xref: /kernel/linux/linux-6.6/drivers/md/raid5-ppl.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Partial Parity Log for closing the RAID5 write hole
4 * Copyright (c) 2017, Intel Corporation.
5 */
6
7#include <linux/kernel.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/crc32c.h>
11#include <linux/async_tx.h>
12#include <linux/raid/md_p.h>
13#include "md.h"
14#include "raid5.h"
15#include "raid5-log.h"
16
17/*
18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19 * partial parity data. The header contains an array of entries
20 * (struct ppl_header_entry) which describe the logged write requests.
21 * Partial parity for the entries comes after the header, written in the same
22 * sequence as the entries:
23 *
24 * Header
25 *   entry0
26 *   ...
27 *   entryN
28 * PP data
29 *   PP for entry0
30 *   ...
31 *   PP for entryN
32 *
33 * An entry describes one or more consecutive stripe_heads, up to a full
34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35 * number of stripe_heads in the entry and n is the number of modified data
36 * disks. Every stripe_head in the entry must write to the same data disks.
37 * An example of a valid case described by a single entry (writes to the first
38 * stripe of a 4 disk array, 16k chunk size):
39 *
40 * sh->sector   dd0   dd1   dd2    ppl
41 *            +-----+-----+-----+
42 * 0          | --- | --- | --- | +----+
43 * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44 * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45 * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46 *            +-----+-----+-----+ +----+
47 *
48 * data_sector is the first raid sector of the modified data, data_size is the
49 * total size of modified data and pp_size is the size of partial parity for
50 * this entry. Entries for full stripe writes contain no partial parity
51 * (pp_size = 0), they only mark the stripes for which parity should be
52 * recalculated after an unclean shutdown. Every entry holds a checksum of its
53 * partial parity, the header also has a checksum of the header itself.
54 *
55 * A write request is always logged to the PPL instance stored on the parity
56 * disk of the corresponding stripe. For each member disk there is one ppl_log
57 * used to handle logging for this disk, independently from others. They are
58 * grouped in child_logs array in struct ppl_conf, which is assigned to
59 * r5conf->log_private.
60 *
61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63 * can be appended to the last entry if it meets the conditions for a valid
64 * entry described above, otherwise a new entry is added. Checksums of entries
65 * are calculated incrementally as stripes containing partial parity are being
66 * added. ppl_submit_iounit() calculates the checksum of the header and submits
67 * a bio containing the header page and partial parity pages (sh->ppl_page) for
68 * all stripes of the io_unit. When the PPL write completes, the stripes
69 * associated with the io_unit are released and raid5d starts writing their data
70 * and parity. When all stripes are written, the io_unit is freed and the next
71 * can be submitted.
72 *
73 * An io_unit is used to gather stripes until it is submitted or becomes full
74 * (if the maximum number of entries or size of PPL is reached). Another io_unit
75 * can't be submitted until the previous has completed (PPL and stripe
76 * data+parity is written). The log->io_list tracks all io_units of a log
77 * (for a single member disk). New io_units are added to the end of the list
78 * and the first io_unit is submitted, if it is not submitted already.
79 * The current io_unit accepting new stripes is always at the end of the list.
80 *
81 * If write-back cache is enabled for any of the disks in the array, its data
82 * must be flushed before next io_unit is submitted.
83 */
84
85#define PPL_SPACE_SIZE (128 * 1024)
86
87struct ppl_conf {
88	struct mddev *mddev;
89
90	/* array of child logs, one for each raid disk */
91	struct ppl_log *child_logs;
92	int count;
93
94	int block_size;		/* the logical block size used for data_sector
95				 * in ppl_header_entry */
96	u32 signature;		/* raid array identifier */
97	atomic64_t seq;		/* current log write sequence number */
98
99	struct kmem_cache *io_kc;
100	mempool_t io_pool;
101	struct bio_set bs;
102	struct bio_set flush_bs;
103
104	/* used only for recovery */
105	int recovered_entries;
106	int mismatch_count;
107
108	/* stripes to retry if failed to allocate io_unit */
109	struct list_head no_mem_stripes;
110	spinlock_t no_mem_stripes_lock;
111
112	unsigned short write_hint;
113};
114
115struct ppl_log {
116	struct ppl_conf *ppl_conf;	/* shared between all log instances */
117
118	struct md_rdev *rdev;		/* array member disk associated with
119					 * this log instance */
120	struct mutex io_mutex;
121	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
122					 * always at the end of io_list */
123	spinlock_t io_list_lock;
124	struct list_head io_list;	/* all io_units of this log */
125
126	sector_t next_io_sector;
127	unsigned int entry_space;
128	bool use_multippl;
129	bool wb_cache_on;
130	unsigned long disk_flush_bitmap;
131};
132
133#define PPL_IO_INLINE_BVECS 32
134
135struct ppl_io_unit {
136	struct ppl_log *log;
137
138	struct page *header_page;	/* for ppl_header */
139
140	unsigned int entries_count;	/* number of entries in ppl_header */
141	unsigned int pp_size;		/* total size current of partial parity */
142
143	u64 seq;			/* sequence number of this log write */
144	struct list_head log_sibling;	/* log->io_list */
145
146	struct list_head stripe_list;	/* stripes added to the io_unit */
147	atomic_t pending_stripes;	/* how many stripes not written to raid */
148	atomic_t pending_flushes;	/* how many disk flushes are in progress */
149
150	bool submitted;			/* true if write to log started */
151
152	/* inline bio and its biovec for submitting the iounit */
153	struct bio bio;
154	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155};
156
157struct dma_async_tx_descriptor *
158ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159		       struct dma_async_tx_descriptor *tx)
160{
161	int disks = sh->disks;
162	struct page **srcs = percpu->scribble;
163	int count = 0, pd_idx = sh->pd_idx, i;
164	struct async_submit_ctl submit;
165
166	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167
168	/*
169	 * Partial parity is the XOR of stripe data chunks that are not changed
170	 * during the write request. Depending on available data
171	 * (read-modify-write vs. reconstruct-write case) we calculate it
172	 * differently.
173	 */
174	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175		/*
176		 * rmw: xor old data and parity from updated disks
177		 * This is calculated earlier by ops_run_prexor5() so just copy
178		 * the parity dev page.
179		 */
180		srcs[count++] = sh->dev[pd_idx].page;
181	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182		/* rcw: xor data from all not updated disks */
183		for (i = disks; i--;) {
184			struct r5dev *dev = &sh->dev[i];
185			if (test_bit(R5_UPTODATE, &dev->flags))
186				srcs[count++] = dev->page;
187		}
188	} else {
189		return tx;
190	}
191
192	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193			  NULL, sh, (void *) (srcs + sh->disks + 2));
194
195	if (count == 1)
196		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197				  &submit);
198	else
199		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200			       &submit);
201
202	return tx;
203}
204
205static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206{
207	struct kmem_cache *kc = pool_data;
208	struct ppl_io_unit *io;
209
210	io = kmem_cache_alloc(kc, gfp_mask);
211	if (!io)
212		return NULL;
213
214	io->header_page = alloc_page(gfp_mask);
215	if (!io->header_page) {
216		kmem_cache_free(kc, io);
217		return NULL;
218	}
219
220	return io;
221}
222
223static void ppl_io_pool_free(void *element, void *pool_data)
224{
225	struct kmem_cache *kc = pool_data;
226	struct ppl_io_unit *io = element;
227
228	__free_page(io->header_page);
229	kmem_cache_free(kc, io);
230}
231
232static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233					  struct stripe_head *sh)
234{
235	struct ppl_conf *ppl_conf = log->ppl_conf;
236	struct ppl_io_unit *io;
237	struct ppl_header *pplhdr;
238	struct page *header_page;
239
240	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241	if (!io)
242		return NULL;
243
244	header_page = io->header_page;
245	memset(io, 0, sizeof(*io));
246	io->header_page = header_page;
247
248	io->log = log;
249	INIT_LIST_HEAD(&io->log_sibling);
250	INIT_LIST_HEAD(&io->stripe_list);
251	atomic_set(&io->pending_stripes, 0);
252	atomic_set(&io->pending_flushes, 0);
253	bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS,
254		 REQ_OP_WRITE | REQ_FUA);
255
256	pplhdr = page_address(io->header_page);
257	clear_page(pplhdr);
258	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
259	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
260
261	io->seq = atomic64_add_return(1, &ppl_conf->seq);
262	pplhdr->generation = cpu_to_le64(io->seq);
263
264	return io;
265}
266
267static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
268{
269	struct ppl_io_unit *io = log->current_io;
270	struct ppl_header_entry *e = NULL;
271	struct ppl_header *pplhdr;
272	int i;
273	sector_t data_sector = 0;
274	int data_disks = 0;
275	struct r5conf *conf = sh->raid_conf;
276
277	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
278
279	/* check if current io_unit is full */
280	if (io && (io->pp_size == log->entry_space ||
281		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
282		pr_debug("%s: add io_unit blocked by seq: %llu\n",
283			 __func__, io->seq);
284		io = NULL;
285	}
286
287	/* add a new unit if there is none or the current is full */
288	if (!io) {
289		io = ppl_new_iounit(log, sh);
290		if (!io)
291			return -ENOMEM;
292		spin_lock_irq(&log->io_list_lock);
293		list_add_tail(&io->log_sibling, &log->io_list);
294		spin_unlock_irq(&log->io_list_lock);
295
296		log->current_io = io;
297	}
298
299	for (i = 0; i < sh->disks; i++) {
300		struct r5dev *dev = &sh->dev[i];
301
302		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
303			if (!data_disks || dev->sector < data_sector)
304				data_sector = dev->sector;
305			data_disks++;
306		}
307	}
308	BUG_ON(!data_disks);
309
310	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
311		 io->seq, (unsigned long long)data_sector, data_disks);
312
313	pplhdr = page_address(io->header_page);
314
315	if (io->entries_count > 0) {
316		struct ppl_header_entry *last =
317				&pplhdr->entries[io->entries_count - 1];
318		struct stripe_head *sh_last = list_last_entry(
319				&io->stripe_list, struct stripe_head, log_list);
320		u64 data_sector_last = le64_to_cpu(last->data_sector);
321		u32 data_size_last = le32_to_cpu(last->data_size);
322
323		/*
324		 * Check if we can append the stripe to the last entry. It must
325		 * be just after the last logged stripe and write to the same
326		 * disks. Use bit shift and logarithm to avoid 64-bit division.
327		 */
328		if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
329		    (data_sector >> ilog2(conf->chunk_sectors) ==
330		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
331		    ((data_sector - data_sector_last) * data_disks ==
332		     data_size_last >> 9))
333			e = last;
334	}
335
336	if (!e) {
337		e = &pplhdr->entries[io->entries_count++];
338		e->data_sector = cpu_to_le64(data_sector);
339		e->parity_disk = cpu_to_le32(sh->pd_idx);
340		e->checksum = cpu_to_le32(~0);
341	}
342
343	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
344
345	/* don't write any PP if full stripe write */
346	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
347		le32_add_cpu(&e->pp_size, PAGE_SIZE);
348		io->pp_size += PAGE_SIZE;
349		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
350						    page_address(sh->ppl_page),
351						    PAGE_SIZE));
352	}
353
354	list_add_tail(&sh->log_list, &io->stripe_list);
355	atomic_inc(&io->pending_stripes);
356	sh->ppl_io = io;
357
358	return 0;
359}
360
361int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
362{
363	struct ppl_conf *ppl_conf = conf->log_private;
364	struct ppl_io_unit *io = sh->ppl_io;
365	struct ppl_log *log;
366
367	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
368	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
369	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
370		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
371		return -EAGAIN;
372	}
373
374	log = &ppl_conf->child_logs[sh->pd_idx];
375
376	mutex_lock(&log->io_mutex);
377
378	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
379		mutex_unlock(&log->io_mutex);
380		return -EAGAIN;
381	}
382
383	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
384	clear_bit(STRIPE_DELAYED, &sh->state);
385	atomic_inc(&sh->count);
386
387	if (ppl_log_stripe(log, sh)) {
388		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
389		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
390		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
391	}
392
393	mutex_unlock(&log->io_mutex);
394
395	return 0;
396}
397
398static void ppl_log_endio(struct bio *bio)
399{
400	struct ppl_io_unit *io = bio->bi_private;
401	struct ppl_log *log = io->log;
402	struct ppl_conf *ppl_conf = log->ppl_conf;
403	struct stripe_head *sh, *next;
404
405	pr_debug("%s: seq: %llu\n", __func__, io->seq);
406
407	if (bio->bi_status)
408		md_error(ppl_conf->mddev, log->rdev);
409
410	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
411		list_del_init(&sh->log_list);
412
413		set_bit(STRIPE_HANDLE, &sh->state);
414		raid5_release_stripe(sh);
415	}
416}
417
418static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
419{
420	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
421		 __func__, io->seq, bio->bi_iter.bi_size,
422		 (unsigned long long)bio->bi_iter.bi_sector,
423		 bio->bi_bdev);
424
425	submit_bio(bio);
426}
427
428static void ppl_submit_iounit(struct ppl_io_unit *io)
429{
430	struct ppl_log *log = io->log;
431	struct ppl_conf *ppl_conf = log->ppl_conf;
432	struct ppl_header *pplhdr = page_address(io->header_page);
433	struct bio *bio = &io->bio;
434	struct stripe_head *sh;
435	int i;
436
437	bio->bi_private = io;
438
439	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
440		ppl_log_endio(bio);
441		return;
442	}
443
444	for (i = 0; i < io->entries_count; i++) {
445		struct ppl_header_entry *e = &pplhdr->entries[i];
446
447		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
448			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
449			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
450
451		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
452					     ilog2(ppl_conf->block_size >> 9));
453		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
454	}
455
456	pplhdr->entries_count = cpu_to_le32(io->entries_count);
457	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
458
459	/* Rewind the buffer if current PPL is larger then remaining space */
460	if (log->use_multippl &&
461	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
462	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
463		log->next_io_sector = log->rdev->ppl.sector;
464
465
466	bio->bi_end_io = ppl_log_endio;
467	bio->bi_iter.bi_sector = log->next_io_sector;
468	__bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
469
470	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
471	    (unsigned long long)log->next_io_sector);
472
473	if (log->use_multippl)
474		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
475
476	WARN_ON(log->disk_flush_bitmap != 0);
477
478	list_for_each_entry(sh, &io->stripe_list, log_list) {
479		for (i = 0; i < sh->disks; i++) {
480			struct r5dev *dev = &sh->dev[i];
481
482			if ((ppl_conf->child_logs[i].wb_cache_on) &&
483			    (test_bit(R5_Wantwrite, &dev->flags))) {
484				set_bit(i, &log->disk_flush_bitmap);
485			}
486		}
487
488		/* entries for full stripe writes have no partial parity */
489		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
490			continue;
491
492		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
493			struct bio *prev = bio;
494
495			bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
496					       prev->bi_opf, GFP_NOIO,
497					       &ppl_conf->bs);
498			bio->bi_iter.bi_sector = bio_end_sector(prev);
499			__bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
500
501			bio_chain(bio, prev);
502			ppl_submit_iounit_bio(io, prev);
503		}
504	}
505
506	ppl_submit_iounit_bio(io, bio);
507}
508
509static void ppl_submit_current_io(struct ppl_log *log)
510{
511	struct ppl_io_unit *io;
512
513	spin_lock_irq(&log->io_list_lock);
514
515	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
516				      log_sibling);
517	if (io && io->submitted)
518		io = NULL;
519
520	spin_unlock_irq(&log->io_list_lock);
521
522	if (io) {
523		io->submitted = true;
524
525		if (io == log->current_io)
526			log->current_io = NULL;
527
528		ppl_submit_iounit(io);
529	}
530}
531
532void ppl_write_stripe_run(struct r5conf *conf)
533{
534	struct ppl_conf *ppl_conf = conf->log_private;
535	struct ppl_log *log;
536	int i;
537
538	for (i = 0; i < ppl_conf->count; i++) {
539		log = &ppl_conf->child_logs[i];
540
541		mutex_lock(&log->io_mutex);
542		ppl_submit_current_io(log);
543		mutex_unlock(&log->io_mutex);
544	}
545}
546
547static void ppl_io_unit_finished(struct ppl_io_unit *io)
548{
549	struct ppl_log *log = io->log;
550	struct ppl_conf *ppl_conf = log->ppl_conf;
551	struct r5conf *conf = ppl_conf->mddev->private;
552	unsigned long flags;
553
554	pr_debug("%s: seq: %llu\n", __func__, io->seq);
555
556	local_irq_save(flags);
557
558	spin_lock(&log->io_list_lock);
559	list_del(&io->log_sibling);
560	spin_unlock(&log->io_list_lock);
561
562	mempool_free(io, &ppl_conf->io_pool);
563
564	spin_lock(&ppl_conf->no_mem_stripes_lock);
565	if (!list_empty(&ppl_conf->no_mem_stripes)) {
566		struct stripe_head *sh;
567
568		sh = list_first_entry(&ppl_conf->no_mem_stripes,
569				      struct stripe_head, log_list);
570		list_del_init(&sh->log_list);
571		set_bit(STRIPE_HANDLE, &sh->state);
572		raid5_release_stripe(sh);
573	}
574	spin_unlock(&ppl_conf->no_mem_stripes_lock);
575
576	local_irq_restore(flags);
577
578	wake_up(&conf->wait_for_quiescent);
579}
580
581static void ppl_flush_endio(struct bio *bio)
582{
583	struct ppl_io_unit *io = bio->bi_private;
584	struct ppl_log *log = io->log;
585	struct ppl_conf *ppl_conf = log->ppl_conf;
586	struct r5conf *conf = ppl_conf->mddev->private;
587
588	pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
589
590	if (bio->bi_status) {
591		struct md_rdev *rdev;
592
593		rcu_read_lock();
594		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
595		if (rdev)
596			md_error(rdev->mddev, rdev);
597		rcu_read_unlock();
598	}
599
600	bio_put(bio);
601
602	if (atomic_dec_and_test(&io->pending_flushes)) {
603		ppl_io_unit_finished(io);
604		md_wakeup_thread(conf->mddev->thread);
605	}
606}
607
608static void ppl_do_flush(struct ppl_io_unit *io)
609{
610	struct ppl_log *log = io->log;
611	struct ppl_conf *ppl_conf = log->ppl_conf;
612	struct r5conf *conf = ppl_conf->mddev->private;
613	int raid_disks = conf->raid_disks;
614	int flushed_disks = 0;
615	int i;
616
617	atomic_set(&io->pending_flushes, raid_disks);
618
619	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
620		struct md_rdev *rdev;
621		struct block_device *bdev = NULL;
622
623		rcu_read_lock();
624		rdev = rcu_dereference(conf->disks[i].rdev);
625		if (rdev && !test_bit(Faulty, &rdev->flags))
626			bdev = rdev->bdev;
627		rcu_read_unlock();
628
629		if (bdev) {
630			struct bio *bio;
631
632			bio = bio_alloc_bioset(bdev, 0,
633					       REQ_OP_WRITE | REQ_PREFLUSH,
634					       GFP_NOIO, &ppl_conf->flush_bs);
635			bio->bi_private = io;
636			bio->bi_end_io = ppl_flush_endio;
637
638			pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
639
640			submit_bio(bio);
641			flushed_disks++;
642		}
643	}
644
645	log->disk_flush_bitmap = 0;
646
647	for (i = flushed_disks ; i < raid_disks; i++) {
648		if (atomic_dec_and_test(&io->pending_flushes))
649			ppl_io_unit_finished(io);
650	}
651}
652
653static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
654					    struct ppl_log *log)
655{
656	struct ppl_io_unit *io;
657
658	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
659				      log_sibling);
660
661	return !io || !io->submitted;
662}
663
664void ppl_quiesce(struct r5conf *conf, int quiesce)
665{
666	struct ppl_conf *ppl_conf = conf->log_private;
667	int i;
668
669	if (quiesce) {
670		for (i = 0; i < ppl_conf->count; i++) {
671			struct ppl_log *log = &ppl_conf->child_logs[i];
672
673			spin_lock_irq(&log->io_list_lock);
674			wait_event_lock_irq(conf->wait_for_quiescent,
675					    ppl_no_io_unit_submitted(conf, log),
676					    log->io_list_lock);
677			spin_unlock_irq(&log->io_list_lock);
678		}
679	}
680}
681
682int ppl_handle_flush_request(struct bio *bio)
683{
684	if (bio->bi_iter.bi_size == 0) {
685		bio_endio(bio);
686		return 0;
687	}
688	bio->bi_opf &= ~REQ_PREFLUSH;
689	return -EAGAIN;
690}
691
692void ppl_stripe_write_finished(struct stripe_head *sh)
693{
694	struct ppl_io_unit *io;
695
696	io = sh->ppl_io;
697	sh->ppl_io = NULL;
698
699	if (io && atomic_dec_and_test(&io->pending_stripes)) {
700		if (io->log->disk_flush_bitmap)
701			ppl_do_flush(io);
702		else
703			ppl_io_unit_finished(io);
704	}
705}
706
707static void ppl_xor(int size, struct page *page1, struct page *page2)
708{
709	struct async_submit_ctl submit;
710	struct dma_async_tx_descriptor *tx;
711	struct page *xor_srcs[] = { page1, page2 };
712
713	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
714			  NULL, NULL, NULL, NULL);
715	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
716
717	async_tx_quiesce(&tx);
718}
719
720/*
721 * PPL recovery strategy: xor partial parity and data from all modified data
722 * disks within a stripe and write the result as the new stripe parity. If all
723 * stripe data disks are modified (full stripe write), no partial parity is
724 * available, so just xor the data disks.
725 *
726 * Recovery of a PPL entry shall occur only if all modified data disks are
727 * available and read from all of them succeeds.
728 *
729 * A PPL entry applies to a stripe, partial parity size for an entry is at most
730 * the size of the chunk. Examples of possible cases for a single entry:
731 *
732 * case 0: single data disk write:
733 *   data0    data1    data2     ppl        parity
734 * +--------+--------+--------+           +--------------------+
735 * | ------ | ------ | ------ | +----+    | (no change)        |
736 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
737 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
738 * | ------ | ------ | ------ | +----+    | (no change)        |
739 * +--------+--------+--------+           +--------------------+
740 * pp_size = data_size
741 *
742 * case 1: more than one data disk write:
743 *   data0    data1    data2     ppl        parity
744 * +--------+--------+--------+           +--------------------+
745 * | ------ | ------ | ------ | +----+    | (no change)        |
746 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
747 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
748 * | ------ | ------ | ------ | +----+    | (no change)        |
749 * +--------+--------+--------+           +--------------------+
750 * pp_size = data_size / modified_data_disks
751 *
752 * case 2: write to all data disks (also full stripe write):
753 *   data0    data1    data2                parity
754 * +--------+--------+--------+           +--------------------+
755 * | ------ | ------ | ------ |           | (no change)        |
756 * | -data- | -data- | -data- | --------> | xor all data       |
757 * | ------ | ------ | ------ | --------> | (no change)        |
758 * | ------ | ------ | ------ |           | (no change)        |
759 * +--------+--------+--------+           +--------------------+
760 * pp_size = 0
761 *
762 * The following cases are possible only in other implementations. The recovery
763 * code can handle them, but they are not generated at runtime because they can
764 * be reduced to cases 0, 1 and 2:
765 *
766 * case 3:
767 *   data0    data1    data2     ppl        parity
768 * +--------+--------+--------+ +----+    +--------------------+
769 * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
770 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
771 * | -data- | -data- | -data- | | -- | -> | xor all data       |
772 * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
773 * +--------+--------+--------+ +----+    +--------------------+
774 * pp_size = chunk_size
775 *
776 * case 4:
777 *   data0    data1    data2     ppl        parity
778 * +--------+--------+--------+ +----+    +--------------------+
779 * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
780 * | ------ | ------ | ------ | | -- | -> | (no change)        |
781 * | ------ | ------ | ------ | | -- | -> | (no change)        |
782 * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
783 * +--------+--------+--------+ +----+    +--------------------+
784 * pp_size = chunk_size
785 */
786static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
787			     sector_t ppl_sector)
788{
789	struct ppl_conf *ppl_conf = log->ppl_conf;
790	struct mddev *mddev = ppl_conf->mddev;
791	struct r5conf *conf = mddev->private;
792	int block_size = ppl_conf->block_size;
793	struct page *page1;
794	struct page *page2;
795	sector_t r_sector_first;
796	sector_t r_sector_last;
797	int strip_sectors;
798	int data_disks;
799	int i;
800	int ret = 0;
801	unsigned int pp_size = le32_to_cpu(e->pp_size);
802	unsigned int data_size = le32_to_cpu(e->data_size);
803
804	page1 = alloc_page(GFP_KERNEL);
805	page2 = alloc_page(GFP_KERNEL);
806
807	if (!page1 || !page2) {
808		ret = -ENOMEM;
809		goto out;
810	}
811
812	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
813
814	if ((pp_size >> 9) < conf->chunk_sectors) {
815		if (pp_size > 0) {
816			data_disks = data_size / pp_size;
817			strip_sectors = pp_size >> 9;
818		} else {
819			data_disks = conf->raid_disks - conf->max_degraded;
820			strip_sectors = (data_size >> 9) / data_disks;
821		}
822		r_sector_last = r_sector_first +
823				(data_disks - 1) * conf->chunk_sectors +
824				strip_sectors;
825	} else {
826		data_disks = conf->raid_disks - conf->max_degraded;
827		strip_sectors = conf->chunk_sectors;
828		r_sector_last = r_sector_first + (data_size >> 9);
829	}
830
831	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
832		 (unsigned long long)r_sector_first,
833		 (unsigned long long)r_sector_last);
834
835	/* if start and end is 4k aligned, use a 4k block */
836	if (block_size == 512 &&
837	    (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
838	    (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
839		block_size = RAID5_STRIPE_SIZE(conf);
840
841	/* iterate through blocks in strip */
842	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
843		bool update_parity = false;
844		sector_t parity_sector;
845		struct md_rdev *parity_rdev;
846		struct stripe_head sh;
847		int disk;
848		int indent = 0;
849
850		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
851		indent += 2;
852
853		memset(page_address(page1), 0, PAGE_SIZE);
854
855		/* iterate through data member disks */
856		for (disk = 0; disk < data_disks; disk++) {
857			int dd_idx;
858			struct md_rdev *rdev;
859			sector_t sector;
860			sector_t r_sector = r_sector_first + i +
861					    (disk * conf->chunk_sectors);
862
863			pr_debug("%s:%*s data member disk %d start\n",
864				 __func__, indent, "", disk);
865			indent += 2;
866
867			if (r_sector >= r_sector_last) {
868				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
869					 __func__, indent, "",
870					 (unsigned long long)r_sector);
871				indent -= 2;
872				continue;
873			}
874
875			update_parity = true;
876
877			/* map raid sector to member disk */
878			sector = raid5_compute_sector(conf, r_sector, 0,
879						      &dd_idx, NULL);
880			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
881				 __func__, indent, "",
882				 (unsigned long long)r_sector, dd_idx,
883				 (unsigned long long)sector);
884
885			/* Array has not started so rcu dereference is safe */
886			rdev = rcu_dereference_protected(
887					conf->disks[dd_idx].rdev, 1);
888			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
889				      sector >= rdev->recovery_offset)) {
890				pr_debug("%s:%*s data member disk %d missing\n",
891					 __func__, indent, "", dd_idx);
892				update_parity = false;
893				break;
894			}
895
896			pr_debug("%s:%*s reading data member disk %pg sector %llu\n",
897				 __func__, indent, "", rdev->bdev,
898				 (unsigned long long)sector);
899			if (!sync_page_io(rdev, sector, block_size, page2,
900					REQ_OP_READ, false)) {
901				md_error(mddev, rdev);
902				pr_debug("%s:%*s read failed!\n", __func__,
903					 indent, "");
904				ret = -EIO;
905				goto out;
906			}
907
908			ppl_xor(block_size, page1, page2);
909
910			indent -= 2;
911		}
912
913		if (!update_parity)
914			continue;
915
916		if (pp_size > 0) {
917			pr_debug("%s:%*s reading pp disk sector %llu\n",
918				 __func__, indent, "",
919				 (unsigned long long)(ppl_sector + i));
920			if (!sync_page_io(log->rdev,
921					ppl_sector - log->rdev->data_offset + i,
922					block_size, page2, REQ_OP_READ,
923					false)) {
924				pr_debug("%s:%*s read failed!\n", __func__,
925					 indent, "");
926				md_error(mddev, log->rdev);
927				ret = -EIO;
928				goto out;
929			}
930
931			ppl_xor(block_size, page1, page2);
932		}
933
934		/* map raid sector to parity disk */
935		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
936				0, &disk, &sh);
937		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
938
939		/* Array has not started so rcu dereference is safe */
940		parity_rdev = rcu_dereference_protected(
941					conf->disks[sh.pd_idx].rdev, 1);
942
943		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
944		pr_debug("%s:%*s write parity at sector %llu, disk %pg\n",
945			 __func__, indent, "",
946			 (unsigned long long)parity_sector,
947			 parity_rdev->bdev);
948		if (!sync_page_io(parity_rdev, parity_sector, block_size,
949				  page1, REQ_OP_WRITE, false)) {
950			pr_debug("%s:%*s parity write error!\n", __func__,
951				 indent, "");
952			md_error(mddev, parity_rdev);
953			ret = -EIO;
954			goto out;
955		}
956	}
957out:
958	if (page1)
959		__free_page(page1);
960	if (page2)
961		__free_page(page2);
962	return ret;
963}
964
965static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
966		       sector_t offset)
967{
968	struct ppl_conf *ppl_conf = log->ppl_conf;
969	struct md_rdev *rdev = log->rdev;
970	struct mddev *mddev = rdev->mddev;
971	sector_t ppl_sector = rdev->ppl.sector + offset +
972			      (PPL_HEADER_SIZE >> 9);
973	struct page *page;
974	int i;
975	int ret = 0;
976
977	page = alloc_page(GFP_KERNEL);
978	if (!page)
979		return -ENOMEM;
980
981	/* iterate through all PPL entries saved */
982	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
983		struct ppl_header_entry *e = &pplhdr->entries[i];
984		u32 pp_size = le32_to_cpu(e->pp_size);
985		sector_t sector = ppl_sector;
986		int ppl_entry_sectors = pp_size >> 9;
987		u32 crc, crc_stored;
988
989		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
990			 __func__, rdev->raid_disk, i,
991			 (unsigned long long)ppl_sector, pp_size);
992
993		crc = ~0;
994		crc_stored = le32_to_cpu(e->checksum);
995
996		/* read parial parity for this entry and calculate its checksum */
997		while (pp_size) {
998			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
999
1000			if (!sync_page_io(rdev, sector - rdev->data_offset,
1001					s, page, REQ_OP_READ, false)) {
1002				md_error(mddev, rdev);
1003				ret = -EIO;
1004				goto out;
1005			}
1006
1007			crc = crc32c_le(crc, page_address(page), s);
1008
1009			pp_size -= s;
1010			sector += s >> 9;
1011		}
1012
1013		crc = ~crc;
1014
1015		if (crc != crc_stored) {
1016			/*
1017			 * Don't recover this entry if the checksum does not
1018			 * match, but keep going and try to recover other
1019			 * entries.
1020			 */
1021			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1022				 __func__, crc_stored, crc);
1023			ppl_conf->mismatch_count++;
1024		} else {
1025			ret = ppl_recover_entry(log, e, ppl_sector);
1026			if (ret)
1027				goto out;
1028			ppl_conf->recovered_entries++;
1029		}
1030
1031		ppl_sector += ppl_entry_sectors;
1032	}
1033
1034	/* flush the disk cache after recovery if necessary */
1035	ret = blkdev_issue_flush(rdev->bdev);
1036out:
1037	__free_page(page);
1038	return ret;
1039}
1040
1041static int ppl_write_empty_header(struct ppl_log *log)
1042{
1043	struct page *page;
1044	struct ppl_header *pplhdr;
1045	struct md_rdev *rdev = log->rdev;
1046	int ret = 0;
1047
1048	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1049		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1050
1051	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1052	if (!page)
1053		return -ENOMEM;
1054
1055	pplhdr = page_address(page);
1056	/* zero out PPL space to avoid collision with old PPLs */
1057	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1058			    log->rdev->ppl.size, GFP_NOIO, 0);
1059	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1060	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1061	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1062
1063	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1064			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1065			  REQ_FUA, false)) {
1066		md_error(rdev->mddev, rdev);
1067		ret = -EIO;
1068	}
1069
1070	__free_page(page);
1071	return ret;
1072}
1073
1074static int ppl_load_distributed(struct ppl_log *log)
1075{
1076	struct ppl_conf *ppl_conf = log->ppl_conf;
1077	struct md_rdev *rdev = log->rdev;
1078	struct mddev *mddev = rdev->mddev;
1079	struct page *page, *page2;
1080	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1081	u32 crc, crc_stored;
1082	u32 signature;
1083	int ret = 0, i;
1084	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1085
1086	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1087	/* read PPL headers, find the recent one */
1088	page = alloc_page(GFP_KERNEL);
1089	if (!page)
1090		return -ENOMEM;
1091
1092	page2 = alloc_page(GFP_KERNEL);
1093	if (!page2) {
1094		__free_page(page);
1095		return -ENOMEM;
1096	}
1097
1098	/* searching ppl area for latest ppl */
1099	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1100		if (!sync_page_io(rdev,
1101				  rdev->ppl.sector - rdev->data_offset +
1102				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1103				  false)) {
1104			md_error(mddev, rdev);
1105			ret = -EIO;
1106			/* if not able to read - don't recover any PPL */
1107			pplhdr = NULL;
1108			break;
1109		}
1110		pplhdr = page_address(page);
1111
1112		/* check header validity */
1113		crc_stored = le32_to_cpu(pplhdr->checksum);
1114		pplhdr->checksum = 0;
1115		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1116
1117		if (crc_stored != crc) {
1118			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1119				 __func__, crc_stored, crc,
1120				 (unsigned long long)pplhdr_offset);
1121			pplhdr = prev_pplhdr;
1122			pplhdr_offset = prev_pplhdr_offset;
1123			break;
1124		}
1125
1126		signature = le32_to_cpu(pplhdr->signature);
1127
1128		if (mddev->external) {
1129			/*
1130			 * For external metadata the header signature is set and
1131			 * validated in userspace.
1132			 */
1133			ppl_conf->signature = signature;
1134		} else if (ppl_conf->signature != signature) {
1135			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1136				 __func__, signature, ppl_conf->signature,
1137				 (unsigned long long)pplhdr_offset);
1138			pplhdr = prev_pplhdr;
1139			pplhdr_offset = prev_pplhdr_offset;
1140			break;
1141		}
1142
1143		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1144		    le64_to_cpu(pplhdr->generation)) {
1145			/* previous was newest */
1146			pplhdr = prev_pplhdr;
1147			pplhdr_offset = prev_pplhdr_offset;
1148			break;
1149		}
1150
1151		prev_pplhdr_offset = pplhdr_offset;
1152		prev_pplhdr = pplhdr;
1153
1154		swap(page, page2);
1155
1156		/* calculate next potential ppl offset */
1157		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1158			pplhdr_offset +=
1159			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1160		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1161	}
1162
1163	/* no valid ppl found */
1164	if (!pplhdr)
1165		ppl_conf->mismatch_count++;
1166	else
1167		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1168		    __func__, (unsigned long long)pplhdr_offset,
1169		    le64_to_cpu(pplhdr->generation));
1170
1171	/* attempt to recover from log if we are starting a dirty array */
1172	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1173		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1174
1175	/* write empty header if we are starting the array */
1176	if (!ret && !mddev->pers)
1177		ret = ppl_write_empty_header(log);
1178
1179	__free_page(page);
1180	__free_page(page2);
1181
1182	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1183		 __func__, ret, ppl_conf->mismatch_count,
1184		 ppl_conf->recovered_entries);
1185	return ret;
1186}
1187
1188static int ppl_load(struct ppl_conf *ppl_conf)
1189{
1190	int ret = 0;
1191	u32 signature = 0;
1192	bool signature_set = false;
1193	int i;
1194
1195	for (i = 0; i < ppl_conf->count; i++) {
1196		struct ppl_log *log = &ppl_conf->child_logs[i];
1197
1198		/* skip missing drive */
1199		if (!log->rdev)
1200			continue;
1201
1202		ret = ppl_load_distributed(log);
1203		if (ret)
1204			break;
1205
1206		/*
1207		 * For external metadata we can't check if the signature is
1208		 * correct on a single drive, but we can check if it is the same
1209		 * on all drives.
1210		 */
1211		if (ppl_conf->mddev->external) {
1212			if (!signature_set) {
1213				signature = ppl_conf->signature;
1214				signature_set = true;
1215			} else if (signature != ppl_conf->signature) {
1216				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1217					mdname(ppl_conf->mddev));
1218				ret = -EINVAL;
1219				break;
1220			}
1221		}
1222	}
1223
1224	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1225		 __func__, ret, ppl_conf->mismatch_count,
1226		 ppl_conf->recovered_entries);
1227	return ret;
1228}
1229
1230static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1231{
1232	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1233	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1234
1235	kfree(ppl_conf->child_logs);
1236
1237	bioset_exit(&ppl_conf->bs);
1238	bioset_exit(&ppl_conf->flush_bs);
1239	mempool_exit(&ppl_conf->io_pool);
1240	kmem_cache_destroy(ppl_conf->io_kc);
1241
1242	kfree(ppl_conf);
1243}
1244
1245void ppl_exit_log(struct r5conf *conf)
1246{
1247	struct ppl_conf *ppl_conf = conf->log_private;
1248
1249	if (ppl_conf) {
1250		__ppl_exit_log(ppl_conf);
1251		conf->log_private = NULL;
1252	}
1253}
1254
1255static int ppl_validate_rdev(struct md_rdev *rdev)
1256{
1257	int ppl_data_sectors;
1258	int ppl_size_new;
1259
1260	/*
1261	 * The configured PPL size must be enough to store
1262	 * the header and (at the very least) partial parity
1263	 * for one stripe. Round it down to ensure the data
1264	 * space is cleanly divisible by stripe size.
1265	 */
1266	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1267
1268	if (ppl_data_sectors > 0)
1269		ppl_data_sectors = rounddown(ppl_data_sectors,
1270				RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1271
1272	if (ppl_data_sectors <= 0) {
1273		pr_warn("md/raid:%s: PPL space too small on %pg\n",
1274			mdname(rdev->mddev), rdev->bdev);
1275		return -ENOSPC;
1276	}
1277
1278	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1279
1280	if ((rdev->ppl.sector < rdev->data_offset &&
1281	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1282	    (rdev->ppl.sector >= rdev->data_offset &&
1283	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1284		pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n",
1285			mdname(rdev->mddev), rdev->bdev);
1286		return -EINVAL;
1287	}
1288
1289	if (!rdev->mddev->external &&
1290	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1291	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1292		pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n",
1293			mdname(rdev->mddev), rdev->bdev);
1294		return -EINVAL;
1295	}
1296
1297	rdev->ppl.size = ppl_size_new;
1298
1299	return 0;
1300}
1301
1302static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1303{
1304	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1305				      PPL_HEADER_SIZE) * 2) {
1306		log->use_multippl = true;
1307		set_bit(MD_HAS_MULTIPLE_PPLS,
1308			&log->ppl_conf->mddev->flags);
1309		log->entry_space = PPL_SPACE_SIZE;
1310	} else {
1311		log->use_multippl = false;
1312		log->entry_space = (log->rdev->ppl.size << 9) -
1313				   PPL_HEADER_SIZE;
1314	}
1315	log->next_io_sector = rdev->ppl.sector;
1316
1317	if (bdev_write_cache(rdev->bdev))
1318		log->wb_cache_on = true;
1319}
1320
1321int ppl_init_log(struct r5conf *conf)
1322{
1323	struct ppl_conf *ppl_conf;
1324	struct mddev *mddev = conf->mddev;
1325	int ret = 0;
1326	int max_disks;
1327	int i;
1328
1329	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1330		 mdname(conf->mddev));
1331
1332	if (PAGE_SIZE != 4096)
1333		return -EINVAL;
1334
1335	if (mddev->level != 5) {
1336		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1337			mdname(mddev), mddev->level);
1338		return -EINVAL;
1339	}
1340
1341	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1342		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1343			mdname(mddev));
1344		return -EINVAL;
1345	}
1346
1347	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1348		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1349			mdname(mddev));
1350		return -EINVAL;
1351	}
1352
1353	max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1354		BITS_PER_BYTE;
1355	if (conf->raid_disks > max_disks) {
1356		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1357			mdname(mddev), max_disks);
1358		return -EINVAL;
1359	}
1360
1361	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1362	if (!ppl_conf)
1363		return -ENOMEM;
1364
1365	ppl_conf->mddev = mddev;
1366
1367	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1368	if (!ppl_conf->io_kc) {
1369		ret = -ENOMEM;
1370		goto err;
1371	}
1372
1373	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1374			   ppl_io_pool_free, ppl_conf->io_kc);
1375	if (ret)
1376		goto err;
1377
1378	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1379	if (ret)
1380		goto err;
1381
1382	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1383	if (ret)
1384		goto err;
1385
1386	ppl_conf->count = conf->raid_disks;
1387	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1388				       GFP_KERNEL);
1389	if (!ppl_conf->child_logs) {
1390		ret = -ENOMEM;
1391		goto err;
1392	}
1393
1394	atomic64_set(&ppl_conf->seq, 0);
1395	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1396	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1397
1398	if (!mddev->external) {
1399		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1400		ppl_conf->block_size = 512;
1401	} else {
1402		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1403	}
1404
1405	for (i = 0; i < ppl_conf->count; i++) {
1406		struct ppl_log *log = &ppl_conf->child_logs[i];
1407		/* Array has not started so rcu dereference is safe */
1408		struct md_rdev *rdev =
1409			rcu_dereference_protected(conf->disks[i].rdev, 1);
1410
1411		mutex_init(&log->io_mutex);
1412		spin_lock_init(&log->io_list_lock);
1413		INIT_LIST_HEAD(&log->io_list);
1414
1415		log->ppl_conf = ppl_conf;
1416		log->rdev = rdev;
1417
1418		if (rdev) {
1419			ret = ppl_validate_rdev(rdev);
1420			if (ret)
1421				goto err;
1422
1423			ppl_init_child_log(log, rdev);
1424		}
1425	}
1426
1427	/* load and possibly recover the logs from the member disks */
1428	ret = ppl_load(ppl_conf);
1429
1430	if (ret) {
1431		goto err;
1432	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1433		   ppl_conf->recovered_entries > 0 &&
1434		   ppl_conf->mismatch_count == 0) {
1435		/*
1436		 * If we are starting a dirty array and the recovery succeeds
1437		 * without any issues, set the array as clean.
1438		 */
1439		mddev->recovery_cp = MaxSector;
1440		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1441	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1442		/* no mismatch allowed when enabling PPL for a running array */
1443		ret = -EINVAL;
1444		goto err;
1445	}
1446
1447	conf->log_private = ppl_conf;
1448	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1449
1450	return 0;
1451err:
1452	__ppl_exit_log(ppl_conf);
1453	return ret;
1454}
1455
1456int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1457{
1458	struct ppl_conf *ppl_conf = conf->log_private;
1459	struct ppl_log *log;
1460	int ret = 0;
1461
1462	if (!rdev)
1463		return -EINVAL;
1464
1465	pr_debug("%s: disk: %d operation: %s dev: %pg\n",
1466		 __func__, rdev->raid_disk, add ? "add" : "remove",
1467		 rdev->bdev);
1468
1469	if (rdev->raid_disk < 0)
1470		return 0;
1471
1472	if (rdev->raid_disk >= ppl_conf->count)
1473		return -ENODEV;
1474
1475	log = &ppl_conf->child_logs[rdev->raid_disk];
1476
1477	mutex_lock(&log->io_mutex);
1478	if (add) {
1479		ret = ppl_validate_rdev(rdev);
1480		if (!ret) {
1481			log->rdev = rdev;
1482			ret = ppl_write_empty_header(log);
1483			ppl_init_child_log(log, rdev);
1484		}
1485	} else {
1486		log->rdev = NULL;
1487	}
1488	mutex_unlock(&log->io_mutex);
1489
1490	return ret;
1491}
1492
1493static ssize_t
1494ppl_write_hint_show(struct mddev *mddev, char *buf)
1495{
1496	return sprintf(buf, "%d\n", 0);
1497}
1498
1499static ssize_t
1500ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1501{
1502	struct r5conf *conf;
1503	int err = 0;
1504	unsigned short new;
1505
1506	if (len >= PAGE_SIZE)
1507		return -EINVAL;
1508	if (kstrtou16(page, 10, &new))
1509		return -EINVAL;
1510
1511	err = mddev_lock(mddev);
1512	if (err)
1513		return err;
1514
1515	conf = mddev->private;
1516	if (!conf)
1517		err = -ENODEV;
1518	else if (!raid5_has_ppl(conf) || !conf->log_private)
1519		err = -EINVAL;
1520
1521	mddev_unlock(mddev);
1522
1523	return err ?: len;
1524}
1525
1526struct md_sysfs_entry
1527ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1528			ppl_write_hint_show,
1529			ppl_write_hint_store);
1530