio) {
16462306a36Sopenharmony_ci	case WW_BG:
16562306a36Sopenharmony_ci	case WW_DK:
16662306a36Sopenharmony_ci		carrier_freq = FREQ_A2_CARRIER;
16762306a36Sopenharmony_ci		stereo_freq = FREQ_A2_STEREO;
16862306a36Sopenharmony_ci		dual_freq = FREQ_A2_DUAL;
16962306a36Sopenharmony_ci		break;
17062306a36Sopenharmony_ci	case WW_M:
17162306a36Sopenharmony_ci		carrier_freq = FREQ_A2M_CARRIER;
17262306a36Sopenharmony_ci		stereo_freq = FREQ_A2M_STEREO;
17362306a36Sopenharmony_ci		dual_freq = FREQ_A2M_DUAL;
17462306a36Sopenharmony_ci		break;
17562306a36Sopenharmony_ci	case WW_EIAJ:
17662306a36Sopenharmony_ci		carrier_freq = FREQ_EIAJ_CARRIER;
17762306a36Sopenharmony_ci		stereo_freq = FREQ_EIAJ_STEREO;
17862306a36Sopenharmony_ci		dual_freq = FREQ_EIAJ_DUAL;
17962306a36Sopenharmony_ci		break;
18062306a36Sopenharmony_ci	default:
18162306a36Sopenharmony_ci		pr_warn("unsupported audio mode %d for %s\n",
18262306a36Sopenharmony_ci			core->tvaudio, __func__);
18362306a36Sopenharmony_ci		return UNSET;
18462306a36Sopenharmony_ci	}
18562306a36Sopenharmony_ci
18662306a36Sopenharmony_ci	carrier = freq_magnitude(x, N, carrier_freq);
18762306a36Sopenharmony_ci	stereo  = freq_magnitude(x, N, stereo_freq);
18862306a36Sopenharmony_ci	dual    = freq_magnitude(x, N, dual_freq);
18962306a36Sopenharmony_ci	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
19062306a36Sopenharmony_ci
19162306a36Sopenharmony_ci	dprintk(1,
19262306a36Sopenharmony_ci		"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
19362306a36Sopenharmony_ci		carrier, stereo, dual, noise);
19462306a36Sopenharmony_ci
19562306a36Sopenharmony_ci	if (stereo > dual)
19662306a36Sopenharmony_ci		ret = V4L2_TUNER_SUB_STEREO;
19762306a36Sopenharmony_ci	else
19862306a36Sopenharmony_ci		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
19962306a36Sopenharmony_ci
20062306a36Sopenharmony_ci	if (core->tvaudio == WW_EIAJ) {
20162306a36Sopenharmony_ci		/* EIAJ checks may need adjustments */
20262306a36Sopenharmony_ci		if ((carrier > max(stereo, dual) * 2) &&
20362306a36Sopenharmony_ci		    (carrier < max(stereo, dual) * 6) &&
20462306a36Sopenharmony_ci		    (carrier > 20 && carrier < 200) &&
20562306a36Sopenharmony_ci		    (max(stereo, dual) > min(stereo, dual))) {
20662306a36Sopenharmony_ci			/*
20762306a36Sopenharmony_ci			 * For EIAJ the carrier is always present,
20862306a36Sopenharmony_ci			 * so we probably don't need noise detection
20962306a36Sopenharmony_ci			 */
21062306a36Sopenharmony_ci			return ret;
21162306a36Sopenharmony_ci		}
21262306a36Sopenharmony_ci	} else {
21362306a36Sopenharmony_ci		if ((carrier > max(stereo, dual) * 2) &&
21462306a36Sopenharmony_ci		    (carrier < max(stereo, dual) * 8) &&
21562306a36Sopenharmony_ci		    (carrier > 20 && carrier < 200) &&
21662306a36Sopenharmony_ci		    (noise < 10) &&
21762306a36Sopenharmony_ci		    (max(stereo, dual) > min(stereo, dual) * 2)) {
21862306a36Sopenharmony_ci			return ret;
21962306a36Sopenharmony_ci		}
22062306a36Sopenharmony_ci	}
22162306a36Sopenharmony_ci	return V4L2_TUNER_SUB_MONO;
22262306a36Sopenharmony_ci}
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_cistatic s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
22562306a36Sopenharmony_ci{
22662306a36Sopenharmony_ci	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
22762306a36Sopenharmony_ci	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
22862306a36Sopenharmony_ci	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
22962306a36Sopenharmony_ci	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
23262306a36Sopenharmony_ci		dual_ref, dual, sap_ref, sap);
23362306a36Sopenharmony_ci	/* FIXME: Currently not supported */
23462306a36Sopenharmony_ci	return UNSET;
23562306a36Sopenharmony_ci}
23662306a36Sopenharmony_ci
23762306a36Sopenharmony_cistatic s16 *read_rds_samples(struct cx88_core *core, u32 *N)
23862306a36Sopenharmony_ci{
23962306a36Sopenharmony_ci	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
24062306a36Sopenharmony_ci	s16 *samples;
24162306a36Sopenharmony_ci
24262306a36Sopenharmony_ci	unsigned int i;
24362306a36Sopenharmony_ci	unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
24462306a36Sopenharmony_ci	unsigned int spl = bpl / 4;
24562306a36Sopenharmony_ci	unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci	u32 current_address = cx_read(srch->ptr1_reg);
24862306a36Sopenharmony_ci	u32 offset = (current_address - srch->fifo_start + bpl);
24962306a36Sopenharmony_ci
25062306a36Sopenharmony_ci	dprintk(1,
25162306a36Sopenharmony_ci		"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
25262306a36Sopenharmony_ci		current_address,
25362306a36Sopenharmony_ci		current_address - srch->fifo_start, sample_count,
25462306a36Sopenharmony_ci		cx_read(MO_AUD_INTSTAT));
25562306a36Sopenharmony_ci	samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
25662306a36Sopenharmony_ci	if (!samples)
25762306a36Sopenharmony_ci		return NULL;
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci	*N = sample_count;
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_ci	for (i = 0; i < sample_count; i++)  {
26262306a36Sopenharmony_ci		offset = offset % (AUD_RDS_LINES * bpl);
26362306a36Sopenharmony_ci		samples[i] = cx_read(srch->fifo_start + offset);
26462306a36Sopenharmony_ci		offset += 4;
26562306a36Sopenharmony_ci	}
26662306a36Sopenharmony_ci
26762306a36Sopenharmony_ci	dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_ci	return samples;
27062306a36Sopenharmony_ci}
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_cis32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
27362306a36Sopenharmony_ci{
27462306a36Sopenharmony_ci	s16 *samples;
27562306a36Sopenharmony_ci	u32 N = 0;
27662306a36Sopenharmony_ci	s32 ret = UNSET;
27762306a36Sopenharmony_ci
27862306a36Sopenharmony_ci	/* If audio RDS fifo is disabled, we can't read the samples */
27962306a36Sopenharmony_ci	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
28062306a36Sopenharmony_ci		return ret;
28162306a36Sopenharmony_ci	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
28262306a36Sopenharmony_ci		return ret;
28362306a36Sopenharmony_ci
28462306a36Sopenharmony_ci	/* Wait at least 500 ms after an audio standard change */
28562306a36Sopenharmony_ci	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
28662306a36Sopenharmony_ci		return ret;
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_ci	samples = read_rds_samples(core, &N);
28962306a36Sopenharmony_ci
29062306a36Sopenharmony_ci	if (!samples)
29162306a36Sopenharmony_ci		return ret;
29262306a36Sopenharmony_ci
29362306a36Sopenharmony_ci	switch (core->tvaudio) {
29462306a36Sopenharmony_ci	case WW_BG:
29562306a36Sopenharmony_ci	case WW_DK:
29662306a36Sopenharmony_ci	case WW_EIAJ:
29762306a36Sopenharmony_ci	case WW_M:
29862306a36Sopenharmony_ci		ret = detect_a2_a2m_eiaj(core, samples, N);
29962306a36Sopenharmony_ci		break;
30062306a36Sopenharmony_ci	case WW_BTSC:
30162306a36Sopenharmony_ci		ret = detect_btsc(core, samples, N);
30262306a36Sopenharmony_ci		break;
30362306a36Sopenharmony_ci	case WW_NONE:
30462306a36Sopenharmony_ci	case WW_I:
30562306a36Sopenharmony_ci	case WW_L:
30662306a36Sopenharmony_ci	case WW_I2SPT:
30762306a36Sopenharmony_ci	case WW_FM:
30862306a36Sopenharmony_ci	case WW_I2SADC:
30962306a36Sopenharmony_ci		break;
31062306a36Sopenharmony_ci	}
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_ci	kfree(samples);
31362306a36Sopenharmony_ci
31462306a36Sopenharmony_ci	if (ret != UNSET)
31562306a36Sopenharmony_ci		dprintk(1, "stereo/sap detection result:%s%s%s\n",
31662306a36Sopenharmony_ci			(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
31762306a36Sopenharmony_ci			(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
31862306a36Sopenharmony_ci			(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
31962306a36Sopenharmony_ci
32062306a36Sopenharmony_ci	return ret;
32162306a36Sopenharmony_ci}
32262306a36Sopenharmony_ciEXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
32362306a36Sopenharmony_ci
324