xref: /kernel/linux/linux-6.6/drivers/md/raid1.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 *      - bitmap marked during normal i/o
20 *      - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS		\
41	((1L << MD_HAS_JOURNAL) |	\
42	 (1L << MD_JOURNAL_CLEAN) |	\
43	 (1L << MD_HAS_PPL) |		\
44	 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...)				\
50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57		     START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60				struct serial_info *si, int idx)
61{
62	unsigned long flags;
63	int ret = 0;
64	sector_t lo = r1_bio->sector;
65	sector_t hi = lo + r1_bio->sectors;
66	struct serial_in_rdev *serial = &rdev->serial[idx];
67
68	spin_lock_irqsave(&serial->serial_lock, flags);
69	/* collision happened */
70	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71		ret = -EBUSY;
72	else {
73		si->start = lo;
74		si->last = hi;
75		raid1_rb_insert(si, &serial->serial_rb);
76	}
77	spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79	return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84	struct mddev *mddev = rdev->mddev;
85	struct serial_info *si;
86	int idx = sector_to_idx(r1_bio->sector);
87	struct serial_in_rdev *serial = &rdev->serial[idx];
88
89	if (WARN_ON(!mddev->serial_info_pool))
90		return;
91	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92	wait_event(serial->serial_io_wait,
93		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98	struct serial_info *si;
99	unsigned long flags;
100	int found = 0;
101	struct mddev *mddev = rdev->mddev;
102	int idx = sector_to_idx(lo);
103	struct serial_in_rdev *serial = &rdev->serial[idx];
104
105	spin_lock_irqsave(&serial->serial_lock, flags);
106	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108		if (si->start == lo && si->last == hi) {
109			raid1_rb_remove(si, &serial->serial_rb);
110			mempool_free(si, mddev->serial_info_pool);
111			found = 1;
112			break;
113		}
114	}
115	if (!found)
116		WARN(1, "The write IO is not recorded for serialization\n");
117	spin_unlock_irqrestore(&serial->serial_lock, flags);
118	wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127	return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132	struct pool_info *pi = data;
133	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135	/* allocate a r1bio with room for raid_disks entries in the bios array */
136	return kzalloc(size, gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148	struct pool_info *pi = data;
149	struct r1bio *r1_bio;
150	struct bio *bio;
151	int need_pages;
152	int j;
153	struct resync_pages *rps;
154
155	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156	if (!r1_bio)
157		return NULL;
158
159	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160			    gfp_flags);
161	if (!rps)
162		goto out_free_r1bio;
163
164	/*
165	 * Allocate bios : 1 for reading, n-1 for writing
166	 */
167	for (j = pi->raid_disks ; j-- ; ) {
168		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169		if (!bio)
170			goto out_free_bio;
171		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172		r1_bio->bios[j] = bio;
173	}
174	/*
175	 * Allocate RESYNC_PAGES data pages and attach them to
176	 * the first bio.
177	 * If this is a user-requested check/repair, allocate
178	 * RESYNC_PAGES for each bio.
179	 */
180	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181		need_pages = pi->raid_disks;
182	else
183		need_pages = 1;
184	for (j = 0; j < pi->raid_disks; j++) {
185		struct resync_pages *rp = &rps[j];
186
187		bio = r1_bio->bios[j];
188
189		if (j < need_pages) {
190			if (resync_alloc_pages(rp, gfp_flags))
191				goto out_free_pages;
192		} else {
193			memcpy(rp, &rps[0], sizeof(*rp));
194			resync_get_all_pages(rp);
195		}
196
197		rp->raid_bio = r1_bio;
198		bio->bi_private = rp;
199	}
200
201	r1_bio->master_bio = NULL;
202
203	return r1_bio;
204
205out_free_pages:
206	while (--j >= 0)
207		resync_free_pages(&rps[j]);
208
209out_free_bio:
210	while (++j < pi->raid_disks) {
211		bio_uninit(r1_bio->bios[j]);
212		kfree(r1_bio->bios[j]);
213	}
214	kfree(rps);
215
216out_free_r1bio:
217	rbio_pool_free(r1_bio, data);
218	return NULL;
219}
220
221static void r1buf_pool_free(void *__r1_bio, void *data)
222{
223	struct pool_info *pi = data;
224	int i;
225	struct r1bio *r1bio = __r1_bio;
226	struct resync_pages *rp = NULL;
227
228	for (i = pi->raid_disks; i--; ) {
229		rp = get_resync_pages(r1bio->bios[i]);
230		resync_free_pages(rp);
231		bio_uninit(r1bio->bios[i]);
232		kfree(r1bio->bios[i]);
233	}
234
235	/* resync pages array stored in the 1st bio's .bi_private */
236	kfree(rp);
237
238	rbio_pool_free(r1bio, data);
239}
240
241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242{
243	int i;
244
245	for (i = 0; i < conf->raid_disks * 2; i++) {
246		struct bio **bio = r1_bio->bios + i;
247		if (!BIO_SPECIAL(*bio))
248			bio_put(*bio);
249		*bio = NULL;
250	}
251}
252
253static void free_r1bio(struct r1bio *r1_bio)
254{
255	struct r1conf *conf = r1_bio->mddev->private;
256
257	put_all_bios(conf, r1_bio);
258	mempool_free(r1_bio, &conf->r1bio_pool);
259}
260
261static void put_buf(struct r1bio *r1_bio)
262{
263	struct r1conf *conf = r1_bio->mddev->private;
264	sector_t sect = r1_bio->sector;
265	int i;
266
267	for (i = 0; i < conf->raid_disks * 2; i++) {
268		struct bio *bio = r1_bio->bios[i];
269		if (bio->bi_end_io)
270			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271	}
272
273	mempool_free(r1_bio, &conf->r1buf_pool);
274
275	lower_barrier(conf, sect);
276}
277
278static void reschedule_retry(struct r1bio *r1_bio)
279{
280	unsigned long flags;
281	struct mddev *mddev = r1_bio->mddev;
282	struct r1conf *conf = mddev->private;
283	int idx;
284
285	idx = sector_to_idx(r1_bio->sector);
286	spin_lock_irqsave(&conf->device_lock, flags);
287	list_add(&r1_bio->retry_list, &conf->retry_list);
288	atomic_inc(&conf->nr_queued[idx]);
289	spin_unlock_irqrestore(&conf->device_lock, flags);
290
291	wake_up(&conf->wait_barrier);
292	md_wakeup_thread(mddev->thread);
293}
294
295/*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
300static void call_bio_endio(struct r1bio *r1_bio)
301{
302	struct bio *bio = r1_bio->master_bio;
303
304	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305		bio->bi_status = BLK_STS_IOERR;
306
307	bio_endio(bio);
308}
309
310static void raid_end_bio_io(struct r1bio *r1_bio)
311{
312	struct bio *bio = r1_bio->master_bio;
313	struct r1conf *conf = r1_bio->mddev->private;
314	sector_t sector = r1_bio->sector;
315
316	/* if nobody has done the final endio yet, do it now */
317	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320			 (unsigned long long) bio->bi_iter.bi_sector,
321			 (unsigned long long) bio_end_sector(bio) - 1);
322
323		call_bio_endio(r1_bio);
324	}
325
326	free_r1bio(r1_bio);
327	/*
328	 * Wake up any possible resync thread that waits for the device
329	 * to go idle.  All I/Os, even write-behind writes, are done.
330	 */
331	allow_barrier(conf, sector);
332}
333
334/*
335 * Update disk head position estimator based on IRQ completion info.
336 */
337static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338{
339	struct r1conf *conf = r1_bio->mddev->private;
340
341	conf->mirrors[disk].head_position =
342		r1_bio->sector + (r1_bio->sectors);
343}
344
345/*
346 * Find the disk number which triggered given bio
347 */
348static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349{
350	int mirror;
351	struct r1conf *conf = r1_bio->mddev->private;
352	int raid_disks = conf->raid_disks;
353
354	for (mirror = 0; mirror < raid_disks * 2; mirror++)
355		if (r1_bio->bios[mirror] == bio)
356			break;
357
358	BUG_ON(mirror == raid_disks * 2);
359	update_head_pos(mirror, r1_bio);
360
361	return mirror;
362}
363
364static void raid1_end_read_request(struct bio *bio)
365{
366	int uptodate = !bio->bi_status;
367	struct r1bio *r1_bio = bio->bi_private;
368	struct r1conf *conf = r1_bio->mddev->private;
369	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370
371	/*
372	 * this branch is our 'one mirror IO has finished' event handler:
373	 */
374	update_head_pos(r1_bio->read_disk, r1_bio);
375
376	if (uptodate)
377		set_bit(R1BIO_Uptodate, &r1_bio->state);
378	else if (test_bit(FailFast, &rdev->flags) &&
379		 test_bit(R1BIO_FailFast, &r1_bio->state))
380		/* This was a fail-fast read so we definitely
381		 * want to retry */
382		;
383	else {
384		/* If all other devices have failed, we want to return
385		 * the error upwards rather than fail the last device.
386		 * Here we redefine "uptodate" to mean "Don't want to retry"
387		 */
388		unsigned long flags;
389		spin_lock_irqsave(&conf->device_lock, flags);
390		if (r1_bio->mddev->degraded == conf->raid_disks ||
391		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392		     test_bit(In_sync, &rdev->flags)))
393			uptodate = 1;
394		spin_unlock_irqrestore(&conf->device_lock, flags);
395	}
396
397	if (uptodate) {
398		raid_end_bio_io(r1_bio);
399		rdev_dec_pending(rdev, conf->mddev);
400	} else {
401		/*
402		 * oops, read error:
403		 */
404		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405				   mdname(conf->mddev),
406				   rdev->bdev,
407				   (unsigned long long)r1_bio->sector);
408		set_bit(R1BIO_ReadError, &r1_bio->state);
409		reschedule_retry(r1_bio);
410		/* don't drop the reference on read_disk yet */
411	}
412}
413
414static void close_write(struct r1bio *r1_bio)
415{
416	/* it really is the end of this request */
417	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418		bio_free_pages(r1_bio->behind_master_bio);
419		bio_put(r1_bio->behind_master_bio);
420		r1_bio->behind_master_bio = NULL;
421	}
422	/* clear the bitmap if all writes complete successfully */
423	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424			   r1_bio->sectors,
425			   !test_bit(R1BIO_Degraded, &r1_bio->state),
426			   test_bit(R1BIO_BehindIO, &r1_bio->state));
427	md_write_end(r1_bio->mddev);
428}
429
430static void r1_bio_write_done(struct r1bio *r1_bio)
431{
432	if (!atomic_dec_and_test(&r1_bio->remaining))
433		return;
434
435	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436		reschedule_retry(r1_bio);
437	else {
438		close_write(r1_bio);
439		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440			reschedule_retry(r1_bio);
441		else
442			raid_end_bio_io(r1_bio);
443	}
444}
445
446static void raid1_end_write_request(struct bio *bio)
447{
448	struct r1bio *r1_bio = bio->bi_private;
449	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450	struct r1conf *conf = r1_bio->mddev->private;
451	struct bio *to_put = NULL;
452	int mirror = find_bio_disk(r1_bio, bio);
453	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454	bool discard_error;
455	sector_t lo = r1_bio->sector;
456	sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460	/*
461	 * 'one mirror IO has finished' event handler:
462	 */
463	if (bio->bi_status && !discard_error) {
464		set_bit(WriteErrorSeen,	&rdev->flags);
465		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466			set_bit(MD_RECOVERY_NEEDED, &
467				conf->mddev->recovery);
468
469		if (test_bit(FailFast, &rdev->flags) &&
470		    (bio->bi_opf & MD_FAILFAST) &&
471		    /* We never try FailFast to WriteMostly devices */
472		    !test_bit(WriteMostly, &rdev->flags)) {
473			md_error(r1_bio->mddev, rdev);
474		}
475
476		/*
477		 * When the device is faulty, it is not necessary to
478		 * handle write error.
479		 */
480		if (!test_bit(Faulty, &rdev->flags))
481			set_bit(R1BIO_WriteError, &r1_bio->state);
482		else {
483			/* Fail the request */
484			set_bit(R1BIO_Degraded, &r1_bio->state);
485			/* Finished with this branch */
486			r1_bio->bios[mirror] = NULL;
487			to_put = bio;
488		}
489	} else {
490		/*
491		 * Set R1BIO_Uptodate in our master bio, so that we
492		 * will return a good error code for to the higher
493		 * levels even if IO on some other mirrored buffer
494		 * fails.
495		 *
496		 * The 'master' represents the composite IO operation
497		 * to user-side. So if something waits for IO, then it
498		 * will wait for the 'master' bio.
499		 */
500		sector_t first_bad;
501		int bad_sectors;
502
503		r1_bio->bios[mirror] = NULL;
504		to_put = bio;
505		/*
506		 * Do not set R1BIO_Uptodate if the current device is
507		 * rebuilding or Faulty. This is because we cannot use
508		 * such device for properly reading the data back (we could
509		 * potentially use it, if the current write would have felt
510		 * before rdev->recovery_offset, but for simplicity we don't
511		 * check this here.
512		 */
513		if (test_bit(In_sync, &rdev->flags) &&
514		    !test_bit(Faulty, &rdev->flags))
515			set_bit(R1BIO_Uptodate, &r1_bio->state);
516
517		/* Maybe we can clear some bad blocks. */
518		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519				&first_bad, &bad_sectors) && !discard_error) {
520			r1_bio->bios[mirror] = IO_MADE_GOOD;
521			set_bit(R1BIO_MadeGood, &r1_bio->state);
522		}
523	}
524
525	if (behind) {
526		if (test_bit(CollisionCheck, &rdev->flags))
527			remove_serial(rdev, lo, hi);
528		if (test_bit(WriteMostly, &rdev->flags))
529			atomic_dec(&r1_bio->behind_remaining);
530
531		/*
532		 * In behind mode, we ACK the master bio once the I/O
533		 * has safely reached all non-writemostly
534		 * disks. Setting the Returned bit ensures that this
535		 * gets done only once -- we don't ever want to return
536		 * -EIO here, instead we'll wait
537		 */
538		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540			/* Maybe we can return now */
541			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542				struct bio *mbio = r1_bio->master_bio;
543				pr_debug("raid1: behind end write sectors"
544					 " %llu-%llu\n",
545					 (unsigned long long) mbio->bi_iter.bi_sector,
546					 (unsigned long long) bio_end_sector(mbio) - 1);
547				call_bio_endio(r1_bio);
548			}
549		}
550	} else if (rdev->mddev->serialize_policy)
551		remove_serial(rdev, lo, hi);
552	if (r1_bio->bios[mirror] == NULL)
553		rdev_dec_pending(rdev, conf->mddev);
554
555	/*
556	 * Let's see if all mirrored write operations have finished
557	 * already.
558	 */
559	r1_bio_write_done(r1_bio);
560
561	if (to_put)
562		bio_put(to_put);
563}
564
565static sector_t align_to_barrier_unit_end(sector_t start_sector,
566					  sector_t sectors)
567{
568	sector_t len;
569
570	WARN_ON(sectors == 0);
571	/*
572	 * len is the number of sectors from start_sector to end of the
573	 * barrier unit which start_sector belongs to.
574	 */
575	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576	      start_sector;
577
578	if (len > sectors)
579		len = sectors;
580
581	return len;
582}
583
584/*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
598static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599{
600	const sector_t this_sector = r1_bio->sector;
601	int sectors;
602	int best_good_sectors;
603	int best_disk, best_dist_disk, best_pending_disk;
604	int has_nonrot_disk;
605	int disk;
606	sector_t best_dist;
607	unsigned int min_pending;
608	struct md_rdev *rdev;
609	int choose_first;
610	int choose_next_idle;
611
612	rcu_read_lock();
613	/*
614	 * Check if we can balance. We can balance on the whole
615	 * device if no resync is going on, or below the resync window.
616	 * We take the first readable disk when above the resync window.
617	 */
618 retry:
619	sectors = r1_bio->sectors;
620	best_disk = -1;
621	best_dist_disk = -1;
622	best_dist = MaxSector;
623	best_pending_disk = -1;
624	min_pending = UINT_MAX;
625	best_good_sectors = 0;
626	has_nonrot_disk = 0;
627	choose_next_idle = 0;
628	clear_bit(R1BIO_FailFast, &r1_bio->state);
629
630	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631	    (mddev_is_clustered(conf->mddev) &&
632	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633		    this_sector + sectors)))
634		choose_first = 1;
635	else
636		choose_first = 0;
637
638	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639		sector_t dist;
640		sector_t first_bad;
641		int bad_sectors;
642		unsigned int pending;
643		bool nonrot;
644
645		rdev = rcu_dereference(conf->mirrors[disk].rdev);
646		if (r1_bio->bios[disk] == IO_BLOCKED
647		    || rdev == NULL
648		    || test_bit(Faulty, &rdev->flags))
649			continue;
650		if (!test_bit(In_sync, &rdev->flags) &&
651		    rdev->recovery_offset < this_sector + sectors)
652			continue;
653		if (test_bit(WriteMostly, &rdev->flags)) {
654			/* Don't balance among write-mostly, just
655			 * use the first as a last resort */
656			if (best_dist_disk < 0) {
657				if (is_badblock(rdev, this_sector, sectors,
658						&first_bad, &bad_sectors)) {
659					if (first_bad <= this_sector)
660						/* Cannot use this */
661						continue;
662					best_good_sectors = first_bad - this_sector;
663				} else
664					best_good_sectors = sectors;
665				best_dist_disk = disk;
666				best_pending_disk = disk;
667			}
668			continue;
669		}
670		/* This is a reasonable device to use.  It might
671		 * even be best.
672		 */
673		if (is_badblock(rdev, this_sector, sectors,
674				&first_bad, &bad_sectors)) {
675			if (best_dist < MaxSector)
676				/* already have a better device */
677				continue;
678			if (first_bad <= this_sector) {
679				/* cannot read here. If this is the 'primary'
680				 * device, then we must not read beyond
681				 * bad_sectors from another device..
682				 */
683				bad_sectors -= (this_sector - first_bad);
684				if (choose_first && sectors > bad_sectors)
685					sectors = bad_sectors;
686				if (best_good_sectors > sectors)
687					best_good_sectors = sectors;
688
689			} else {
690				sector_t good_sectors = first_bad - this_sector;
691				if (good_sectors > best_good_sectors) {
692					best_good_sectors = good_sectors;
693					best_disk = disk;
694				}
695				if (choose_first)
696					break;
697			}
698			continue;
699		} else {
700			if ((sectors > best_good_sectors) && (best_disk >= 0))
701				best_disk = -1;
702			best_good_sectors = sectors;
703		}
704
705		if (best_disk >= 0)
706			/* At least two disks to choose from so failfast is OK */
707			set_bit(R1BIO_FailFast, &r1_bio->state);
708
709		nonrot = bdev_nonrot(rdev->bdev);
710		has_nonrot_disk |= nonrot;
711		pending = atomic_read(&rdev->nr_pending);
712		dist = abs(this_sector - conf->mirrors[disk].head_position);
713		if (choose_first) {
714			best_disk = disk;
715			break;
716		}
717		/* Don't change to another disk for sequential reads */
718		if (conf->mirrors[disk].next_seq_sect == this_sector
719		    || dist == 0) {
720			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721			struct raid1_info *mirror = &conf->mirrors[disk];
722
723			best_disk = disk;
724			/*
725			 * If buffered sequential IO size exceeds optimal
726			 * iosize, check if there is idle disk. If yes, choose
727			 * the idle disk. read_balance could already choose an
728			 * idle disk before noticing it's a sequential IO in
729			 * this disk. This doesn't matter because this disk
730			 * will idle, next time it will be utilized after the
731			 * first disk has IO size exceeds optimal iosize. In
732			 * this way, iosize of the first disk will be optimal
733			 * iosize at least. iosize of the second disk might be
734			 * small, but not a big deal since when the second disk
735			 * starts IO, the first disk is likely still busy.
736			 */
737			if (nonrot && opt_iosize > 0 &&
738			    mirror->seq_start != MaxSector &&
739			    mirror->next_seq_sect > opt_iosize &&
740			    mirror->next_seq_sect - opt_iosize >=
741			    mirror->seq_start) {
742				choose_next_idle = 1;
743				continue;
744			}
745			break;
746		}
747
748		if (choose_next_idle)
749			continue;
750
751		if (min_pending > pending) {
752			min_pending = pending;
753			best_pending_disk = disk;
754		}
755
756		if (dist < best_dist) {
757			best_dist = dist;
758			best_dist_disk = disk;
759		}
760	}
761
762	/*
763	 * If all disks are rotational, choose the closest disk. If any disk is
764	 * non-rotational, choose the disk with less pending request even the
765	 * disk is rotational, which might/might not be optimal for raids with
766	 * mixed ratation/non-rotational disks depending on workload.
767	 */
768	if (best_disk == -1) {
769		if (has_nonrot_disk || min_pending == 0)
770			best_disk = best_pending_disk;
771		else
772			best_disk = best_dist_disk;
773	}
774
775	if (best_disk >= 0) {
776		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777		if (!rdev)
778			goto retry;
779		atomic_inc(&rdev->nr_pending);
780		sectors = best_good_sectors;
781
782		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783			conf->mirrors[best_disk].seq_start = this_sector;
784
785		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786	}
787	rcu_read_unlock();
788	*max_sectors = sectors;
789
790	return best_disk;
791}
792
793static void wake_up_barrier(struct r1conf *conf)
794{
795	if (wq_has_sleeper(&conf->wait_barrier))
796		wake_up(&conf->wait_barrier);
797}
798
799static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800{
801	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
802	raid1_prepare_flush_writes(conf->mddev->bitmap);
803	wake_up_barrier(conf);
804
805	while (bio) { /* submit pending writes */
806		struct bio *next = bio->bi_next;
807
808		raid1_submit_write(bio);
809		bio = next;
810		cond_resched();
811	}
812}
813
814static void flush_pending_writes(struct r1conf *conf)
815{
816	/* Any writes that have been queued but are awaiting
817	 * bitmap updates get flushed here.
818	 */
819	spin_lock_irq(&conf->device_lock);
820
821	if (conf->pending_bio_list.head) {
822		struct blk_plug plug;
823		struct bio *bio;
824
825		bio = bio_list_get(&conf->pending_bio_list);
826		spin_unlock_irq(&conf->device_lock);
827
828		/*
829		 * As this is called in a wait_event() loop (see freeze_array),
830		 * current->state might be TASK_UNINTERRUPTIBLE which will
831		 * cause a warning when we prepare to wait again.  As it is
832		 * rare that this path is taken, it is perfectly safe to force
833		 * us to go around the wait_event() loop again, so the warning
834		 * is a false-positive.  Silence the warning by resetting
835		 * thread state
836		 */
837		__set_current_state(TASK_RUNNING);
838		blk_start_plug(&plug);
839		flush_bio_list(conf, bio);
840		blk_finish_plug(&plug);
841	} else
842		spin_unlock_irq(&conf->device_lock);
843}
844
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down.  This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'.  When that returns there
860 *    is no backgroup IO happening,  It must arrange to call
861 *    allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier.  Once that returns
863 *    there is no normal IO happeing.  It must arrange to call
864 *    lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870{
871	int idx = sector_to_idx(sector_nr);
872
873	spin_lock_irq(&conf->resync_lock);
874
875	/* Wait until no block IO is waiting */
876	wait_event_lock_irq(conf->wait_barrier,
877			    !atomic_read(&conf->nr_waiting[idx]),
878			    conf->resync_lock);
879
880	/* block any new IO from starting */
881	atomic_inc(&conf->barrier[idx]);
882	/*
883	 * In raise_barrier() we firstly increase conf->barrier[idx] then
884	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886	 * A memory barrier here to make sure conf->nr_pending[idx] won't
887	 * be fetched before conf->barrier[idx] is increased. Otherwise
888	 * there will be a race between raise_barrier() and _wait_barrier().
889	 */
890	smp_mb__after_atomic();
891
892	/* For these conditions we must wait:
893	 * A: while the array is in frozen state
894	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895	 *    existing in corresponding I/O barrier bucket.
896	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897	 *    max resync count which allowed on current I/O barrier bucket.
898	 */
899	wait_event_lock_irq(conf->wait_barrier,
900			    (!conf->array_frozen &&
901			     !atomic_read(&conf->nr_pending[idx]) &&
902			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904			    conf->resync_lock);
905
906	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907		atomic_dec(&conf->barrier[idx]);
908		spin_unlock_irq(&conf->resync_lock);
909		wake_up(&conf->wait_barrier);
910		return -EINTR;
911	}
912
913	atomic_inc(&conf->nr_sync_pending);
914	spin_unlock_irq(&conf->resync_lock);
915
916	return 0;
917}
918
919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920{
921	int idx = sector_to_idx(sector_nr);
922
923	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925	atomic_dec(&conf->barrier[idx]);
926	atomic_dec(&conf->nr_sync_pending);
927	wake_up(&conf->wait_barrier);
928}
929
930static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
931{
932	bool ret = true;
933
934	/*
935	 * We need to increase conf->nr_pending[idx] very early here,
936	 * then raise_barrier() can be blocked when it waits for
937	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938	 * conf->resync_lock when there is no barrier raised in same
939	 * barrier unit bucket. Also if the array is frozen, I/O
940	 * should be blocked until array is unfrozen.
941	 */
942	atomic_inc(&conf->nr_pending[idx]);
943	/*
944	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947	 * barrier is necessary here to make sure conf->barrier[idx] won't be
948	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949	 * will be a race between _wait_barrier() and raise_barrier().
950	 */
951	smp_mb__after_atomic();
952
953	/*
954	 * Don't worry about checking two atomic_t variables at same time
955	 * here. If during we check conf->barrier[idx], the array is
956	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957	 * 0, it is safe to return and make the I/O continue. Because the
958	 * array is frozen, all I/O returned here will eventually complete
959	 * or be queued, no race will happen. See code comment in
960	 * frozen_array().
961	 */
962	if (!READ_ONCE(conf->array_frozen) &&
963	    !atomic_read(&conf->barrier[idx]))
964		return ret;
965
966	/*
967	 * After holding conf->resync_lock, conf->nr_pending[idx]
968	 * should be decreased before waiting for barrier to drop.
969	 * Otherwise, we may encounter a race condition because
970	 * raise_barrer() might be waiting for conf->nr_pending[idx]
971	 * to be 0 at same time.
972	 */
973	spin_lock_irq(&conf->resync_lock);
974	atomic_inc(&conf->nr_waiting[idx]);
975	atomic_dec(&conf->nr_pending[idx]);
976	/*
977	 * In case freeze_array() is waiting for
978	 * get_unqueued_pending() == extra
979	 */
980	wake_up_barrier(conf);
981	/* Wait for the barrier in same barrier unit bucket to drop. */
982
983	/* Return false when nowait flag is set */
984	if (nowait) {
985		ret = false;
986	} else {
987		wait_event_lock_irq(conf->wait_barrier,
988				!conf->array_frozen &&
989				!atomic_read(&conf->barrier[idx]),
990				conf->resync_lock);
991		atomic_inc(&conf->nr_pending[idx]);
992	}
993
994	atomic_dec(&conf->nr_waiting[idx]);
995	spin_unlock_irq(&conf->resync_lock);
996	return ret;
997}
998
999static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000{
1001	int idx = sector_to_idx(sector_nr);
1002	bool ret = true;
1003
1004	/*
1005	 * Very similar to _wait_barrier(). The difference is, for read
1006	 * I/O we don't need wait for sync I/O, but if the whole array
1007	 * is frozen, the read I/O still has to wait until the array is
1008	 * unfrozen. Since there is no ordering requirement with
1009	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010	 */
1011	atomic_inc(&conf->nr_pending[idx]);
1012
1013	if (!READ_ONCE(conf->array_frozen))
1014		return ret;
1015
1016	spin_lock_irq(&conf->resync_lock);
1017	atomic_inc(&conf->nr_waiting[idx]);
1018	atomic_dec(&conf->nr_pending[idx]);
1019	/*
1020	 * In case freeze_array() is waiting for
1021	 * get_unqueued_pending() == extra
1022	 */
1023	wake_up_barrier(conf);
1024	/* Wait for array to be unfrozen */
1025
1026	/* Return false when nowait flag is set */
1027	if (nowait) {
1028		/* Return false when nowait flag is set */
1029		ret = false;
1030	} else {
1031		wait_event_lock_irq(conf->wait_barrier,
1032				!conf->array_frozen,
1033				conf->resync_lock);
1034		atomic_inc(&conf->nr_pending[idx]);
1035	}
1036
1037	atomic_dec(&conf->nr_waiting[idx]);
1038	spin_unlock_irq(&conf->resync_lock);
1039	return ret;
1040}
1041
1042static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043{
1044	int idx = sector_to_idx(sector_nr);
1045
1046	return _wait_barrier(conf, idx, nowait);
1047}
1048
1049static void _allow_barrier(struct r1conf *conf, int idx)
1050{
1051	atomic_dec(&conf->nr_pending[idx]);
1052	wake_up_barrier(conf);
1053}
1054
1055static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056{
1057	int idx = sector_to_idx(sector_nr);
1058
1059	_allow_barrier(conf, idx);
1060}
1061
1062/* conf->resync_lock should be held */
1063static int get_unqueued_pending(struct r1conf *conf)
1064{
1065	int idx, ret;
1066
1067	ret = atomic_read(&conf->nr_sync_pending);
1068	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1069		ret += atomic_read(&conf->nr_pending[idx]) -
1070			atomic_read(&conf->nr_queued[idx]);
1071
1072	return ret;
1073}
1074
1075static void freeze_array(struct r1conf *conf, int extra)
1076{
1077	/* Stop sync I/O and normal I/O and wait for everything to
1078	 * go quiet.
1079	 * This is called in two situations:
1080	 * 1) management command handlers (reshape, remove disk, quiesce).
1081	 * 2) one normal I/O request failed.
1082
1083	 * After array_frozen is set to 1, new sync IO will be blocked at
1084	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085	 * or wait_read_barrier(). The flying I/Os will either complete or be
1086	 * queued. When everything goes quite, there are only queued I/Os left.
1087
1088	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089	 * barrier bucket index which this I/O request hits. When all sync and
1090	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092	 * in handle_read_error(), we may call freeze_array() before trying to
1093	 * fix the read error. In this case, the error read I/O is not queued,
1094	 * so get_unqueued_pending() == 1.
1095	 *
1096	 * Therefore before this function returns, we need to wait until
1097	 * get_unqueued_pendings(conf) gets equal to extra. For
1098	 * normal I/O context, extra is 1, in rested situations extra is 0.
1099	 */
1100	spin_lock_irq(&conf->resync_lock);
1101	conf->array_frozen = 1;
1102	raid1_log(conf->mddev, "wait freeze");
1103	wait_event_lock_irq_cmd(
1104		conf->wait_barrier,
1105		get_unqueued_pending(conf) == extra,
1106		conf->resync_lock,
1107		flush_pending_writes(conf));
1108	spin_unlock_irq(&conf->resync_lock);
1109}
1110static void unfreeze_array(struct r1conf *conf)
1111{
1112	/* reverse the effect of the freeze */
1113	spin_lock_irq(&conf->resync_lock);
1114	conf->array_frozen = 0;
1115	spin_unlock_irq(&conf->resync_lock);
1116	wake_up(&conf->wait_barrier);
1117}
1118
1119static void alloc_behind_master_bio(struct r1bio *r1_bio,
1120					   struct bio *bio)
1121{
1122	int size = bio->bi_iter.bi_size;
1123	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124	int i = 0;
1125	struct bio *behind_bio = NULL;
1126
1127	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1128				      &r1_bio->mddev->bio_set);
1129	if (!behind_bio)
1130		return;
1131
1132	/* discard op, we don't support writezero/writesame yet */
1133	if (!bio_has_data(bio)) {
1134		behind_bio->bi_iter.bi_size = size;
1135		goto skip_copy;
1136	}
1137
1138	while (i < vcnt && size) {
1139		struct page *page;
1140		int len = min_t(int, PAGE_SIZE, size);
1141
1142		page = alloc_page(GFP_NOIO);
1143		if (unlikely(!page))
1144			goto free_pages;
1145
1146		if (!bio_add_page(behind_bio, page, len, 0)) {
1147			put_page(page);
1148			goto free_pages;
1149		}
1150
1151		size -= len;
1152		i++;
1153	}
1154
1155	bio_copy_data(behind_bio, bio);
1156skip_copy:
1157	r1_bio->behind_master_bio = behind_bio;
1158	set_bit(R1BIO_BehindIO, &r1_bio->state);
1159
1160	return;
1161
1162free_pages:
1163	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164		 bio->bi_iter.bi_size);
1165	bio_free_pages(behind_bio);
1166	bio_put(behind_bio);
1167}
1168
1169static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170{
1171	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172						  cb);
1173	struct mddev *mddev = plug->cb.data;
1174	struct r1conf *conf = mddev->private;
1175	struct bio *bio;
1176
1177	if (from_schedule) {
1178		spin_lock_irq(&conf->device_lock);
1179		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1180		spin_unlock_irq(&conf->device_lock);
1181		wake_up_barrier(conf);
1182		md_wakeup_thread(mddev->thread);
1183		kfree(plug);
1184		return;
1185	}
1186
1187	/* we aren't scheduling, so we can do the write-out directly. */
1188	bio = bio_list_get(&plug->pending);
1189	flush_bio_list(conf, bio);
1190	kfree(plug);
1191}
1192
1193static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194{
1195	r1_bio->master_bio = bio;
1196	r1_bio->sectors = bio_sectors(bio);
1197	r1_bio->state = 0;
1198	r1_bio->mddev = mddev;
1199	r1_bio->sector = bio->bi_iter.bi_sector;
1200}
1201
1202static inline struct r1bio *
1203alloc_r1bio(struct mddev *mddev, struct bio *bio)
1204{
1205	struct r1conf *conf = mddev->private;
1206	struct r1bio *r1_bio;
1207
1208	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1209	/* Ensure no bio records IO_BLOCKED */
1210	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211	init_r1bio(r1_bio, mddev, bio);
1212	return r1_bio;
1213}
1214
1215static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1216			       int max_read_sectors, struct r1bio *r1_bio)
1217{
1218	struct r1conf *conf = mddev->private;
1219	struct raid1_info *mirror;
1220	struct bio *read_bio;
1221	struct bitmap *bitmap = mddev->bitmap;
1222	const enum req_op op = bio_op(bio);
1223	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1224	int max_sectors;
1225	int rdisk;
1226	bool r1bio_existed = !!r1_bio;
1227	char b[BDEVNAME_SIZE];
1228
1229	/*
1230	 * If r1_bio is set, we are blocking the raid1d thread
1231	 * so there is a tiny risk of deadlock.  So ask for
1232	 * emergency memory if needed.
1233	 */
1234	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1235
1236	if (r1bio_existed) {
1237		/* Need to get the block device name carefully */
1238		struct md_rdev *rdev;
1239		rcu_read_lock();
1240		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241		if (rdev)
1242			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1243		else
1244			strcpy(b, "???");
1245		rcu_read_unlock();
1246	}
1247
1248	/*
1249	 * Still need barrier for READ in case that whole
1250	 * array is frozen.
1251	 */
1252	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1253				bio->bi_opf & REQ_NOWAIT)) {
1254		bio_wouldblock_error(bio);
1255		return;
1256	}
1257
1258	if (!r1_bio)
1259		r1_bio = alloc_r1bio(mddev, bio);
1260	else
1261		init_r1bio(r1_bio, mddev, bio);
1262	r1_bio->sectors = max_read_sectors;
1263
1264	/*
1265	 * make_request() can abort the operation when read-ahead is being
1266	 * used and no empty request is available.
1267	 */
1268	rdisk = read_balance(conf, r1_bio, &max_sectors);
1269
1270	if (rdisk < 0) {
1271		/* couldn't find anywhere to read from */
1272		if (r1bio_existed) {
1273			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274					    mdname(mddev),
1275					    b,
1276					    (unsigned long long)r1_bio->sector);
1277		}
1278		raid_end_bio_io(r1_bio);
1279		return;
1280	}
1281	mirror = conf->mirrors + rdisk;
1282
1283	if (r1bio_existed)
1284		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1285				    mdname(mddev),
1286				    (unsigned long long)r1_bio->sector,
1287				    mirror->rdev->bdev);
1288
1289	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290	    bitmap) {
1291		/*
1292		 * Reading from a write-mostly device must take care not to
1293		 * over-take any writes that are 'behind'
1294		 */
1295		raid1_log(mddev, "wait behind writes");
1296		wait_event(bitmap->behind_wait,
1297			   atomic_read(&bitmap->behind_writes) == 0);
1298	}
1299
1300	if (max_sectors < bio_sectors(bio)) {
1301		struct bio *split = bio_split(bio, max_sectors,
1302					      gfp, &conf->bio_split);
1303		bio_chain(split, bio);
1304		submit_bio_noacct(bio);
1305		bio = split;
1306		r1_bio->master_bio = bio;
1307		r1_bio->sectors = max_sectors;
1308	}
1309
1310	r1_bio->read_disk = rdisk;
1311	if (!r1bio_existed) {
1312		md_account_bio(mddev, &bio);
1313		r1_bio->master_bio = bio;
1314	}
1315	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1316				   &mddev->bio_set);
1317
1318	r1_bio->bios[rdisk] = read_bio;
1319
1320	read_bio->bi_iter.bi_sector = r1_bio->sector +
1321		mirror->rdev->data_offset;
1322	read_bio->bi_end_io = raid1_end_read_request;
1323	read_bio->bi_opf = op | do_sync;
1324	if (test_bit(FailFast, &mirror->rdev->flags) &&
1325	    test_bit(R1BIO_FailFast, &r1_bio->state))
1326	        read_bio->bi_opf |= MD_FAILFAST;
1327	read_bio->bi_private = r1_bio;
1328
1329	if (mddev->gendisk)
1330	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1331				      r1_bio->sector);
1332
1333	submit_bio_noacct(read_bio);
1334}
1335
1336static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337				int max_write_sectors)
1338{
1339	struct r1conf *conf = mddev->private;
1340	struct r1bio *r1_bio;
1341	int i, disks;
1342	struct bitmap *bitmap = mddev->bitmap;
1343	unsigned long flags;
1344	struct md_rdev *blocked_rdev;
1345	int first_clone;
1346	int max_sectors;
1347	bool write_behind = false;
1348
1349	if (mddev_is_clustered(mddev) &&
1350	     md_cluster_ops->area_resyncing(mddev, WRITE,
1351		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1352
1353		DEFINE_WAIT(w);
1354		if (bio->bi_opf & REQ_NOWAIT) {
1355			bio_wouldblock_error(bio);
1356			return;
1357		}
1358		for (;;) {
1359			prepare_to_wait(&conf->wait_barrier,
1360					&w, TASK_IDLE);
1361			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1362							bio->bi_iter.bi_sector,
1363							bio_end_sector(bio)))
1364				break;
1365			schedule();
1366		}
1367		finish_wait(&conf->wait_barrier, &w);
1368	}
1369
1370	/*
1371	 * Register the new request and wait if the reconstruction
1372	 * thread has put up a bar for new requests.
1373	 * Continue immediately if no resync is active currently.
1374	 */
1375	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376				bio->bi_opf & REQ_NOWAIT)) {
1377		bio_wouldblock_error(bio);
1378		return;
1379	}
1380
1381 retry_write:
1382	r1_bio = alloc_r1bio(mddev, bio);
1383	r1_bio->sectors = max_write_sectors;
1384
1385	/* first select target devices under rcu_lock and
1386	 * inc refcount on their rdev.  Record them by setting
1387	 * bios[x] to bio
1388	 * If there are known/acknowledged bad blocks on any device on
1389	 * which we have seen a write error, we want to avoid writing those
1390	 * blocks.
1391	 * This potentially requires several writes to write around
1392	 * the bad blocks.  Each set of writes gets it's own r1bio
1393	 * with a set of bios attached.
1394	 */
1395
1396	disks = conf->raid_disks * 2;
1397	blocked_rdev = NULL;
1398	rcu_read_lock();
1399	max_sectors = r1_bio->sectors;
1400	for (i = 0;  i < disks; i++) {
1401		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1402
1403		/*
1404		 * The write-behind io is only attempted on drives marked as
1405		 * write-mostly, which means we could allocate write behind
1406		 * bio later.
1407		 */
1408		if (rdev && test_bit(WriteMostly, &rdev->flags))
1409			write_behind = true;
1410
1411		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412			atomic_inc(&rdev->nr_pending);
1413			blocked_rdev = rdev;
1414			break;
1415		}
1416		r1_bio->bios[i] = NULL;
1417		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1418			if (i < conf->raid_disks)
1419				set_bit(R1BIO_Degraded, &r1_bio->state);
1420			continue;
1421		}
1422
1423		atomic_inc(&rdev->nr_pending);
1424		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425			sector_t first_bad;
1426			int bad_sectors;
1427			int is_bad;
1428
1429			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1430					     &first_bad, &bad_sectors);
1431			if (is_bad < 0) {
1432				/* mustn't write here until the bad block is
1433				 * acknowledged*/
1434				set_bit(BlockedBadBlocks, &rdev->flags);
1435				blocked_rdev = rdev;
1436				break;
1437			}
1438			if (is_bad && first_bad <= r1_bio->sector) {
1439				/* Cannot write here at all */
1440				bad_sectors -= (r1_bio->sector - first_bad);
1441				if (bad_sectors < max_sectors)
1442					/* mustn't write more than bad_sectors
1443					 * to other devices yet
1444					 */
1445					max_sectors = bad_sectors;
1446				rdev_dec_pending(rdev, mddev);
1447				/* We don't set R1BIO_Degraded as that
1448				 * only applies if the disk is
1449				 * missing, so it might be re-added,
1450				 * and we want to know to recover this
1451				 * chunk.
1452				 * In this case the device is here,
1453				 * and the fact that this chunk is not
1454				 * in-sync is recorded in the bad
1455				 * block log
1456				 */
1457				continue;
1458			}
1459			if (is_bad) {
1460				int good_sectors = first_bad - r1_bio->sector;
1461				if (good_sectors < max_sectors)
1462					max_sectors = good_sectors;
1463			}
1464		}
1465		r1_bio->bios[i] = bio;
1466	}
1467	rcu_read_unlock();
1468
1469	if (unlikely(blocked_rdev)) {
1470		/* Wait for this device to become unblocked */
1471		int j;
1472
1473		for (j = 0; j < i; j++)
1474			if (r1_bio->bios[j])
1475				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1476		free_r1bio(r1_bio);
1477		allow_barrier(conf, bio->bi_iter.bi_sector);
1478
1479		if (bio->bi_opf & REQ_NOWAIT) {
1480			bio_wouldblock_error(bio);
1481			return;
1482		}
1483		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1484		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1485		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1486		goto retry_write;
1487	}
1488
1489	/*
1490	 * When using a bitmap, we may call alloc_behind_master_bio below.
1491	 * alloc_behind_master_bio allocates a copy of the data payload a page
1492	 * at a time and thus needs a new bio that can fit the whole payload
1493	 * this bio in page sized chunks.
1494	 */
1495	if (write_behind && bitmap)
1496		max_sectors = min_t(int, max_sectors,
1497				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1498	if (max_sectors < bio_sectors(bio)) {
1499		struct bio *split = bio_split(bio, max_sectors,
1500					      GFP_NOIO, &conf->bio_split);
1501		bio_chain(split, bio);
1502		submit_bio_noacct(bio);
1503		bio = split;
1504		r1_bio->master_bio = bio;
1505		r1_bio->sectors = max_sectors;
1506	}
1507
1508	md_account_bio(mddev, &bio);
1509	r1_bio->master_bio = bio;
1510	atomic_set(&r1_bio->remaining, 1);
1511	atomic_set(&r1_bio->behind_remaining, 0);
1512
1513	first_clone = 1;
1514
1515	for (i = 0; i < disks; i++) {
1516		struct bio *mbio = NULL;
1517		struct md_rdev *rdev = conf->mirrors[i].rdev;
1518		if (!r1_bio->bios[i])
1519			continue;
1520
1521		if (first_clone) {
1522			/* do behind I/O ?
1523			 * Not if there are too many, or cannot
1524			 * allocate memory, or a reader on WriteMostly
1525			 * is waiting for behind writes to flush */
1526			if (bitmap && write_behind &&
1527			    (atomic_read(&bitmap->behind_writes)
1528			     < mddev->bitmap_info.max_write_behind) &&
1529			    !waitqueue_active(&bitmap->behind_wait)) {
1530				alloc_behind_master_bio(r1_bio, bio);
1531			}
1532
1533			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1534					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1535			first_clone = 0;
1536		}
1537
1538		if (r1_bio->behind_master_bio) {
1539			mbio = bio_alloc_clone(rdev->bdev,
1540					       r1_bio->behind_master_bio,
1541					       GFP_NOIO, &mddev->bio_set);
1542			if (test_bit(CollisionCheck, &rdev->flags))
1543				wait_for_serialization(rdev, r1_bio);
1544			if (test_bit(WriteMostly, &rdev->flags))
1545				atomic_inc(&r1_bio->behind_remaining);
1546		} else {
1547			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1548					       &mddev->bio_set);
1549
1550			if (mddev->serialize_policy)
1551				wait_for_serialization(rdev, r1_bio);
1552		}
1553
1554		r1_bio->bios[i] = mbio;
1555
1556		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1557		mbio->bi_end_io	= raid1_end_write_request;
1558		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1559		if (test_bit(FailFast, &rdev->flags) &&
1560		    !test_bit(WriteMostly, &rdev->flags) &&
1561		    conf->raid_disks - mddev->degraded > 1)
1562			mbio->bi_opf |= MD_FAILFAST;
1563		mbio->bi_private = r1_bio;
1564
1565		atomic_inc(&r1_bio->remaining);
1566
1567		if (mddev->gendisk)
1568			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1569					      r1_bio->sector);
1570		/* flush_pending_writes() needs access to the rdev so...*/
1571		mbio->bi_bdev = (void *)rdev;
1572		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1573			spin_lock_irqsave(&conf->device_lock, flags);
1574			bio_list_add(&conf->pending_bio_list, mbio);
1575			spin_unlock_irqrestore(&conf->device_lock, flags);
1576			md_wakeup_thread(mddev->thread);
1577		}
1578	}
1579
1580	r1_bio_write_done(r1_bio);
1581
1582	/* In case raid1d snuck in to freeze_array */
1583	wake_up_barrier(conf);
1584}
1585
1586static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1587{
1588	sector_t sectors;
1589
1590	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1591	    && md_flush_request(mddev, bio))
1592		return true;
1593
1594	/*
1595	 * There is a limit to the maximum size, but
1596	 * the read/write handler might find a lower limit
1597	 * due to bad blocks.  To avoid multiple splits,
1598	 * we pass the maximum number of sectors down
1599	 * and let the lower level perform the split.
1600	 */
1601	sectors = align_to_barrier_unit_end(
1602		bio->bi_iter.bi_sector, bio_sectors(bio));
1603
1604	if (bio_data_dir(bio) == READ)
1605		raid1_read_request(mddev, bio, sectors, NULL);
1606	else {
1607		if (!md_write_start(mddev,bio))
1608			return false;
1609		raid1_write_request(mddev, bio, sectors);
1610	}
1611	return true;
1612}
1613
1614static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1615{
1616	struct r1conf *conf = mddev->private;
1617	int i;
1618
1619	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1620		   conf->raid_disks - mddev->degraded);
1621	rcu_read_lock();
1622	for (i = 0; i < conf->raid_disks; i++) {
1623		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1624		seq_printf(seq, "%s",
1625			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1626	}
1627	rcu_read_unlock();
1628	seq_printf(seq, "]");
1629}
1630
1631/**
1632 * raid1_error() - RAID1 error handler.
1633 * @mddev: affected md device.
1634 * @rdev: member device to fail.
1635 *
1636 * The routine acknowledges &rdev failure and determines new @mddev state.
1637 * If it failed, then:
1638 *	- &MD_BROKEN flag is set in &mddev->flags.
1639 *	- recovery is disabled.
1640 * Otherwise, it must be degraded:
1641 *	- recovery is interrupted.
1642 *	- &mddev->degraded is bumped.
1643 *
1644 * @rdev is marked as &Faulty excluding case when array is failed and
1645 * &mddev->fail_last_dev is off.
1646 */
1647static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1648{
1649	struct r1conf *conf = mddev->private;
1650	unsigned long flags;
1651
1652	spin_lock_irqsave(&conf->device_lock, flags);
1653
1654	if (test_bit(In_sync, &rdev->flags) &&
1655	    (conf->raid_disks - mddev->degraded) == 1) {
1656		set_bit(MD_BROKEN, &mddev->flags);
1657
1658		if (!mddev->fail_last_dev) {
1659			conf->recovery_disabled = mddev->recovery_disabled;
1660			spin_unlock_irqrestore(&conf->device_lock, flags);
1661			return;
1662		}
1663	}
1664	set_bit(Blocked, &rdev->flags);
1665	if (test_and_clear_bit(In_sync, &rdev->flags))
1666		mddev->degraded++;
1667	set_bit(Faulty, &rdev->flags);
1668	spin_unlock_irqrestore(&conf->device_lock, flags);
1669	/*
1670	 * if recovery is running, make sure it aborts.
1671	 */
1672	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1673	set_mask_bits(&mddev->sb_flags, 0,
1674		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1675	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1676		"md/raid1:%s: Operation continuing on %d devices.\n",
1677		mdname(mddev), rdev->bdev,
1678		mdname(mddev), conf->raid_disks - mddev->degraded);
1679}
1680
1681static void print_conf(struct r1conf *conf)
1682{
1683	int i;
1684
1685	pr_debug("RAID1 conf printout:\n");
1686	if (!conf) {
1687		pr_debug("(!conf)\n");
1688		return;
1689	}
1690	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1691		 conf->raid_disks);
1692
1693	rcu_read_lock();
1694	for (i = 0; i < conf->raid_disks; i++) {
1695		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1696		if (rdev)
1697			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1698				 i, !test_bit(In_sync, &rdev->flags),
1699				 !test_bit(Faulty, &rdev->flags),
1700				 rdev->bdev);
1701	}
1702	rcu_read_unlock();
1703}
1704
1705static void close_sync(struct r1conf *conf)
1706{
1707	int idx;
1708
1709	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1710		_wait_barrier(conf, idx, false);
1711		_allow_barrier(conf, idx);
1712	}
1713
1714	mempool_exit(&conf->r1buf_pool);
1715}
1716
1717static int raid1_spare_active(struct mddev *mddev)
1718{
1719	int i;
1720	struct r1conf *conf = mddev->private;
1721	int count = 0;
1722	unsigned long flags;
1723
1724	/*
1725	 * Find all failed disks within the RAID1 configuration
1726	 * and mark them readable.
1727	 * Called under mddev lock, so rcu protection not needed.
1728	 * device_lock used to avoid races with raid1_end_read_request
1729	 * which expects 'In_sync' flags and ->degraded to be consistent.
1730	 */
1731	spin_lock_irqsave(&conf->device_lock, flags);
1732	for (i = 0; i < conf->raid_disks; i++) {
1733		struct md_rdev *rdev = conf->mirrors[i].rdev;
1734		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1735		if (repl
1736		    && !test_bit(Candidate, &repl->flags)
1737		    && repl->recovery_offset == MaxSector
1738		    && !test_bit(Faulty, &repl->flags)
1739		    && !test_and_set_bit(In_sync, &repl->flags)) {
1740			/* replacement has just become active */
1741			if (!rdev ||
1742			    !test_and_clear_bit(In_sync, &rdev->flags))
1743				count++;
1744			if (rdev) {
1745				/* Replaced device not technically
1746				 * faulty, but we need to be sure
1747				 * it gets removed and never re-added
1748				 */
1749				set_bit(Faulty, &rdev->flags);
1750				sysfs_notify_dirent_safe(
1751					rdev->sysfs_state);
1752			}
1753		}
1754		if (rdev
1755		    && rdev->recovery_offset == MaxSector
1756		    && !test_bit(Faulty, &rdev->flags)
1757		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1758			count++;
1759			sysfs_notify_dirent_safe(rdev->sysfs_state);
1760		}
1761	}
1762	mddev->degraded -= count;
1763	spin_unlock_irqrestore(&conf->device_lock, flags);
1764
1765	print_conf(conf);
1766	return count;
1767}
1768
1769static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1770{
1771	struct r1conf *conf = mddev->private;
1772	int err = -EEXIST;
1773	int mirror = 0, repl_slot = -1;
1774	struct raid1_info *p;
1775	int first = 0;
1776	int last = conf->raid_disks - 1;
1777
1778	if (mddev->recovery_disabled == conf->recovery_disabled)
1779		return -EBUSY;
1780
1781	if (md_integrity_add_rdev(rdev, mddev))
1782		return -ENXIO;
1783
1784	if (rdev->raid_disk >= 0)
1785		first = last = rdev->raid_disk;
1786
1787	/*
1788	 * find the disk ... but prefer rdev->saved_raid_disk
1789	 * if possible.
1790	 */
1791	if (rdev->saved_raid_disk >= 0 &&
1792	    rdev->saved_raid_disk >= first &&
1793	    rdev->saved_raid_disk < conf->raid_disks &&
1794	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795		first = last = rdev->saved_raid_disk;
1796
1797	for (mirror = first; mirror <= last; mirror++) {
1798		p = conf->mirrors + mirror;
1799		if (!p->rdev) {
1800			if (mddev->gendisk)
1801				disk_stack_limits(mddev->gendisk, rdev->bdev,
1802						  rdev->data_offset << 9);
1803
1804			p->head_position = 0;
1805			rdev->raid_disk = mirror;
1806			err = 0;
1807			/* As all devices are equivalent, we don't need a full recovery
1808			 * if this was recently any drive of the array
1809			 */
1810			if (rdev->saved_raid_disk < 0)
1811				conf->fullsync = 1;
1812			rcu_assign_pointer(p->rdev, rdev);
1813			break;
1814		}
1815		if (test_bit(WantReplacement, &p->rdev->flags) &&
1816		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1817			repl_slot = mirror;
1818	}
1819
1820	if (err && repl_slot >= 0) {
1821		/* Add this device as a replacement */
1822		p = conf->mirrors + repl_slot;
1823		clear_bit(In_sync, &rdev->flags);
1824		set_bit(Replacement, &rdev->flags);
1825		rdev->raid_disk = repl_slot;
1826		err = 0;
1827		conf->fullsync = 1;
1828		rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1829	}
1830
1831	print_conf(conf);
1832	return err;
1833}
1834
1835static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1836{
1837	struct r1conf *conf = mddev->private;
1838	int err = 0;
1839	int number = rdev->raid_disk;
1840	struct raid1_info *p = conf->mirrors + number;
1841
1842	if (unlikely(number >= conf->raid_disks))
1843		goto abort;
1844
1845	if (rdev != p->rdev)
1846		p = conf->mirrors + conf->raid_disks + number;
1847
1848	print_conf(conf);
1849	if (rdev == p->rdev) {
1850		if (test_bit(In_sync, &rdev->flags) ||
1851		    atomic_read(&rdev->nr_pending)) {
1852			err = -EBUSY;
1853			goto abort;
1854		}
1855		/* Only remove non-faulty devices if recovery
1856		 * is not possible.
1857		 */
1858		if (!test_bit(Faulty, &rdev->flags) &&
1859		    mddev->recovery_disabled != conf->recovery_disabled &&
1860		    mddev->degraded < conf->raid_disks) {
1861			err = -EBUSY;
1862			goto abort;
1863		}
1864		p->rdev = NULL;
1865		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1866			synchronize_rcu();
1867			if (atomic_read(&rdev->nr_pending)) {
1868				/* lost the race, try later */
1869				err = -EBUSY;
1870				p->rdev = rdev;
1871				goto abort;
1872			}
1873		}
1874		if (conf->mirrors[conf->raid_disks + number].rdev) {
1875			/* We just removed a device that is being replaced.
1876			 * Move down the replacement.  We drain all IO before
1877			 * doing this to avoid confusion.
1878			 */
1879			struct md_rdev *repl =
1880				conf->mirrors[conf->raid_disks + number].rdev;
1881			freeze_array(conf, 0);
1882			if (atomic_read(&repl->nr_pending)) {
1883				/* It means that some queued IO of retry_list
1884				 * hold repl. Thus, we cannot set replacement
1885				 * as NULL, avoiding rdev NULL pointer
1886				 * dereference in sync_request_write and
1887				 * handle_write_finished.
1888				 */
1889				err = -EBUSY;
1890				unfreeze_array(conf);
1891				goto abort;
1892			}
1893			clear_bit(Replacement, &repl->flags);
1894			p->rdev = repl;
1895			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1896			unfreeze_array(conf);
1897		}
1898
1899		clear_bit(WantReplacement, &rdev->flags);
1900		err = md_integrity_register(mddev);
1901	}
1902abort:
1903
1904	print_conf(conf);
1905	return err;
1906}
1907
1908static void end_sync_read(struct bio *bio)
1909{
1910	struct r1bio *r1_bio = get_resync_r1bio(bio);
1911
1912	update_head_pos(r1_bio->read_disk, r1_bio);
1913
1914	/*
1915	 * we have read a block, now it needs to be re-written,
1916	 * or re-read if the read failed.
1917	 * We don't do much here, just schedule handling by raid1d
1918	 */
1919	if (!bio->bi_status)
1920		set_bit(R1BIO_Uptodate, &r1_bio->state);
1921
1922	if (atomic_dec_and_test(&r1_bio->remaining))
1923		reschedule_retry(r1_bio);
1924}
1925
1926static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1927{
1928	sector_t sync_blocks = 0;
1929	sector_t s = r1_bio->sector;
1930	long sectors_to_go = r1_bio->sectors;
1931
1932	/* make sure these bits don't get cleared. */
1933	do {
1934		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1935		s += sync_blocks;
1936		sectors_to_go -= sync_blocks;
1937	} while (sectors_to_go > 0);
1938}
1939
1940static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1941{
1942	if (atomic_dec_and_test(&r1_bio->remaining)) {
1943		struct mddev *mddev = r1_bio->mddev;
1944		int s = r1_bio->sectors;
1945
1946		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1947		    test_bit(R1BIO_WriteError, &r1_bio->state))
1948			reschedule_retry(r1_bio);
1949		else {
1950			put_buf(r1_bio);
1951			md_done_sync(mddev, s, uptodate);
1952		}
1953	}
1954}
1955
1956static void end_sync_write(struct bio *bio)
1957{
1958	int uptodate = !bio->bi_status;
1959	struct r1bio *r1_bio = get_resync_r1bio(bio);
1960	struct mddev *mddev = r1_bio->mddev;
1961	struct r1conf *conf = mddev->private;
1962	sector_t first_bad;
1963	int bad_sectors;
1964	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1965
1966	if (!uptodate) {
1967		abort_sync_write(mddev, r1_bio);
1968		set_bit(WriteErrorSeen, &rdev->flags);
1969		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1970			set_bit(MD_RECOVERY_NEEDED, &
1971				mddev->recovery);
1972		set_bit(R1BIO_WriteError, &r1_bio->state);
1973	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1974			       &first_bad, &bad_sectors) &&
1975		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1976				r1_bio->sector,
1977				r1_bio->sectors,
1978				&first_bad, &bad_sectors)
1979		)
1980		set_bit(R1BIO_MadeGood, &r1_bio->state);
1981
1982	put_sync_write_buf(r1_bio, uptodate);
1983}
1984
1985static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1986			   int sectors, struct page *page, blk_opf_t rw)
1987{
1988	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1989		/* success */
1990		return 1;
1991	if (rw == REQ_OP_WRITE) {
1992		set_bit(WriteErrorSeen, &rdev->flags);
1993		if (!test_and_set_bit(WantReplacement,
1994				      &rdev->flags))
1995			set_bit(MD_RECOVERY_NEEDED, &
1996				rdev->mddev->recovery);
1997	}
1998	/* need to record an error - either for the block or the device */
1999	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2000		md_error(rdev->mddev, rdev);
2001	return 0;
2002}
2003
2004static int fix_sync_read_error(struct r1bio *r1_bio)
2005{
2006	/* Try some synchronous reads of other devices to get
2007	 * good data, much like with normal read errors.  Only
2008	 * read into the pages we already have so we don't
2009	 * need to re-issue the read request.
2010	 * We don't need to freeze the array, because being in an
2011	 * active sync request, there is no normal IO, and
2012	 * no overlapping syncs.
2013	 * We don't need to check is_badblock() again as we
2014	 * made sure that anything with a bad block in range
2015	 * will have bi_end_io clear.
2016	 */
2017	struct mddev *mddev = r1_bio->mddev;
2018	struct r1conf *conf = mddev->private;
2019	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2020	struct page **pages = get_resync_pages(bio)->pages;
2021	sector_t sect = r1_bio->sector;
2022	int sectors = r1_bio->sectors;
2023	int idx = 0;
2024	struct md_rdev *rdev;
2025
2026	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2027	if (test_bit(FailFast, &rdev->flags)) {
2028		/* Don't try recovering from here - just fail it
2029		 * ... unless it is the last working device of course */
2030		md_error(mddev, rdev);
2031		if (test_bit(Faulty, &rdev->flags))
2032			/* Don't try to read from here, but make sure
2033			 * put_buf does it's thing
2034			 */
2035			bio->bi_end_io = end_sync_write;
2036	}
2037
2038	while(sectors) {
2039		int s = sectors;
2040		int d = r1_bio->read_disk;
2041		int success = 0;
2042		int start;
2043
2044		if (s > (PAGE_SIZE>>9))
2045			s = PAGE_SIZE >> 9;
2046		do {
2047			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2048				/* No rcu protection needed here devices
2049				 * can only be removed when no resync is
2050				 * active, and resync is currently active
2051				 */
2052				rdev = conf->mirrors[d].rdev;
2053				if (sync_page_io(rdev, sect, s<<9,
2054						 pages[idx],
2055						 REQ_OP_READ, false)) {
2056					success = 1;
2057					break;
2058				}
2059			}
2060			d++;
2061			if (d == conf->raid_disks * 2)
2062				d = 0;
2063		} while (!success && d != r1_bio->read_disk);
2064
2065		if (!success) {
2066			int abort = 0;
2067			/* Cannot read from anywhere, this block is lost.
2068			 * Record a bad block on each device.  If that doesn't
2069			 * work just disable and interrupt the recovery.
2070			 * Don't fail devices as that won't really help.
2071			 */
2072			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2073					    mdname(mddev), bio->bi_bdev,
2074					    (unsigned long long)r1_bio->sector);
2075			for (d = 0; d < conf->raid_disks * 2; d++) {
2076				rdev = conf->mirrors[d].rdev;
2077				if (!rdev || test_bit(Faulty, &rdev->flags))
2078					continue;
2079				if (!rdev_set_badblocks(rdev, sect, s, 0))
2080					abort = 1;
2081			}
2082			if (abort) {
2083				conf->recovery_disabled =
2084					mddev->recovery_disabled;
2085				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2086				md_done_sync(mddev, r1_bio->sectors, 0);
2087				put_buf(r1_bio);
2088				return 0;
2089			}
2090			/* Try next page */
2091			sectors -= s;
2092			sect += s;
2093			idx++;
2094			continue;
2095		}
2096
2097		start = d;
2098		/* write it back and re-read */
2099		while (d != r1_bio->read_disk) {
2100			if (d == 0)
2101				d = conf->raid_disks * 2;
2102			d--;
2103			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104				continue;
2105			rdev = conf->mirrors[d].rdev;
2106			if (r1_sync_page_io(rdev, sect, s,
2107					    pages[idx],
2108					    REQ_OP_WRITE) == 0) {
2109				r1_bio->bios[d]->bi_end_io = NULL;
2110				rdev_dec_pending(rdev, mddev);
2111			}
2112		}
2113		d = start;
2114		while (d != r1_bio->read_disk) {
2115			if (d == 0)
2116				d = conf->raid_disks * 2;
2117			d--;
2118			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2119				continue;
2120			rdev = conf->mirrors[d].rdev;
2121			if (r1_sync_page_io(rdev, sect, s,
2122					    pages[idx],
2123					    REQ_OP_READ) != 0)
2124				atomic_add(s, &rdev->corrected_errors);
2125		}
2126		sectors -= s;
2127		sect += s;
2128		idx ++;
2129	}
2130	set_bit(R1BIO_Uptodate, &r1_bio->state);
2131	bio->bi_status = 0;
2132	return 1;
2133}
2134
2135static void process_checks(struct r1bio *r1_bio)
2136{
2137	/* We have read all readable devices.  If we haven't
2138	 * got the block, then there is no hope left.
2139	 * If we have, then we want to do a comparison
2140	 * and skip the write if everything is the same.
2141	 * If any blocks failed to read, then we need to
2142	 * attempt an over-write
2143	 */
2144	struct mddev *mddev = r1_bio->mddev;
2145	struct r1conf *conf = mddev->private;
2146	int primary;
2147	int i;
2148	int vcnt;
2149
2150	/* Fix variable parts of all bios */
2151	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2152	for (i = 0; i < conf->raid_disks * 2; i++) {
2153		blk_status_t status;
2154		struct bio *b = r1_bio->bios[i];
2155		struct resync_pages *rp = get_resync_pages(b);
2156		if (b->bi_end_io != end_sync_read)
2157			continue;
2158		/* fixup the bio for reuse, but preserve errno */
2159		status = b->bi_status;
2160		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2161		b->bi_status = status;
2162		b->bi_iter.bi_sector = r1_bio->sector +
2163			conf->mirrors[i].rdev->data_offset;
2164		b->bi_end_io = end_sync_read;
2165		rp->raid_bio = r1_bio;
2166		b->bi_private = rp;
2167
2168		/* initialize bvec table again */
2169		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2170	}
2171	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2172		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2173		    !r1_bio->bios[primary]->bi_status) {
2174			r1_bio->bios[primary]->bi_end_io = NULL;
2175			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2176			break;
2177		}
2178	r1_bio->read_disk = primary;
2179	for (i = 0; i < conf->raid_disks * 2; i++) {
2180		int j = 0;
2181		struct bio *pbio = r1_bio->bios[primary];
2182		struct bio *sbio = r1_bio->bios[i];
2183		blk_status_t status = sbio->bi_status;
2184		struct page **ppages = get_resync_pages(pbio)->pages;
2185		struct page **spages = get_resync_pages(sbio)->pages;
2186		struct bio_vec *bi;
2187		int page_len[RESYNC_PAGES] = { 0 };
2188		struct bvec_iter_all iter_all;
2189
2190		if (sbio->bi_end_io != end_sync_read)
2191			continue;
2192		/* Now we can 'fixup' the error value */
2193		sbio->bi_status = 0;
2194
2195		bio_for_each_segment_all(bi, sbio, iter_all)
2196			page_len[j++] = bi->bv_len;
2197
2198		if (!status) {
2199			for (j = vcnt; j-- ; ) {
2200				if (memcmp(page_address(ppages[j]),
2201					   page_address(spages[j]),
2202					   page_len[j]))
2203					break;
2204			}
2205		} else
2206			j = 0;
2207		if (j >= 0)
2208			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2209		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2210			      && !status)) {
2211			/* No need to write to this device. */
2212			sbio->bi_end_io = NULL;
2213			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2214			continue;
2215		}
2216
2217		bio_copy_data(sbio, pbio);
2218	}
2219}
2220
2221static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2222{
2223	struct r1conf *conf = mddev->private;
2224	int i;
2225	int disks = conf->raid_disks * 2;
2226	struct bio *wbio;
2227
2228	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2229		/* ouch - failed to read all of that. */
2230		if (!fix_sync_read_error(r1_bio))
2231			return;
2232
2233	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2234		process_checks(r1_bio);
2235
2236	/*
2237	 * schedule writes
2238	 */
2239	atomic_set(&r1_bio->remaining, 1);
2240	for (i = 0; i < disks ; i++) {
2241		wbio = r1_bio->bios[i];
2242		if (wbio->bi_end_io == NULL ||
2243		    (wbio->bi_end_io == end_sync_read &&
2244		     (i == r1_bio->read_disk ||
2245		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2246			continue;
2247		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2248			abort_sync_write(mddev, r1_bio);
2249			continue;
2250		}
2251
2252		wbio->bi_opf = REQ_OP_WRITE;
2253		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2254			wbio->bi_opf |= MD_FAILFAST;
2255
2256		wbio->bi_end_io = end_sync_write;
2257		atomic_inc(&r1_bio->remaining);
2258		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2259
2260		submit_bio_noacct(wbio);
2261	}
2262
2263	put_sync_write_buf(r1_bio, 1);
2264}
2265
2266/*
2267 * This is a kernel thread which:
2268 *
2269 *	1.	Retries failed read operations on working mirrors.
2270 *	2.	Updates the raid superblock when problems encounter.
2271 *	3.	Performs writes following reads for array synchronising.
2272 */
2273
2274static void fix_read_error(struct r1conf *conf, int read_disk,
2275			   sector_t sect, int sectors)
2276{
2277	struct mddev *mddev = conf->mddev;
2278	while(sectors) {
2279		int s = sectors;
2280		int d = read_disk;
2281		int success = 0;
2282		int start;
2283		struct md_rdev *rdev;
2284
2285		if (s > (PAGE_SIZE>>9))
2286			s = PAGE_SIZE >> 9;
2287
2288		do {
2289			sector_t first_bad;
2290			int bad_sectors;
2291
2292			rcu_read_lock();
2293			rdev = rcu_dereference(conf->mirrors[d].rdev);
2294			if (rdev &&
2295			    (test_bit(In_sync, &rdev->flags) ||
2296			     (!test_bit(Faulty, &rdev->flags) &&
2297			      rdev->recovery_offset >= sect + s)) &&
2298			    is_badblock(rdev, sect, s,
2299					&first_bad, &bad_sectors) == 0) {
2300				atomic_inc(&rdev->nr_pending);
2301				rcu_read_unlock();
2302				if (sync_page_io(rdev, sect, s<<9,
2303					 conf->tmppage, REQ_OP_READ, false))
2304					success = 1;
2305				rdev_dec_pending(rdev, mddev);
2306				if (success)
2307					break;
2308			} else
2309				rcu_read_unlock();
2310			d++;
2311			if (d == conf->raid_disks * 2)
2312				d = 0;
2313		} while (d != read_disk);
2314
2315		if (!success) {
2316			/* Cannot read from anywhere - mark it bad */
2317			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2318			if (!rdev_set_badblocks(rdev, sect, s, 0))
2319				md_error(mddev, rdev);
2320			break;
2321		}
2322		/* write it back and re-read */
2323		start = d;
2324		while (d != read_disk) {
2325			if (d==0)
2326				d = conf->raid_disks * 2;
2327			d--;
2328			rcu_read_lock();
2329			rdev = rcu_dereference(conf->mirrors[d].rdev);
2330			if (rdev &&
2331			    !test_bit(Faulty, &rdev->flags)) {
2332				atomic_inc(&rdev->nr_pending);
2333				rcu_read_unlock();
2334				r1_sync_page_io(rdev, sect, s,
2335						conf->tmppage, REQ_OP_WRITE);
2336				rdev_dec_pending(rdev, mddev);
2337			} else
2338				rcu_read_unlock();
2339		}
2340		d = start;
2341		while (d != read_disk) {
2342			if (d==0)
2343				d = conf->raid_disks * 2;
2344			d--;
2345			rcu_read_lock();
2346			rdev = rcu_dereference(conf->mirrors[d].rdev);
2347			if (rdev &&
2348			    !test_bit(Faulty, &rdev->flags)) {
2349				atomic_inc(&rdev->nr_pending);
2350				rcu_read_unlock();
2351				if (r1_sync_page_io(rdev, sect, s,
2352						conf->tmppage, REQ_OP_READ)) {
2353					atomic_add(s, &rdev->corrected_errors);
2354					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2355						mdname(mddev), s,
2356						(unsigned long long)(sect +
2357								     rdev->data_offset),
2358						rdev->bdev);
2359				}
2360				rdev_dec_pending(rdev, mddev);
2361			} else
2362				rcu_read_unlock();
2363		}
2364		sectors -= s;
2365		sect += s;
2366	}
2367}
2368
2369static int narrow_write_error(struct r1bio *r1_bio, int i)
2370{
2371	struct mddev *mddev = r1_bio->mddev;
2372	struct r1conf *conf = mddev->private;
2373	struct md_rdev *rdev = conf->mirrors[i].rdev;
2374
2375	/* bio has the data to be written to device 'i' where
2376	 * we just recently had a write error.
2377	 * We repeatedly clone the bio and trim down to one block,
2378	 * then try the write.  Where the write fails we record
2379	 * a bad block.
2380	 * It is conceivable that the bio doesn't exactly align with
2381	 * blocks.  We must handle this somehow.
2382	 *
2383	 * We currently own a reference on the rdev.
2384	 */
2385
2386	int block_sectors;
2387	sector_t sector;
2388	int sectors;
2389	int sect_to_write = r1_bio->sectors;
2390	int ok = 1;
2391
2392	if (rdev->badblocks.shift < 0)
2393		return 0;
2394
2395	block_sectors = roundup(1 << rdev->badblocks.shift,
2396				bdev_logical_block_size(rdev->bdev) >> 9);
2397	sector = r1_bio->sector;
2398	sectors = ((sector + block_sectors)
2399		   & ~(sector_t)(block_sectors - 1))
2400		- sector;
2401
2402	while (sect_to_write) {
2403		struct bio *wbio;
2404		if (sectors > sect_to_write)
2405			sectors = sect_to_write;
2406		/* Write at 'sector' for 'sectors'*/
2407
2408		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2409			wbio = bio_alloc_clone(rdev->bdev,
2410					       r1_bio->behind_master_bio,
2411					       GFP_NOIO, &mddev->bio_set);
2412		} else {
2413			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2414					       GFP_NOIO, &mddev->bio_set);
2415		}
2416
2417		wbio->bi_opf = REQ_OP_WRITE;
2418		wbio->bi_iter.bi_sector = r1_bio->sector;
2419		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2420
2421		bio_trim(wbio, sector - r1_bio->sector, sectors);
2422		wbio->bi_iter.bi_sector += rdev->data_offset;
2423
2424		if (submit_bio_wait(wbio) < 0)
2425			/* failure! */
2426			ok = rdev_set_badblocks(rdev, sector,
2427						sectors, 0)
2428				&& ok;
2429
2430		bio_put(wbio);
2431		sect_to_write -= sectors;
2432		sector += sectors;
2433		sectors = block_sectors;
2434	}
2435	return ok;
2436}
2437
2438static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2439{
2440	int m;
2441	int s = r1_bio->sectors;
2442	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2443		struct md_rdev *rdev = conf->mirrors[m].rdev;
2444		struct bio *bio = r1_bio->bios[m];
2445		if (bio->bi_end_io == NULL)
2446			continue;
2447		if (!bio->bi_status &&
2448		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2449			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2450		}
2451		if (bio->bi_status &&
2452		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2453			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2454				md_error(conf->mddev, rdev);
2455		}
2456	}
2457	put_buf(r1_bio);
2458	md_done_sync(conf->mddev, s, 1);
2459}
2460
2461static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2462{
2463	int m, idx;
2464	bool fail = false;
2465
2466	for (m = 0; m < conf->raid_disks * 2 ; m++)
2467		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2468			struct md_rdev *rdev = conf->mirrors[m].rdev;
2469			rdev_clear_badblocks(rdev,
2470					     r1_bio->sector,
2471					     r1_bio->sectors, 0);
2472			rdev_dec_pending(rdev, conf->mddev);
2473		} else if (r1_bio->bios[m] != NULL) {
2474			/* This drive got a write error.  We need to
2475			 * narrow down and record precise write
2476			 * errors.
2477			 */
2478			fail = true;
2479			if (!narrow_write_error(r1_bio, m)) {
2480				md_error(conf->mddev,
2481					 conf->mirrors[m].rdev);
2482				/* an I/O failed, we can't clear the bitmap */
2483				set_bit(R1BIO_Degraded, &r1_bio->state);
2484			}
2485			rdev_dec_pending(conf->mirrors[m].rdev,
2486					 conf->mddev);
2487		}
2488	if (fail) {
2489		spin_lock_irq(&conf->device_lock);
2490		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2491		idx = sector_to_idx(r1_bio->sector);
2492		atomic_inc(&conf->nr_queued[idx]);
2493		spin_unlock_irq(&conf->device_lock);
2494		/*
2495		 * In case freeze_array() is waiting for condition
2496		 * get_unqueued_pending() == extra to be true.
2497		 */
2498		wake_up(&conf->wait_barrier);
2499		md_wakeup_thread(conf->mddev->thread);
2500	} else {
2501		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2502			close_write(r1_bio);
2503		raid_end_bio_io(r1_bio);
2504	}
2505}
2506
2507static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2508{
2509	struct mddev *mddev = conf->mddev;
2510	struct bio *bio;
2511	struct md_rdev *rdev;
2512	sector_t sector;
2513
2514	clear_bit(R1BIO_ReadError, &r1_bio->state);
2515	/* we got a read error. Maybe the drive is bad.  Maybe just
2516	 * the block and we can fix it.
2517	 * We freeze all other IO, and try reading the block from
2518	 * other devices.  When we find one, we re-write
2519	 * and check it that fixes the read error.
2520	 * This is all done synchronously while the array is
2521	 * frozen
2522	 */
2523
2524	bio = r1_bio->bios[r1_bio->read_disk];
2525	bio_put(bio);
2526	r1_bio->bios[r1_bio->read_disk] = NULL;
2527
2528	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2529	if (mddev->ro == 0
2530	    && !test_bit(FailFast, &rdev->flags)) {
2531		freeze_array(conf, 1);
2532		fix_read_error(conf, r1_bio->read_disk,
2533			       r1_bio->sector, r1_bio->sectors);
2534		unfreeze_array(conf);
2535	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2536		md_error(mddev, rdev);
2537	} else {
2538		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539	}
2540
2541	rdev_dec_pending(rdev, conf->mddev);
2542	sector = r1_bio->sector;
2543	bio = r1_bio->master_bio;
2544
2545	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2546	r1_bio->state = 0;
2547	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2548	allow_barrier(conf, sector);
2549}
2550
2551static void raid1d(struct md_thread *thread)
2552{
2553	struct mddev *mddev = thread->mddev;
2554	struct r1bio *r1_bio;
2555	unsigned long flags;
2556	struct r1conf *conf = mddev->private;
2557	struct list_head *head = &conf->retry_list;
2558	struct blk_plug plug;
2559	int idx;
2560
2561	md_check_recovery(mddev);
2562
2563	if (!list_empty_careful(&conf->bio_end_io_list) &&
2564	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2565		LIST_HEAD(tmp);
2566		spin_lock_irqsave(&conf->device_lock, flags);
2567		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2568			list_splice_init(&conf->bio_end_io_list, &tmp);
2569		spin_unlock_irqrestore(&conf->device_lock, flags);
2570		while (!list_empty(&tmp)) {
2571			r1_bio = list_first_entry(&tmp, struct r1bio,
2572						  retry_list);
2573			list_del(&r1_bio->retry_list);
2574			idx = sector_to_idx(r1_bio->sector);
2575			atomic_dec(&conf->nr_queued[idx]);
2576			if (mddev->degraded)
2577				set_bit(R1BIO_Degraded, &r1_bio->state);
2578			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2579				close_write(r1_bio);
2580			raid_end_bio_io(r1_bio);
2581		}
2582	}
2583
2584	blk_start_plug(&plug);
2585	for (;;) {
2586
2587		flush_pending_writes(conf);
2588
2589		spin_lock_irqsave(&conf->device_lock, flags);
2590		if (list_empty(head)) {
2591			spin_unlock_irqrestore(&conf->device_lock, flags);
2592			break;
2593		}
2594		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2595		list_del(head->prev);
2596		idx = sector_to_idx(r1_bio->sector);
2597		atomic_dec(&conf->nr_queued[idx]);
2598		spin_unlock_irqrestore(&conf->device_lock, flags);
2599
2600		mddev = r1_bio->mddev;
2601		conf = mddev->private;
2602		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2603			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2604			    test_bit(R1BIO_WriteError, &r1_bio->state))
2605				handle_sync_write_finished(conf, r1_bio);
2606			else
2607				sync_request_write(mddev, r1_bio);
2608		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2609			   test_bit(R1BIO_WriteError, &r1_bio->state))
2610			handle_write_finished(conf, r1_bio);
2611		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2612			handle_read_error(conf, r1_bio);
2613		else
2614			WARN_ON_ONCE(1);
2615
2616		cond_resched();
2617		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2618			md_check_recovery(mddev);
2619	}
2620	blk_finish_plug(&plug);
2621}
2622
2623static int init_resync(struct r1conf *conf)
2624{
2625	int buffs;
2626
2627	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2628	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2629
2630	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2631			    r1buf_pool_free, conf->poolinfo);
2632}
2633
2634static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2635{
2636	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2637	struct resync_pages *rps;
2638	struct bio *bio;
2639	int i;
2640
2641	for (i = conf->poolinfo->raid_disks; i--; ) {
2642		bio = r1bio->bios[i];
2643		rps = bio->bi_private;
2644		bio_reset(bio, NULL, 0);
2645		bio->bi_private = rps;
2646	}
2647	r1bio->master_bio = NULL;
2648	return r1bio;
2649}
2650
2651/*
2652 * perform a "sync" on one "block"
2653 *
2654 * We need to make sure that no normal I/O request - particularly write
2655 * requests - conflict with active sync requests.
2656 *
2657 * This is achieved by tracking pending requests and a 'barrier' concept
2658 * that can be installed to exclude normal IO requests.
2659 */
2660
2661static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2662				   int *skipped)
2663{
2664	struct r1conf *conf = mddev->private;
2665	struct r1bio *r1_bio;
2666	struct bio *bio;
2667	sector_t max_sector, nr_sectors;
2668	int disk = -1;
2669	int i;
2670	int wonly = -1;
2671	int write_targets = 0, read_targets = 0;
2672	sector_t sync_blocks;
2673	int still_degraded = 0;
2674	int good_sectors = RESYNC_SECTORS;
2675	int min_bad = 0; /* number of sectors that are bad in all devices */
2676	int idx = sector_to_idx(sector_nr);
2677	int page_idx = 0;
2678
2679	if (!mempool_initialized(&conf->r1buf_pool))
2680		if (init_resync(conf))
2681			return 0;
2682
2683	max_sector = mddev->dev_sectors;
2684	if (sector_nr >= max_sector) {
2685		/* If we aborted, we need to abort the
2686		 * sync on the 'current' bitmap chunk (there will
2687		 * only be one in raid1 resync.
2688		 * We can find the current addess in mddev->curr_resync
2689		 */
2690		if (mddev->curr_resync < max_sector) /* aborted */
2691			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2692					   &sync_blocks, 1);
2693		else /* completed sync */
2694			conf->fullsync = 0;
2695
2696		md_bitmap_close_sync(mddev->bitmap);
2697		close_sync(conf);
2698
2699		if (mddev_is_clustered(mddev)) {
2700			conf->cluster_sync_low = 0;
2701			conf->cluster_sync_high = 0;
2702		}
2703		return 0;
2704	}
2705
2706	if (mddev->bitmap == NULL &&
2707	    mddev->recovery_cp == MaxSector &&
2708	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2709	    conf->fullsync == 0) {
2710		*skipped = 1;
2711		return max_sector - sector_nr;
2712	}
2713	/* before building a request, check if we can skip these blocks..
2714	 * This call the bitmap_start_sync doesn't actually record anything
2715	 */
2716	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2717	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2718		/* We can skip this block, and probably several more */
2719		*skipped = 1;
2720		return sync_blocks;
2721	}
2722
2723	/*
2724	 * If there is non-resync activity waiting for a turn, then let it
2725	 * though before starting on this new sync request.
2726	 */
2727	if (atomic_read(&conf->nr_waiting[idx]))
2728		schedule_timeout_uninterruptible(1);
2729
2730	/* we are incrementing sector_nr below. To be safe, we check against
2731	 * sector_nr + two times RESYNC_SECTORS
2732	 */
2733
2734	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2735		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2736
2737
2738	if (raise_barrier(conf, sector_nr))
2739		return 0;
2740
2741	r1_bio = raid1_alloc_init_r1buf(conf);
2742
2743	rcu_read_lock();
2744	/*
2745	 * If we get a correctably read error during resync or recovery,
2746	 * we might want to read from a different device.  So we
2747	 * flag all drives that could conceivably be read from for READ,
2748	 * and any others (which will be non-In_sync devices) for WRITE.
2749	 * If a read fails, we try reading from something else for which READ
2750	 * is OK.
2751	 */
2752
2753	r1_bio->mddev = mddev;
2754	r1_bio->sector = sector_nr;
2755	r1_bio->state = 0;
2756	set_bit(R1BIO_IsSync, &r1_bio->state);
2757	/* make sure good_sectors won't go across barrier unit boundary */
2758	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2759
2760	for (i = 0; i < conf->raid_disks * 2; i++) {
2761		struct md_rdev *rdev;
2762		bio = r1_bio->bios[i];
2763
2764		rdev = rcu_dereference(conf->mirrors[i].rdev);
2765		if (rdev == NULL ||
2766		    test_bit(Faulty, &rdev->flags)) {
2767			if (i < conf->raid_disks)
2768				still_degraded = 1;
2769		} else if (!test_bit(In_sync, &rdev->flags)) {
2770			bio->bi_opf = REQ_OP_WRITE;
2771			bio->bi_end_io = end_sync_write;
2772			write_targets ++;
2773		} else {
2774			/* may need to read from here */
2775			sector_t first_bad = MaxSector;
2776			int bad_sectors;
2777
2778			if (is_badblock(rdev, sector_nr, good_sectors,
2779					&first_bad, &bad_sectors)) {
2780				if (first_bad > sector_nr)
2781					good_sectors = first_bad - sector_nr;
2782				else {
2783					bad_sectors -= (sector_nr - first_bad);
2784					if (min_bad == 0 ||
2785					    min_bad > bad_sectors)
2786						min_bad = bad_sectors;
2787				}
2788			}
2789			if (sector_nr < first_bad) {
2790				if (test_bit(WriteMostly, &rdev->flags)) {
2791					if (wonly < 0)
2792						wonly = i;
2793				} else {
2794					if (disk < 0)
2795						disk = i;
2796				}
2797				bio->bi_opf = REQ_OP_READ;
2798				bio->bi_end_io = end_sync_read;
2799				read_targets++;
2800			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2801				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2802				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2803				/*
2804				 * The device is suitable for reading (InSync),
2805				 * but has bad block(s) here. Let's try to correct them,
2806				 * if we are doing resync or repair. Otherwise, leave
2807				 * this device alone for this sync request.
2808				 */
2809				bio->bi_opf = REQ_OP_WRITE;
2810				bio->bi_end_io = end_sync_write;
2811				write_targets++;
2812			}
2813		}
2814		if (rdev && bio->bi_end_io) {
2815			atomic_inc(&rdev->nr_pending);
2816			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2817			bio_set_dev(bio, rdev->bdev);
2818			if (test_bit(FailFast, &rdev->flags))
2819				bio->bi_opf |= MD_FAILFAST;
2820		}
2821	}
2822	rcu_read_unlock();
2823	if (disk < 0)
2824		disk = wonly;
2825	r1_bio->read_disk = disk;
2826
2827	if (read_targets == 0 && min_bad > 0) {
2828		/* These sectors are bad on all InSync devices, so we
2829		 * need to mark them bad on all write targets
2830		 */
2831		int ok = 1;
2832		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2833			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2834				struct md_rdev *rdev = conf->mirrors[i].rdev;
2835				ok = rdev_set_badblocks(rdev, sector_nr,
2836							min_bad, 0
2837					) && ok;
2838			}
2839		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2840		*skipped = 1;
2841		put_buf(r1_bio);
2842
2843		if (!ok) {
2844			/* Cannot record the badblocks, so need to
2845			 * abort the resync.
2846			 * If there are multiple read targets, could just
2847			 * fail the really bad ones ???
2848			 */
2849			conf->recovery_disabled = mddev->recovery_disabled;
2850			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2851			return 0;
2852		} else
2853			return min_bad;
2854
2855	}
2856	if (min_bad > 0 && min_bad < good_sectors) {
2857		/* only resync enough to reach the next bad->good
2858		 * transition */
2859		good_sectors = min_bad;
2860	}
2861
2862	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2863		/* extra read targets are also write targets */
2864		write_targets += read_targets-1;
2865
2866	if (write_targets == 0 || read_targets == 0) {
2867		/* There is nowhere to write, so all non-sync
2868		 * drives must be failed - so we are finished
2869		 */
2870		sector_t rv;
2871		if (min_bad > 0)
2872			max_sector = sector_nr + min_bad;
2873		rv = max_sector - sector_nr;
2874		*skipped = 1;
2875		put_buf(r1_bio);
2876		return rv;
2877	}
2878
2879	if (max_sector > mddev->resync_max)
2880		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2881	if (max_sector > sector_nr + good_sectors)
2882		max_sector = sector_nr + good_sectors;
2883	nr_sectors = 0;
2884	sync_blocks = 0;
2885	do {
2886		struct page *page;
2887		int len = PAGE_SIZE;
2888		if (sector_nr + (len>>9) > max_sector)
2889			len = (max_sector - sector_nr) << 9;
2890		if (len == 0)
2891			break;
2892		if (sync_blocks == 0) {
2893			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2894						  &sync_blocks, still_degraded) &&
2895			    !conf->fullsync &&
2896			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2897				break;
2898			if ((len >> 9) > sync_blocks)
2899				len = sync_blocks<<9;
2900		}
2901
2902		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2903			struct resync_pages *rp;
2904
2905			bio = r1_bio->bios[i];
2906			rp = get_resync_pages(bio);
2907			if (bio->bi_end_io) {
2908				page = resync_fetch_page(rp, page_idx);
2909
2910				/*
2911				 * won't fail because the vec table is big
2912				 * enough to hold all these pages
2913				 */
2914				__bio_add_page(bio, page, len, 0);
2915			}
2916		}
2917		nr_sectors += len>>9;
2918		sector_nr += len>>9;
2919		sync_blocks -= (len>>9);
2920	} while (++page_idx < RESYNC_PAGES);
2921
2922	r1_bio->sectors = nr_sectors;
2923
2924	if (mddev_is_clustered(mddev) &&
2925			conf->cluster_sync_high < sector_nr + nr_sectors) {
2926		conf->cluster_sync_low = mddev->curr_resync_completed;
2927		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2928		/* Send resync message */
2929		md_cluster_ops->resync_info_update(mddev,
2930				conf->cluster_sync_low,
2931				conf->cluster_sync_high);
2932	}
2933
2934	/* For a user-requested sync, we read all readable devices and do a
2935	 * compare
2936	 */
2937	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2938		atomic_set(&r1_bio->remaining, read_targets);
2939		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2940			bio = r1_bio->bios[i];
2941			if (bio->bi_end_io == end_sync_read) {
2942				read_targets--;
2943				md_sync_acct_bio(bio, nr_sectors);
2944				if (read_targets == 1)
2945					bio->bi_opf &= ~MD_FAILFAST;
2946				submit_bio_noacct(bio);
2947			}
2948		}
2949	} else {
2950		atomic_set(&r1_bio->remaining, 1);
2951		bio = r1_bio->bios[r1_bio->read_disk];
2952		md_sync_acct_bio(bio, nr_sectors);
2953		if (read_targets == 1)
2954			bio->bi_opf &= ~MD_FAILFAST;
2955		submit_bio_noacct(bio);
2956	}
2957	return nr_sectors;
2958}
2959
2960static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2961{
2962	if (sectors)
2963		return sectors;
2964
2965	return mddev->dev_sectors;
2966}
2967
2968static struct r1conf *setup_conf(struct mddev *mddev)
2969{
2970	struct r1conf *conf;
2971	int i;
2972	struct raid1_info *disk;
2973	struct md_rdev *rdev;
2974	int err = -ENOMEM;
2975
2976	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2977	if (!conf)
2978		goto abort;
2979
2980	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2981				   sizeof(atomic_t), GFP_KERNEL);
2982	if (!conf->nr_pending)
2983		goto abort;
2984
2985	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2986				   sizeof(atomic_t), GFP_KERNEL);
2987	if (!conf->nr_waiting)
2988		goto abort;
2989
2990	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2991				  sizeof(atomic_t), GFP_KERNEL);
2992	if (!conf->nr_queued)
2993		goto abort;
2994
2995	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2996				sizeof(atomic_t), GFP_KERNEL);
2997	if (!conf->barrier)
2998		goto abort;
2999
3000	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3001					    mddev->raid_disks, 2),
3002				GFP_KERNEL);
3003	if (!conf->mirrors)
3004		goto abort;
3005
3006	conf->tmppage = alloc_page(GFP_KERNEL);
3007	if (!conf->tmppage)
3008		goto abort;
3009
3010	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3011	if (!conf->poolinfo)
3012		goto abort;
3013	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3014	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3015			   rbio_pool_free, conf->poolinfo);
3016	if (err)
3017		goto abort;
3018
3019	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3020	if (err)
3021		goto abort;
3022
3023	conf->poolinfo->mddev = mddev;
3024
3025	err = -EINVAL;
3026	spin_lock_init(&conf->device_lock);
3027	rdev_for_each(rdev, mddev) {
3028		int disk_idx = rdev->raid_disk;
3029		if (disk_idx >= mddev->raid_disks
3030		    || disk_idx < 0)
3031			continue;
3032		if (test_bit(Replacement, &rdev->flags))
3033			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3034		else
3035			disk = conf->mirrors + disk_idx;
3036
3037		if (disk->rdev)
3038			goto abort;
3039		disk->rdev = rdev;
3040		disk->head_position = 0;
3041		disk->seq_start = MaxSector;
3042	}
3043	conf->raid_disks = mddev->raid_disks;
3044	conf->mddev = mddev;
3045	INIT_LIST_HEAD(&conf->retry_list);
3046	INIT_LIST_HEAD(&conf->bio_end_io_list);
3047
3048	spin_lock_init(&conf->resync_lock);
3049	init_waitqueue_head(&conf->wait_barrier);
3050
3051	bio_list_init(&conf->pending_bio_list);
3052	conf->recovery_disabled = mddev->recovery_disabled - 1;
3053
3054	err = -EIO;
3055	for (i = 0; i < conf->raid_disks * 2; i++) {
3056
3057		disk = conf->mirrors + i;
3058
3059		if (i < conf->raid_disks &&
3060		    disk[conf->raid_disks].rdev) {
3061			/* This slot has a replacement. */
3062			if (!disk->rdev) {
3063				/* No original, just make the replacement
3064				 * a recovering spare
3065				 */
3066				disk->rdev =
3067					disk[conf->raid_disks].rdev;
3068				disk[conf->raid_disks].rdev = NULL;
3069			} else if (!test_bit(In_sync, &disk->rdev->flags))
3070				/* Original is not in_sync - bad */
3071				goto abort;
3072		}
3073
3074		if (!disk->rdev ||
3075		    !test_bit(In_sync, &disk->rdev->flags)) {
3076			disk->head_position = 0;
3077			if (disk->rdev &&
3078			    (disk->rdev->saved_raid_disk < 0))
3079				conf->fullsync = 1;
3080		}
3081	}
3082
3083	err = -ENOMEM;
3084	rcu_assign_pointer(conf->thread,
3085			   md_register_thread(raid1d, mddev, "raid1"));
3086	if (!conf->thread)
3087		goto abort;
3088
3089	return conf;
3090
3091 abort:
3092	if (conf) {
3093		mempool_exit(&conf->r1bio_pool);
3094		kfree(conf->mirrors);
3095		safe_put_page(conf->tmppage);
3096		kfree(conf->poolinfo);
3097		kfree(conf->nr_pending);
3098		kfree(conf->nr_waiting);
3099		kfree(conf->nr_queued);
3100		kfree(conf->barrier);
3101		bioset_exit(&conf->bio_split);
3102		kfree(conf);
3103	}
3104	return ERR_PTR(err);
3105}
3106
3107static void raid1_free(struct mddev *mddev, void *priv);
3108static int raid1_run(struct mddev *mddev)
3109{
3110	struct r1conf *conf;
3111	int i;
3112	struct md_rdev *rdev;
3113	int ret;
3114
3115	if (mddev->level != 1) {
3116		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3117			mdname(mddev), mddev->level);
3118		return -EIO;
3119	}
3120	if (mddev->reshape_position != MaxSector) {
3121		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3122			mdname(mddev));
3123		return -EIO;
3124	}
3125	if (mddev_init_writes_pending(mddev) < 0)
3126		return -ENOMEM;
3127	/*
3128	 * copy the already verified devices into our private RAID1
3129	 * bookkeeping area. [whatever we allocate in run(),
3130	 * should be freed in raid1_free()]
3131	 */
3132	if (mddev->private == NULL)
3133		conf = setup_conf(mddev);
3134	else
3135		conf = mddev->private;
3136
3137	if (IS_ERR(conf))
3138		return PTR_ERR(conf);
3139
3140	if (mddev->queue)
3141		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3142
3143	rdev_for_each(rdev, mddev) {
3144		if (!mddev->gendisk)
3145			continue;
3146		disk_stack_limits(mddev->gendisk, rdev->bdev,
3147				  rdev->data_offset << 9);
3148	}
3149
3150	mddev->degraded = 0;
3151	for (i = 0; i < conf->raid_disks; i++)
3152		if (conf->mirrors[i].rdev == NULL ||
3153		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3154		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3155			mddev->degraded++;
3156	/*
3157	 * RAID1 needs at least one disk in active
3158	 */
3159	if (conf->raid_disks - mddev->degraded < 1) {
3160		md_unregister_thread(mddev, &conf->thread);
3161		ret = -EINVAL;
3162		goto abort;
3163	}
3164
3165	if (conf->raid_disks - mddev->degraded == 1)
3166		mddev->recovery_cp = MaxSector;
3167
3168	if (mddev->recovery_cp != MaxSector)
3169		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3170			mdname(mddev));
3171	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3172		mdname(mddev), mddev->raid_disks - mddev->degraded,
3173		mddev->raid_disks);
3174
3175	/*
3176	 * Ok, everything is just fine now
3177	 */
3178	rcu_assign_pointer(mddev->thread, conf->thread);
3179	rcu_assign_pointer(conf->thread, NULL);
3180	mddev->private = conf;
3181	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3182
3183	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3184
3185	ret = md_integrity_register(mddev);
3186	if (ret) {
3187		md_unregister_thread(mddev, &mddev->thread);
3188		goto abort;
3189	}
3190	return 0;
3191
3192abort:
3193	raid1_free(mddev, conf);
3194	return ret;
3195}
3196
3197static void raid1_free(struct mddev *mddev, void *priv)
3198{
3199	struct r1conf *conf = priv;
3200
3201	mempool_exit(&conf->r1bio_pool);
3202	kfree(conf->mirrors);
3203	safe_put_page(conf->tmppage);
3204	kfree(conf->poolinfo);
3205	kfree(conf->nr_pending);
3206	kfree(conf->nr_waiting);
3207	kfree(conf->nr_queued);
3208	kfree(conf->barrier);
3209	bioset_exit(&conf->bio_split);
3210	kfree(conf);
3211}
3212
3213static int raid1_resize(struct mddev *mddev, sector_t sectors)
3214{
3215	/* no resync is happening, and there is enough space
3216	 * on all devices, so we can resize.
3217	 * We need to make sure resync covers any new space.
3218	 * If the array is shrinking we should possibly wait until
3219	 * any io in the removed space completes, but it hardly seems
3220	 * worth it.
3221	 */
3222	sector_t newsize = raid1_size(mddev, sectors, 0);
3223	if (mddev->external_size &&
3224	    mddev->array_sectors > newsize)
3225		return -EINVAL;
3226	if (mddev->bitmap) {
3227		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3228		if (ret)
3229			return ret;
3230	}
3231	md_set_array_sectors(mddev, newsize);
3232	if (sectors > mddev->dev_sectors &&
3233	    mddev->recovery_cp > mddev->dev_sectors) {
3234		mddev->recovery_cp = mddev->dev_sectors;
3235		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3236	}
3237	mddev->dev_sectors = sectors;
3238	mddev->resync_max_sectors = sectors;
3239	return 0;
3240}
3241
3242static int raid1_reshape(struct mddev *mddev)
3243{
3244	/* We need to:
3245	 * 1/ resize the r1bio_pool
3246	 * 2/ resize conf->mirrors
3247	 *
3248	 * We allocate a new r1bio_pool if we can.
3249	 * Then raise a device barrier and wait until all IO stops.
3250	 * Then resize conf->mirrors and swap in the new r1bio pool.
3251	 *
3252	 * At the same time, we "pack" the devices so that all the missing
3253	 * devices have the higher raid_disk numbers.
3254	 */
3255	mempool_t newpool, oldpool;
3256	struct pool_info *newpoolinfo;
3257	struct raid1_info *newmirrors;
3258	struct r1conf *conf = mddev->private;
3259	int cnt, raid_disks;
3260	unsigned long flags;
3261	int d, d2;
3262	int ret;
3263
3264	memset(&newpool, 0, sizeof(newpool));
3265	memset(&oldpool, 0, sizeof(oldpool));
3266
3267	/* Cannot change chunk_size, layout, or level */
3268	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3269	    mddev->layout != mddev->new_layout ||
3270	    mddev->level != mddev->new_level) {
3271		mddev->new_chunk_sectors = mddev->chunk_sectors;
3272		mddev->new_layout = mddev->layout;
3273		mddev->new_level = mddev->level;
3274		return -EINVAL;
3275	}
3276
3277	if (!mddev_is_clustered(mddev))
3278		md_allow_write(mddev);
3279
3280	raid_disks = mddev->raid_disks + mddev->delta_disks;
3281
3282	if (raid_disks < conf->raid_disks) {
3283		cnt=0;
3284		for (d= 0; d < conf->raid_disks; d++)
3285			if (conf->mirrors[d].rdev)
3286				cnt++;
3287		if (cnt > raid_disks)
3288			return -EBUSY;
3289	}
3290
3291	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3292	if (!newpoolinfo)
3293		return -ENOMEM;
3294	newpoolinfo->mddev = mddev;
3295	newpoolinfo->raid_disks = raid_disks * 2;
3296
3297	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3298			   rbio_pool_free, newpoolinfo);
3299	if (ret) {
3300		kfree(newpoolinfo);
3301		return ret;
3302	}
3303	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3304					 raid_disks, 2),
3305			     GFP_KERNEL);
3306	if (!newmirrors) {
3307		kfree(newpoolinfo);
3308		mempool_exit(&newpool);
3309		return -ENOMEM;
3310	}
3311
3312	freeze_array(conf, 0);
3313
3314	/* ok, everything is stopped */
3315	oldpool = conf->r1bio_pool;
3316	conf->r1bio_pool = newpool;
3317
3318	for (d = d2 = 0; d < conf->raid_disks; d++) {
3319		struct md_rdev *rdev = conf->mirrors[d].rdev;
3320		if (rdev && rdev->raid_disk != d2) {
3321			sysfs_unlink_rdev(mddev, rdev);
3322			rdev->raid_disk = d2;
3323			sysfs_unlink_rdev(mddev, rdev);
3324			if (sysfs_link_rdev(mddev, rdev))
3325				pr_warn("md/raid1:%s: cannot register rd%d\n",
3326					mdname(mddev), rdev->raid_disk);
3327		}
3328		if (rdev)
3329			newmirrors[d2++].rdev = rdev;
3330	}
3331	kfree(conf->mirrors);
3332	conf->mirrors = newmirrors;
3333	kfree(conf->poolinfo);
3334	conf->poolinfo = newpoolinfo;
3335
3336	spin_lock_irqsave(&conf->device_lock, flags);
3337	mddev->degraded += (raid_disks - conf->raid_disks);
3338	spin_unlock_irqrestore(&conf->device_lock, flags);
3339	conf->raid_disks = mddev->raid_disks = raid_disks;
3340	mddev->delta_disks = 0;
3341
3342	unfreeze_array(conf);
3343
3344	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3345	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346	md_wakeup_thread(mddev->thread);
3347
3348	mempool_exit(&oldpool);
3349	return 0;
3350}
3351
3352static void raid1_quiesce(struct mddev *mddev, int quiesce)
3353{
3354	struct r1conf *conf = mddev->private;
3355
3356	if (quiesce)
3357		freeze_array(conf, 0);
3358	else
3359		unfreeze_array(conf);
3360}
3361
3362static void *raid1_takeover(struct mddev *mddev)
3363{
3364	/* raid1 can take over:
3365	 *  raid5 with 2 devices, any layout or chunk size
3366	 */
3367	if (mddev->level == 5 && mddev->raid_disks == 2) {
3368		struct r1conf *conf;
3369		mddev->new_level = 1;
3370		mddev->new_layout = 0;
3371		mddev->new_chunk_sectors = 0;
3372		conf = setup_conf(mddev);
3373		if (!IS_ERR(conf)) {
3374			/* Array must appear to be quiesced */
3375			conf->array_frozen = 1;
3376			mddev_clear_unsupported_flags(mddev,
3377				UNSUPPORTED_MDDEV_FLAGS);
3378		}
3379		return conf;
3380	}
3381	return ERR_PTR(-EINVAL);
3382}
3383
3384static struct md_personality raid1_personality =
3385{
3386	.name		= "raid1",
3387	.level		= 1,
3388	.owner		= THIS_MODULE,
3389	.make_request	= raid1_make_request,
3390	.run		= raid1_run,
3391	.free		= raid1_free,
3392	.status		= raid1_status,
3393	.error_handler	= raid1_error,
3394	.hot_add_disk	= raid1_add_disk,
3395	.hot_remove_disk= raid1_remove_disk,
3396	.spare_active	= raid1_spare_active,
3397	.sync_request	= raid1_sync_request,
3398	.resize		= raid1_resize,
3399	.size		= raid1_size,
3400	.check_reshape	= raid1_reshape,
3401	.quiesce	= raid1_quiesce,
3402	.takeover	= raid1_takeover,
3403};
3404
3405static int __init raid_init(void)
3406{
3407	return register_md_personality(&raid1_personality);
3408}
3409
3410static void raid_exit(void)
3411{
3412	unregister_md_personality(&raid1_personality);
3413}
3414
3415module_init(raid_init);
3416module_exit(raid_exit);
3417MODULE_LICENSE("GPL");
3418MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3419MODULE_ALIAS("md-personality-3"); /* RAID1 */
3420MODULE_ALIAS("md-raid1");
3421MODULE_ALIAS("md-level-1");
3422