xref: /kernel/linux/linux-6.6/drivers/md/raid10.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c.  See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22#include "raid10.h"
23#include "raid0.h"
24#include "md-bitmap.h"
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 *    chunk_size
30 *    raid_disks
31 *    near_copies (stored in low byte of layout)
32 *    far_copies (stored in second byte of layout)
33 *    far_offset (stored in bit 16 of layout )
34 *    use_far_sets (stored in bit 17 of layout )
35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize.  Each device
38 * is divided into far_copies sections.   In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive).  The starting device for each section is offset
41 * near_copies from the starting device of the previous section.  Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive.  near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array.  This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 *    A B C D    A B C D E
59 *      ...         ...
60 *    D A B C    E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 *    [A B] [C D]    [A B] [C D E]
63 *    |...| |...|    |...| | ... |
64 *    [B A] [D C]    [B A] [E C D]
65 */
66
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
69static int _enough(struct r10conf *conf, int previous, int ignore);
70static int enough(struct r10conf *conf, int ignore);
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72				int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74static void end_reshape_write(struct bio *bio);
75static void end_reshape(struct r10conf *conf);
76
77#define raid10_log(md, fmt, args...)				\
78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80#include "raid1-10.c"
81
82#define NULL_CMD
83#define cmd_before(conf, cmd) \
84	do { \
85		write_sequnlock_irq(&(conf)->resync_lock); \
86		cmd; \
87	} while (0)
88#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90#define wait_event_barrier_cmd(conf, cond, cmd) \
91	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92		       cmd_after(conf))
93
94#define wait_event_barrier(conf, cond) \
95	wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97/*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
101static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102{
103	return get_resync_pages(bio)->raid_bio;
104}
105
106static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107{
108	struct r10conf *conf = data;
109	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111	/* allocate a r10bio with room for raid_disks entries in the
112	 * bios array */
113	return kzalloc(size, gfp_flags);
114}
115
116#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117/* amount of memory to reserve for resync requests */
118#define RESYNC_WINDOW (1024*1024)
119/* maximum number of concurrent requests, memory permitting */
120#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124/*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
131static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132{
133	struct r10conf *conf = data;
134	struct r10bio *r10_bio;
135	struct bio *bio;
136	int j;
137	int nalloc, nalloc_rp;
138	struct resync_pages *rps;
139
140	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141	if (!r10_bio)
142		return NULL;
143
144	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146		nalloc = conf->copies; /* resync */
147	else
148		nalloc = 2; /* recovery */
149
150	/* allocate once for all bios */
151	if (!conf->have_replacement)
152		nalloc_rp = nalloc;
153	else
154		nalloc_rp = nalloc * 2;
155	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156	if (!rps)
157		goto out_free_r10bio;
158
159	/*
160	 * Allocate bios.
161	 */
162	for (j = nalloc ; j-- ; ) {
163		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164		if (!bio)
165			goto out_free_bio;
166		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167		r10_bio->devs[j].bio = bio;
168		if (!conf->have_replacement)
169			continue;
170		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171		if (!bio)
172			goto out_free_bio;
173		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174		r10_bio->devs[j].repl_bio = bio;
175	}
176	/*
177	 * Allocate RESYNC_PAGES data pages and attach them
178	 * where needed.
179	 */
180	for (j = 0; j < nalloc; j++) {
181		struct bio *rbio = r10_bio->devs[j].repl_bio;
182		struct resync_pages *rp, *rp_repl;
183
184		rp = &rps[j];
185		if (rbio)
186			rp_repl = &rps[nalloc + j];
187
188		bio = r10_bio->devs[j].bio;
189
190		if (!j || test_bit(MD_RECOVERY_SYNC,
191				   &conf->mddev->recovery)) {
192			if (resync_alloc_pages(rp, gfp_flags))
193				goto out_free_pages;
194		} else {
195			memcpy(rp, &rps[0], sizeof(*rp));
196			resync_get_all_pages(rp);
197		}
198
199		rp->raid_bio = r10_bio;
200		bio->bi_private = rp;
201		if (rbio) {
202			memcpy(rp_repl, rp, sizeof(*rp));
203			rbio->bi_private = rp_repl;
204		}
205	}
206
207	return r10_bio;
208
209out_free_pages:
210	while (--j >= 0)
211		resync_free_pages(&rps[j]);
212
213	j = 0;
214out_free_bio:
215	for ( ; j < nalloc; j++) {
216		if (r10_bio->devs[j].bio)
217			bio_uninit(r10_bio->devs[j].bio);
218		kfree(r10_bio->devs[j].bio);
219		if (r10_bio->devs[j].repl_bio)
220			bio_uninit(r10_bio->devs[j].repl_bio);
221		kfree(r10_bio->devs[j].repl_bio);
222	}
223	kfree(rps);
224out_free_r10bio:
225	rbio_pool_free(r10_bio, conf);
226	return NULL;
227}
228
229static void r10buf_pool_free(void *__r10_bio, void *data)
230{
231	struct r10conf *conf = data;
232	struct r10bio *r10bio = __r10_bio;
233	int j;
234	struct resync_pages *rp = NULL;
235
236	for (j = conf->copies; j--; ) {
237		struct bio *bio = r10bio->devs[j].bio;
238
239		if (bio) {
240			rp = get_resync_pages(bio);
241			resync_free_pages(rp);
242			bio_uninit(bio);
243			kfree(bio);
244		}
245
246		bio = r10bio->devs[j].repl_bio;
247		if (bio) {
248			bio_uninit(bio);
249			kfree(bio);
250		}
251	}
252
253	/* resync pages array stored in the 1st bio's .bi_private */
254	kfree(rp);
255
256	rbio_pool_free(r10bio, conf);
257}
258
259static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260{
261	int i;
262
263	for (i = 0; i < conf->geo.raid_disks; i++) {
264		struct bio **bio = & r10_bio->devs[i].bio;
265		if (!BIO_SPECIAL(*bio))
266			bio_put(*bio);
267		*bio = NULL;
268		bio = &r10_bio->devs[i].repl_bio;
269		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270			bio_put(*bio);
271		*bio = NULL;
272	}
273}
274
275static void free_r10bio(struct r10bio *r10_bio)
276{
277	struct r10conf *conf = r10_bio->mddev->private;
278
279	put_all_bios(conf, r10_bio);
280	mempool_free(r10_bio, &conf->r10bio_pool);
281}
282
283static void put_buf(struct r10bio *r10_bio)
284{
285	struct r10conf *conf = r10_bio->mddev->private;
286
287	mempool_free(r10_bio, &conf->r10buf_pool);
288
289	lower_barrier(conf);
290}
291
292static void wake_up_barrier(struct r10conf *conf)
293{
294	if (wq_has_sleeper(&conf->wait_barrier))
295		wake_up(&conf->wait_barrier);
296}
297
298static void reschedule_retry(struct r10bio *r10_bio)
299{
300	unsigned long flags;
301	struct mddev *mddev = r10_bio->mddev;
302	struct r10conf *conf = mddev->private;
303
304	spin_lock_irqsave(&conf->device_lock, flags);
305	list_add(&r10_bio->retry_list, &conf->retry_list);
306	conf->nr_queued ++;
307	spin_unlock_irqrestore(&conf->device_lock, flags);
308
309	/* wake up frozen array... */
310	wake_up(&conf->wait_barrier);
311
312	md_wakeup_thread(mddev->thread);
313}
314
315/*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
320static void raid_end_bio_io(struct r10bio *r10_bio)
321{
322	struct bio *bio = r10_bio->master_bio;
323	struct r10conf *conf = r10_bio->mddev->private;
324
325	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326		bio->bi_status = BLK_STS_IOERR;
327
328	bio_endio(bio);
329	/*
330	 * Wake up any possible resync thread that waits for the device
331	 * to go idle.
332	 */
333	allow_barrier(conf);
334
335	free_r10bio(r10_bio);
336}
337
338/*
339 * Update disk head position estimator based on IRQ completion info.
340 */
341static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342{
343	struct r10conf *conf = r10_bio->mddev->private;
344
345	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346		r10_bio->devs[slot].addr + (r10_bio->sectors);
347}
348
349/*
350 * Find the disk number which triggered given bio
351 */
352static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353			 struct bio *bio, int *slotp, int *replp)
354{
355	int slot;
356	int repl = 0;
357
358	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359		if (r10_bio->devs[slot].bio == bio)
360			break;
361		if (r10_bio->devs[slot].repl_bio == bio) {
362			repl = 1;
363			break;
364		}
365	}
366
367	update_head_pos(slot, r10_bio);
368
369	if (slotp)
370		*slotp = slot;
371	if (replp)
372		*replp = repl;
373	return r10_bio->devs[slot].devnum;
374}
375
376static void raid10_end_read_request(struct bio *bio)
377{
378	int uptodate = !bio->bi_status;
379	struct r10bio *r10_bio = bio->bi_private;
380	int slot;
381	struct md_rdev *rdev;
382	struct r10conf *conf = r10_bio->mddev->private;
383
384	slot = r10_bio->read_slot;
385	rdev = r10_bio->devs[slot].rdev;
386	/*
387	 * this branch is our 'one mirror IO has finished' event handler:
388	 */
389	update_head_pos(slot, r10_bio);
390
391	if (uptodate) {
392		/*
393		 * Set R10BIO_Uptodate in our master bio, so that
394		 * we will return a good error code to the higher
395		 * levels even if IO on some other mirrored buffer fails.
396		 *
397		 * The 'master' represents the composite IO operation to
398		 * user-side. So if something waits for IO, then it will
399		 * wait for the 'master' bio.
400		 */
401		set_bit(R10BIO_Uptodate, &r10_bio->state);
402	} else {
403		/* If all other devices that store this block have
404		 * failed, we want to return the error upwards rather
405		 * than fail the last device.  Here we redefine
406		 * "uptodate" to mean "Don't want to retry"
407		 */
408		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409			     rdev->raid_disk))
410			uptodate = 1;
411	}
412	if (uptodate) {
413		raid_end_bio_io(r10_bio);
414		rdev_dec_pending(rdev, conf->mddev);
415	} else {
416		/*
417		 * oops, read error - keep the refcount on the rdev
418		 */
419		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420				   mdname(conf->mddev),
421				   rdev->bdev,
422				   (unsigned long long)r10_bio->sector);
423		set_bit(R10BIO_ReadError, &r10_bio->state);
424		reschedule_retry(r10_bio);
425	}
426}
427
428static void close_write(struct r10bio *r10_bio)
429{
430	/* clear the bitmap if all writes complete successfully */
431	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
432			   r10_bio->sectors,
433			   !test_bit(R10BIO_Degraded, &r10_bio->state),
434			   0);
435	md_write_end(r10_bio->mddev);
436}
437
438static void one_write_done(struct r10bio *r10_bio)
439{
440	if (atomic_dec_and_test(&r10_bio->remaining)) {
441		if (test_bit(R10BIO_WriteError, &r10_bio->state))
442			reschedule_retry(r10_bio);
443		else {
444			close_write(r10_bio);
445			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446				reschedule_retry(r10_bio);
447			else
448				raid_end_bio_io(r10_bio);
449		}
450	}
451}
452
453static void raid10_end_write_request(struct bio *bio)
454{
455	struct r10bio *r10_bio = bio->bi_private;
456	int dev;
457	int dec_rdev = 1;
458	struct r10conf *conf = r10_bio->mddev->private;
459	int slot, repl;
460	struct md_rdev *rdev = NULL;
461	struct bio *to_put = NULL;
462	bool discard_error;
463
464	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465
466	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467
468	if (repl)
469		rdev = conf->mirrors[dev].replacement;
470	if (!rdev) {
471		smp_rmb();
472		repl = 0;
473		rdev = conf->mirrors[dev].rdev;
474	}
475	/*
476	 * this branch is our 'one mirror IO has finished' event handler:
477	 */
478	if (bio->bi_status && !discard_error) {
479		if (repl)
480			/* Never record new bad blocks to replacement,
481			 * just fail it.
482			 */
483			md_error(rdev->mddev, rdev);
484		else {
485			set_bit(WriteErrorSeen,	&rdev->flags);
486			if (!test_and_set_bit(WantReplacement, &rdev->flags))
487				set_bit(MD_RECOVERY_NEEDED,
488					&rdev->mddev->recovery);
489
490			dec_rdev = 0;
491			if (test_bit(FailFast, &rdev->flags) &&
492			    (bio->bi_opf & MD_FAILFAST)) {
493				md_error(rdev->mddev, rdev);
494			}
495
496			/*
497			 * When the device is faulty, it is not necessary to
498			 * handle write error.
499			 */
500			if (!test_bit(Faulty, &rdev->flags))
501				set_bit(R10BIO_WriteError, &r10_bio->state);
502			else {
503				/* Fail the request */
504				set_bit(R10BIO_Degraded, &r10_bio->state);
505				r10_bio->devs[slot].bio = NULL;
506				to_put = bio;
507				dec_rdev = 1;
508			}
509		}
510	} else {
511		/*
512		 * Set R10BIO_Uptodate in our master bio, so that
513		 * we will return a good error code for to the higher
514		 * levels even if IO on some other mirrored buffer fails.
515		 *
516		 * The 'master' represents the composite IO operation to
517		 * user-side. So if something waits for IO, then it will
518		 * wait for the 'master' bio.
519		 */
520		sector_t first_bad;
521		int bad_sectors;
522
523		/*
524		 * Do not set R10BIO_Uptodate if the current device is
525		 * rebuilding or Faulty. This is because we cannot use
526		 * such device for properly reading the data back (we could
527		 * potentially use it, if the current write would have felt
528		 * before rdev->recovery_offset, but for simplicity we don't
529		 * check this here.
530		 */
531		if (test_bit(In_sync, &rdev->flags) &&
532		    !test_bit(Faulty, &rdev->flags))
533			set_bit(R10BIO_Uptodate, &r10_bio->state);
534
535		/* Maybe we can clear some bad blocks. */
536		if (is_badblock(rdev,
537				r10_bio->devs[slot].addr,
538				r10_bio->sectors,
539				&first_bad, &bad_sectors) && !discard_error) {
540			bio_put(bio);
541			if (repl)
542				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
543			else
544				r10_bio->devs[slot].bio = IO_MADE_GOOD;
545			dec_rdev = 0;
546			set_bit(R10BIO_MadeGood, &r10_bio->state);
547		}
548	}
549
550	/*
551	 *
552	 * Let's see if all mirrored write operations have finished
553	 * already.
554	 */
555	one_write_done(r10_bio);
556	if (dec_rdev)
557		rdev_dec_pending(rdev, conf->mddev);
558	if (to_put)
559		bio_put(to_put);
560}
561
562/*
563 * RAID10 layout manager
564 * As well as the chunksize and raid_disks count, there are two
565 * parameters: near_copies and far_copies.
566 * near_copies * far_copies must be <= raid_disks.
567 * Normally one of these will be 1.
568 * If both are 1, we get raid0.
569 * If near_copies == raid_disks, we get raid1.
570 *
571 * Chunks are laid out in raid0 style with near_copies copies of the
572 * first chunk, followed by near_copies copies of the next chunk and
573 * so on.
574 * If far_copies > 1, then after 1/far_copies of the array has been assigned
575 * as described above, we start again with a device offset of near_copies.
576 * So we effectively have another copy of the whole array further down all
577 * the drives, but with blocks on different drives.
578 * With this layout, and block is never stored twice on the one device.
579 *
580 * raid10_find_phys finds the sector offset of a given virtual sector
581 * on each device that it is on.
582 *
583 * raid10_find_virt does the reverse mapping, from a device and a
584 * sector offset to a virtual address
585 */
586
587static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
588{
589	int n,f;
590	sector_t sector;
591	sector_t chunk;
592	sector_t stripe;
593	int dev;
594	int slot = 0;
595	int last_far_set_start, last_far_set_size;
596
597	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
598	last_far_set_start *= geo->far_set_size;
599
600	last_far_set_size = geo->far_set_size;
601	last_far_set_size += (geo->raid_disks % geo->far_set_size);
602
603	/* now calculate first sector/dev */
604	chunk = r10bio->sector >> geo->chunk_shift;
605	sector = r10bio->sector & geo->chunk_mask;
606
607	chunk *= geo->near_copies;
608	stripe = chunk;
609	dev = sector_div(stripe, geo->raid_disks);
610	if (geo->far_offset)
611		stripe *= geo->far_copies;
612
613	sector += stripe << geo->chunk_shift;
614
615	/* and calculate all the others */
616	for (n = 0; n < geo->near_copies; n++) {
617		int d = dev;
618		int set;
619		sector_t s = sector;
620		r10bio->devs[slot].devnum = d;
621		r10bio->devs[slot].addr = s;
622		slot++;
623
624		for (f = 1; f < geo->far_copies; f++) {
625			set = d / geo->far_set_size;
626			d += geo->near_copies;
627
628			if ((geo->raid_disks % geo->far_set_size) &&
629			    (d > last_far_set_start)) {
630				d -= last_far_set_start;
631				d %= last_far_set_size;
632				d += last_far_set_start;
633			} else {
634				d %= geo->far_set_size;
635				d += geo->far_set_size * set;
636			}
637			s += geo->stride;
638			r10bio->devs[slot].devnum = d;
639			r10bio->devs[slot].addr = s;
640			slot++;
641		}
642		dev++;
643		if (dev >= geo->raid_disks) {
644			dev = 0;
645			sector += (geo->chunk_mask + 1);
646		}
647	}
648}
649
650static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
651{
652	struct geom *geo = &conf->geo;
653
654	if (conf->reshape_progress != MaxSector &&
655	    ((r10bio->sector >= conf->reshape_progress) !=
656	     conf->mddev->reshape_backwards)) {
657		set_bit(R10BIO_Previous, &r10bio->state);
658		geo = &conf->prev;
659	} else
660		clear_bit(R10BIO_Previous, &r10bio->state);
661
662	__raid10_find_phys(geo, r10bio);
663}
664
665static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
666{
667	sector_t offset, chunk, vchunk;
668	/* Never use conf->prev as this is only called during resync
669	 * or recovery, so reshape isn't happening
670	 */
671	struct geom *geo = &conf->geo;
672	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
673	int far_set_size = geo->far_set_size;
674	int last_far_set_start;
675
676	if (geo->raid_disks % geo->far_set_size) {
677		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
678		last_far_set_start *= geo->far_set_size;
679
680		if (dev >= last_far_set_start) {
681			far_set_size = geo->far_set_size;
682			far_set_size += (geo->raid_disks % geo->far_set_size);
683			far_set_start = last_far_set_start;
684		}
685	}
686
687	offset = sector & geo->chunk_mask;
688	if (geo->far_offset) {
689		int fc;
690		chunk = sector >> geo->chunk_shift;
691		fc = sector_div(chunk, geo->far_copies);
692		dev -= fc * geo->near_copies;
693		if (dev < far_set_start)
694			dev += far_set_size;
695	} else {
696		while (sector >= geo->stride) {
697			sector -= geo->stride;
698			if (dev < (geo->near_copies + far_set_start))
699				dev += far_set_size - geo->near_copies;
700			else
701				dev -= geo->near_copies;
702		}
703		chunk = sector >> geo->chunk_shift;
704	}
705	vchunk = chunk * geo->raid_disks + dev;
706	sector_div(vchunk, geo->near_copies);
707	return (vchunk << geo->chunk_shift) + offset;
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729static struct md_rdev *read_balance(struct r10conf *conf,
730				    struct r10bio *r10_bio,
731				    int *max_sectors)
732{
733	const sector_t this_sector = r10_bio->sector;
734	int disk, slot;
735	int sectors = r10_bio->sectors;
736	int best_good_sectors;
737	sector_t new_distance, best_dist;
738	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
739	int do_balance;
740	int best_dist_slot, best_pending_slot;
741	bool has_nonrot_disk = false;
742	unsigned int min_pending;
743	struct geom *geo = &conf->geo;
744
745	raid10_find_phys(conf, r10_bio);
746	rcu_read_lock();
747	best_dist_slot = -1;
748	min_pending = UINT_MAX;
749	best_dist_rdev = NULL;
750	best_pending_rdev = NULL;
751	best_dist = MaxSector;
752	best_good_sectors = 0;
753	do_balance = 1;
754	clear_bit(R10BIO_FailFast, &r10_bio->state);
755	/*
756	 * Check if we can balance. We can balance on the whole
757	 * device if no resync is going on (recovery is ok), or below
758	 * the resync window. We take the first readable disk when
759	 * above the resync window.
760	 */
761	if ((conf->mddev->recovery_cp < MaxSector
762	     && (this_sector + sectors >= conf->next_resync)) ||
763	    (mddev_is_clustered(conf->mddev) &&
764	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
765					    this_sector + sectors)))
766		do_balance = 0;
767
768	for (slot = 0; slot < conf->copies ; slot++) {
769		sector_t first_bad;
770		int bad_sectors;
771		sector_t dev_sector;
772		unsigned int pending;
773		bool nonrot;
774
775		if (r10_bio->devs[slot].bio == IO_BLOCKED)
776			continue;
777		disk = r10_bio->devs[slot].devnum;
778		rdev = rcu_dereference(conf->mirrors[disk].replacement);
779		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
780		    r10_bio->devs[slot].addr + sectors >
781		    rdev->recovery_offset) {
782			/*
783			 * Read replacement first to prevent reading both rdev
784			 * and replacement as NULL during replacement replace
785			 * rdev.
786			 */
787			smp_mb();
788			rdev = rcu_dereference(conf->mirrors[disk].rdev);
789		}
790		if (rdev == NULL ||
791		    test_bit(Faulty, &rdev->flags))
792			continue;
793		if (!test_bit(In_sync, &rdev->flags) &&
794		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
795			continue;
796
797		dev_sector = r10_bio->devs[slot].addr;
798		if (is_badblock(rdev, dev_sector, sectors,
799				&first_bad, &bad_sectors)) {
800			if (best_dist < MaxSector)
801				/* Already have a better slot */
802				continue;
803			if (first_bad <= dev_sector) {
804				/* Cannot read here.  If this is the
805				 * 'primary' device, then we must not read
806				 * beyond 'bad_sectors' from another device.
807				 */
808				bad_sectors -= (dev_sector - first_bad);
809				if (!do_balance && sectors > bad_sectors)
810					sectors = bad_sectors;
811				if (best_good_sectors > sectors)
812					best_good_sectors = sectors;
813			} else {
814				sector_t good_sectors =
815					first_bad - dev_sector;
816				if (good_sectors > best_good_sectors) {
817					best_good_sectors = good_sectors;
818					best_dist_slot = slot;
819					best_dist_rdev = rdev;
820				}
821				if (!do_balance)
822					/* Must read from here */
823					break;
824			}
825			continue;
826		} else
827			best_good_sectors = sectors;
828
829		if (!do_balance)
830			break;
831
832		nonrot = bdev_nonrot(rdev->bdev);
833		has_nonrot_disk |= nonrot;
834		pending = atomic_read(&rdev->nr_pending);
835		if (min_pending > pending && nonrot) {
836			min_pending = pending;
837			best_pending_slot = slot;
838			best_pending_rdev = rdev;
839		}
840
841		if (best_dist_slot >= 0)
842			/* At least 2 disks to choose from so failfast is OK */
843			set_bit(R10BIO_FailFast, &r10_bio->state);
844		/* This optimisation is debatable, and completely destroys
845		 * sequential read speed for 'far copies' arrays.  So only
846		 * keep it for 'near' arrays, and review those later.
847		 */
848		if (geo->near_copies > 1 && !pending)
849			new_distance = 0;
850
851		/* for far > 1 always use the lowest address */
852		else if (geo->far_copies > 1)
853			new_distance = r10_bio->devs[slot].addr;
854		else
855			new_distance = abs(r10_bio->devs[slot].addr -
856					   conf->mirrors[disk].head_position);
857
858		if (new_distance < best_dist) {
859			best_dist = new_distance;
860			best_dist_slot = slot;
861			best_dist_rdev = rdev;
862		}
863	}
864	if (slot >= conf->copies) {
865		if (has_nonrot_disk) {
866			slot = best_pending_slot;
867			rdev = best_pending_rdev;
868		} else {
869			slot = best_dist_slot;
870			rdev = best_dist_rdev;
871		}
872	}
873
874	if (slot >= 0) {
875		atomic_inc(&rdev->nr_pending);
876		r10_bio->read_slot = slot;
877	} else
878		rdev = NULL;
879	rcu_read_unlock();
880	*max_sectors = best_good_sectors;
881
882	return rdev;
883}
884
885static void flush_pending_writes(struct r10conf *conf)
886{
887	/* Any writes that have been queued but are awaiting
888	 * bitmap updates get flushed here.
889	 */
890	spin_lock_irq(&conf->device_lock);
891
892	if (conf->pending_bio_list.head) {
893		struct blk_plug plug;
894		struct bio *bio;
895
896		bio = bio_list_get(&conf->pending_bio_list);
897		spin_unlock_irq(&conf->device_lock);
898
899		/*
900		 * As this is called in a wait_event() loop (see freeze_array),
901		 * current->state might be TASK_UNINTERRUPTIBLE which will
902		 * cause a warning when we prepare to wait again.  As it is
903		 * rare that this path is taken, it is perfectly safe to force
904		 * us to go around the wait_event() loop again, so the warning
905		 * is a false-positive. Silence the warning by resetting
906		 * thread state
907		 */
908		__set_current_state(TASK_RUNNING);
909
910		blk_start_plug(&plug);
911		raid1_prepare_flush_writes(conf->mddev->bitmap);
912		wake_up(&conf->wait_barrier);
913
914		while (bio) { /* submit pending writes */
915			struct bio *next = bio->bi_next;
916
917			raid1_submit_write(bio);
918			bio = next;
919			cond_resched();
920		}
921		blk_finish_plug(&plug);
922	} else
923		spin_unlock_irq(&conf->device_lock);
924}
925
926/* Barriers....
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
932 * normal IO.
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down.  This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
939 *
940 * So: regular IO calls 'wait_barrier'.  When that returns there
941 *    is no backgroup IO happening,  It must arrange to call
942 *    allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier.  Once that returns
944 *    there is no normal IO happeing.  It must arrange to call
945 *    lower_barrier when the particular background IO completes.
946 */
947
948static void raise_barrier(struct r10conf *conf, int force)
949{
950	write_seqlock_irq(&conf->resync_lock);
951
952	if (WARN_ON_ONCE(force && !conf->barrier))
953		force = false;
954
955	/* Wait until no block IO is waiting (unless 'force') */
956	wait_event_barrier(conf, force || !conf->nr_waiting);
957
958	/* block any new IO from starting */
959	WRITE_ONCE(conf->barrier, conf->barrier + 1);
960
961	/* Now wait for all pending IO to complete */
962	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
963				 conf->barrier < RESYNC_DEPTH);
964
965	write_sequnlock_irq(&conf->resync_lock);
966}
967
968static void lower_barrier(struct r10conf *conf)
969{
970	unsigned long flags;
971
972	write_seqlock_irqsave(&conf->resync_lock, flags);
973	WRITE_ONCE(conf->barrier, conf->barrier - 1);
974	write_sequnlock_irqrestore(&conf->resync_lock, flags);
975	wake_up(&conf->wait_barrier);
976}
977
978static bool stop_waiting_barrier(struct r10conf *conf)
979{
980	struct bio_list *bio_list = current->bio_list;
981	struct md_thread *thread;
982
983	/* barrier is dropped */
984	if (!conf->barrier)
985		return true;
986
987	/*
988	 * If there are already pending requests (preventing the barrier from
989	 * rising completely), and the pre-process bio queue isn't empty, then
990	 * don't wait, as we need to empty that queue to get the nr_pending
991	 * count down.
992	 */
993	if (atomic_read(&conf->nr_pending) && bio_list &&
994	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
995		return true;
996
997	/* daemon thread must exist while handling io */
998	thread = rcu_dereference_protected(conf->mddev->thread, true);
999	/*
1000	 * move on if io is issued from raid10d(), nr_pending is not released
1001	 * from original io(see handle_read_error()). All raise barrier is
1002	 * blocked until this io is done.
1003	 */
1004	if (thread->tsk == current) {
1005		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1006		return true;
1007	}
1008
1009	return false;
1010}
1011
1012static bool wait_barrier_nolock(struct r10conf *conf)
1013{
1014	unsigned int seq = read_seqbegin(&conf->resync_lock);
1015
1016	if (READ_ONCE(conf->barrier))
1017		return false;
1018
1019	atomic_inc(&conf->nr_pending);
1020	if (!read_seqretry(&conf->resync_lock, seq))
1021		return true;
1022
1023	if (atomic_dec_and_test(&conf->nr_pending))
1024		wake_up_barrier(conf);
1025
1026	return false;
1027}
1028
1029static bool wait_barrier(struct r10conf *conf, bool nowait)
1030{
1031	bool ret = true;
1032
1033	if (wait_barrier_nolock(conf))
1034		return true;
1035
1036	write_seqlock_irq(&conf->resync_lock);
1037	if (conf->barrier) {
1038		/* Return false when nowait flag is set */
1039		if (nowait) {
1040			ret = false;
1041		} else {
1042			conf->nr_waiting++;
1043			raid10_log(conf->mddev, "wait barrier");
1044			wait_event_barrier(conf, stop_waiting_barrier(conf));
1045			conf->nr_waiting--;
1046		}
1047		if (!conf->nr_waiting)
1048			wake_up(&conf->wait_barrier);
1049	}
1050	/* Only increment nr_pending when we wait */
1051	if (ret)
1052		atomic_inc(&conf->nr_pending);
1053	write_sequnlock_irq(&conf->resync_lock);
1054	return ret;
1055}
1056
1057static void allow_barrier(struct r10conf *conf)
1058{
1059	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1060			(conf->array_freeze_pending))
1061		wake_up_barrier(conf);
1062}
1063
1064static void freeze_array(struct r10conf *conf, int extra)
1065{
1066	/* stop syncio and normal IO and wait for everything to
1067	 * go quiet.
1068	 * We increment barrier and nr_waiting, and then
1069	 * wait until nr_pending match nr_queued+extra
1070	 * This is called in the context of one normal IO request
1071	 * that has failed. Thus any sync request that might be pending
1072	 * will be blocked by nr_pending, and we need to wait for
1073	 * pending IO requests to complete or be queued for re-try.
1074	 * Thus the number queued (nr_queued) plus this request (extra)
1075	 * must match the number of pending IOs (nr_pending) before
1076	 * we continue.
1077	 */
1078	write_seqlock_irq(&conf->resync_lock);
1079	conf->array_freeze_pending++;
1080	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1081	conf->nr_waiting++;
1082	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1083			conf->nr_queued + extra, flush_pending_writes(conf));
1084	conf->array_freeze_pending--;
1085	write_sequnlock_irq(&conf->resync_lock);
1086}
1087
1088static void unfreeze_array(struct r10conf *conf)
1089{
1090	/* reverse the effect of the freeze */
1091	write_seqlock_irq(&conf->resync_lock);
1092	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1093	conf->nr_waiting--;
1094	wake_up(&conf->wait_barrier);
1095	write_sequnlock_irq(&conf->resync_lock);
1096}
1097
1098static sector_t choose_data_offset(struct r10bio *r10_bio,
1099				   struct md_rdev *rdev)
1100{
1101	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1102	    test_bit(R10BIO_Previous, &r10_bio->state))
1103		return rdev->data_offset;
1104	else
1105		return rdev->new_data_offset;
1106}
1107
1108static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1109{
1110	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1111	struct mddev *mddev = plug->cb.data;
1112	struct r10conf *conf = mddev->private;
1113	struct bio *bio;
1114
1115	if (from_schedule) {
1116		spin_lock_irq(&conf->device_lock);
1117		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1118		spin_unlock_irq(&conf->device_lock);
1119		wake_up_barrier(conf);
1120		md_wakeup_thread(mddev->thread);
1121		kfree(plug);
1122		return;
1123	}
1124
1125	/* we aren't scheduling, so we can do the write-out directly. */
1126	bio = bio_list_get(&plug->pending);
1127	raid1_prepare_flush_writes(mddev->bitmap);
1128	wake_up_barrier(conf);
1129
1130	while (bio) { /* submit pending writes */
1131		struct bio *next = bio->bi_next;
1132
1133		raid1_submit_write(bio);
1134		bio = next;
1135		cond_resched();
1136	}
1137	kfree(plug);
1138}
1139
1140/*
1141 * 1. Register the new request and wait if the reconstruction thread has put
1142 * up a bar for new requests. Continue immediately if no resync is active
1143 * currently.
1144 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1145 */
1146static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1147				 struct bio *bio, sector_t sectors)
1148{
1149	/* Bail out if REQ_NOWAIT is set for the bio */
1150	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1151		bio_wouldblock_error(bio);
1152		return false;
1153	}
1154	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1156	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157		allow_barrier(conf);
1158		if (bio->bi_opf & REQ_NOWAIT) {
1159			bio_wouldblock_error(bio);
1160			return false;
1161		}
1162		raid10_log(conf->mddev, "wait reshape");
1163		wait_event(conf->wait_barrier,
1164			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1166			   sectors);
1167		wait_barrier(conf, false);
1168	}
1169	return true;
1170}
1171
1172static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1173				struct r10bio *r10_bio, bool io_accounting)
1174{
1175	struct r10conf *conf = mddev->private;
1176	struct bio *read_bio;
1177	const enum req_op op = bio_op(bio);
1178	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1179	int max_sectors;
1180	struct md_rdev *rdev;
1181	char b[BDEVNAME_SIZE];
1182	int slot = r10_bio->read_slot;
1183	struct md_rdev *err_rdev = NULL;
1184	gfp_t gfp = GFP_NOIO;
1185
1186	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1187		/*
1188		 * This is an error retry, but we cannot
1189		 * safely dereference the rdev in the r10_bio,
1190		 * we must use the one in conf.
1191		 * If it has already been disconnected (unlikely)
1192		 * we lose the device name in error messages.
1193		 */
1194		int disk;
1195		/*
1196		 * As we are blocking raid10, it is a little safer to
1197		 * use __GFP_HIGH.
1198		 */
1199		gfp = GFP_NOIO | __GFP_HIGH;
1200
1201		rcu_read_lock();
1202		disk = r10_bio->devs[slot].devnum;
1203		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1204		if (err_rdev)
1205			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1206		else {
1207			strcpy(b, "???");
1208			/* This never gets dereferenced */
1209			err_rdev = r10_bio->devs[slot].rdev;
1210		}
1211		rcu_read_unlock();
1212	}
1213
1214	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1215		return;
1216	rdev = read_balance(conf, r10_bio, &max_sectors);
1217	if (!rdev) {
1218		if (err_rdev) {
1219			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1220					    mdname(mddev), b,
1221					    (unsigned long long)r10_bio->sector);
1222		}
1223		raid_end_bio_io(r10_bio);
1224		return;
1225	}
1226	if (err_rdev)
1227		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1228				   mdname(mddev),
1229				   rdev->bdev,
1230				   (unsigned long long)r10_bio->sector);
1231	if (max_sectors < bio_sectors(bio)) {
1232		struct bio *split = bio_split(bio, max_sectors,
1233					      gfp, &conf->bio_split);
1234		bio_chain(split, bio);
1235		allow_barrier(conf);
1236		submit_bio_noacct(bio);
1237		wait_barrier(conf, false);
1238		bio = split;
1239		r10_bio->master_bio = bio;
1240		r10_bio->sectors = max_sectors;
1241	}
1242	slot = r10_bio->read_slot;
1243
1244	if (io_accounting) {
1245		md_account_bio(mddev, &bio);
1246		r10_bio->master_bio = bio;
1247	}
1248	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1249
1250	r10_bio->devs[slot].bio = read_bio;
1251	r10_bio->devs[slot].rdev = rdev;
1252
1253	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1254		choose_data_offset(r10_bio, rdev);
1255	read_bio->bi_end_io = raid10_end_read_request;
1256	read_bio->bi_opf = op | do_sync;
1257	if (test_bit(FailFast, &rdev->flags) &&
1258	    test_bit(R10BIO_FailFast, &r10_bio->state))
1259	        read_bio->bi_opf |= MD_FAILFAST;
1260	read_bio->bi_private = r10_bio;
1261
1262	if (mddev->gendisk)
1263	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1264	                              r10_bio->sector);
1265	submit_bio_noacct(read_bio);
1266	return;
1267}
1268
1269static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1270				  struct bio *bio, bool replacement,
1271				  int n_copy)
1272{
1273	const enum req_op op = bio_op(bio);
1274	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1275	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1276	unsigned long flags;
1277	struct r10conf *conf = mddev->private;
1278	struct md_rdev *rdev;
1279	int devnum = r10_bio->devs[n_copy].devnum;
1280	struct bio *mbio;
1281
1282	if (replacement) {
1283		rdev = conf->mirrors[devnum].replacement;
1284		if (rdev == NULL) {
1285			/* Replacement just got moved to main 'rdev' */
1286			smp_mb();
1287			rdev = conf->mirrors[devnum].rdev;
1288		}
1289	} else
1290		rdev = conf->mirrors[devnum].rdev;
1291
1292	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1293	if (replacement)
1294		r10_bio->devs[n_copy].repl_bio = mbio;
1295	else
1296		r10_bio->devs[n_copy].bio = mbio;
1297
1298	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1299				   choose_data_offset(r10_bio, rdev));
1300	mbio->bi_end_io	= raid10_end_write_request;
1301	mbio->bi_opf = op | do_sync | do_fua;
1302	if (!replacement && test_bit(FailFast,
1303				     &conf->mirrors[devnum].rdev->flags)
1304			 && enough(conf, devnum))
1305		mbio->bi_opf |= MD_FAILFAST;
1306	mbio->bi_private = r10_bio;
1307
1308	if (conf->mddev->gendisk)
1309		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1310				      r10_bio->sector);
1311	/* flush_pending_writes() needs access to the rdev so...*/
1312	mbio->bi_bdev = (void *)rdev;
1313
1314	atomic_inc(&r10_bio->remaining);
1315
1316	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1317		spin_lock_irqsave(&conf->device_lock, flags);
1318		bio_list_add(&conf->pending_bio_list, mbio);
1319		spin_unlock_irqrestore(&conf->device_lock, flags);
1320		md_wakeup_thread(mddev->thread);
1321	}
1322}
1323
1324static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1325						  struct md_rdev **prrdev)
1326{
1327	struct md_rdev *rdev, *rrdev;
1328
1329	rrdev = rcu_dereference(mirror->replacement);
1330	/*
1331	 * Read replacement first to prevent reading both rdev and
1332	 * replacement as NULL during replacement replace rdev.
1333	 */
1334	smp_mb();
1335	rdev = rcu_dereference(mirror->rdev);
1336	if (rdev == rrdev)
1337		rrdev = NULL;
1338
1339	*prrdev = rrdev;
1340	return rdev;
1341}
1342
1343static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1344{
1345	int i;
1346	struct r10conf *conf = mddev->private;
1347	struct md_rdev *blocked_rdev;
1348
1349retry_wait:
1350	blocked_rdev = NULL;
1351	rcu_read_lock();
1352	for (i = 0; i < conf->copies; i++) {
1353		struct md_rdev *rdev, *rrdev;
1354
1355		rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1356		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1357			atomic_inc(&rdev->nr_pending);
1358			blocked_rdev = rdev;
1359			break;
1360		}
1361		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1362			atomic_inc(&rrdev->nr_pending);
1363			blocked_rdev = rrdev;
1364			break;
1365		}
1366
1367		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1368			sector_t first_bad;
1369			sector_t dev_sector = r10_bio->devs[i].addr;
1370			int bad_sectors;
1371			int is_bad;
1372
1373			/*
1374			 * Discard request doesn't care the write result
1375			 * so it doesn't need to wait blocked disk here.
1376			 */
1377			if (!r10_bio->sectors)
1378				continue;
1379
1380			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1381					     &first_bad, &bad_sectors);
1382			if (is_bad < 0) {
1383				/*
1384				 * Mustn't write here until the bad block
1385				 * is acknowledged
1386				 */
1387				atomic_inc(&rdev->nr_pending);
1388				set_bit(BlockedBadBlocks, &rdev->flags);
1389				blocked_rdev = rdev;
1390				break;
1391			}
1392		}
1393	}
1394	rcu_read_unlock();
1395
1396	if (unlikely(blocked_rdev)) {
1397		/* Have to wait for this device to get unblocked, then retry */
1398		allow_barrier(conf);
1399		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1400				__func__, blocked_rdev->raid_disk);
1401		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1402		wait_barrier(conf, false);
1403		goto retry_wait;
1404	}
1405}
1406
1407static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1408				 struct r10bio *r10_bio)
1409{
1410	struct r10conf *conf = mddev->private;
1411	int i;
1412	sector_t sectors;
1413	int max_sectors;
1414
1415	if ((mddev_is_clustered(mddev) &&
1416	     md_cluster_ops->area_resyncing(mddev, WRITE,
1417					    bio->bi_iter.bi_sector,
1418					    bio_end_sector(bio)))) {
1419		DEFINE_WAIT(w);
1420		/* Bail out if REQ_NOWAIT is set for the bio */
1421		if (bio->bi_opf & REQ_NOWAIT) {
1422			bio_wouldblock_error(bio);
1423			return;
1424		}
1425		for (;;) {
1426			prepare_to_wait(&conf->wait_barrier,
1427					&w, TASK_IDLE);
1428			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1429				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1430				break;
1431			schedule();
1432		}
1433		finish_wait(&conf->wait_barrier, &w);
1434	}
1435
1436	sectors = r10_bio->sectors;
1437	if (!regular_request_wait(mddev, conf, bio, sectors))
1438		return;
1439	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440	    (mddev->reshape_backwards
1441	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445		/* Need to update reshape_position in metadata */
1446		mddev->reshape_position = conf->reshape_progress;
1447		set_mask_bits(&mddev->sb_flags, 0,
1448			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449		md_wakeup_thread(mddev->thread);
1450		if (bio->bi_opf & REQ_NOWAIT) {
1451			allow_barrier(conf);
1452			bio_wouldblock_error(bio);
1453			return;
1454		}
1455		raid10_log(conf->mddev, "wait reshape metadata");
1456		wait_event(mddev->sb_wait,
1457			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1458
1459		conf->reshape_safe = mddev->reshape_position;
1460	}
1461
1462	/* first select target devices under rcu_lock and
1463	 * inc refcount on their rdev.  Record them by setting
1464	 * bios[x] to bio
1465	 * If there are known/acknowledged bad blocks on any device
1466	 * on which we have seen a write error, we want to avoid
1467	 * writing to those blocks.  This potentially requires several
1468	 * writes to write around the bad blocks.  Each set of writes
1469	 * gets its own r10_bio with a set of bios attached.
1470	 */
1471
1472	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473	raid10_find_phys(conf, r10_bio);
1474
1475	wait_blocked_dev(mddev, r10_bio);
1476
1477	rcu_read_lock();
1478	max_sectors = r10_bio->sectors;
1479
1480	for (i = 0;  i < conf->copies; i++) {
1481		int d = r10_bio->devs[i].devnum;
1482		struct md_rdev *rdev, *rrdev;
1483
1484		rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1485		if (rdev && (test_bit(Faulty, &rdev->flags)))
1486			rdev = NULL;
1487		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1488			rrdev = NULL;
1489
1490		r10_bio->devs[i].bio = NULL;
1491		r10_bio->devs[i].repl_bio = NULL;
1492
1493		if (!rdev && !rrdev) {
1494			set_bit(R10BIO_Degraded, &r10_bio->state);
1495			continue;
1496		}
1497		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1498			sector_t first_bad;
1499			sector_t dev_sector = r10_bio->devs[i].addr;
1500			int bad_sectors;
1501			int is_bad;
1502
1503			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1504					     &first_bad, &bad_sectors);
1505			if (is_bad && first_bad <= dev_sector) {
1506				/* Cannot write here at all */
1507				bad_sectors -= (dev_sector - first_bad);
1508				if (bad_sectors < max_sectors)
1509					/* Mustn't write more than bad_sectors
1510					 * to other devices yet
1511					 */
1512					max_sectors = bad_sectors;
1513				/* We don't set R10BIO_Degraded as that
1514				 * only applies if the disk is missing,
1515				 * so it might be re-added, and we want to
1516				 * know to recover this chunk.
1517				 * In this case the device is here, and the
1518				 * fact that this chunk is not in-sync is
1519				 * recorded in the bad block log.
1520				 */
1521				continue;
1522			}
1523			if (is_bad) {
1524				int good_sectors = first_bad - dev_sector;
1525				if (good_sectors < max_sectors)
1526					max_sectors = good_sectors;
1527			}
1528		}
1529		if (rdev) {
1530			r10_bio->devs[i].bio = bio;
1531			atomic_inc(&rdev->nr_pending);
1532		}
1533		if (rrdev) {
1534			r10_bio->devs[i].repl_bio = bio;
1535			atomic_inc(&rrdev->nr_pending);
1536		}
1537	}
1538	rcu_read_unlock();
1539
1540	if (max_sectors < r10_bio->sectors)
1541		r10_bio->sectors = max_sectors;
1542
1543	if (r10_bio->sectors < bio_sectors(bio)) {
1544		struct bio *split = bio_split(bio, r10_bio->sectors,
1545					      GFP_NOIO, &conf->bio_split);
1546		bio_chain(split, bio);
1547		allow_barrier(conf);
1548		submit_bio_noacct(bio);
1549		wait_barrier(conf, false);
1550		bio = split;
1551		r10_bio->master_bio = bio;
1552	}
1553
1554	md_account_bio(mddev, &bio);
1555	r10_bio->master_bio = bio;
1556	atomic_set(&r10_bio->remaining, 1);
1557	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1558
1559	for (i = 0; i < conf->copies; i++) {
1560		if (r10_bio->devs[i].bio)
1561			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1562		if (r10_bio->devs[i].repl_bio)
1563			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1564	}
1565	one_write_done(r10_bio);
1566}
1567
1568static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1569{
1570	struct r10conf *conf = mddev->private;
1571	struct r10bio *r10_bio;
1572
1573	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1574
1575	r10_bio->master_bio = bio;
1576	r10_bio->sectors = sectors;
1577
1578	r10_bio->mddev = mddev;
1579	r10_bio->sector = bio->bi_iter.bi_sector;
1580	r10_bio->state = 0;
1581	r10_bio->read_slot = -1;
1582	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1583			conf->geo.raid_disks);
1584
1585	if (bio_data_dir(bio) == READ)
1586		raid10_read_request(mddev, bio, r10_bio, true);
1587	else
1588		raid10_write_request(mddev, bio, r10_bio);
1589}
1590
1591static void raid_end_discard_bio(struct r10bio *r10bio)
1592{
1593	struct r10conf *conf = r10bio->mddev->private;
1594	struct r10bio *first_r10bio;
1595
1596	while (atomic_dec_and_test(&r10bio->remaining)) {
1597
1598		allow_barrier(conf);
1599
1600		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1601			first_r10bio = (struct r10bio *)r10bio->master_bio;
1602			free_r10bio(r10bio);
1603			r10bio = first_r10bio;
1604		} else {
1605			md_write_end(r10bio->mddev);
1606			bio_endio(r10bio->master_bio);
1607			free_r10bio(r10bio);
1608			break;
1609		}
1610	}
1611}
1612
1613static void raid10_end_discard_request(struct bio *bio)
1614{
1615	struct r10bio *r10_bio = bio->bi_private;
1616	struct r10conf *conf = r10_bio->mddev->private;
1617	struct md_rdev *rdev = NULL;
1618	int dev;
1619	int slot, repl;
1620
1621	/*
1622	 * We don't care the return value of discard bio
1623	 */
1624	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1625		set_bit(R10BIO_Uptodate, &r10_bio->state);
1626
1627	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1628	if (repl)
1629		rdev = conf->mirrors[dev].replacement;
1630	if (!rdev) {
1631		/*
1632		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1633		 * replacement before setting replacement to NULL. It can read
1634		 * rdev first without barrier protect even replacement is NULL
1635		 */
1636		smp_rmb();
1637		rdev = conf->mirrors[dev].rdev;
1638	}
1639
1640	raid_end_discard_bio(r10_bio);
1641	rdev_dec_pending(rdev, conf->mddev);
1642}
1643
1644/*
1645 * There are some limitations to handle discard bio
1646 * 1st, the discard size is bigger than stripe_size*2.
1647 * 2st, if the discard bio spans reshape progress, we use the old way to
1648 * handle discard bio
1649 */
1650static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1651{
1652	struct r10conf *conf = mddev->private;
1653	struct geom *geo = &conf->geo;
1654	int far_copies = geo->far_copies;
1655	bool first_copy = true;
1656	struct r10bio *r10_bio, *first_r10bio;
1657	struct bio *split;
1658	int disk;
1659	sector_t chunk;
1660	unsigned int stripe_size;
1661	unsigned int stripe_data_disks;
1662	sector_t split_size;
1663	sector_t bio_start, bio_end;
1664	sector_t first_stripe_index, last_stripe_index;
1665	sector_t start_disk_offset;
1666	unsigned int start_disk_index;
1667	sector_t end_disk_offset;
1668	unsigned int end_disk_index;
1669	unsigned int remainder;
1670
1671	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1672		return -EAGAIN;
1673
1674	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1675		bio_wouldblock_error(bio);
1676		return 0;
1677	}
1678	wait_barrier(conf, false);
1679
1680	/*
1681	 * Check reshape again to avoid reshape happens after checking
1682	 * MD_RECOVERY_RESHAPE and before wait_barrier
1683	 */
1684	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1685		goto out;
1686
1687	if (geo->near_copies)
1688		stripe_data_disks = geo->raid_disks / geo->near_copies +
1689					geo->raid_disks % geo->near_copies;
1690	else
1691		stripe_data_disks = geo->raid_disks;
1692
1693	stripe_size = stripe_data_disks << geo->chunk_shift;
1694
1695	bio_start = bio->bi_iter.bi_sector;
1696	bio_end = bio_end_sector(bio);
1697
1698	/*
1699	 * Maybe one discard bio is smaller than strip size or across one
1700	 * stripe and discard region is larger than one stripe size. For far
1701	 * offset layout, if the discard region is not aligned with stripe
1702	 * size, there is hole when we submit discard bio to member disk.
1703	 * For simplicity, we only handle discard bio which discard region
1704	 * is bigger than stripe_size * 2
1705	 */
1706	if (bio_sectors(bio) < stripe_size*2)
1707		goto out;
1708
1709	/*
1710	 * Keep bio aligned with strip size.
1711	 */
1712	div_u64_rem(bio_start, stripe_size, &remainder);
1713	if (remainder) {
1714		split_size = stripe_size - remainder;
1715		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1716		bio_chain(split, bio);
1717		allow_barrier(conf);
1718		/* Resend the fist split part */
1719		submit_bio_noacct(split);
1720		wait_barrier(conf, false);
1721	}
1722	div_u64_rem(bio_end, stripe_size, &remainder);
1723	if (remainder) {
1724		split_size = bio_sectors(bio) - remainder;
1725		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1726		bio_chain(split, bio);
1727		allow_barrier(conf);
1728		/* Resend the second split part */
1729		submit_bio_noacct(bio);
1730		bio = split;
1731		wait_barrier(conf, false);
1732	}
1733
1734	bio_start = bio->bi_iter.bi_sector;
1735	bio_end = bio_end_sector(bio);
1736
1737	/*
1738	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1739	 * One stripe contains the chunks from all member disk (one chunk from
1740	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1741	 */
1742	chunk = bio_start >> geo->chunk_shift;
1743	chunk *= geo->near_copies;
1744	first_stripe_index = chunk;
1745	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1746	if (geo->far_offset)
1747		first_stripe_index *= geo->far_copies;
1748	start_disk_offset = (bio_start & geo->chunk_mask) +
1749				(first_stripe_index << geo->chunk_shift);
1750
1751	chunk = bio_end >> geo->chunk_shift;
1752	chunk *= geo->near_copies;
1753	last_stripe_index = chunk;
1754	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1755	if (geo->far_offset)
1756		last_stripe_index *= geo->far_copies;
1757	end_disk_offset = (bio_end & geo->chunk_mask) +
1758				(last_stripe_index << geo->chunk_shift);
1759
1760retry_discard:
1761	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1762	r10_bio->mddev = mddev;
1763	r10_bio->state = 0;
1764	r10_bio->sectors = 0;
1765	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1766	wait_blocked_dev(mddev, r10_bio);
1767
1768	/*
1769	 * For far layout it needs more than one r10bio to cover all regions.
1770	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1771	 * to record the discard bio. Other r10bio->master_bio record the first
1772	 * r10bio. The first r10bio only release after all other r10bios finish.
1773	 * The discard bio returns only first r10bio finishes
1774	 */
1775	if (first_copy) {
1776		r10_bio->master_bio = bio;
1777		set_bit(R10BIO_Discard, &r10_bio->state);
1778		first_copy = false;
1779		first_r10bio = r10_bio;
1780	} else
1781		r10_bio->master_bio = (struct bio *)first_r10bio;
1782
1783	/*
1784	 * first select target devices under rcu_lock and
1785	 * inc refcount on their rdev.  Record them by setting
1786	 * bios[x] to bio
1787	 */
1788	rcu_read_lock();
1789	for (disk = 0; disk < geo->raid_disks; disk++) {
1790		struct md_rdev *rdev, *rrdev;
1791
1792		rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1793		r10_bio->devs[disk].bio = NULL;
1794		r10_bio->devs[disk].repl_bio = NULL;
1795
1796		if (rdev && (test_bit(Faulty, &rdev->flags)))
1797			rdev = NULL;
1798		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1799			rrdev = NULL;
1800		if (!rdev && !rrdev)
1801			continue;
1802
1803		if (rdev) {
1804			r10_bio->devs[disk].bio = bio;
1805			atomic_inc(&rdev->nr_pending);
1806		}
1807		if (rrdev) {
1808			r10_bio->devs[disk].repl_bio = bio;
1809			atomic_inc(&rrdev->nr_pending);
1810		}
1811	}
1812	rcu_read_unlock();
1813
1814	atomic_set(&r10_bio->remaining, 1);
1815	for (disk = 0; disk < geo->raid_disks; disk++) {
1816		sector_t dev_start, dev_end;
1817		struct bio *mbio, *rbio = NULL;
1818
1819		/*
1820		 * Now start to calculate the start and end address for each disk.
1821		 * The space between dev_start and dev_end is the discard region.
1822		 *
1823		 * For dev_start, it needs to consider three conditions:
1824		 * 1st, the disk is before start_disk, you can imagine the disk in
1825		 * the next stripe. So the dev_start is the start address of next
1826		 * stripe.
1827		 * 2st, the disk is after start_disk, it means the disk is at the
1828		 * same stripe of first disk
1829		 * 3st, the first disk itself, we can use start_disk_offset directly
1830		 */
1831		if (disk < start_disk_index)
1832			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1833		else if (disk > start_disk_index)
1834			dev_start = first_stripe_index * mddev->chunk_sectors;
1835		else
1836			dev_start = start_disk_offset;
1837
1838		if (disk < end_disk_index)
1839			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1840		else if (disk > end_disk_index)
1841			dev_end = last_stripe_index * mddev->chunk_sectors;
1842		else
1843			dev_end = end_disk_offset;
1844
1845		/*
1846		 * It only handles discard bio which size is >= stripe size, so
1847		 * dev_end > dev_start all the time.
1848		 * It doesn't need to use rcu lock to get rdev here. We already
1849		 * add rdev->nr_pending in the first loop.
1850		 */
1851		if (r10_bio->devs[disk].bio) {
1852			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1853			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1854					       &mddev->bio_set);
1855			mbio->bi_end_io = raid10_end_discard_request;
1856			mbio->bi_private = r10_bio;
1857			r10_bio->devs[disk].bio = mbio;
1858			r10_bio->devs[disk].devnum = disk;
1859			atomic_inc(&r10_bio->remaining);
1860			md_submit_discard_bio(mddev, rdev, mbio,
1861					dev_start + choose_data_offset(r10_bio, rdev),
1862					dev_end - dev_start);
1863			bio_endio(mbio);
1864		}
1865		if (r10_bio->devs[disk].repl_bio) {
1866			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1867			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1868					       &mddev->bio_set);
1869			rbio->bi_end_io = raid10_end_discard_request;
1870			rbio->bi_private = r10_bio;
1871			r10_bio->devs[disk].repl_bio = rbio;
1872			r10_bio->devs[disk].devnum = disk;
1873			atomic_inc(&r10_bio->remaining);
1874			md_submit_discard_bio(mddev, rrdev, rbio,
1875					dev_start + choose_data_offset(r10_bio, rrdev),
1876					dev_end - dev_start);
1877			bio_endio(rbio);
1878		}
1879	}
1880
1881	if (!geo->far_offset && --far_copies) {
1882		first_stripe_index += geo->stride >> geo->chunk_shift;
1883		start_disk_offset += geo->stride;
1884		last_stripe_index += geo->stride >> geo->chunk_shift;
1885		end_disk_offset += geo->stride;
1886		atomic_inc(&first_r10bio->remaining);
1887		raid_end_discard_bio(r10_bio);
1888		wait_barrier(conf, false);
1889		goto retry_discard;
1890	}
1891
1892	raid_end_discard_bio(r10_bio);
1893
1894	return 0;
1895out:
1896	allow_barrier(conf);
1897	return -EAGAIN;
1898}
1899
1900static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1901{
1902	struct r10conf *conf = mddev->private;
1903	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1904	int chunk_sects = chunk_mask + 1;
1905	int sectors = bio_sectors(bio);
1906
1907	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1908	    && md_flush_request(mddev, bio))
1909		return true;
1910
1911	if (!md_write_start(mddev, bio))
1912		return false;
1913
1914	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1915		if (!raid10_handle_discard(mddev, bio))
1916			return true;
1917
1918	/*
1919	 * If this request crosses a chunk boundary, we need to split
1920	 * it.
1921	 */
1922	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1923		     sectors > chunk_sects
1924		     && (conf->geo.near_copies < conf->geo.raid_disks
1925			 || conf->prev.near_copies <
1926			 conf->prev.raid_disks)))
1927		sectors = chunk_sects -
1928			(bio->bi_iter.bi_sector &
1929			 (chunk_sects - 1));
1930	__make_request(mddev, bio, sectors);
1931
1932	/* In case raid10d snuck in to freeze_array */
1933	wake_up_barrier(conf);
1934	return true;
1935}
1936
1937static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1938{
1939	struct r10conf *conf = mddev->private;
1940	int i;
1941
1942	if (conf->geo.near_copies < conf->geo.raid_disks)
1943		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1944	if (conf->geo.near_copies > 1)
1945		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1946	if (conf->geo.far_copies > 1) {
1947		if (conf->geo.far_offset)
1948			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1949		else
1950			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1951		if (conf->geo.far_set_size != conf->geo.raid_disks)
1952			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1953	}
1954	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1955					conf->geo.raid_disks - mddev->degraded);
1956	rcu_read_lock();
1957	for (i = 0; i < conf->geo.raid_disks; i++) {
1958		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1959		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1960	}
1961	rcu_read_unlock();
1962	seq_printf(seq, "]");
1963}
1964
1965/* check if there are enough drives for
1966 * every block to appear on atleast one.
1967 * Don't consider the device numbered 'ignore'
1968 * as we might be about to remove it.
1969 */
1970static int _enough(struct r10conf *conf, int previous, int ignore)
1971{
1972	int first = 0;
1973	int has_enough = 0;
1974	int disks, ncopies;
1975	if (previous) {
1976		disks = conf->prev.raid_disks;
1977		ncopies = conf->prev.near_copies;
1978	} else {
1979		disks = conf->geo.raid_disks;
1980		ncopies = conf->geo.near_copies;
1981	}
1982
1983	rcu_read_lock();
1984	do {
1985		int n = conf->copies;
1986		int cnt = 0;
1987		int this = first;
1988		while (n--) {
1989			struct md_rdev *rdev;
1990			if (this != ignore &&
1991			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1992			    test_bit(In_sync, &rdev->flags))
1993				cnt++;
1994			this = (this+1) % disks;
1995		}
1996		if (cnt == 0)
1997			goto out;
1998		first = (first + ncopies) % disks;
1999	} while (first != 0);
2000	has_enough = 1;
2001out:
2002	rcu_read_unlock();
2003	return has_enough;
2004}
2005
2006static int enough(struct r10conf *conf, int ignore)
2007{
2008	/* when calling 'enough', both 'prev' and 'geo' must
2009	 * be stable.
2010	 * This is ensured if ->reconfig_mutex or ->device_lock
2011	 * is held.
2012	 */
2013	return _enough(conf, 0, ignore) &&
2014		_enough(conf, 1, ignore);
2015}
2016
2017/**
2018 * raid10_error() - RAID10 error handler.
2019 * @mddev: affected md device.
2020 * @rdev: member device to fail.
2021 *
2022 * The routine acknowledges &rdev failure and determines new @mddev state.
2023 * If it failed, then:
2024 *	- &MD_BROKEN flag is set in &mddev->flags.
2025 * Otherwise, it must be degraded:
2026 *	- recovery is interrupted.
2027 *	- &mddev->degraded is bumped.
2028 *
2029 * @rdev is marked as &Faulty excluding case when array is failed and
2030 * &mddev->fail_last_dev is off.
2031 */
2032static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2033{
2034	struct r10conf *conf = mddev->private;
2035	unsigned long flags;
2036
2037	spin_lock_irqsave(&conf->device_lock, flags);
2038
2039	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2040		set_bit(MD_BROKEN, &mddev->flags);
2041
2042		if (!mddev->fail_last_dev) {
2043			spin_unlock_irqrestore(&conf->device_lock, flags);
2044			return;
2045		}
2046	}
2047	if (test_and_clear_bit(In_sync, &rdev->flags))
2048		mddev->degraded++;
2049
2050	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2051	set_bit(Blocked, &rdev->flags);
2052	set_bit(Faulty, &rdev->flags);
2053	set_mask_bits(&mddev->sb_flags, 0,
2054		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2055	spin_unlock_irqrestore(&conf->device_lock, flags);
2056	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2057		"md/raid10:%s: Operation continuing on %d devices.\n",
2058		mdname(mddev), rdev->bdev,
2059		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2060}
2061
2062static void print_conf(struct r10conf *conf)
2063{
2064	int i;
2065	struct md_rdev *rdev;
2066
2067	pr_debug("RAID10 conf printout:\n");
2068	if (!conf) {
2069		pr_debug("(!conf)\n");
2070		return;
2071	}
2072	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2073		 conf->geo.raid_disks);
2074
2075	/* This is only called with ->reconfix_mutex held, so
2076	 * rcu protection of rdev is not needed */
2077	for (i = 0; i < conf->geo.raid_disks; i++) {
2078		rdev = conf->mirrors[i].rdev;
2079		if (rdev)
2080			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2081				 i, !test_bit(In_sync, &rdev->flags),
2082				 !test_bit(Faulty, &rdev->flags),
2083				 rdev->bdev);
2084	}
2085}
2086
2087static void close_sync(struct r10conf *conf)
2088{
2089	wait_barrier(conf, false);
2090	allow_barrier(conf);
2091
2092	mempool_exit(&conf->r10buf_pool);
2093}
2094
2095static int raid10_spare_active(struct mddev *mddev)
2096{
2097	int i;
2098	struct r10conf *conf = mddev->private;
2099	struct raid10_info *tmp;
2100	int count = 0;
2101	unsigned long flags;
2102
2103	/*
2104	 * Find all non-in_sync disks within the RAID10 configuration
2105	 * and mark them in_sync
2106	 */
2107	for (i = 0; i < conf->geo.raid_disks; i++) {
2108		tmp = conf->mirrors + i;
2109		if (tmp->replacement
2110		    && tmp->replacement->recovery_offset == MaxSector
2111		    && !test_bit(Faulty, &tmp->replacement->flags)
2112		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2113			/* Replacement has just become active */
2114			if (!tmp->rdev
2115			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2116				count++;
2117			if (tmp->rdev) {
2118				/* Replaced device not technically faulty,
2119				 * but we need to be sure it gets removed
2120				 * and never re-added.
2121				 */
2122				set_bit(Faulty, &tmp->rdev->flags);
2123				sysfs_notify_dirent_safe(
2124					tmp->rdev->sysfs_state);
2125			}
2126			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2127		} else if (tmp->rdev
2128			   && tmp->rdev->recovery_offset == MaxSector
2129			   && !test_bit(Faulty, &tmp->rdev->flags)
2130			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2131			count++;
2132			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2133		}
2134	}
2135	spin_lock_irqsave(&conf->device_lock, flags);
2136	mddev->degraded -= count;
2137	spin_unlock_irqrestore(&conf->device_lock, flags);
2138
2139	print_conf(conf);
2140	return count;
2141}
2142
2143static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2144{
2145	struct r10conf *conf = mddev->private;
2146	int err = -EEXIST;
2147	int mirror, repl_slot = -1;
2148	int first = 0;
2149	int last = conf->geo.raid_disks - 1;
2150	struct raid10_info *p;
2151
2152	if (mddev->recovery_cp < MaxSector)
2153		/* only hot-add to in-sync arrays, as recovery is
2154		 * very different from resync
2155		 */
2156		return -EBUSY;
2157	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2158		return -EINVAL;
2159
2160	if (md_integrity_add_rdev(rdev, mddev))
2161		return -ENXIO;
2162
2163	if (rdev->raid_disk >= 0)
2164		first = last = rdev->raid_disk;
2165
2166	if (rdev->saved_raid_disk >= first &&
2167	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2168	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2169		mirror = rdev->saved_raid_disk;
2170	else
2171		mirror = first;
2172	for ( ; mirror <= last ; mirror++) {
2173		p = &conf->mirrors[mirror];
2174		if (p->recovery_disabled == mddev->recovery_disabled)
2175			continue;
2176		if (p->rdev) {
2177			if (test_bit(WantReplacement, &p->rdev->flags) &&
2178			    p->replacement == NULL && repl_slot < 0)
2179				repl_slot = mirror;
2180			continue;
2181		}
2182
2183		if (mddev->gendisk)
2184			disk_stack_limits(mddev->gendisk, rdev->bdev,
2185					  rdev->data_offset << 9);
2186
2187		p->head_position = 0;
2188		p->recovery_disabled = mddev->recovery_disabled - 1;
2189		rdev->raid_disk = mirror;
2190		err = 0;
2191		if (rdev->saved_raid_disk != mirror)
2192			conf->fullsync = 1;
2193		rcu_assign_pointer(p->rdev, rdev);
2194		break;
2195	}
2196
2197	if (err && repl_slot >= 0) {
2198		p = &conf->mirrors[repl_slot];
2199		clear_bit(In_sync, &rdev->flags);
2200		set_bit(Replacement, &rdev->flags);
2201		rdev->raid_disk = repl_slot;
2202		err = 0;
2203		if (mddev->gendisk)
2204			disk_stack_limits(mddev->gendisk, rdev->bdev,
2205					  rdev->data_offset << 9);
2206		conf->fullsync = 1;
2207		rcu_assign_pointer(p->replacement, rdev);
2208	}
2209
2210	print_conf(conf);
2211	return err;
2212}
2213
2214static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2215{
2216	struct r10conf *conf = mddev->private;
2217	int err = 0;
2218	int number = rdev->raid_disk;
2219	struct md_rdev **rdevp;
2220	struct raid10_info *p;
2221
2222	print_conf(conf);
2223	if (unlikely(number >= mddev->raid_disks))
2224		return 0;
2225	p = conf->mirrors + number;
2226	if (rdev == p->rdev)
2227		rdevp = &p->rdev;
2228	else if (rdev == p->replacement)
2229		rdevp = &p->replacement;
2230	else
2231		return 0;
2232
2233	if (test_bit(In_sync, &rdev->flags) ||
2234	    atomic_read(&rdev->nr_pending)) {
2235		err = -EBUSY;
2236		goto abort;
2237	}
2238	/* Only remove non-faulty devices if recovery
2239	 * is not possible.
2240	 */
2241	if (!test_bit(Faulty, &rdev->flags) &&
2242	    mddev->recovery_disabled != p->recovery_disabled &&
2243	    (!p->replacement || p->replacement == rdev) &&
2244	    number < conf->geo.raid_disks &&
2245	    enough(conf, -1)) {
2246		err = -EBUSY;
2247		goto abort;
2248	}
2249	*rdevp = NULL;
2250	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2251		synchronize_rcu();
2252		if (atomic_read(&rdev->nr_pending)) {
2253			/* lost the race, try later */
2254			err = -EBUSY;
2255			*rdevp = rdev;
2256			goto abort;
2257		}
2258	}
2259	if (p->replacement) {
2260		/* We must have just cleared 'rdev' */
2261		p->rdev = p->replacement;
2262		clear_bit(Replacement, &p->replacement->flags);
2263		smp_mb(); /* Make sure other CPUs may see both as identical
2264			   * but will never see neither -- if they are careful.
2265			   */
2266		p->replacement = NULL;
2267	}
2268
2269	clear_bit(WantReplacement, &rdev->flags);
2270	err = md_integrity_register(mddev);
2271
2272abort:
2273
2274	print_conf(conf);
2275	return err;
2276}
2277
2278static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2279{
2280	struct r10conf *conf = r10_bio->mddev->private;
2281
2282	if (!bio->bi_status)
2283		set_bit(R10BIO_Uptodate, &r10_bio->state);
2284	else
2285		/* The write handler will notice the lack of
2286		 * R10BIO_Uptodate and record any errors etc
2287		 */
2288		atomic_add(r10_bio->sectors,
2289			   &conf->mirrors[d].rdev->corrected_errors);
2290
2291	/* for reconstruct, we always reschedule after a read.
2292	 * for resync, only after all reads
2293	 */
2294	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2295	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2296	    atomic_dec_and_test(&r10_bio->remaining)) {
2297		/* we have read all the blocks,
2298		 * do the comparison in process context in raid10d
2299		 */
2300		reschedule_retry(r10_bio);
2301	}
2302}
2303
2304static void end_sync_read(struct bio *bio)
2305{
2306	struct r10bio *r10_bio = get_resync_r10bio(bio);
2307	struct r10conf *conf = r10_bio->mddev->private;
2308	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2309
2310	__end_sync_read(r10_bio, bio, d);
2311}
2312
2313static void end_reshape_read(struct bio *bio)
2314{
2315	/* reshape read bio isn't allocated from r10buf_pool */
2316	struct r10bio *r10_bio = bio->bi_private;
2317
2318	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2319}
2320
2321static void end_sync_request(struct r10bio *r10_bio)
2322{
2323	struct mddev *mddev = r10_bio->mddev;
2324
2325	while (atomic_dec_and_test(&r10_bio->remaining)) {
2326		if (r10_bio->master_bio == NULL) {
2327			/* the primary of several recovery bios */
2328			sector_t s = r10_bio->sectors;
2329			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330			    test_bit(R10BIO_WriteError, &r10_bio->state))
2331				reschedule_retry(r10_bio);
2332			else
2333				put_buf(r10_bio);
2334			md_done_sync(mddev, s, 1);
2335			break;
2336		} else {
2337			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2338			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2339			    test_bit(R10BIO_WriteError, &r10_bio->state))
2340				reschedule_retry(r10_bio);
2341			else
2342				put_buf(r10_bio);
2343			r10_bio = r10_bio2;
2344		}
2345	}
2346}
2347
2348static void end_sync_write(struct bio *bio)
2349{
2350	struct r10bio *r10_bio = get_resync_r10bio(bio);
2351	struct mddev *mddev = r10_bio->mddev;
2352	struct r10conf *conf = mddev->private;
2353	int d;
2354	sector_t first_bad;
2355	int bad_sectors;
2356	int slot;
2357	int repl;
2358	struct md_rdev *rdev = NULL;
2359
2360	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2361	if (repl)
2362		rdev = conf->mirrors[d].replacement;
2363	else
2364		rdev = conf->mirrors[d].rdev;
2365
2366	if (bio->bi_status) {
2367		if (repl)
2368			md_error(mddev, rdev);
2369		else {
2370			set_bit(WriteErrorSeen, &rdev->flags);
2371			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2372				set_bit(MD_RECOVERY_NEEDED,
2373					&rdev->mddev->recovery);
2374			set_bit(R10BIO_WriteError, &r10_bio->state);
2375		}
2376	} else if (is_badblock(rdev,
2377			     r10_bio->devs[slot].addr,
2378			     r10_bio->sectors,
2379			     &first_bad, &bad_sectors))
2380		set_bit(R10BIO_MadeGood, &r10_bio->state);
2381
2382	rdev_dec_pending(rdev, mddev);
2383
2384	end_sync_request(r10_bio);
2385}
2386
2387/*
2388 * Note: sync and recover and handled very differently for raid10
2389 * This code is for resync.
2390 * For resync, we read through virtual addresses and read all blocks.
2391 * If there is any error, we schedule a write.  The lowest numbered
2392 * drive is authoritative.
2393 * However requests come for physical address, so we need to map.
2394 * For every physical address there are raid_disks/copies virtual addresses,
2395 * which is always are least one, but is not necessarly an integer.
2396 * This means that a physical address can span multiple chunks, so we may
2397 * have to submit multiple io requests for a single sync request.
2398 */
2399/*
2400 * We check if all blocks are in-sync and only write to blocks that
2401 * aren't in sync
2402 */
2403static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2404{
2405	struct r10conf *conf = mddev->private;
2406	int i, first;
2407	struct bio *tbio, *fbio;
2408	int vcnt;
2409	struct page **tpages, **fpages;
2410
2411	atomic_set(&r10_bio->remaining, 1);
2412
2413	/* find the first device with a block */
2414	for (i=0; i<conf->copies; i++)
2415		if (!r10_bio->devs[i].bio->bi_status)
2416			break;
2417
2418	if (i == conf->copies)
2419		goto done;
2420
2421	first = i;
2422	fbio = r10_bio->devs[i].bio;
2423	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2424	fbio->bi_iter.bi_idx = 0;
2425	fpages = get_resync_pages(fbio)->pages;
2426
2427	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2428	/* now find blocks with errors */
2429	for (i=0 ; i < conf->copies ; i++) {
2430		int  j, d;
2431		struct md_rdev *rdev;
2432		struct resync_pages *rp;
2433
2434		tbio = r10_bio->devs[i].bio;
2435
2436		if (tbio->bi_end_io != end_sync_read)
2437			continue;
2438		if (i == first)
2439			continue;
2440
2441		tpages = get_resync_pages(tbio)->pages;
2442		d = r10_bio->devs[i].devnum;
2443		rdev = conf->mirrors[d].rdev;
2444		if (!r10_bio->devs[i].bio->bi_status) {
2445			/* We know that the bi_io_vec layout is the same for
2446			 * both 'first' and 'i', so we just compare them.
2447			 * All vec entries are PAGE_SIZE;
2448			 */
2449			int sectors = r10_bio->sectors;
2450			for (j = 0; j < vcnt; j++) {
2451				int len = PAGE_SIZE;
2452				if (sectors < (len / 512))
2453					len = sectors * 512;
2454				if (memcmp(page_address(fpages[j]),
2455					   page_address(tpages[j]),
2456					   len))
2457					break;
2458				sectors -= len/512;
2459			}
2460			if (j == vcnt)
2461				continue;
2462			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2463			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2464				/* Don't fix anything. */
2465				continue;
2466		} else if (test_bit(FailFast, &rdev->flags)) {
2467			/* Just give up on this device */
2468			md_error(rdev->mddev, rdev);
2469			continue;
2470		}
2471		/* Ok, we need to write this bio, either to correct an
2472		 * inconsistency or to correct an unreadable block.
2473		 * First we need to fixup bv_offset, bv_len and
2474		 * bi_vecs, as the read request might have corrupted these
2475		 */
2476		rp = get_resync_pages(tbio);
2477		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2478
2479		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2480
2481		rp->raid_bio = r10_bio;
2482		tbio->bi_private = rp;
2483		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2484		tbio->bi_end_io = end_sync_write;
2485
2486		bio_copy_data(tbio, fbio);
2487
2488		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2489		atomic_inc(&r10_bio->remaining);
2490		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2491
2492		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2493			tbio->bi_opf |= MD_FAILFAST;
2494		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2495		submit_bio_noacct(tbio);
2496	}
2497
2498	/* Now write out to any replacement devices
2499	 * that are active
2500	 */
2501	for (i = 0; i < conf->copies; i++) {
2502		int d;
2503
2504		tbio = r10_bio->devs[i].repl_bio;
2505		if (!tbio || !tbio->bi_end_io)
2506			continue;
2507		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2508		    && r10_bio->devs[i].bio != fbio)
2509			bio_copy_data(tbio, fbio);
2510		d = r10_bio->devs[i].devnum;
2511		atomic_inc(&r10_bio->remaining);
2512		md_sync_acct(conf->mirrors[d].replacement->bdev,
2513			     bio_sectors(tbio));
2514		submit_bio_noacct(tbio);
2515	}
2516
2517done:
2518	if (atomic_dec_and_test(&r10_bio->remaining)) {
2519		md_done_sync(mddev, r10_bio->sectors, 1);
2520		put_buf(r10_bio);
2521	}
2522}
2523
2524/*
2525 * Now for the recovery code.
2526 * Recovery happens across physical sectors.
2527 * We recover all non-is_sync drives by finding the virtual address of
2528 * each, and then choose a working drive that also has that virt address.
2529 * There is a separate r10_bio for each non-in_sync drive.
2530 * Only the first two slots are in use. The first for reading,
2531 * The second for writing.
2532 *
2533 */
2534static void fix_recovery_read_error(struct r10bio *r10_bio)
2535{
2536	/* We got a read error during recovery.
2537	 * We repeat the read in smaller page-sized sections.
2538	 * If a read succeeds, write it to the new device or record
2539	 * a bad block if we cannot.
2540	 * If a read fails, record a bad block on both old and
2541	 * new devices.
2542	 */
2543	struct mddev *mddev = r10_bio->mddev;
2544	struct r10conf *conf = mddev->private;
2545	struct bio *bio = r10_bio->devs[0].bio;
2546	sector_t sect = 0;
2547	int sectors = r10_bio->sectors;
2548	int idx = 0;
2549	int dr = r10_bio->devs[0].devnum;
2550	int dw = r10_bio->devs[1].devnum;
2551	struct page **pages = get_resync_pages(bio)->pages;
2552
2553	while (sectors) {
2554		int s = sectors;
2555		struct md_rdev *rdev;
2556		sector_t addr;
2557		int ok;
2558
2559		if (s > (PAGE_SIZE>>9))
2560			s = PAGE_SIZE >> 9;
2561
2562		rdev = conf->mirrors[dr].rdev;
2563		addr = r10_bio->devs[0].addr + sect,
2564		ok = sync_page_io(rdev,
2565				  addr,
2566				  s << 9,
2567				  pages[idx],
2568				  REQ_OP_READ, false);
2569		if (ok) {
2570			rdev = conf->mirrors[dw].rdev;
2571			addr = r10_bio->devs[1].addr + sect;
2572			ok = sync_page_io(rdev,
2573					  addr,
2574					  s << 9,
2575					  pages[idx],
2576					  REQ_OP_WRITE, false);
2577			if (!ok) {
2578				set_bit(WriteErrorSeen, &rdev->flags);
2579				if (!test_and_set_bit(WantReplacement,
2580						      &rdev->flags))
2581					set_bit(MD_RECOVERY_NEEDED,
2582						&rdev->mddev->recovery);
2583			}
2584		}
2585		if (!ok) {
2586			/* We don't worry if we cannot set a bad block -
2587			 * it really is bad so there is no loss in not
2588			 * recording it yet
2589			 */
2590			rdev_set_badblocks(rdev, addr, s, 0);
2591
2592			if (rdev != conf->mirrors[dw].rdev) {
2593				/* need bad block on destination too */
2594				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2595				addr = r10_bio->devs[1].addr + sect;
2596				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2597				if (!ok) {
2598					/* just abort the recovery */
2599					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2600						  mdname(mddev));
2601
2602					conf->mirrors[dw].recovery_disabled
2603						= mddev->recovery_disabled;
2604					set_bit(MD_RECOVERY_INTR,
2605						&mddev->recovery);
2606					break;
2607				}
2608			}
2609		}
2610
2611		sectors -= s;
2612		sect += s;
2613		idx++;
2614	}
2615}
2616
2617static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2618{
2619	struct r10conf *conf = mddev->private;
2620	int d;
2621	struct bio *wbio = r10_bio->devs[1].bio;
2622	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2623
2624	/* Need to test wbio2->bi_end_io before we call
2625	 * submit_bio_noacct as if the former is NULL,
2626	 * the latter is free to free wbio2.
2627	 */
2628	if (wbio2 && !wbio2->bi_end_io)
2629		wbio2 = NULL;
2630
2631	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2632		fix_recovery_read_error(r10_bio);
2633		if (wbio->bi_end_io)
2634			end_sync_request(r10_bio);
2635		if (wbio2)
2636			end_sync_request(r10_bio);
2637		return;
2638	}
2639
2640	/*
2641	 * share the pages with the first bio
2642	 * and submit the write request
2643	 */
2644	d = r10_bio->devs[1].devnum;
2645	if (wbio->bi_end_io) {
2646		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2647		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2648		submit_bio_noacct(wbio);
2649	}
2650	if (wbio2) {
2651		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2652		md_sync_acct(conf->mirrors[d].replacement->bdev,
2653			     bio_sectors(wbio2));
2654		submit_bio_noacct(wbio2);
2655	}
2656}
2657
2658/*
2659 * Used by fix_read_error() to decay the per rdev read_errors.
2660 * We halve the read error count for every hour that has elapsed
2661 * since the last recorded read error.
2662 *
2663 */
2664static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2665{
2666	long cur_time_mon;
2667	unsigned long hours_since_last;
2668	unsigned int read_errors = atomic_read(&rdev->read_errors);
2669
2670	cur_time_mon = ktime_get_seconds();
2671
2672	if (rdev->last_read_error == 0) {
2673		/* first time we've seen a read error */
2674		rdev->last_read_error = cur_time_mon;
2675		return;
2676	}
2677
2678	hours_since_last = (long)(cur_time_mon -
2679			    rdev->last_read_error) / 3600;
2680
2681	rdev->last_read_error = cur_time_mon;
2682
2683	/*
2684	 * if hours_since_last is > the number of bits in read_errors
2685	 * just set read errors to 0. We do this to avoid
2686	 * overflowing the shift of read_errors by hours_since_last.
2687	 */
2688	if (hours_since_last >= 8 * sizeof(read_errors))
2689		atomic_set(&rdev->read_errors, 0);
2690	else
2691		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2692}
2693
2694static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2695			    int sectors, struct page *page, enum req_op op)
2696{
2697	sector_t first_bad;
2698	int bad_sectors;
2699
2700	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2701	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2702		return -1;
2703	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2704		/* success */
2705		return 1;
2706	if (op == REQ_OP_WRITE) {
2707		set_bit(WriteErrorSeen, &rdev->flags);
2708		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2709			set_bit(MD_RECOVERY_NEEDED,
2710				&rdev->mddev->recovery);
2711	}
2712	/* need to record an error - either for the block or the device */
2713	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2714		md_error(rdev->mddev, rdev);
2715	return 0;
2716}
2717
2718/*
2719 * This is a kernel thread which:
2720 *
2721 *	1.	Retries failed read operations on working mirrors.
2722 *	2.	Updates the raid superblock when problems encounter.
2723 *	3.	Performs writes following reads for array synchronising.
2724 */
2725
2726static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2727{
2728	int sect = 0; /* Offset from r10_bio->sector */
2729	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2730	struct md_rdev *rdev;
2731	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2732	int d = r10_bio->devs[slot].devnum;
2733
2734	/* still own a reference to this rdev, so it cannot
2735	 * have been cleared recently.
2736	 */
2737	rdev = conf->mirrors[d].rdev;
2738
2739	if (test_bit(Faulty, &rdev->flags))
2740		/* drive has already been failed, just ignore any
2741		   more fix_read_error() attempts */
2742		return;
2743
2744	check_decay_read_errors(mddev, rdev);
2745	atomic_inc(&rdev->read_errors);
2746	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2747		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2748			  mdname(mddev), rdev->bdev,
2749			  atomic_read(&rdev->read_errors), max_read_errors);
2750		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2751			  mdname(mddev), rdev->bdev);
2752		md_error(mddev, rdev);
2753		r10_bio->devs[slot].bio = IO_BLOCKED;
2754		return;
2755	}
2756
2757	while(sectors) {
2758		int s = sectors;
2759		int sl = slot;
2760		int success = 0;
2761		int start;
2762
2763		if (s > (PAGE_SIZE>>9))
2764			s = PAGE_SIZE >> 9;
2765
2766		rcu_read_lock();
2767		do {
2768			sector_t first_bad;
2769			int bad_sectors;
2770
2771			d = r10_bio->devs[sl].devnum;
2772			rdev = rcu_dereference(conf->mirrors[d].rdev);
2773			if (rdev &&
2774			    test_bit(In_sync, &rdev->flags) &&
2775			    !test_bit(Faulty, &rdev->flags) &&
2776			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2777					&first_bad, &bad_sectors) == 0) {
2778				atomic_inc(&rdev->nr_pending);
2779				rcu_read_unlock();
2780				success = sync_page_io(rdev,
2781						       r10_bio->devs[sl].addr +
2782						       sect,
2783						       s<<9,
2784						       conf->tmppage,
2785						       REQ_OP_READ, false);
2786				rdev_dec_pending(rdev, mddev);
2787				rcu_read_lock();
2788				if (success)
2789					break;
2790			}
2791			sl++;
2792			if (sl == conf->copies)
2793				sl = 0;
2794		} while (sl != slot);
2795		rcu_read_unlock();
2796
2797		if (!success) {
2798			/* Cannot read from anywhere, just mark the block
2799			 * as bad on the first device to discourage future
2800			 * reads.
2801			 */
2802			int dn = r10_bio->devs[slot].devnum;
2803			rdev = conf->mirrors[dn].rdev;
2804
2805			if (!rdev_set_badblocks(
2806				    rdev,
2807				    r10_bio->devs[slot].addr
2808				    + sect,
2809				    s, 0)) {
2810				md_error(mddev, rdev);
2811				r10_bio->devs[slot].bio
2812					= IO_BLOCKED;
2813			}
2814			break;
2815		}
2816
2817		start = sl;
2818		/* write it back and re-read */
2819		rcu_read_lock();
2820		while (sl != slot) {
2821			if (sl==0)
2822				sl = conf->copies;
2823			sl--;
2824			d = r10_bio->devs[sl].devnum;
2825			rdev = rcu_dereference(conf->mirrors[d].rdev);
2826			if (!rdev ||
2827			    test_bit(Faulty, &rdev->flags) ||
2828			    !test_bit(In_sync, &rdev->flags))
2829				continue;
2830
2831			atomic_inc(&rdev->nr_pending);
2832			rcu_read_unlock();
2833			if (r10_sync_page_io(rdev,
2834					     r10_bio->devs[sl].addr +
2835					     sect,
2836					     s, conf->tmppage, REQ_OP_WRITE)
2837			    == 0) {
2838				/* Well, this device is dead */
2839				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2840					  mdname(mddev), s,
2841					  (unsigned long long)(
2842						  sect +
2843						  choose_data_offset(r10_bio,
2844								     rdev)),
2845					  rdev->bdev);
2846				pr_notice("md/raid10:%s: %pg: failing drive\n",
2847					  mdname(mddev),
2848					  rdev->bdev);
2849			}
2850			rdev_dec_pending(rdev, mddev);
2851			rcu_read_lock();
2852		}
2853		sl = start;
2854		while (sl != slot) {
2855			if (sl==0)
2856				sl = conf->copies;
2857			sl--;
2858			d = r10_bio->devs[sl].devnum;
2859			rdev = rcu_dereference(conf->mirrors[d].rdev);
2860			if (!rdev ||
2861			    test_bit(Faulty, &rdev->flags) ||
2862			    !test_bit(In_sync, &rdev->flags))
2863				continue;
2864
2865			atomic_inc(&rdev->nr_pending);
2866			rcu_read_unlock();
2867			switch (r10_sync_page_io(rdev,
2868					     r10_bio->devs[sl].addr +
2869					     sect,
2870					     s, conf->tmppage, REQ_OP_READ)) {
2871			case 0:
2872				/* Well, this device is dead */
2873				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2874				       mdname(mddev), s,
2875				       (unsigned long long)(
2876					       sect +
2877					       choose_data_offset(r10_bio, rdev)),
2878				       rdev->bdev);
2879				pr_notice("md/raid10:%s: %pg: failing drive\n",
2880				       mdname(mddev),
2881				       rdev->bdev);
2882				break;
2883			case 1:
2884				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2885				       mdname(mddev), s,
2886				       (unsigned long long)(
2887					       sect +
2888					       choose_data_offset(r10_bio, rdev)),
2889				       rdev->bdev);
2890				atomic_add(s, &rdev->corrected_errors);
2891			}
2892
2893			rdev_dec_pending(rdev, mddev);
2894			rcu_read_lock();
2895		}
2896		rcu_read_unlock();
2897
2898		sectors -= s;
2899		sect += s;
2900	}
2901}
2902
2903static int narrow_write_error(struct r10bio *r10_bio, int i)
2904{
2905	struct bio *bio = r10_bio->master_bio;
2906	struct mddev *mddev = r10_bio->mddev;
2907	struct r10conf *conf = mddev->private;
2908	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2909	/* bio has the data to be written to slot 'i' where
2910	 * we just recently had a write error.
2911	 * We repeatedly clone the bio and trim down to one block,
2912	 * then try the write.  Where the write fails we record
2913	 * a bad block.
2914	 * It is conceivable that the bio doesn't exactly align with
2915	 * blocks.  We must handle this.
2916	 *
2917	 * We currently own a reference to the rdev.
2918	 */
2919
2920	int block_sectors;
2921	sector_t sector;
2922	int sectors;
2923	int sect_to_write = r10_bio->sectors;
2924	int ok = 1;
2925
2926	if (rdev->badblocks.shift < 0)
2927		return 0;
2928
2929	block_sectors = roundup(1 << rdev->badblocks.shift,
2930				bdev_logical_block_size(rdev->bdev) >> 9);
2931	sector = r10_bio->sector;
2932	sectors = ((r10_bio->sector + block_sectors)
2933		   & ~(sector_t)(block_sectors - 1))
2934		- sector;
2935
2936	while (sect_to_write) {
2937		struct bio *wbio;
2938		sector_t wsector;
2939		if (sectors > sect_to_write)
2940			sectors = sect_to_write;
2941		/* Write at 'sector' for 'sectors' */
2942		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2943				       &mddev->bio_set);
2944		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2945		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2946		wbio->bi_iter.bi_sector = wsector +
2947				   choose_data_offset(r10_bio, rdev);
2948		wbio->bi_opf = REQ_OP_WRITE;
2949
2950		if (submit_bio_wait(wbio) < 0)
2951			/* Failure! */
2952			ok = rdev_set_badblocks(rdev, wsector,
2953						sectors, 0)
2954				&& ok;
2955
2956		bio_put(wbio);
2957		sect_to_write -= sectors;
2958		sector += sectors;
2959		sectors = block_sectors;
2960	}
2961	return ok;
2962}
2963
2964static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2965{
2966	int slot = r10_bio->read_slot;
2967	struct bio *bio;
2968	struct r10conf *conf = mddev->private;
2969	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2970
2971	/* we got a read error. Maybe the drive is bad.  Maybe just
2972	 * the block and we can fix it.
2973	 * We freeze all other IO, and try reading the block from
2974	 * other devices.  When we find one, we re-write
2975	 * and check it that fixes the read error.
2976	 * This is all done synchronously while the array is
2977	 * frozen.
2978	 */
2979	bio = r10_bio->devs[slot].bio;
2980	bio_put(bio);
2981	r10_bio->devs[slot].bio = NULL;
2982
2983	if (mddev->ro)
2984		r10_bio->devs[slot].bio = IO_BLOCKED;
2985	else if (!test_bit(FailFast, &rdev->flags)) {
2986		freeze_array(conf, 1);
2987		fix_read_error(conf, mddev, r10_bio);
2988		unfreeze_array(conf);
2989	} else
2990		md_error(mddev, rdev);
2991
2992	rdev_dec_pending(rdev, mddev);
2993	r10_bio->state = 0;
2994	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2995	/*
2996	 * allow_barrier after re-submit to ensure no sync io
2997	 * can be issued while regular io pending.
2998	 */
2999	allow_barrier(conf);
3000}
3001
3002static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
3003{
3004	/* Some sort of write request has finished and it
3005	 * succeeded in writing where we thought there was a
3006	 * bad block.  So forget the bad block.
3007	 * Or possibly if failed and we need to record
3008	 * a bad block.
3009	 */
3010	int m;
3011	struct md_rdev *rdev;
3012
3013	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3014	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3015		for (m = 0; m < conf->copies; m++) {
3016			int dev = r10_bio->devs[m].devnum;
3017			rdev = conf->mirrors[dev].rdev;
3018			if (r10_bio->devs[m].bio == NULL ||
3019				r10_bio->devs[m].bio->bi_end_io == NULL)
3020				continue;
3021			if (!r10_bio->devs[m].bio->bi_status) {
3022				rdev_clear_badblocks(
3023					rdev,
3024					r10_bio->devs[m].addr,
3025					r10_bio->sectors, 0);
3026			} else {
3027				if (!rdev_set_badblocks(
3028					    rdev,
3029					    r10_bio->devs[m].addr,
3030					    r10_bio->sectors, 0))
3031					md_error(conf->mddev, rdev);
3032			}
3033			rdev = conf->mirrors[dev].replacement;
3034			if (r10_bio->devs[m].repl_bio == NULL ||
3035				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3036				continue;
3037
3038			if (!r10_bio->devs[m].repl_bio->bi_status) {
3039				rdev_clear_badblocks(
3040					rdev,
3041					r10_bio->devs[m].addr,
3042					r10_bio->sectors, 0);
3043			} else {
3044				if (!rdev_set_badblocks(
3045					    rdev,
3046					    r10_bio->devs[m].addr,
3047					    r10_bio->sectors, 0))
3048					md_error(conf->mddev, rdev);
3049			}
3050		}
3051		put_buf(r10_bio);
3052	} else {
3053		bool fail = false;
3054		for (m = 0; m < conf->copies; m++) {
3055			int dev = r10_bio->devs[m].devnum;
3056			struct bio *bio = r10_bio->devs[m].bio;
3057			rdev = conf->mirrors[dev].rdev;
3058			if (bio == IO_MADE_GOOD) {
3059				rdev_clear_badblocks(
3060					rdev,
3061					r10_bio->devs[m].addr,
3062					r10_bio->sectors, 0);
3063				rdev_dec_pending(rdev, conf->mddev);
3064			} else if (bio != NULL && bio->bi_status) {
3065				fail = true;
3066				if (!narrow_write_error(r10_bio, m)) {
3067					md_error(conf->mddev, rdev);
3068					set_bit(R10BIO_Degraded,
3069						&r10_bio->state);
3070				}
3071				rdev_dec_pending(rdev, conf->mddev);
3072			}
3073			bio = r10_bio->devs[m].repl_bio;
3074			rdev = conf->mirrors[dev].replacement;
3075			if (rdev && bio == IO_MADE_GOOD) {
3076				rdev_clear_badblocks(
3077					rdev,
3078					r10_bio->devs[m].addr,
3079					r10_bio->sectors, 0);
3080				rdev_dec_pending(rdev, conf->mddev);
3081			}
3082		}
3083		if (fail) {
3084			spin_lock_irq(&conf->device_lock);
3085			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3086			conf->nr_queued++;
3087			spin_unlock_irq(&conf->device_lock);
3088			/*
3089			 * In case freeze_array() is waiting for condition
3090			 * nr_pending == nr_queued + extra to be true.
3091			 */
3092			wake_up(&conf->wait_barrier);
3093			md_wakeup_thread(conf->mddev->thread);
3094		} else {
3095			if (test_bit(R10BIO_WriteError,
3096				     &r10_bio->state))
3097				close_write(r10_bio);
3098			raid_end_bio_io(r10_bio);
3099		}
3100	}
3101}
3102
3103static void raid10d(struct md_thread *thread)
3104{
3105	struct mddev *mddev = thread->mddev;
3106	struct r10bio *r10_bio;
3107	unsigned long flags;
3108	struct r10conf *conf = mddev->private;
3109	struct list_head *head = &conf->retry_list;
3110	struct blk_plug plug;
3111
3112	md_check_recovery(mddev);
3113
3114	if (!list_empty_careful(&conf->bio_end_io_list) &&
3115	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3116		LIST_HEAD(tmp);
3117		spin_lock_irqsave(&conf->device_lock, flags);
3118		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3119			while (!list_empty(&conf->bio_end_io_list)) {
3120				list_move(conf->bio_end_io_list.prev, &tmp);
3121				conf->nr_queued--;
3122			}
3123		}
3124		spin_unlock_irqrestore(&conf->device_lock, flags);
3125		while (!list_empty(&tmp)) {
3126			r10_bio = list_first_entry(&tmp, struct r10bio,
3127						   retry_list);
3128			list_del(&r10_bio->retry_list);
3129			if (mddev->degraded)
3130				set_bit(R10BIO_Degraded, &r10_bio->state);
3131
3132			if (test_bit(R10BIO_WriteError,
3133				     &r10_bio->state))
3134				close_write(r10_bio);
3135			raid_end_bio_io(r10_bio);
3136		}
3137	}
3138
3139	blk_start_plug(&plug);
3140	for (;;) {
3141
3142		flush_pending_writes(conf);
3143
3144		spin_lock_irqsave(&conf->device_lock, flags);
3145		if (list_empty(head)) {
3146			spin_unlock_irqrestore(&conf->device_lock, flags);
3147			break;
3148		}
3149		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3150		list_del(head->prev);
3151		conf->nr_queued--;
3152		spin_unlock_irqrestore(&conf->device_lock, flags);
3153
3154		mddev = r10_bio->mddev;
3155		conf = mddev->private;
3156		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3157		    test_bit(R10BIO_WriteError, &r10_bio->state))
3158			handle_write_completed(conf, r10_bio);
3159		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3160			reshape_request_write(mddev, r10_bio);
3161		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3162			sync_request_write(mddev, r10_bio);
3163		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3164			recovery_request_write(mddev, r10_bio);
3165		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3166			handle_read_error(mddev, r10_bio);
3167		else
3168			WARN_ON_ONCE(1);
3169
3170		cond_resched();
3171		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3172			md_check_recovery(mddev);
3173	}
3174	blk_finish_plug(&plug);
3175}
3176
3177static int init_resync(struct r10conf *conf)
3178{
3179	int ret, buffs, i;
3180
3181	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3182	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3183	conf->have_replacement = 0;
3184	for (i = 0; i < conf->geo.raid_disks; i++)
3185		if (conf->mirrors[i].replacement)
3186			conf->have_replacement = 1;
3187	ret = mempool_init(&conf->r10buf_pool, buffs,
3188			   r10buf_pool_alloc, r10buf_pool_free, conf);
3189	if (ret)
3190		return ret;
3191	conf->next_resync = 0;
3192	return 0;
3193}
3194
3195static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3196{
3197	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3198	struct rsync_pages *rp;
3199	struct bio *bio;
3200	int nalloc;
3201	int i;
3202
3203	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3204	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3205		nalloc = conf->copies; /* resync */
3206	else
3207		nalloc = 2; /* recovery */
3208
3209	for (i = 0; i < nalloc; i++) {
3210		bio = r10bio->devs[i].bio;
3211		rp = bio->bi_private;
3212		bio_reset(bio, NULL, 0);
3213		bio->bi_private = rp;
3214		bio = r10bio->devs[i].repl_bio;
3215		if (bio) {
3216			rp = bio->bi_private;
3217			bio_reset(bio, NULL, 0);
3218			bio->bi_private = rp;
3219		}
3220	}
3221	return r10bio;
3222}
3223
3224/*
3225 * Set cluster_sync_high since we need other nodes to add the
3226 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3227 */
3228static void raid10_set_cluster_sync_high(struct r10conf *conf)
3229{
3230	sector_t window_size;
3231	int extra_chunk, chunks;
3232
3233	/*
3234	 * First, here we define "stripe" as a unit which across
3235	 * all member devices one time, so we get chunks by use
3236	 * raid_disks / near_copies. Otherwise, if near_copies is
3237	 * close to raid_disks, then resync window could increases
3238	 * linearly with the increase of raid_disks, which means
3239	 * we will suspend a really large IO window while it is not
3240	 * necessary. If raid_disks is not divisible by near_copies,
3241	 * an extra chunk is needed to ensure the whole "stripe" is
3242	 * covered.
3243	 */
3244
3245	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3246	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3247		extra_chunk = 0;
3248	else
3249		extra_chunk = 1;
3250	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3251
3252	/*
3253	 * At least use a 32M window to align with raid1's resync window
3254	 */
3255	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3256			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3257
3258	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3259}
3260
3261/*
3262 * perform a "sync" on one "block"
3263 *
3264 * We need to make sure that no normal I/O request - particularly write
3265 * requests - conflict with active sync requests.
3266 *
3267 * This is achieved by tracking pending requests and a 'barrier' concept
3268 * that can be installed to exclude normal IO requests.
3269 *
3270 * Resync and recovery are handled very differently.
3271 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3272 *
3273 * For resync, we iterate over virtual addresses, read all copies,
3274 * and update if there are differences.  If only one copy is live,
3275 * skip it.
3276 * For recovery, we iterate over physical addresses, read a good
3277 * value for each non-in_sync drive, and over-write.
3278 *
3279 * So, for recovery we may have several outstanding complex requests for a
3280 * given address, one for each out-of-sync device.  We model this by allocating
3281 * a number of r10_bio structures, one for each out-of-sync device.
3282 * As we setup these structures, we collect all bio's together into a list
3283 * which we then process collectively to add pages, and then process again
3284 * to pass to submit_bio_noacct.
3285 *
3286 * The r10_bio structures are linked using a borrowed master_bio pointer.
3287 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3288 * has its remaining count decremented to 0, the whole complex operation
3289 * is complete.
3290 *
3291 */
3292
3293static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3294			     int *skipped)
3295{
3296	struct r10conf *conf = mddev->private;
3297	struct r10bio *r10_bio;
3298	struct bio *biolist = NULL, *bio;
3299	sector_t max_sector, nr_sectors;
3300	int i;
3301	int max_sync;
3302	sector_t sync_blocks;
3303	sector_t sectors_skipped = 0;
3304	int chunks_skipped = 0;
3305	sector_t chunk_mask = conf->geo.chunk_mask;
3306	int page_idx = 0;
3307	int error_disk = -1;
3308
3309	/*
3310	 * Allow skipping a full rebuild for incremental assembly
3311	 * of a clean array, like RAID1 does.
3312	 */
3313	if (mddev->bitmap == NULL &&
3314	    mddev->recovery_cp == MaxSector &&
3315	    mddev->reshape_position == MaxSector &&
3316	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3317	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3318	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3319	    conf->fullsync == 0) {
3320		*skipped = 1;
3321		return mddev->dev_sectors - sector_nr;
3322	}
3323
3324	if (!mempool_initialized(&conf->r10buf_pool))
3325		if (init_resync(conf))
3326			return 0;
3327
3328 skipped:
3329	max_sector = mddev->dev_sectors;
3330	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3331	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3332		max_sector = mddev->resync_max_sectors;
3333	if (sector_nr >= max_sector) {
3334		conf->cluster_sync_low = 0;
3335		conf->cluster_sync_high = 0;
3336
3337		/* If we aborted, we need to abort the
3338		 * sync on the 'current' bitmap chucks (there can
3339		 * be several when recovering multiple devices).
3340		 * as we may have started syncing it but not finished.
3341		 * We can find the current address in
3342		 * mddev->curr_resync, but for recovery,
3343		 * we need to convert that to several
3344		 * virtual addresses.
3345		 */
3346		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3347			end_reshape(conf);
3348			close_sync(conf);
3349			return 0;
3350		}
3351
3352		if (mddev->curr_resync < max_sector) { /* aborted */
3353			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3354				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3355						   &sync_blocks, 1);
3356			else for (i = 0; i < conf->geo.raid_disks; i++) {
3357				sector_t sect =
3358					raid10_find_virt(conf, mddev->curr_resync, i);
3359				md_bitmap_end_sync(mddev->bitmap, sect,
3360						   &sync_blocks, 1);
3361			}
3362		} else {
3363			/* completed sync */
3364			if ((!mddev->bitmap || conf->fullsync)
3365			    && conf->have_replacement
3366			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3367				/* Completed a full sync so the replacements
3368				 * are now fully recovered.
3369				 */
3370				rcu_read_lock();
3371				for (i = 0; i < conf->geo.raid_disks; i++) {
3372					struct md_rdev *rdev =
3373						rcu_dereference(conf->mirrors[i].replacement);
3374					if (rdev)
3375						rdev->recovery_offset = MaxSector;
3376				}
3377				rcu_read_unlock();
3378			}
3379			conf->fullsync = 0;
3380		}
3381		md_bitmap_close_sync(mddev->bitmap);
3382		close_sync(conf);
3383		*skipped = 1;
3384		return sectors_skipped;
3385	}
3386
3387	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3388		return reshape_request(mddev, sector_nr, skipped);
3389
3390	if (chunks_skipped >= conf->geo.raid_disks) {
3391		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3392			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3393		if (error_disk >= 0 &&
3394		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3395			/*
3396			 * recovery fails, set mirrors.recovery_disabled,
3397			 * device shouldn't be added to there.
3398			 */
3399			conf->mirrors[error_disk].recovery_disabled =
3400						mddev->recovery_disabled;
3401			return 0;
3402		}
3403		/*
3404		 * if there has been nothing to do on any drive,
3405		 * then there is nothing to do at all.
3406		 */
3407		*skipped = 1;
3408		return (max_sector - sector_nr) + sectors_skipped;
3409	}
3410
3411	if (max_sector > mddev->resync_max)
3412		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3413
3414	/* make sure whole request will fit in a chunk - if chunks
3415	 * are meaningful
3416	 */
3417	if (conf->geo.near_copies < conf->geo.raid_disks &&
3418	    max_sector > (sector_nr | chunk_mask))
3419		max_sector = (sector_nr | chunk_mask) + 1;
3420
3421	/*
3422	 * If there is non-resync activity waiting for a turn, then let it
3423	 * though before starting on this new sync request.
3424	 */
3425	if (conf->nr_waiting)
3426		schedule_timeout_uninterruptible(1);
3427
3428	/* Again, very different code for resync and recovery.
3429	 * Both must result in an r10bio with a list of bios that
3430	 * have bi_end_io, bi_sector, bi_bdev set,
3431	 * and bi_private set to the r10bio.
3432	 * For recovery, we may actually create several r10bios
3433	 * with 2 bios in each, that correspond to the bios in the main one.
3434	 * In this case, the subordinate r10bios link back through a
3435	 * borrowed master_bio pointer, and the counter in the master
3436	 * includes a ref from each subordinate.
3437	 */
3438	/* First, we decide what to do and set ->bi_end_io
3439	 * To end_sync_read if we want to read, and
3440	 * end_sync_write if we will want to write.
3441	 */
3442
3443	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3444	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445		/* recovery... the complicated one */
3446		int j;
3447		r10_bio = NULL;
3448
3449		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3450			int still_degraded;
3451			struct r10bio *rb2;
3452			sector_t sect;
3453			int must_sync;
3454			int any_working;
3455			struct raid10_info *mirror = &conf->mirrors[i];
3456			struct md_rdev *mrdev, *mreplace;
3457
3458			rcu_read_lock();
3459			mrdev = rcu_dereference(mirror->rdev);
3460			mreplace = rcu_dereference(mirror->replacement);
3461
3462			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3463			    test_bit(In_sync, &mrdev->flags)))
3464				mrdev = NULL;
3465			if (mreplace && test_bit(Faulty, &mreplace->flags))
3466				mreplace = NULL;
3467
3468			if (!mrdev && !mreplace) {
3469				rcu_read_unlock();
3470				continue;
3471			}
3472
3473			still_degraded = 0;
3474			/* want to reconstruct this device */
3475			rb2 = r10_bio;
3476			sect = raid10_find_virt(conf, sector_nr, i);
3477			if (sect >= mddev->resync_max_sectors) {
3478				/* last stripe is not complete - don't
3479				 * try to recover this sector.
3480				 */
3481				rcu_read_unlock();
3482				continue;
3483			}
3484			/* Unless we are doing a full sync, or a replacement
3485			 * we only need to recover the block if it is set in
3486			 * the bitmap
3487			 */
3488			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3489							 &sync_blocks, 1);
3490			if (sync_blocks < max_sync)
3491				max_sync = sync_blocks;
3492			if (!must_sync &&
3493			    mreplace == NULL &&
3494			    !conf->fullsync) {
3495				/* yep, skip the sync_blocks here, but don't assume
3496				 * that there will never be anything to do here
3497				 */
3498				chunks_skipped = -1;
3499				rcu_read_unlock();
3500				continue;
3501			}
3502			if (mrdev)
3503				atomic_inc(&mrdev->nr_pending);
3504			if (mreplace)
3505				atomic_inc(&mreplace->nr_pending);
3506			rcu_read_unlock();
3507
3508			r10_bio = raid10_alloc_init_r10buf(conf);
3509			r10_bio->state = 0;
3510			raise_barrier(conf, rb2 != NULL);
3511			atomic_set(&r10_bio->remaining, 0);
3512
3513			r10_bio->master_bio = (struct bio*)rb2;
3514			if (rb2)
3515				atomic_inc(&rb2->remaining);
3516			r10_bio->mddev = mddev;
3517			set_bit(R10BIO_IsRecover, &r10_bio->state);
3518			r10_bio->sector = sect;
3519
3520			raid10_find_phys(conf, r10_bio);
3521
3522			/* Need to check if the array will still be
3523			 * degraded
3524			 */
3525			rcu_read_lock();
3526			for (j = 0; j < conf->geo.raid_disks; j++) {
3527				struct md_rdev *rdev = rcu_dereference(
3528					conf->mirrors[j].rdev);
3529				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3530					still_degraded = 1;
3531					break;
3532				}
3533			}
3534
3535			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3536							 &sync_blocks, still_degraded);
3537
3538			any_working = 0;
3539			for (j=0; j<conf->copies;j++) {
3540				int k;
3541				int d = r10_bio->devs[j].devnum;
3542				sector_t from_addr, to_addr;
3543				struct md_rdev *rdev =
3544					rcu_dereference(conf->mirrors[d].rdev);
3545				sector_t sector, first_bad;
3546				int bad_sectors;
3547				if (!rdev ||
3548				    !test_bit(In_sync, &rdev->flags))
3549					continue;
3550				/* This is where we read from */
3551				any_working = 1;
3552				sector = r10_bio->devs[j].addr;
3553
3554				if (is_badblock(rdev, sector, max_sync,
3555						&first_bad, &bad_sectors)) {
3556					if (first_bad > sector)
3557						max_sync = first_bad - sector;
3558					else {
3559						bad_sectors -= (sector
3560								- first_bad);
3561						if (max_sync > bad_sectors)
3562							max_sync = bad_sectors;
3563						continue;
3564					}
3565				}
3566				bio = r10_bio->devs[0].bio;
3567				bio->bi_next = biolist;
3568				biolist = bio;
3569				bio->bi_end_io = end_sync_read;
3570				bio->bi_opf = REQ_OP_READ;
3571				if (test_bit(FailFast, &rdev->flags))
3572					bio->bi_opf |= MD_FAILFAST;
3573				from_addr = r10_bio->devs[j].addr;
3574				bio->bi_iter.bi_sector = from_addr +
3575					rdev->data_offset;
3576				bio_set_dev(bio, rdev->bdev);
3577				atomic_inc(&rdev->nr_pending);
3578				/* and we write to 'i' (if not in_sync) */
3579
3580				for (k=0; k<conf->copies; k++)
3581					if (r10_bio->devs[k].devnum == i)
3582						break;
3583				BUG_ON(k == conf->copies);
3584				to_addr = r10_bio->devs[k].addr;
3585				r10_bio->devs[0].devnum = d;
3586				r10_bio->devs[0].addr = from_addr;
3587				r10_bio->devs[1].devnum = i;
3588				r10_bio->devs[1].addr = to_addr;
3589
3590				if (mrdev) {
3591					bio = r10_bio->devs[1].bio;
3592					bio->bi_next = biolist;
3593					biolist = bio;
3594					bio->bi_end_io = end_sync_write;
3595					bio->bi_opf = REQ_OP_WRITE;
3596					bio->bi_iter.bi_sector = to_addr
3597						+ mrdev->data_offset;
3598					bio_set_dev(bio, mrdev->bdev);
3599					atomic_inc(&r10_bio->remaining);
3600				} else
3601					r10_bio->devs[1].bio->bi_end_io = NULL;
3602
3603				/* and maybe write to replacement */
3604				bio = r10_bio->devs[1].repl_bio;
3605				if (bio)
3606					bio->bi_end_io = NULL;
3607				/* Note: if replace is not NULL, then bio
3608				 * cannot be NULL as r10buf_pool_alloc will
3609				 * have allocated it.
3610				 */
3611				if (!mreplace)
3612					break;
3613				bio->bi_next = biolist;
3614				biolist = bio;
3615				bio->bi_end_io = end_sync_write;
3616				bio->bi_opf = REQ_OP_WRITE;
3617				bio->bi_iter.bi_sector = to_addr +
3618					mreplace->data_offset;
3619				bio_set_dev(bio, mreplace->bdev);
3620				atomic_inc(&r10_bio->remaining);
3621				break;
3622			}
3623			rcu_read_unlock();
3624			if (j == conf->copies) {
3625				/* Cannot recover, so abort the recovery or
3626				 * record a bad block */
3627				if (any_working) {
3628					/* problem is that there are bad blocks
3629					 * on other device(s)
3630					 */
3631					int k;
3632					for (k = 0; k < conf->copies; k++)
3633						if (r10_bio->devs[k].devnum == i)
3634							break;
3635					if (mrdev && !test_bit(In_sync,
3636						      &mrdev->flags)
3637					    && !rdev_set_badblocks(
3638						    mrdev,
3639						    r10_bio->devs[k].addr,
3640						    max_sync, 0))
3641						any_working = 0;
3642					if (mreplace &&
3643					    !rdev_set_badblocks(
3644						    mreplace,
3645						    r10_bio->devs[k].addr,
3646						    max_sync, 0))
3647						any_working = 0;
3648				}
3649				if (!any_working)  {
3650					if (!test_and_set_bit(MD_RECOVERY_INTR,
3651							      &mddev->recovery))
3652						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3653						       mdname(mddev));
3654					mirror->recovery_disabled
3655						= mddev->recovery_disabled;
3656				} else {
3657					error_disk = i;
3658				}
3659				put_buf(r10_bio);
3660				if (rb2)
3661					atomic_dec(&rb2->remaining);
3662				r10_bio = rb2;
3663				if (mrdev)
3664					rdev_dec_pending(mrdev, mddev);
3665				if (mreplace)
3666					rdev_dec_pending(mreplace, mddev);
3667				break;
3668			}
3669			if (mrdev)
3670				rdev_dec_pending(mrdev, mddev);
3671			if (mreplace)
3672				rdev_dec_pending(mreplace, mddev);
3673			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3674				/* Only want this if there is elsewhere to
3675				 * read from. 'j' is currently the first
3676				 * readable copy.
3677				 */
3678				int targets = 1;
3679				for (; j < conf->copies; j++) {
3680					int d = r10_bio->devs[j].devnum;
3681					if (conf->mirrors[d].rdev &&
3682					    test_bit(In_sync,
3683						      &conf->mirrors[d].rdev->flags))
3684						targets++;
3685				}
3686				if (targets == 1)
3687					r10_bio->devs[0].bio->bi_opf
3688						&= ~MD_FAILFAST;
3689			}
3690		}
3691		if (biolist == NULL) {
3692			while (r10_bio) {
3693				struct r10bio *rb2 = r10_bio;
3694				r10_bio = (struct r10bio*) rb2->master_bio;
3695				rb2->master_bio = NULL;
3696				put_buf(rb2);
3697			}
3698			goto giveup;
3699		}
3700	} else {
3701		/* resync. Schedule a read for every block at this virt offset */
3702		int count = 0;
3703
3704		/*
3705		 * Since curr_resync_completed could probably not update in
3706		 * time, and we will set cluster_sync_low based on it.
3707		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3708		 * safety reason, which ensures curr_resync_completed is
3709		 * updated in bitmap_cond_end_sync.
3710		 */
3711		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3712					mddev_is_clustered(mddev) &&
3713					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3714
3715		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3716					  &sync_blocks, mddev->degraded) &&
3717		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3718						 &mddev->recovery)) {
3719			/* We can skip this block */
3720			*skipped = 1;
3721			return sync_blocks + sectors_skipped;
3722		}
3723		if (sync_blocks < max_sync)
3724			max_sync = sync_blocks;
3725		r10_bio = raid10_alloc_init_r10buf(conf);
3726		r10_bio->state = 0;
3727
3728		r10_bio->mddev = mddev;
3729		atomic_set(&r10_bio->remaining, 0);
3730		raise_barrier(conf, 0);
3731		conf->next_resync = sector_nr;
3732
3733		r10_bio->master_bio = NULL;
3734		r10_bio->sector = sector_nr;
3735		set_bit(R10BIO_IsSync, &r10_bio->state);
3736		raid10_find_phys(conf, r10_bio);
3737		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3738
3739		for (i = 0; i < conf->copies; i++) {
3740			int d = r10_bio->devs[i].devnum;
3741			sector_t first_bad, sector;
3742			int bad_sectors;
3743			struct md_rdev *rdev;
3744
3745			if (r10_bio->devs[i].repl_bio)
3746				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3747
3748			bio = r10_bio->devs[i].bio;
3749			bio->bi_status = BLK_STS_IOERR;
3750			rcu_read_lock();
3751			rdev = rcu_dereference(conf->mirrors[d].rdev);
3752			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3753				rcu_read_unlock();
3754				continue;
3755			}
3756			sector = r10_bio->devs[i].addr;
3757			if (is_badblock(rdev, sector, max_sync,
3758					&first_bad, &bad_sectors)) {
3759				if (first_bad > sector)
3760					max_sync = first_bad - sector;
3761				else {
3762					bad_sectors -= (sector - first_bad);
3763					if (max_sync > bad_sectors)
3764						max_sync = bad_sectors;
3765					rcu_read_unlock();
3766					continue;
3767				}
3768			}
3769			atomic_inc(&rdev->nr_pending);
3770			atomic_inc(&r10_bio->remaining);
3771			bio->bi_next = biolist;
3772			biolist = bio;
3773			bio->bi_end_io = end_sync_read;
3774			bio->bi_opf = REQ_OP_READ;
3775			if (test_bit(FailFast, &rdev->flags))
3776				bio->bi_opf |= MD_FAILFAST;
3777			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3778			bio_set_dev(bio, rdev->bdev);
3779			count++;
3780
3781			rdev = rcu_dereference(conf->mirrors[d].replacement);
3782			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3783				rcu_read_unlock();
3784				continue;
3785			}
3786			atomic_inc(&rdev->nr_pending);
3787
3788			/* Need to set up for writing to the replacement */
3789			bio = r10_bio->devs[i].repl_bio;
3790			bio->bi_status = BLK_STS_IOERR;
3791
3792			sector = r10_bio->devs[i].addr;
3793			bio->bi_next = biolist;
3794			biolist = bio;
3795			bio->bi_end_io = end_sync_write;
3796			bio->bi_opf = REQ_OP_WRITE;
3797			if (test_bit(FailFast, &rdev->flags))
3798				bio->bi_opf |= MD_FAILFAST;
3799			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3800			bio_set_dev(bio, rdev->bdev);
3801			count++;
3802			rcu_read_unlock();
3803		}
3804
3805		if (count < 2) {
3806			for (i=0; i<conf->copies; i++) {
3807				int d = r10_bio->devs[i].devnum;
3808				if (r10_bio->devs[i].bio->bi_end_io)
3809					rdev_dec_pending(conf->mirrors[d].rdev,
3810							 mddev);
3811				if (r10_bio->devs[i].repl_bio &&
3812				    r10_bio->devs[i].repl_bio->bi_end_io)
3813					rdev_dec_pending(
3814						conf->mirrors[d].replacement,
3815						mddev);
3816			}
3817			put_buf(r10_bio);
3818			biolist = NULL;
3819			goto giveup;
3820		}
3821	}
3822
3823	nr_sectors = 0;
3824	if (sector_nr + max_sync < max_sector)
3825		max_sector = sector_nr + max_sync;
3826	do {
3827		struct page *page;
3828		int len = PAGE_SIZE;
3829		if (sector_nr + (len>>9) > max_sector)
3830			len = (max_sector - sector_nr) << 9;
3831		if (len == 0)
3832			break;
3833		for (bio= biolist ; bio ; bio=bio->bi_next) {
3834			struct resync_pages *rp = get_resync_pages(bio);
3835			page = resync_fetch_page(rp, page_idx);
3836			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3837				bio->bi_status = BLK_STS_RESOURCE;
3838				bio_endio(bio);
3839				goto giveup;
3840			}
3841		}
3842		nr_sectors += len>>9;
3843		sector_nr += len>>9;
3844	} while (++page_idx < RESYNC_PAGES);
3845	r10_bio->sectors = nr_sectors;
3846
3847	if (mddev_is_clustered(mddev) &&
3848	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3849		/* It is resync not recovery */
3850		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3851			conf->cluster_sync_low = mddev->curr_resync_completed;
3852			raid10_set_cluster_sync_high(conf);
3853			/* Send resync message */
3854			md_cluster_ops->resync_info_update(mddev,
3855						conf->cluster_sync_low,
3856						conf->cluster_sync_high);
3857		}
3858	} else if (mddev_is_clustered(mddev)) {
3859		/* This is recovery not resync */
3860		sector_t sect_va1, sect_va2;
3861		bool broadcast_msg = false;
3862
3863		for (i = 0; i < conf->geo.raid_disks; i++) {
3864			/*
3865			 * sector_nr is a device address for recovery, so we
3866			 * need translate it to array address before compare
3867			 * with cluster_sync_high.
3868			 */
3869			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3870
3871			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3872				broadcast_msg = true;
3873				/*
3874				 * curr_resync_completed is similar as
3875				 * sector_nr, so make the translation too.
3876				 */
3877				sect_va2 = raid10_find_virt(conf,
3878					mddev->curr_resync_completed, i);
3879
3880				if (conf->cluster_sync_low == 0 ||
3881				    conf->cluster_sync_low > sect_va2)
3882					conf->cluster_sync_low = sect_va2;
3883			}
3884		}
3885		if (broadcast_msg) {
3886			raid10_set_cluster_sync_high(conf);
3887			md_cluster_ops->resync_info_update(mddev,
3888						conf->cluster_sync_low,
3889						conf->cluster_sync_high);
3890		}
3891	}
3892
3893	while (biolist) {
3894		bio = biolist;
3895		biolist = biolist->bi_next;
3896
3897		bio->bi_next = NULL;
3898		r10_bio = get_resync_r10bio(bio);
3899		r10_bio->sectors = nr_sectors;
3900
3901		if (bio->bi_end_io == end_sync_read) {
3902			md_sync_acct_bio(bio, nr_sectors);
3903			bio->bi_status = 0;
3904			submit_bio_noacct(bio);
3905		}
3906	}
3907
3908	if (sectors_skipped)
3909		/* pretend they weren't skipped, it makes
3910		 * no important difference in this case
3911		 */
3912		md_done_sync(mddev, sectors_skipped, 1);
3913
3914	return sectors_skipped + nr_sectors;
3915 giveup:
3916	/* There is nowhere to write, so all non-sync
3917	 * drives must be failed or in resync, all drives
3918	 * have a bad block, so try the next chunk...
3919	 */
3920	if (sector_nr + max_sync < max_sector)
3921		max_sector = sector_nr + max_sync;
3922
3923	sectors_skipped += (max_sector - sector_nr);
3924	chunks_skipped ++;
3925	sector_nr = max_sector;
3926	goto skipped;
3927}
3928
3929static sector_t
3930raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3931{
3932	sector_t size;
3933	struct r10conf *conf = mddev->private;
3934
3935	if (!raid_disks)
3936		raid_disks = min(conf->geo.raid_disks,
3937				 conf->prev.raid_disks);
3938	if (!sectors)
3939		sectors = conf->dev_sectors;
3940
3941	size = sectors >> conf->geo.chunk_shift;
3942	sector_div(size, conf->geo.far_copies);
3943	size = size * raid_disks;
3944	sector_div(size, conf->geo.near_copies);
3945
3946	return size << conf->geo.chunk_shift;
3947}
3948
3949static void calc_sectors(struct r10conf *conf, sector_t size)
3950{
3951	/* Calculate the number of sectors-per-device that will
3952	 * actually be used, and set conf->dev_sectors and
3953	 * conf->stride
3954	 */
3955
3956	size = size >> conf->geo.chunk_shift;
3957	sector_div(size, conf->geo.far_copies);
3958	size = size * conf->geo.raid_disks;
3959	sector_div(size, conf->geo.near_copies);
3960	/* 'size' is now the number of chunks in the array */
3961	/* calculate "used chunks per device" */
3962	size = size * conf->copies;
3963
3964	/* We need to round up when dividing by raid_disks to
3965	 * get the stride size.
3966	 */
3967	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3968
3969	conf->dev_sectors = size << conf->geo.chunk_shift;
3970
3971	if (conf->geo.far_offset)
3972		conf->geo.stride = 1 << conf->geo.chunk_shift;
3973	else {
3974		sector_div(size, conf->geo.far_copies);
3975		conf->geo.stride = size << conf->geo.chunk_shift;
3976	}
3977}
3978
3979enum geo_type {geo_new, geo_old, geo_start};
3980static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3981{
3982	int nc, fc, fo;
3983	int layout, chunk, disks;
3984	switch (new) {
3985	case geo_old:
3986		layout = mddev->layout;
3987		chunk = mddev->chunk_sectors;
3988		disks = mddev->raid_disks - mddev->delta_disks;
3989		break;
3990	case geo_new:
3991		layout = mddev->new_layout;
3992		chunk = mddev->new_chunk_sectors;
3993		disks = mddev->raid_disks;
3994		break;
3995	default: /* avoid 'may be unused' warnings */
3996	case geo_start: /* new when starting reshape - raid_disks not
3997			 * updated yet. */
3998		layout = mddev->new_layout;
3999		chunk = mddev->new_chunk_sectors;
4000		disks = mddev->raid_disks + mddev->delta_disks;
4001		break;
4002	}
4003	if (layout >> 19)
4004		return -1;
4005	if (chunk < (PAGE_SIZE >> 9) ||
4006	    !is_power_of_2(chunk))
4007		return -2;
4008	nc = layout & 255;
4009	fc = (layout >> 8) & 255;
4010	fo = layout & (1<<16);
4011	geo->raid_disks = disks;
4012	geo->near_copies = nc;
4013	geo->far_copies = fc;
4014	geo->far_offset = fo;
4015	switch (layout >> 17) {
4016	case 0:	/* original layout.  simple but not always optimal */
4017		geo->far_set_size = disks;
4018		break;
4019	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
4020		 * actually using this, but leave code here just in case.*/
4021		geo->far_set_size = disks/fc;
4022		WARN(geo->far_set_size < fc,
4023		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
4024		break;
4025	case 2: /* "improved" layout fixed to match documentation */
4026		geo->far_set_size = fc * nc;
4027		break;
4028	default: /* Not a valid layout */
4029		return -1;
4030	}
4031	geo->chunk_mask = chunk - 1;
4032	geo->chunk_shift = ffz(~chunk);
4033	return nc*fc;
4034}
4035
4036static void raid10_free_conf(struct r10conf *conf)
4037{
4038	if (!conf)
4039		return;
4040
4041	mempool_exit(&conf->r10bio_pool);
4042	kfree(conf->mirrors);
4043	kfree(conf->mirrors_old);
4044	kfree(conf->mirrors_new);
4045	safe_put_page(conf->tmppage);
4046	bioset_exit(&conf->bio_split);
4047	kfree(conf);
4048}
4049
4050static struct r10conf *setup_conf(struct mddev *mddev)
4051{
4052	struct r10conf *conf = NULL;
4053	int err = -EINVAL;
4054	struct geom geo;
4055	int copies;
4056
4057	copies = setup_geo(&geo, mddev, geo_new);
4058
4059	if (copies == -2) {
4060		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4061			mdname(mddev), PAGE_SIZE);
4062		goto out;
4063	}
4064
4065	if (copies < 2 || copies > mddev->raid_disks) {
4066		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4067			mdname(mddev), mddev->new_layout);
4068		goto out;
4069	}
4070
4071	err = -ENOMEM;
4072	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4073	if (!conf)
4074		goto out;
4075
4076	/* FIXME calc properly */
4077	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4078				sizeof(struct raid10_info),
4079				GFP_KERNEL);
4080	if (!conf->mirrors)
4081		goto out;
4082
4083	conf->tmppage = alloc_page(GFP_KERNEL);
4084	if (!conf->tmppage)
4085		goto out;
4086
4087	conf->geo = geo;
4088	conf->copies = copies;
4089	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4090			   rbio_pool_free, conf);
4091	if (err)
4092		goto out;
4093
4094	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4095	if (err)
4096		goto out;
4097
4098	calc_sectors(conf, mddev->dev_sectors);
4099	if (mddev->reshape_position == MaxSector) {
4100		conf->prev = conf->geo;
4101		conf->reshape_progress = MaxSector;
4102	} else {
4103		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4104			err = -EINVAL;
4105			goto out;
4106		}
4107		conf->reshape_progress = mddev->reshape_position;
4108		if (conf->prev.far_offset)
4109			conf->prev.stride = 1 << conf->prev.chunk_shift;
4110		else
4111			/* far_copies must be 1 */
4112			conf->prev.stride = conf->dev_sectors;
4113	}
4114	conf->reshape_safe = conf->reshape_progress;
4115	spin_lock_init(&conf->device_lock);
4116	INIT_LIST_HEAD(&conf->retry_list);
4117	INIT_LIST_HEAD(&conf->bio_end_io_list);
4118
4119	seqlock_init(&conf->resync_lock);
4120	init_waitqueue_head(&conf->wait_barrier);
4121	atomic_set(&conf->nr_pending, 0);
4122
4123	err = -ENOMEM;
4124	rcu_assign_pointer(conf->thread,
4125			   md_register_thread(raid10d, mddev, "raid10"));
4126	if (!conf->thread)
4127		goto out;
4128
4129	conf->mddev = mddev;
4130	return conf;
4131
4132 out:
4133	raid10_free_conf(conf);
4134	return ERR_PTR(err);
4135}
4136
4137static void raid10_set_io_opt(struct r10conf *conf)
4138{
4139	int raid_disks = conf->geo.raid_disks;
4140
4141	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4142		raid_disks /= conf->geo.near_copies;
4143	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4144			 raid_disks);
4145}
4146
4147static int raid10_run(struct mddev *mddev)
4148{
4149	struct r10conf *conf;
4150	int i, disk_idx;
4151	struct raid10_info *disk;
4152	struct md_rdev *rdev;
4153	sector_t size;
4154	sector_t min_offset_diff = 0;
4155	int first = 1;
4156
4157	if (mddev_init_writes_pending(mddev) < 0)
4158		return -ENOMEM;
4159
4160	if (mddev->private == NULL) {
4161		conf = setup_conf(mddev);
4162		if (IS_ERR(conf))
4163			return PTR_ERR(conf);
4164		mddev->private = conf;
4165	}
4166	conf = mddev->private;
4167	if (!conf)
4168		goto out;
4169
4170	rcu_assign_pointer(mddev->thread, conf->thread);
4171	rcu_assign_pointer(conf->thread, NULL);
4172
4173	if (mddev_is_clustered(conf->mddev)) {
4174		int fc, fo;
4175
4176		fc = (mddev->layout >> 8) & 255;
4177		fo = mddev->layout & (1<<16);
4178		if (fc > 1 || fo > 0) {
4179			pr_err("only near layout is supported by clustered"
4180				" raid10\n");
4181			goto out_free_conf;
4182		}
4183	}
4184
4185	if (mddev->queue) {
4186		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4187		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4188		raid10_set_io_opt(conf);
4189	}
4190
4191	rdev_for_each(rdev, mddev) {
4192		long long diff;
4193
4194		disk_idx = rdev->raid_disk;
4195		if (disk_idx < 0)
4196			continue;
4197		if (disk_idx >= conf->geo.raid_disks &&
4198		    disk_idx >= conf->prev.raid_disks)
4199			continue;
4200		disk = conf->mirrors + disk_idx;
4201
4202		if (test_bit(Replacement, &rdev->flags)) {
4203			if (disk->replacement)
4204				goto out_free_conf;
4205			disk->replacement = rdev;
4206		} else {
4207			if (disk->rdev)
4208				goto out_free_conf;
4209			disk->rdev = rdev;
4210		}
4211		diff = (rdev->new_data_offset - rdev->data_offset);
4212		if (!mddev->reshape_backwards)
4213			diff = -diff;
4214		if (diff < 0)
4215			diff = 0;
4216		if (first || diff < min_offset_diff)
4217			min_offset_diff = diff;
4218
4219		if (mddev->gendisk)
4220			disk_stack_limits(mddev->gendisk, rdev->bdev,
4221					  rdev->data_offset << 9);
4222
4223		disk->head_position = 0;
4224		first = 0;
4225	}
4226
4227	/* need to check that every block has at least one working mirror */
4228	if (!enough(conf, -1)) {
4229		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4230		       mdname(mddev));
4231		goto out_free_conf;
4232	}
4233
4234	if (conf->reshape_progress != MaxSector) {
4235		/* must ensure that shape change is supported */
4236		if (conf->geo.far_copies != 1 &&
4237		    conf->geo.far_offset == 0)
4238			goto out_free_conf;
4239		if (conf->prev.far_copies != 1 &&
4240		    conf->prev.far_offset == 0)
4241			goto out_free_conf;
4242	}
4243
4244	mddev->degraded = 0;
4245	for (i = 0;
4246	     i < conf->geo.raid_disks
4247		     || i < conf->prev.raid_disks;
4248	     i++) {
4249
4250		disk = conf->mirrors + i;
4251
4252		if (!disk->rdev && disk->replacement) {
4253			/* The replacement is all we have - use it */
4254			disk->rdev = disk->replacement;
4255			disk->replacement = NULL;
4256			clear_bit(Replacement, &disk->rdev->flags);
4257		}
4258
4259		if (!disk->rdev ||
4260		    !test_bit(In_sync, &disk->rdev->flags)) {
4261			disk->head_position = 0;
4262			mddev->degraded++;
4263			if (disk->rdev &&
4264			    disk->rdev->saved_raid_disk < 0)
4265				conf->fullsync = 1;
4266		}
4267
4268		if (disk->replacement &&
4269		    !test_bit(In_sync, &disk->replacement->flags) &&
4270		    disk->replacement->saved_raid_disk < 0) {
4271			conf->fullsync = 1;
4272		}
4273
4274		disk->recovery_disabled = mddev->recovery_disabled - 1;
4275	}
4276
4277	if (mddev->recovery_cp != MaxSector)
4278		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4279			  mdname(mddev));
4280	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4281		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4282		conf->geo.raid_disks);
4283	/*
4284	 * Ok, everything is just fine now
4285	 */
4286	mddev->dev_sectors = conf->dev_sectors;
4287	size = raid10_size(mddev, 0, 0);
4288	md_set_array_sectors(mddev, size);
4289	mddev->resync_max_sectors = size;
4290	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4291
4292	if (md_integrity_register(mddev))
4293		goto out_free_conf;
4294
4295	if (conf->reshape_progress != MaxSector) {
4296		unsigned long before_length, after_length;
4297
4298		before_length = ((1 << conf->prev.chunk_shift) *
4299				 conf->prev.far_copies);
4300		after_length = ((1 << conf->geo.chunk_shift) *
4301				conf->geo.far_copies);
4302
4303		if (max(before_length, after_length) > min_offset_diff) {
4304			/* This cannot work */
4305			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4306			goto out_free_conf;
4307		}
4308		conf->offset_diff = min_offset_diff;
4309
4310		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4313		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4314		rcu_assign_pointer(mddev->sync_thread,
4315			md_register_thread(md_do_sync, mddev, "reshape"));
4316		if (!mddev->sync_thread)
4317			goto out_free_conf;
4318	}
4319
4320	return 0;
4321
4322out_free_conf:
4323	md_unregister_thread(mddev, &mddev->thread);
4324	raid10_free_conf(conf);
4325	mddev->private = NULL;
4326out:
4327	return -EIO;
4328}
4329
4330static void raid10_free(struct mddev *mddev, void *priv)
4331{
4332	raid10_free_conf(priv);
4333}
4334
4335static void raid10_quiesce(struct mddev *mddev, int quiesce)
4336{
4337	struct r10conf *conf = mddev->private;
4338
4339	if (quiesce)
4340		raise_barrier(conf, 0);
4341	else
4342		lower_barrier(conf);
4343}
4344
4345static int raid10_resize(struct mddev *mddev, sector_t sectors)
4346{
4347	/* Resize of 'far' arrays is not supported.
4348	 * For 'near' and 'offset' arrays we can set the
4349	 * number of sectors used to be an appropriate multiple
4350	 * of the chunk size.
4351	 * For 'offset', this is far_copies*chunksize.
4352	 * For 'near' the multiplier is the LCM of
4353	 * near_copies and raid_disks.
4354	 * So if far_copies > 1 && !far_offset, fail.
4355	 * Else find LCM(raid_disks, near_copy)*far_copies and
4356	 * multiply by chunk_size.  Then round to this number.
4357	 * This is mostly done by raid10_size()
4358	 */
4359	struct r10conf *conf = mddev->private;
4360	sector_t oldsize, size;
4361
4362	if (mddev->reshape_position != MaxSector)
4363		return -EBUSY;
4364
4365	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4366		return -EINVAL;
4367
4368	oldsize = raid10_size(mddev, 0, 0);
4369	size = raid10_size(mddev, sectors, 0);
4370	if (mddev->external_size &&
4371	    mddev->array_sectors > size)
4372		return -EINVAL;
4373	if (mddev->bitmap) {
4374		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4375		if (ret)
4376			return ret;
4377	}
4378	md_set_array_sectors(mddev, size);
4379	if (sectors > mddev->dev_sectors &&
4380	    mddev->recovery_cp > oldsize) {
4381		mddev->recovery_cp = oldsize;
4382		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4383	}
4384	calc_sectors(conf, sectors);
4385	mddev->dev_sectors = conf->dev_sectors;
4386	mddev->resync_max_sectors = size;
4387	return 0;
4388}
4389
4390static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4391{
4392	struct md_rdev *rdev;
4393	struct r10conf *conf;
4394
4395	if (mddev->degraded > 0) {
4396		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4397			mdname(mddev));
4398		return ERR_PTR(-EINVAL);
4399	}
4400	sector_div(size, devs);
4401
4402	/* Set new parameters */
4403	mddev->new_level = 10;
4404	/* new layout: far_copies = 1, near_copies = 2 */
4405	mddev->new_layout = (1<<8) + 2;
4406	mddev->new_chunk_sectors = mddev->chunk_sectors;
4407	mddev->delta_disks = mddev->raid_disks;
4408	mddev->raid_disks *= 2;
4409	/* make sure it will be not marked as dirty */
4410	mddev->recovery_cp = MaxSector;
4411	mddev->dev_sectors = size;
4412
4413	conf = setup_conf(mddev);
4414	if (!IS_ERR(conf)) {
4415		rdev_for_each(rdev, mddev)
4416			if (rdev->raid_disk >= 0) {
4417				rdev->new_raid_disk = rdev->raid_disk * 2;
4418				rdev->sectors = size;
4419			}
4420	}
4421
4422	return conf;
4423}
4424
4425static void *raid10_takeover(struct mddev *mddev)
4426{
4427	struct r0conf *raid0_conf;
4428
4429	/* raid10 can take over:
4430	 *  raid0 - providing it has only two drives
4431	 */
4432	if (mddev->level == 0) {
4433		/* for raid0 takeover only one zone is supported */
4434		raid0_conf = mddev->private;
4435		if (raid0_conf->nr_strip_zones > 1) {
4436			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4437				mdname(mddev));
4438			return ERR_PTR(-EINVAL);
4439		}
4440		return raid10_takeover_raid0(mddev,
4441			raid0_conf->strip_zone->zone_end,
4442			raid0_conf->strip_zone->nb_dev);
4443	}
4444	return ERR_PTR(-EINVAL);
4445}
4446
4447static int raid10_check_reshape(struct mddev *mddev)
4448{
4449	/* Called when there is a request to change
4450	 * - layout (to ->new_layout)
4451	 * - chunk size (to ->new_chunk_sectors)
4452	 * - raid_disks (by delta_disks)
4453	 * or when trying to restart a reshape that was ongoing.
4454	 *
4455	 * We need to validate the request and possibly allocate
4456	 * space if that might be an issue later.
4457	 *
4458	 * Currently we reject any reshape of a 'far' mode array,
4459	 * allow chunk size to change if new is generally acceptable,
4460	 * allow raid_disks to increase, and allow
4461	 * a switch between 'near' mode and 'offset' mode.
4462	 */
4463	struct r10conf *conf = mddev->private;
4464	struct geom geo;
4465
4466	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4467		return -EINVAL;
4468
4469	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4470		/* mustn't change number of copies */
4471		return -EINVAL;
4472	if (geo.far_copies > 1 && !geo.far_offset)
4473		/* Cannot switch to 'far' mode */
4474		return -EINVAL;
4475
4476	if (mddev->array_sectors & geo.chunk_mask)
4477			/* not factor of array size */
4478			return -EINVAL;
4479
4480	if (!enough(conf, -1))
4481		return -EINVAL;
4482
4483	kfree(conf->mirrors_new);
4484	conf->mirrors_new = NULL;
4485	if (mddev->delta_disks > 0) {
4486		/* allocate new 'mirrors' list */
4487		conf->mirrors_new =
4488			kcalloc(mddev->raid_disks + mddev->delta_disks,
4489				sizeof(struct raid10_info),
4490				GFP_KERNEL);
4491		if (!conf->mirrors_new)
4492			return -ENOMEM;
4493	}
4494	return 0;
4495}
4496
4497/*
4498 * Need to check if array has failed when deciding whether to:
4499 *  - start an array
4500 *  - remove non-faulty devices
4501 *  - add a spare
4502 *  - allow a reshape
4503 * This determination is simple when no reshape is happening.
4504 * However if there is a reshape, we need to carefully check
4505 * both the before and after sections.
4506 * This is because some failed devices may only affect one
4507 * of the two sections, and some non-in_sync devices may
4508 * be insync in the section most affected by failed devices.
4509 */
4510static int calc_degraded(struct r10conf *conf)
4511{
4512	int degraded, degraded2;
4513	int i;
4514
4515	rcu_read_lock();
4516	degraded = 0;
4517	/* 'prev' section first */
4518	for (i = 0; i < conf->prev.raid_disks; i++) {
4519		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4520		if (!rdev || test_bit(Faulty, &rdev->flags))
4521			degraded++;
4522		else if (!test_bit(In_sync, &rdev->flags))
4523			/* When we can reduce the number of devices in
4524			 * an array, this might not contribute to
4525			 * 'degraded'.  It does now.
4526			 */
4527			degraded++;
4528	}
4529	rcu_read_unlock();
4530	if (conf->geo.raid_disks == conf->prev.raid_disks)
4531		return degraded;
4532	rcu_read_lock();
4533	degraded2 = 0;
4534	for (i = 0; i < conf->geo.raid_disks; i++) {
4535		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4536		if (!rdev || test_bit(Faulty, &rdev->flags))
4537			degraded2++;
4538		else if (!test_bit(In_sync, &rdev->flags)) {
4539			/* If reshape is increasing the number of devices,
4540			 * this section has already been recovered, so
4541			 * it doesn't contribute to degraded.
4542			 * else it does.
4543			 */
4544			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4545				degraded2++;
4546		}
4547	}
4548	rcu_read_unlock();
4549	if (degraded2 > degraded)
4550		return degraded2;
4551	return degraded;
4552}
4553
4554static int raid10_start_reshape(struct mddev *mddev)
4555{
4556	/* A 'reshape' has been requested. This commits
4557	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4558	 * This also checks if there are enough spares and adds them
4559	 * to the array.
4560	 * We currently require enough spares to make the final
4561	 * array non-degraded.  We also require that the difference
4562	 * between old and new data_offset - on each device - is
4563	 * enough that we never risk over-writing.
4564	 */
4565
4566	unsigned long before_length, after_length;
4567	sector_t min_offset_diff = 0;
4568	int first = 1;
4569	struct geom new;
4570	struct r10conf *conf = mddev->private;
4571	struct md_rdev *rdev;
4572	int spares = 0;
4573	int ret;
4574
4575	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4576		return -EBUSY;
4577
4578	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4579		return -EINVAL;
4580
4581	before_length = ((1 << conf->prev.chunk_shift) *
4582			 conf->prev.far_copies);
4583	after_length = ((1 << conf->geo.chunk_shift) *
4584			conf->geo.far_copies);
4585
4586	rdev_for_each(rdev, mddev) {
4587		if (!test_bit(In_sync, &rdev->flags)
4588		    && !test_bit(Faulty, &rdev->flags))
4589			spares++;
4590		if (rdev->raid_disk >= 0) {
4591			long long diff = (rdev->new_data_offset
4592					  - rdev->data_offset);
4593			if (!mddev->reshape_backwards)
4594				diff = -diff;
4595			if (diff < 0)
4596				diff = 0;
4597			if (first || diff < min_offset_diff)
4598				min_offset_diff = diff;
4599			first = 0;
4600		}
4601	}
4602
4603	if (max(before_length, after_length) > min_offset_diff)
4604		return -EINVAL;
4605
4606	if (spares < mddev->delta_disks)
4607		return -EINVAL;
4608
4609	conf->offset_diff = min_offset_diff;
4610	spin_lock_irq(&conf->device_lock);
4611	if (conf->mirrors_new) {
4612		memcpy(conf->mirrors_new, conf->mirrors,
4613		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4614		smp_mb();
4615		kfree(conf->mirrors_old);
4616		conf->mirrors_old = conf->mirrors;
4617		conf->mirrors = conf->mirrors_new;
4618		conf->mirrors_new = NULL;
4619	}
4620	setup_geo(&conf->geo, mddev, geo_start);
4621	smp_mb();
4622	if (mddev->reshape_backwards) {
4623		sector_t size = raid10_size(mddev, 0, 0);
4624		if (size < mddev->array_sectors) {
4625			spin_unlock_irq(&conf->device_lock);
4626			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4627				mdname(mddev));
4628			return -EINVAL;
4629		}
4630		mddev->resync_max_sectors = size;
4631		conf->reshape_progress = size;
4632	} else
4633		conf->reshape_progress = 0;
4634	conf->reshape_safe = conf->reshape_progress;
4635	spin_unlock_irq(&conf->device_lock);
4636
4637	if (mddev->delta_disks && mddev->bitmap) {
4638		struct mdp_superblock_1 *sb = NULL;
4639		sector_t oldsize, newsize;
4640
4641		oldsize = raid10_size(mddev, 0, 0);
4642		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4643
4644		if (!mddev_is_clustered(mddev)) {
4645			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4646			if (ret)
4647				goto abort;
4648			else
4649				goto out;
4650		}
4651
4652		rdev_for_each(rdev, mddev) {
4653			if (rdev->raid_disk > -1 &&
4654			    !test_bit(Faulty, &rdev->flags))
4655				sb = page_address(rdev->sb_page);
4656		}
4657
4658		/*
4659		 * some node is already performing reshape, and no need to
4660		 * call md_bitmap_resize again since it should be called when
4661		 * receiving BITMAP_RESIZE msg
4662		 */
4663		if ((sb && (le32_to_cpu(sb->feature_map) &
4664			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4665			goto out;
4666
4667		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4668		if (ret)
4669			goto abort;
4670
4671		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4672		if (ret) {
4673			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4674			goto abort;
4675		}
4676	}
4677out:
4678	if (mddev->delta_disks > 0) {
4679		rdev_for_each(rdev, mddev)
4680			if (rdev->raid_disk < 0 &&
4681			    !test_bit(Faulty, &rdev->flags)) {
4682				if (raid10_add_disk(mddev, rdev) == 0) {
4683					if (rdev->raid_disk >=
4684					    conf->prev.raid_disks)
4685						set_bit(In_sync, &rdev->flags);
4686					else
4687						rdev->recovery_offset = 0;
4688
4689					/* Failure here is OK */
4690					sysfs_link_rdev(mddev, rdev);
4691				}
4692			} else if (rdev->raid_disk >= conf->prev.raid_disks
4693				   && !test_bit(Faulty, &rdev->flags)) {
4694				/* This is a spare that was manually added */
4695				set_bit(In_sync, &rdev->flags);
4696			}
4697	}
4698	/* When a reshape changes the number of devices,
4699	 * ->degraded is measured against the larger of the
4700	 * pre and  post numbers.
4701	 */
4702	spin_lock_irq(&conf->device_lock);
4703	mddev->degraded = calc_degraded(conf);
4704	spin_unlock_irq(&conf->device_lock);
4705	mddev->raid_disks = conf->geo.raid_disks;
4706	mddev->reshape_position = conf->reshape_progress;
4707	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4708
4709	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4710	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4711	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4712	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4713	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4714
4715	rcu_assign_pointer(mddev->sync_thread,
4716			   md_register_thread(md_do_sync, mddev, "reshape"));
4717	if (!mddev->sync_thread) {
4718		ret = -EAGAIN;
4719		goto abort;
4720	}
4721	conf->reshape_checkpoint = jiffies;
4722	md_wakeup_thread(mddev->sync_thread);
4723	md_new_event();
4724	return 0;
4725
4726abort:
4727	mddev->recovery = 0;
4728	spin_lock_irq(&conf->device_lock);
4729	conf->geo = conf->prev;
4730	mddev->raid_disks = conf->geo.raid_disks;
4731	rdev_for_each(rdev, mddev)
4732		rdev->new_data_offset = rdev->data_offset;
4733	smp_wmb();
4734	conf->reshape_progress = MaxSector;
4735	conf->reshape_safe = MaxSector;
4736	mddev->reshape_position = MaxSector;
4737	spin_unlock_irq(&conf->device_lock);
4738	return ret;
4739}
4740
4741/* Calculate the last device-address that could contain
4742 * any block from the chunk that includes the array-address 's'
4743 * and report the next address.
4744 * i.e. the address returned will be chunk-aligned and after
4745 * any data that is in the chunk containing 's'.
4746 */
4747static sector_t last_dev_address(sector_t s, struct geom *geo)
4748{
4749	s = (s | geo->chunk_mask) + 1;
4750	s >>= geo->chunk_shift;
4751	s *= geo->near_copies;
4752	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4753	s *= geo->far_copies;
4754	s <<= geo->chunk_shift;
4755	return s;
4756}
4757
4758/* Calculate the first device-address that could contain
4759 * any block from the chunk that includes the array-address 's'.
4760 * This too will be the start of a chunk
4761 */
4762static sector_t first_dev_address(sector_t s, struct geom *geo)
4763{
4764	s >>= geo->chunk_shift;
4765	s *= geo->near_copies;
4766	sector_div(s, geo->raid_disks);
4767	s *= geo->far_copies;
4768	s <<= geo->chunk_shift;
4769	return s;
4770}
4771
4772static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4773				int *skipped)
4774{
4775	/* We simply copy at most one chunk (smallest of old and new)
4776	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4777	 * or we hit a bad block or something.
4778	 * This might mean we pause for normal IO in the middle of
4779	 * a chunk, but that is not a problem as mddev->reshape_position
4780	 * can record any location.
4781	 *
4782	 * If we will want to write to a location that isn't
4783	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4784	 * we need to flush all reshape requests and update the metadata.
4785	 *
4786	 * When reshaping forwards (e.g. to more devices), we interpret
4787	 * 'safe' as the earliest block which might not have been copied
4788	 * down yet.  We divide this by previous stripe size and multiply
4789	 * by previous stripe length to get lowest device offset that we
4790	 * cannot write to yet.
4791	 * We interpret 'sector_nr' as an address that we want to write to.
4792	 * From this we use last_device_address() to find where we might
4793	 * write to, and first_device_address on the  'safe' position.
4794	 * If this 'next' write position is after the 'safe' position,
4795	 * we must update the metadata to increase the 'safe' position.
4796	 *
4797	 * When reshaping backwards, we round in the opposite direction
4798	 * and perform the reverse test:  next write position must not be
4799	 * less than current safe position.
4800	 *
4801	 * In all this the minimum difference in data offsets
4802	 * (conf->offset_diff - always positive) allows a bit of slack,
4803	 * so next can be after 'safe', but not by more than offset_diff
4804	 *
4805	 * We need to prepare all the bios here before we start any IO
4806	 * to ensure the size we choose is acceptable to all devices.
4807	 * The means one for each copy for write-out and an extra one for
4808	 * read-in.
4809	 * We store the read-in bio in ->master_bio and the others in
4810	 * ->devs[x].bio and ->devs[x].repl_bio.
4811	 */
4812	struct r10conf *conf = mddev->private;
4813	struct r10bio *r10_bio;
4814	sector_t next, safe, last;
4815	int max_sectors;
4816	int nr_sectors;
4817	int s;
4818	struct md_rdev *rdev;
4819	int need_flush = 0;
4820	struct bio *blist;
4821	struct bio *bio, *read_bio;
4822	int sectors_done = 0;
4823	struct page **pages;
4824
4825	if (sector_nr == 0) {
4826		/* If restarting in the middle, skip the initial sectors */
4827		if (mddev->reshape_backwards &&
4828		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4829			sector_nr = (raid10_size(mddev, 0, 0)
4830				     - conf->reshape_progress);
4831		} else if (!mddev->reshape_backwards &&
4832			   conf->reshape_progress > 0)
4833			sector_nr = conf->reshape_progress;
4834		if (sector_nr) {
4835			mddev->curr_resync_completed = sector_nr;
4836			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4837			*skipped = 1;
4838			return sector_nr;
4839		}
4840	}
4841
4842	/* We don't use sector_nr to track where we are up to
4843	 * as that doesn't work well for ->reshape_backwards.
4844	 * So just use ->reshape_progress.
4845	 */
4846	if (mddev->reshape_backwards) {
4847		/* 'next' is the earliest device address that we might
4848		 * write to for this chunk in the new layout
4849		 */
4850		next = first_dev_address(conf->reshape_progress - 1,
4851					 &conf->geo);
4852
4853		/* 'safe' is the last device address that we might read from
4854		 * in the old layout after a restart
4855		 */
4856		safe = last_dev_address(conf->reshape_safe - 1,
4857					&conf->prev);
4858
4859		if (next + conf->offset_diff < safe)
4860			need_flush = 1;
4861
4862		last = conf->reshape_progress - 1;
4863		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4864					       & conf->prev.chunk_mask);
4865		if (sector_nr + RESYNC_SECTORS < last)
4866			sector_nr = last + 1 - RESYNC_SECTORS;
4867	} else {
4868		/* 'next' is after the last device address that we
4869		 * might write to for this chunk in the new layout
4870		 */
4871		next = last_dev_address(conf->reshape_progress, &conf->geo);
4872
4873		/* 'safe' is the earliest device address that we might
4874		 * read from in the old layout after a restart
4875		 */
4876		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4877
4878		/* Need to update metadata if 'next' might be beyond 'safe'
4879		 * as that would possibly corrupt data
4880		 */
4881		if (next > safe + conf->offset_diff)
4882			need_flush = 1;
4883
4884		sector_nr = conf->reshape_progress;
4885		last  = sector_nr | (conf->geo.chunk_mask
4886				     & conf->prev.chunk_mask);
4887
4888		if (sector_nr + RESYNC_SECTORS <= last)
4889			last = sector_nr + RESYNC_SECTORS - 1;
4890	}
4891
4892	if (need_flush ||
4893	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4894		/* Need to update reshape_position in metadata */
4895		wait_barrier(conf, false);
4896		mddev->reshape_position = conf->reshape_progress;
4897		if (mddev->reshape_backwards)
4898			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4899				- conf->reshape_progress;
4900		else
4901			mddev->curr_resync_completed = conf->reshape_progress;
4902		conf->reshape_checkpoint = jiffies;
4903		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4904		md_wakeup_thread(mddev->thread);
4905		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4906			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4907		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4908			allow_barrier(conf);
4909			return sectors_done;
4910		}
4911		conf->reshape_safe = mddev->reshape_position;
4912		allow_barrier(conf);
4913	}
4914
4915	raise_barrier(conf, 0);
4916read_more:
4917	/* Now schedule reads for blocks from sector_nr to last */
4918	r10_bio = raid10_alloc_init_r10buf(conf);
4919	r10_bio->state = 0;
4920	raise_barrier(conf, 1);
4921	atomic_set(&r10_bio->remaining, 0);
4922	r10_bio->mddev = mddev;
4923	r10_bio->sector = sector_nr;
4924	set_bit(R10BIO_IsReshape, &r10_bio->state);
4925	r10_bio->sectors = last - sector_nr + 1;
4926	rdev = read_balance(conf, r10_bio, &max_sectors);
4927	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4928
4929	if (!rdev) {
4930		/* Cannot read from here, so need to record bad blocks
4931		 * on all the target devices.
4932		 */
4933		// FIXME
4934		mempool_free(r10_bio, &conf->r10buf_pool);
4935		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4936		return sectors_done;
4937	}
4938
4939	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4940				    GFP_KERNEL, &mddev->bio_set);
4941	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4942			       + rdev->data_offset);
4943	read_bio->bi_private = r10_bio;
4944	read_bio->bi_end_io = end_reshape_read;
4945	r10_bio->master_bio = read_bio;
4946	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4947
4948	/*
4949	 * Broadcast RESYNC message to other nodes, so all nodes would not
4950	 * write to the region to avoid conflict.
4951	*/
4952	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4953		struct mdp_superblock_1 *sb = NULL;
4954		int sb_reshape_pos = 0;
4955
4956		conf->cluster_sync_low = sector_nr;
4957		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4958		sb = page_address(rdev->sb_page);
4959		if (sb) {
4960			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4961			/*
4962			 * Set cluster_sync_low again if next address for array
4963			 * reshape is less than cluster_sync_low. Since we can't
4964			 * update cluster_sync_low until it has finished reshape.
4965			 */
4966			if (sb_reshape_pos < conf->cluster_sync_low)
4967				conf->cluster_sync_low = sb_reshape_pos;
4968		}
4969
4970		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4971							  conf->cluster_sync_high);
4972	}
4973
4974	/* Now find the locations in the new layout */
4975	__raid10_find_phys(&conf->geo, r10_bio);
4976
4977	blist = read_bio;
4978	read_bio->bi_next = NULL;
4979
4980	rcu_read_lock();
4981	for (s = 0; s < conf->copies*2; s++) {
4982		struct bio *b;
4983		int d = r10_bio->devs[s/2].devnum;
4984		struct md_rdev *rdev2;
4985		if (s&1) {
4986			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4987			b = r10_bio->devs[s/2].repl_bio;
4988		} else {
4989			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4990			b = r10_bio->devs[s/2].bio;
4991		}
4992		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4993			continue;
4994
4995		bio_set_dev(b, rdev2->bdev);
4996		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4997			rdev2->new_data_offset;
4998		b->bi_end_io = end_reshape_write;
4999		b->bi_opf = REQ_OP_WRITE;
5000		b->bi_next = blist;
5001		blist = b;
5002	}
5003
5004	/* Now add as many pages as possible to all of these bios. */
5005
5006	nr_sectors = 0;
5007	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5008	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
5009		struct page *page = pages[s / (PAGE_SIZE >> 9)];
5010		int len = (max_sectors - s) << 9;
5011		if (len > PAGE_SIZE)
5012			len = PAGE_SIZE;
5013		for (bio = blist; bio ; bio = bio->bi_next) {
5014			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5015				bio->bi_status = BLK_STS_RESOURCE;
5016				bio_endio(bio);
5017				return sectors_done;
5018			}
5019		}
5020		sector_nr += len >> 9;
5021		nr_sectors += len >> 9;
5022	}
5023	rcu_read_unlock();
5024	r10_bio->sectors = nr_sectors;
5025
5026	/* Now submit the read */
5027	md_sync_acct_bio(read_bio, r10_bio->sectors);
5028	atomic_inc(&r10_bio->remaining);
5029	read_bio->bi_next = NULL;
5030	submit_bio_noacct(read_bio);
5031	sectors_done += nr_sectors;
5032	if (sector_nr <= last)
5033		goto read_more;
5034
5035	lower_barrier(conf);
5036
5037	/* Now that we have done the whole section we can
5038	 * update reshape_progress
5039	 */
5040	if (mddev->reshape_backwards)
5041		conf->reshape_progress -= sectors_done;
5042	else
5043		conf->reshape_progress += sectors_done;
5044
5045	return sectors_done;
5046}
5047
5048static void end_reshape_request(struct r10bio *r10_bio);
5049static int handle_reshape_read_error(struct mddev *mddev,
5050				     struct r10bio *r10_bio);
5051static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5052{
5053	/* Reshape read completed.  Hopefully we have a block
5054	 * to write out.
5055	 * If we got a read error then we do sync 1-page reads from
5056	 * elsewhere until we find the data - or give up.
5057	 */
5058	struct r10conf *conf = mddev->private;
5059	int s;
5060
5061	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5062		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5063			/* Reshape has been aborted */
5064			md_done_sync(mddev, r10_bio->sectors, 0);
5065			return;
5066		}
5067
5068	/* We definitely have the data in the pages, schedule the
5069	 * writes.
5070	 */
5071	atomic_set(&r10_bio->remaining, 1);
5072	for (s = 0; s < conf->copies*2; s++) {
5073		struct bio *b;
5074		int d = r10_bio->devs[s/2].devnum;
5075		struct md_rdev *rdev;
5076		rcu_read_lock();
5077		if (s&1) {
5078			rdev = rcu_dereference(conf->mirrors[d].replacement);
5079			b = r10_bio->devs[s/2].repl_bio;
5080		} else {
5081			rdev = rcu_dereference(conf->mirrors[d].rdev);
5082			b = r10_bio->devs[s/2].bio;
5083		}
5084		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5085			rcu_read_unlock();
5086			continue;
5087		}
5088		atomic_inc(&rdev->nr_pending);
5089		rcu_read_unlock();
5090		md_sync_acct_bio(b, r10_bio->sectors);
5091		atomic_inc(&r10_bio->remaining);
5092		b->bi_next = NULL;
5093		submit_bio_noacct(b);
5094	}
5095	end_reshape_request(r10_bio);
5096}
5097
5098static void end_reshape(struct r10conf *conf)
5099{
5100	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5101		return;
5102
5103	spin_lock_irq(&conf->device_lock);
5104	conf->prev = conf->geo;
5105	md_finish_reshape(conf->mddev);
5106	smp_wmb();
5107	conf->reshape_progress = MaxSector;
5108	conf->reshape_safe = MaxSector;
5109	spin_unlock_irq(&conf->device_lock);
5110
5111	if (conf->mddev->queue)
5112		raid10_set_io_opt(conf);
5113	conf->fullsync = 0;
5114}
5115
5116static void raid10_update_reshape_pos(struct mddev *mddev)
5117{
5118	struct r10conf *conf = mddev->private;
5119	sector_t lo, hi;
5120
5121	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5122	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5123	    || mddev->reshape_position == MaxSector)
5124		conf->reshape_progress = mddev->reshape_position;
5125	else
5126		WARN_ON_ONCE(1);
5127}
5128
5129static int handle_reshape_read_error(struct mddev *mddev,
5130				     struct r10bio *r10_bio)
5131{
5132	/* Use sync reads to get the blocks from somewhere else */
5133	int sectors = r10_bio->sectors;
5134	struct r10conf *conf = mddev->private;
5135	struct r10bio *r10b;
5136	int slot = 0;
5137	int idx = 0;
5138	struct page **pages;
5139
5140	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5141	if (!r10b) {
5142		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5143		return -ENOMEM;
5144	}
5145
5146	/* reshape IOs share pages from .devs[0].bio */
5147	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5148
5149	r10b->sector = r10_bio->sector;
5150	__raid10_find_phys(&conf->prev, r10b);
5151
5152	while (sectors) {
5153		int s = sectors;
5154		int success = 0;
5155		int first_slot = slot;
5156
5157		if (s > (PAGE_SIZE >> 9))
5158			s = PAGE_SIZE >> 9;
5159
5160		rcu_read_lock();
5161		while (!success) {
5162			int d = r10b->devs[slot].devnum;
5163			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5164			sector_t addr;
5165			if (rdev == NULL ||
5166			    test_bit(Faulty, &rdev->flags) ||
5167			    !test_bit(In_sync, &rdev->flags))
5168				goto failed;
5169
5170			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5171			atomic_inc(&rdev->nr_pending);
5172			rcu_read_unlock();
5173			success = sync_page_io(rdev,
5174					       addr,
5175					       s << 9,
5176					       pages[idx],
5177					       REQ_OP_READ, false);
5178			rdev_dec_pending(rdev, mddev);
5179			rcu_read_lock();
5180			if (success)
5181				break;
5182		failed:
5183			slot++;
5184			if (slot >= conf->copies)
5185				slot = 0;
5186			if (slot == first_slot)
5187				break;
5188		}
5189		rcu_read_unlock();
5190		if (!success) {
5191			/* couldn't read this block, must give up */
5192			set_bit(MD_RECOVERY_INTR,
5193				&mddev->recovery);
5194			kfree(r10b);
5195			return -EIO;
5196		}
5197		sectors -= s;
5198		idx++;
5199	}
5200	kfree(r10b);
5201	return 0;
5202}
5203
5204static void end_reshape_write(struct bio *bio)
5205{
5206	struct r10bio *r10_bio = get_resync_r10bio(bio);
5207	struct mddev *mddev = r10_bio->mddev;
5208	struct r10conf *conf = mddev->private;
5209	int d;
5210	int slot;
5211	int repl;
5212	struct md_rdev *rdev = NULL;
5213
5214	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5215	if (repl)
5216		rdev = conf->mirrors[d].replacement;
5217	if (!rdev) {
5218		smp_mb();
5219		rdev = conf->mirrors[d].rdev;
5220	}
5221
5222	if (bio->bi_status) {
5223		/* FIXME should record badblock */
5224		md_error(mddev, rdev);
5225	}
5226
5227	rdev_dec_pending(rdev, mddev);
5228	end_reshape_request(r10_bio);
5229}
5230
5231static void end_reshape_request(struct r10bio *r10_bio)
5232{
5233	if (!atomic_dec_and_test(&r10_bio->remaining))
5234		return;
5235	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5236	bio_put(r10_bio->master_bio);
5237	put_buf(r10_bio);
5238}
5239
5240static void raid10_finish_reshape(struct mddev *mddev)
5241{
5242	struct r10conf *conf = mddev->private;
5243
5244	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5245		return;
5246
5247	if (mddev->delta_disks > 0) {
5248		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5249			mddev->recovery_cp = mddev->resync_max_sectors;
5250			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5251		}
5252		mddev->resync_max_sectors = mddev->array_sectors;
5253	} else {
5254		int d;
5255		rcu_read_lock();
5256		for (d = conf->geo.raid_disks ;
5257		     d < conf->geo.raid_disks - mddev->delta_disks;
5258		     d++) {
5259			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5260			if (rdev)
5261				clear_bit(In_sync, &rdev->flags);
5262			rdev = rcu_dereference(conf->mirrors[d].replacement);
5263			if (rdev)
5264				clear_bit(In_sync, &rdev->flags);
5265		}
5266		rcu_read_unlock();
5267	}
5268	mddev->layout = mddev->new_layout;
5269	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5270	mddev->reshape_position = MaxSector;
5271	mddev->delta_disks = 0;
5272	mddev->reshape_backwards = 0;
5273}
5274
5275static struct md_personality raid10_personality =
5276{
5277	.name		= "raid10",
5278	.level		= 10,
5279	.owner		= THIS_MODULE,
5280	.make_request	= raid10_make_request,
5281	.run		= raid10_run,
5282	.free		= raid10_free,
5283	.status		= raid10_status,
5284	.error_handler	= raid10_error,
5285	.hot_add_disk	= raid10_add_disk,
5286	.hot_remove_disk= raid10_remove_disk,
5287	.spare_active	= raid10_spare_active,
5288	.sync_request	= raid10_sync_request,
5289	.quiesce	= raid10_quiesce,
5290	.size		= raid10_size,
5291	.resize		= raid10_resize,
5292	.takeover	= raid10_takeover,
5293	.check_reshape	= raid10_check_reshape,
5294	.start_reshape	= raid10_start_reshape,
5295	.finish_reshape	= raid10_finish_reshape,
5296	.update_reshape_pos = raid10_update_reshape_pos,
5297};
5298
5299static int __init raid_init(void)
5300{
5301	return register_md_personality(&raid10_personality);
5302}
5303
5304static void raid_exit(void)
5305{
5306	unregister_md_personality(&raid10_personality);
5307}
5308
5309module_init(raid_init);
5310module_exit(raid_exit);
5311MODULE_LICENSE("GPL");
5312MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5313MODULE_ALIAS("md-personality-9"); /* RAID10 */
5314MODULE_ALIAS("md-raid10");
5315MODULE_ALIAS("md-level-10");
5316