xref: /kernel/linux/linux-6.6/drivers/md/dm.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/signal.h>
19#include <linux/blkpg.h>
20#include <linux/bio.h>
21#include <linux/mempool.h>
22#include <linux/dax.h>
23#include <linux/slab.h>
24#include <linux/idr.h>
25#include <linux/uio.h>
26#include <linux/hdreg.h>
27#include <linux/delay.h>
28#include <linux/wait.h>
29#include <linux/pr.h>
30#include <linux/refcount.h>
31#include <linux/part_stat.h>
32#include <linux/blk-crypto.h>
33#include <linux/blk-crypto-profile.h>
34
35#define DM_MSG_PREFIX "core"
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44/*
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
48 */
49#define REQ_DM_POLL_LIST	REQ_DRV
50
51static const char *_name = DM_NAME;
52
53static unsigned int major;
54static unsigned int _major;
55
56static DEFINE_IDR(_minor_idr);
57
58static DEFINE_SPINLOCK(_minor_lock);
59
60static void do_deferred_remove(struct work_struct *w);
61
62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63
64static struct workqueue_struct *deferred_remove_workqueue;
65
66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68
69void dm_issue_global_event(void)
70{
71	atomic_inc(&dm_global_event_nr);
72	wake_up(&dm_global_eventq);
73}
74
75DEFINE_STATIC_KEY_FALSE(stats_enabled);
76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78
79/*
80 * One of these is allocated (on-stack) per original bio.
81 */
82struct clone_info {
83	struct dm_table *map;
84	struct bio *bio;
85	struct dm_io *io;
86	sector_t sector;
87	unsigned int sector_count;
88	bool is_abnormal_io:1;
89	bool submit_as_polled:1;
90};
91
92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93{
94	return container_of(clone, struct dm_target_io, clone);
95}
96
97void *dm_per_bio_data(struct bio *bio, size_t data_size)
98{
99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102}
103EXPORT_SYMBOL_GPL(dm_per_bio_data);
104
105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106{
107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108
109	if (io->magic == DM_IO_MAGIC)
110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111	BUG_ON(io->magic != DM_TIO_MAGIC);
112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113}
114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115
116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117{
118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119}
120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121
122#define MINOR_ALLOCED ((void *)-1)
123
124#define DM_NUMA_NODE NUMA_NO_NODE
125static int dm_numa_node = DM_NUMA_NODE;
126
127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128static int swap_bios = DEFAULT_SWAP_BIOS;
129static int get_swap_bios(void)
130{
131	int latch = READ_ONCE(swap_bios);
132
133	if (unlikely(latch <= 0))
134		latch = DEFAULT_SWAP_BIOS;
135	return latch;
136}
137
138struct table_device {
139	struct list_head list;
140	refcount_t count;
141	struct dm_dev dm_dev;
142};
143
144/*
145 * Bio-based DM's mempools' reserved IOs set by the user.
146 */
147#define RESERVED_BIO_BASED_IOS		16
148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149
150static int __dm_get_module_param_int(int *module_param, int min, int max)
151{
152	int param = READ_ONCE(*module_param);
153	int modified_param = 0;
154	bool modified = true;
155
156	if (param < min)
157		modified_param = min;
158	else if (param > max)
159		modified_param = max;
160	else
161		modified = false;
162
163	if (modified) {
164		(void)cmpxchg(module_param, param, modified_param);
165		param = modified_param;
166	}
167
168	return param;
169}
170
171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172{
173	unsigned int param = READ_ONCE(*module_param);
174	unsigned int modified_param = 0;
175
176	if (!param)
177		modified_param = def;
178	else if (param > max)
179		modified_param = max;
180
181	if (modified_param) {
182		(void)cmpxchg(module_param, param, modified_param);
183		param = modified_param;
184	}
185
186	return param;
187}
188
189unsigned int dm_get_reserved_bio_based_ios(void)
190{
191	return __dm_get_module_param(&reserved_bio_based_ios,
192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193}
194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195
196static unsigned int dm_get_numa_node(void)
197{
198	return __dm_get_module_param_int(&dm_numa_node,
199					 DM_NUMA_NODE, num_online_nodes() - 1);
200}
201
202static int __init local_init(void)
203{
204	int r;
205
206	r = dm_uevent_init();
207	if (r)
208		return r;
209
210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211	if (!deferred_remove_workqueue) {
212		r = -ENOMEM;
213		goto out_uevent_exit;
214	}
215
216	_major = major;
217	r = register_blkdev(_major, _name);
218	if (r < 0)
219		goto out_free_workqueue;
220
221	if (!_major)
222		_major = r;
223
224	return 0;
225
226out_free_workqueue:
227	destroy_workqueue(deferred_remove_workqueue);
228out_uevent_exit:
229	dm_uevent_exit();
230
231	return r;
232}
233
234static void local_exit(void)
235{
236	destroy_workqueue(deferred_remove_workqueue);
237
238	unregister_blkdev(_major, _name);
239	dm_uevent_exit();
240
241	_major = 0;
242
243	DMINFO("cleaned up");
244}
245
246static int (*_inits[])(void) __initdata = {
247	local_init,
248	dm_target_init,
249	dm_linear_init,
250	dm_stripe_init,
251	dm_io_init,
252	dm_kcopyd_init,
253	dm_interface_init,
254	dm_statistics_init,
255};
256
257static void (*_exits[])(void) = {
258	local_exit,
259	dm_target_exit,
260	dm_linear_exit,
261	dm_stripe_exit,
262	dm_io_exit,
263	dm_kcopyd_exit,
264	dm_interface_exit,
265	dm_statistics_exit,
266};
267
268static int __init dm_init(void)
269{
270	const int count = ARRAY_SIZE(_inits);
271	int r, i;
272
273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276#endif
277
278	for (i = 0; i < count; i++) {
279		r = _inits[i]();
280		if (r)
281			goto bad;
282	}
283
284	return 0;
285bad:
286	while (i--)
287		_exits[i]();
288
289	return r;
290}
291
292static void __exit dm_exit(void)
293{
294	int i = ARRAY_SIZE(_exits);
295
296	while (i--)
297		_exits[i]();
298
299	/*
300	 * Should be empty by this point.
301	 */
302	idr_destroy(&_minor_idr);
303}
304
305/*
306 * Block device functions
307 */
308int dm_deleting_md(struct mapped_device *md)
309{
310	return test_bit(DMF_DELETING, &md->flags);
311}
312
313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314{
315	struct mapped_device *md;
316
317	spin_lock(&_minor_lock);
318
319	md = disk->private_data;
320	if (!md)
321		goto out;
322
323	if (test_bit(DMF_FREEING, &md->flags) ||
324	    dm_deleting_md(md)) {
325		md = NULL;
326		goto out;
327	}
328
329	dm_get(md);
330	atomic_inc(&md->open_count);
331out:
332	spin_unlock(&_minor_lock);
333
334	return md ? 0 : -ENXIO;
335}
336
337static void dm_blk_close(struct gendisk *disk)
338{
339	struct mapped_device *md;
340
341	spin_lock(&_minor_lock);
342
343	md = disk->private_data;
344	if (WARN_ON(!md))
345		goto out;
346
347	if (atomic_dec_and_test(&md->open_count) &&
348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350
351	dm_put(md);
352out:
353	spin_unlock(&_minor_lock);
354}
355
356int dm_open_count(struct mapped_device *md)
357{
358	return atomic_read(&md->open_count);
359}
360
361/*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365{
366	int r = 0;
367
368	spin_lock(&_minor_lock);
369
370	if (dm_open_count(md)) {
371		r = -EBUSY;
372		if (mark_deferred)
373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375		r = -EEXIST;
376	else
377		set_bit(DMF_DELETING, &md->flags);
378
379	spin_unlock(&_minor_lock);
380
381	return r;
382}
383
384int dm_cancel_deferred_remove(struct mapped_device *md)
385{
386	int r = 0;
387
388	spin_lock(&_minor_lock);
389
390	if (test_bit(DMF_DELETING, &md->flags))
391		r = -EBUSY;
392	else
393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394
395	spin_unlock(&_minor_lock);
396
397	return r;
398}
399
400static void do_deferred_remove(struct work_struct *w)
401{
402	dm_deferred_remove();
403}
404
405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406{
407	struct mapped_device *md = bdev->bd_disk->private_data;
408
409	return dm_get_geometry(md, geo);
410}
411
412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413			    struct block_device **bdev)
414{
415	struct dm_target *ti;
416	struct dm_table *map;
417	int r;
418
419retry:
420	r = -ENOTTY;
421	map = dm_get_live_table(md, srcu_idx);
422	if (!map || !dm_table_get_size(map))
423		return r;
424
425	/* We only support devices that have a single target */
426	if (map->num_targets != 1)
427		return r;
428
429	ti = dm_table_get_target(map, 0);
430	if (!ti->type->prepare_ioctl)
431		return r;
432
433	if (dm_suspended_md(md))
434		return -EAGAIN;
435
436	r = ti->type->prepare_ioctl(ti, bdev);
437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438		dm_put_live_table(md, *srcu_idx);
439		fsleep(10000);
440		goto retry;
441	}
442
443	return r;
444}
445
446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447{
448	dm_put_live_table(md, srcu_idx);
449}
450
451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452			unsigned int cmd, unsigned long arg)
453{
454	struct mapped_device *md = bdev->bd_disk->private_data;
455	int r, srcu_idx;
456
457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458	if (r < 0)
459		goto out;
460
461	if (r > 0) {
462		/*
463		 * Target determined this ioctl is being issued against a
464		 * subset of the parent bdev; require extra privileges.
465		 */
466		if (!capable(CAP_SYS_RAWIO)) {
467			DMDEBUG_LIMIT(
468	"%s: sending ioctl %x to DM device without required privilege.",
469				current->comm, cmd);
470			r = -ENOIOCTLCMD;
471			goto out;
472		}
473	}
474
475	if (!bdev->bd_disk->fops->ioctl)
476		r = -ENOTTY;
477	else
478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479out:
480	dm_unprepare_ioctl(md, srcu_idx);
481	return r;
482}
483
484u64 dm_start_time_ns_from_clone(struct bio *bio)
485{
486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487}
488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489
490static inline bool bio_is_flush_with_data(struct bio *bio)
491{
492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493}
494
495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496{
497	/*
498	 * If REQ_PREFLUSH set, don't account payload, it will be
499	 * submitted (and accounted) after this flush completes.
500	 */
501	if (bio_is_flush_with_data(bio))
502		return 0;
503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504		return io->sectors;
505	return bio_sectors(bio);
506}
507
508static void dm_io_acct(struct dm_io *io, bool end)
509{
510	struct bio *bio = io->orig_bio;
511
512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513		if (!end)
514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515					   io->start_time);
516		else
517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518					 dm_io_sectors(io, bio),
519					 io->start_time);
520	}
521
522	if (static_branch_unlikely(&stats_enabled) &&
523	    unlikely(dm_stats_used(&io->md->stats))) {
524		sector_t sector;
525
526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527			sector = bio_end_sector(bio) - io->sector_offset;
528		else
529			sector = bio->bi_iter.bi_sector;
530
531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532				    sector, dm_io_sectors(io, bio),
533				    end, io->start_time, &io->stats_aux);
534	}
535}
536
537static void __dm_start_io_acct(struct dm_io *io)
538{
539	dm_io_acct(io, false);
540}
541
542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543{
544	/*
545	 * Ensure IO accounting is only ever started once.
546	 */
547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548		return;
549
550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553	} else {
554		unsigned long flags;
555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556		spin_lock_irqsave(&io->lock, flags);
557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558			spin_unlock_irqrestore(&io->lock, flags);
559			return;
560		}
561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562		spin_unlock_irqrestore(&io->lock, flags);
563	}
564
565	__dm_start_io_acct(io);
566}
567
568static void dm_end_io_acct(struct dm_io *io)
569{
570	dm_io_acct(io, true);
571}
572
573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
574{
575	struct dm_io *io;
576	struct dm_target_io *tio;
577	struct bio *clone;
578
579	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
580	tio = clone_to_tio(clone);
581	tio->flags = 0;
582	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583	tio->io = NULL;
584
585	io = container_of(tio, struct dm_io, tio);
586	io->magic = DM_IO_MAGIC;
587	io->status = BLK_STS_OK;
588
589	/* one ref is for submission, the other is for completion */
590	atomic_set(&io->io_count, 2);
591	this_cpu_inc(*md->pending_io);
592	io->orig_bio = bio;
593	io->md = md;
594	spin_lock_init(&io->lock);
595	io->start_time = jiffies;
596	io->flags = 0;
597	if (blk_queue_io_stat(md->queue))
598		dm_io_set_flag(io, DM_IO_BLK_STAT);
599
600	if (static_branch_unlikely(&stats_enabled) &&
601	    unlikely(dm_stats_used(&md->stats)))
602		dm_stats_record_start(&md->stats, &io->stats_aux);
603
604	return io;
605}
606
607static void free_io(struct dm_io *io)
608{
609	bio_put(&io->tio.clone);
610}
611
612static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
613			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
614{
615	struct mapped_device *md = ci->io->md;
616	struct dm_target_io *tio;
617	struct bio *clone;
618
619	if (!ci->io->tio.io) {
620		/* the dm_target_io embedded in ci->io is available */
621		tio = &ci->io->tio;
622		/* alloc_io() already initialized embedded clone */
623		clone = &tio->clone;
624	} else {
625		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
626					&md->mempools->bs);
627		if (!clone)
628			return NULL;
629
630		/* REQ_DM_POLL_LIST shouldn't be inherited */
631		clone->bi_opf &= ~REQ_DM_POLL_LIST;
632
633		tio = clone_to_tio(clone);
634		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
635	}
636
637	tio->magic = DM_TIO_MAGIC;
638	tio->io = ci->io;
639	tio->ti = ti;
640	tio->target_bio_nr = target_bio_nr;
641	tio->len_ptr = len;
642	tio->old_sector = 0;
643
644	/* Set default bdev, but target must bio_set_dev() before issuing IO */
645	clone->bi_bdev = md->disk->part0;
646	if (unlikely(ti->needs_bio_set_dev))
647		bio_set_dev(clone, md->disk->part0);
648
649	if (len) {
650		clone->bi_iter.bi_size = to_bytes(*len);
651		if (bio_integrity(clone))
652			bio_integrity_trim(clone);
653	}
654
655	return clone;
656}
657
658static void free_tio(struct bio *clone)
659{
660	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661		return;
662	bio_put(clone);
663}
664
665/*
666 * Add the bio to the list of deferred io.
667 */
668static void queue_io(struct mapped_device *md, struct bio *bio)
669{
670	unsigned long flags;
671
672	spin_lock_irqsave(&md->deferred_lock, flags);
673	bio_list_add(&md->deferred, bio);
674	spin_unlock_irqrestore(&md->deferred_lock, flags);
675	queue_work(md->wq, &md->work);
676}
677
678/*
679 * Everyone (including functions in this file), should use this
680 * function to access the md->map field, and make sure they call
681 * dm_put_live_table() when finished.
682 */
683struct dm_table *dm_get_live_table(struct mapped_device *md,
684				   int *srcu_idx) __acquires(md->io_barrier)
685{
686	*srcu_idx = srcu_read_lock(&md->io_barrier);
687
688	return srcu_dereference(md->map, &md->io_barrier);
689}
690
691void dm_put_live_table(struct mapped_device *md,
692		       int srcu_idx) __releases(md->io_barrier)
693{
694	srcu_read_unlock(&md->io_barrier, srcu_idx);
695}
696
697void dm_sync_table(struct mapped_device *md)
698{
699	synchronize_srcu(&md->io_barrier);
700	synchronize_rcu_expedited();
701}
702
703/*
704 * A fast alternative to dm_get_live_table/dm_put_live_table.
705 * The caller must not block between these two functions.
706 */
707static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
708{
709	rcu_read_lock();
710	return rcu_dereference(md->map);
711}
712
713static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
714{
715	rcu_read_unlock();
716}
717
718static char *_dm_claim_ptr = "I belong to device-mapper";
719
720/*
721 * Open a table device so we can use it as a map destination.
722 */
723static struct table_device *open_table_device(struct mapped_device *md,
724		dev_t dev, blk_mode_t mode)
725{
726	struct table_device *td;
727	struct block_device *bdev;
728	u64 part_off;
729	int r;
730
731	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
732	if (!td)
733		return ERR_PTR(-ENOMEM);
734	refcount_set(&td->count, 1);
735
736	bdev = blkdev_get_by_dev(dev, mode, _dm_claim_ptr, NULL);
737	if (IS_ERR(bdev)) {
738		r = PTR_ERR(bdev);
739		goto out_free_td;
740	}
741
742	/*
743	 * We can be called before the dm disk is added.  In that case we can't
744	 * register the holder relation here.  It will be done once add_disk was
745	 * called.
746	 */
747	if (md->disk->slave_dir) {
748		r = bd_link_disk_holder(bdev, md->disk);
749		if (r)
750			goto out_blkdev_put;
751	}
752
753	td->dm_dev.mode = mode;
754	td->dm_dev.bdev = bdev;
755	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
756	format_dev_t(td->dm_dev.name, dev);
757	list_add(&td->list, &md->table_devices);
758	return td;
759
760out_blkdev_put:
761	blkdev_put(bdev, _dm_claim_ptr);
762out_free_td:
763	kfree(td);
764	return ERR_PTR(r);
765}
766
767/*
768 * Close a table device that we've been using.
769 */
770static void close_table_device(struct table_device *td, struct mapped_device *md)
771{
772	if (md->disk->slave_dir)
773		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
774	blkdev_put(td->dm_dev.bdev, _dm_claim_ptr);
775	put_dax(td->dm_dev.dax_dev);
776	list_del(&td->list);
777	kfree(td);
778}
779
780static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781					      blk_mode_t mode)
782{
783	struct table_device *td;
784
785	list_for_each_entry(td, l, list)
786		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787			return td;
788
789	return NULL;
790}
791
792int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
793			struct dm_dev **result)
794{
795	struct table_device *td;
796
797	mutex_lock(&md->table_devices_lock);
798	td = find_table_device(&md->table_devices, dev, mode);
799	if (!td) {
800		td = open_table_device(md, dev, mode);
801		if (IS_ERR(td)) {
802			mutex_unlock(&md->table_devices_lock);
803			return PTR_ERR(td);
804		}
805	} else {
806		refcount_inc(&td->count);
807	}
808	mutex_unlock(&md->table_devices_lock);
809
810	*result = &td->dm_dev;
811	return 0;
812}
813
814void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
815{
816	struct table_device *td = container_of(d, struct table_device, dm_dev);
817
818	mutex_lock(&md->table_devices_lock);
819	if (refcount_dec_and_test(&td->count))
820		close_table_device(td, md);
821	mutex_unlock(&md->table_devices_lock);
822}
823
824/*
825 * Get the geometry associated with a dm device
826 */
827int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828{
829	*geo = md->geometry;
830
831	return 0;
832}
833
834/*
835 * Set the geometry of a device.
836 */
837int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
838{
839	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
840
841	if (geo->start > sz) {
842		DMERR("Start sector is beyond the geometry limits.");
843		return -EINVAL;
844	}
845
846	md->geometry = *geo;
847
848	return 0;
849}
850
851static int __noflush_suspending(struct mapped_device *md)
852{
853	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
854}
855
856static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
857{
858	struct mapped_device *md = io->md;
859
860	if (first_stage) {
861		struct dm_io *next = md->requeue_list;
862
863		md->requeue_list = io;
864		io->next = next;
865	} else {
866		bio_list_add_head(&md->deferred, io->orig_bio);
867	}
868}
869
870static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
871{
872	if (first_stage)
873		queue_work(md->wq, &md->requeue_work);
874	else
875		queue_work(md->wq, &md->work);
876}
877
878/*
879 * Return true if the dm_io's original bio is requeued.
880 * io->status is updated with error if requeue disallowed.
881 */
882static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
883{
884	struct bio *bio = io->orig_bio;
885	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
886	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
887				     (bio->bi_opf & REQ_POLLED));
888	struct mapped_device *md = io->md;
889	bool requeued = false;
890
891	if (handle_requeue || handle_polled_eagain) {
892		unsigned long flags;
893
894		if (bio->bi_opf & REQ_POLLED) {
895			/*
896			 * Upper layer won't help us poll split bio
897			 * (io->orig_bio may only reflect a subset of the
898			 * pre-split original) so clear REQ_POLLED.
899			 */
900			bio_clear_polled(bio);
901		}
902
903		/*
904		 * Target requested pushing back the I/O or
905		 * polled IO hit BLK_STS_AGAIN.
906		 */
907		spin_lock_irqsave(&md->deferred_lock, flags);
908		if ((__noflush_suspending(md) &&
909		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
910		    handle_polled_eagain || first_stage) {
911			dm_requeue_add_io(io, first_stage);
912			requeued = true;
913		} else {
914			/*
915			 * noflush suspend was interrupted or this is
916			 * a write to a zoned target.
917			 */
918			io->status = BLK_STS_IOERR;
919		}
920		spin_unlock_irqrestore(&md->deferred_lock, flags);
921	}
922
923	if (requeued)
924		dm_kick_requeue(md, first_stage);
925
926	return requeued;
927}
928
929static void __dm_io_complete(struct dm_io *io, bool first_stage)
930{
931	struct bio *bio = io->orig_bio;
932	struct mapped_device *md = io->md;
933	blk_status_t io_error;
934	bool requeued;
935
936	requeued = dm_handle_requeue(io, first_stage);
937	if (requeued && first_stage)
938		return;
939
940	io_error = io->status;
941	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
942		dm_end_io_acct(io);
943	else if (!io_error) {
944		/*
945		 * Must handle target that DM_MAPIO_SUBMITTED only to
946		 * then bio_endio() rather than dm_submit_bio_remap()
947		 */
948		__dm_start_io_acct(io);
949		dm_end_io_acct(io);
950	}
951	free_io(io);
952	smp_wmb();
953	this_cpu_dec(*md->pending_io);
954
955	/* nudge anyone waiting on suspend queue */
956	if (unlikely(wq_has_sleeper(&md->wait)))
957		wake_up(&md->wait);
958
959	/* Return early if the original bio was requeued */
960	if (requeued)
961		return;
962
963	if (bio_is_flush_with_data(bio)) {
964		/*
965		 * Preflush done for flush with data, reissue
966		 * without REQ_PREFLUSH.
967		 */
968		bio->bi_opf &= ~REQ_PREFLUSH;
969		queue_io(md, bio);
970	} else {
971		/* done with normal IO or empty flush */
972		if (io_error)
973			bio->bi_status = io_error;
974		bio_endio(bio);
975	}
976}
977
978static void dm_wq_requeue_work(struct work_struct *work)
979{
980	struct mapped_device *md = container_of(work, struct mapped_device,
981						requeue_work);
982	unsigned long flags;
983	struct dm_io *io;
984
985	/* reuse deferred lock to simplify dm_handle_requeue */
986	spin_lock_irqsave(&md->deferred_lock, flags);
987	io = md->requeue_list;
988	md->requeue_list = NULL;
989	spin_unlock_irqrestore(&md->deferred_lock, flags);
990
991	while (io) {
992		struct dm_io *next = io->next;
993
994		dm_io_rewind(io, &md->disk->bio_split);
995
996		io->next = NULL;
997		__dm_io_complete(io, false);
998		io = next;
999		cond_resched();
1000	}
1001}
1002
1003/*
1004 * Two staged requeue:
1005 *
1006 * 1) io->orig_bio points to the real original bio, and the part mapped to
1007 *    this io must be requeued, instead of other parts of the original bio.
1008 *
1009 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1010 */
1011static void dm_io_complete(struct dm_io *io)
1012{
1013	bool first_requeue;
1014
1015	/*
1016	 * Only dm_io that has been split needs two stage requeue, otherwise
1017	 * we may run into long bio clone chain during suspend and OOM could
1018	 * be triggered.
1019	 *
1020	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1021	 * also aren't handled via the first stage requeue.
1022	 */
1023	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1024		first_requeue = true;
1025	else
1026		first_requeue = false;
1027
1028	__dm_io_complete(io, first_requeue);
1029}
1030
1031/*
1032 * Decrements the number of outstanding ios that a bio has been
1033 * cloned into, completing the original io if necc.
1034 */
1035static inline void __dm_io_dec_pending(struct dm_io *io)
1036{
1037	if (atomic_dec_and_test(&io->io_count))
1038		dm_io_complete(io);
1039}
1040
1041static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1042{
1043	unsigned long flags;
1044
1045	/* Push-back supersedes any I/O errors */
1046	spin_lock_irqsave(&io->lock, flags);
1047	if (!(io->status == BLK_STS_DM_REQUEUE &&
1048	      __noflush_suspending(io->md))) {
1049		io->status = error;
1050	}
1051	spin_unlock_irqrestore(&io->lock, flags);
1052}
1053
1054static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1055{
1056	if (unlikely(error))
1057		dm_io_set_error(io, error);
1058
1059	__dm_io_dec_pending(io);
1060}
1061
1062/*
1063 * The queue_limits are only valid as long as you have a reference
1064 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1065 */
1066static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1067{
1068	return &md->queue->limits;
1069}
1070
1071void disable_discard(struct mapped_device *md)
1072{
1073	struct queue_limits *limits = dm_get_queue_limits(md);
1074
1075	/* device doesn't really support DISCARD, disable it */
1076	limits->max_discard_sectors = 0;
1077}
1078
1079void disable_write_zeroes(struct mapped_device *md)
1080{
1081	struct queue_limits *limits = dm_get_queue_limits(md);
1082
1083	/* device doesn't really support WRITE ZEROES, disable it */
1084	limits->max_write_zeroes_sectors = 0;
1085}
1086
1087static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1088{
1089	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1090}
1091
1092static void clone_endio(struct bio *bio)
1093{
1094	blk_status_t error = bio->bi_status;
1095	struct dm_target_io *tio = clone_to_tio(bio);
1096	struct dm_target *ti = tio->ti;
1097	dm_endio_fn endio = ti->type->end_io;
1098	struct dm_io *io = tio->io;
1099	struct mapped_device *md = io->md;
1100
1101	if (unlikely(error == BLK_STS_TARGET)) {
1102		if (bio_op(bio) == REQ_OP_DISCARD &&
1103		    !bdev_max_discard_sectors(bio->bi_bdev))
1104			disable_discard(md);
1105		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1106			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1107			disable_write_zeroes(md);
1108	}
1109
1110	if (static_branch_unlikely(&zoned_enabled) &&
1111	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1112		dm_zone_endio(io, bio);
1113
1114	if (endio) {
1115		int r = endio(ti, bio, &error);
1116
1117		switch (r) {
1118		case DM_ENDIO_REQUEUE:
1119			if (static_branch_unlikely(&zoned_enabled)) {
1120				/*
1121				 * Requeuing writes to a sequential zone of a zoned
1122				 * target will break the sequential write pattern:
1123				 * fail such IO.
1124				 */
1125				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1126					error = BLK_STS_IOERR;
1127				else
1128					error = BLK_STS_DM_REQUEUE;
1129			} else
1130				error = BLK_STS_DM_REQUEUE;
1131			fallthrough;
1132		case DM_ENDIO_DONE:
1133			break;
1134		case DM_ENDIO_INCOMPLETE:
1135			/* The target will handle the io */
1136			return;
1137		default:
1138			DMCRIT("unimplemented target endio return value: %d", r);
1139			BUG();
1140		}
1141	}
1142
1143	if (static_branch_unlikely(&swap_bios_enabled) &&
1144	    unlikely(swap_bios_limit(ti, bio)))
1145		up(&md->swap_bios_semaphore);
1146
1147	free_tio(bio);
1148	dm_io_dec_pending(io, error);
1149}
1150
1151/*
1152 * Return maximum size of I/O possible at the supplied sector up to the current
1153 * target boundary.
1154 */
1155static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1156						  sector_t target_offset)
1157{
1158	return ti->len - target_offset;
1159}
1160
1161static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1162			     unsigned int max_granularity,
1163			     unsigned int max_sectors)
1164{
1165	sector_t target_offset = dm_target_offset(ti, sector);
1166	sector_t len = max_io_len_target_boundary(ti, target_offset);
1167
1168	/*
1169	 * Does the target need to split IO even further?
1170	 * - varied (per target) IO splitting is a tenet of DM; this
1171	 *   explains why stacked chunk_sectors based splitting via
1172	 *   bio_split_to_limits() isn't possible here.
1173	 */
1174	if (!max_granularity)
1175		return len;
1176	return min_t(sector_t, len,
1177		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1178		    blk_chunk_sectors_left(target_offset, max_granularity)));
1179}
1180
1181static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1182{
1183	return __max_io_len(ti, sector, ti->max_io_len, 0);
1184}
1185
1186int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1187{
1188	if (len > UINT_MAX) {
1189		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1190		      (unsigned long long)len, UINT_MAX);
1191		ti->error = "Maximum size of target IO is too large";
1192		return -EINVAL;
1193	}
1194
1195	ti->max_io_len = (uint32_t) len;
1196
1197	return 0;
1198}
1199EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1200
1201static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1202						sector_t sector, int *srcu_idx)
1203	__acquires(md->io_barrier)
1204{
1205	struct dm_table *map;
1206	struct dm_target *ti;
1207
1208	map = dm_get_live_table(md, srcu_idx);
1209	if (!map)
1210		return NULL;
1211
1212	ti = dm_table_find_target(map, sector);
1213	if (!ti)
1214		return NULL;
1215
1216	return ti;
1217}
1218
1219static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1220		long nr_pages, enum dax_access_mode mode, void **kaddr,
1221		pfn_t *pfn)
1222{
1223	struct mapped_device *md = dax_get_private(dax_dev);
1224	sector_t sector = pgoff * PAGE_SECTORS;
1225	struct dm_target *ti;
1226	long len, ret = -EIO;
1227	int srcu_idx;
1228
1229	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230
1231	if (!ti)
1232		goto out;
1233	if (!ti->type->direct_access)
1234		goto out;
1235	len = max_io_len(ti, sector) / PAGE_SECTORS;
1236	if (len < 1)
1237		goto out;
1238	nr_pages = min(len, nr_pages);
1239	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1240
1241 out:
1242	dm_put_live_table(md, srcu_idx);
1243
1244	return ret;
1245}
1246
1247static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1248				  size_t nr_pages)
1249{
1250	struct mapped_device *md = dax_get_private(dax_dev);
1251	sector_t sector = pgoff * PAGE_SECTORS;
1252	struct dm_target *ti;
1253	int ret = -EIO;
1254	int srcu_idx;
1255
1256	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257
1258	if (!ti)
1259		goto out;
1260	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1261		/*
1262		 * ->zero_page_range() is mandatory dax operation. If we are
1263		 *  here, something is wrong.
1264		 */
1265		goto out;
1266	}
1267	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1268 out:
1269	dm_put_live_table(md, srcu_idx);
1270
1271	return ret;
1272}
1273
1274static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1275		void *addr, size_t bytes, struct iov_iter *i)
1276{
1277	struct mapped_device *md = dax_get_private(dax_dev);
1278	sector_t sector = pgoff * PAGE_SECTORS;
1279	struct dm_target *ti;
1280	int srcu_idx;
1281	long ret = 0;
1282
1283	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1284	if (!ti || !ti->type->dax_recovery_write)
1285		goto out;
1286
1287	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1288out:
1289	dm_put_live_table(md, srcu_idx);
1290	return ret;
1291}
1292
1293/*
1294 * A target may call dm_accept_partial_bio only from the map routine.  It is
1295 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1296 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1297 * __send_duplicate_bios().
1298 *
1299 * dm_accept_partial_bio informs the dm that the target only wants to process
1300 * additional n_sectors sectors of the bio and the rest of the data should be
1301 * sent in a next bio.
1302 *
1303 * A diagram that explains the arithmetics:
1304 * +--------------------+---------------+-------+
1305 * |         1          |       2       |   3   |
1306 * +--------------------+---------------+-------+
1307 *
1308 * <-------------- *tio->len_ptr --------------->
1309 *                      <----- bio_sectors ----->
1310 *                      <-- n_sectors -->
1311 *
1312 * Region 1 was already iterated over with bio_advance or similar function.
1313 *	(it may be empty if the target doesn't use bio_advance)
1314 * Region 2 is the remaining bio size that the target wants to process.
1315 *	(it may be empty if region 1 is non-empty, although there is no reason
1316 *	 to make it empty)
1317 * The target requires that region 3 is to be sent in the next bio.
1318 *
1319 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1320 * the partially processed part (the sum of regions 1+2) must be the same for all
1321 * copies of the bio.
1322 */
1323void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1324{
1325	struct dm_target_io *tio = clone_to_tio(bio);
1326	struct dm_io *io = tio->io;
1327	unsigned int bio_sectors = bio_sectors(bio);
1328
1329	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1330	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1331	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1332	BUG_ON(bio_sectors > *tio->len_ptr);
1333	BUG_ON(n_sectors > bio_sectors);
1334
1335	*tio->len_ptr -= bio_sectors - n_sectors;
1336	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1337
1338	/*
1339	 * __split_and_process_bio() may have already saved mapped part
1340	 * for accounting but it is being reduced so update accordingly.
1341	 */
1342	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1343	io->sectors = n_sectors;
1344	io->sector_offset = bio_sectors(io->orig_bio);
1345}
1346EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1347
1348/*
1349 * @clone: clone bio that DM core passed to target's .map function
1350 * @tgt_clone: clone of @clone bio that target needs submitted
1351 *
1352 * Targets should use this interface to submit bios they take
1353 * ownership of when returning DM_MAPIO_SUBMITTED.
1354 *
1355 * Target should also enable ti->accounts_remapped_io
1356 */
1357void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1358{
1359	struct dm_target_io *tio = clone_to_tio(clone);
1360	struct dm_io *io = tio->io;
1361
1362	/* establish bio that will get submitted */
1363	if (!tgt_clone)
1364		tgt_clone = clone;
1365
1366	/*
1367	 * Account io->origin_bio to DM dev on behalf of target
1368	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1369	 */
1370	dm_start_io_acct(io, clone);
1371
1372	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1373			      tio->old_sector);
1374	submit_bio_noacct(tgt_clone);
1375}
1376EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1377
1378static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1379{
1380	mutex_lock(&md->swap_bios_lock);
1381	while (latch < md->swap_bios) {
1382		cond_resched();
1383		down(&md->swap_bios_semaphore);
1384		md->swap_bios--;
1385	}
1386	while (latch > md->swap_bios) {
1387		cond_resched();
1388		up(&md->swap_bios_semaphore);
1389		md->swap_bios++;
1390	}
1391	mutex_unlock(&md->swap_bios_lock);
1392}
1393
1394static void __map_bio(struct bio *clone)
1395{
1396	struct dm_target_io *tio = clone_to_tio(clone);
1397	struct dm_target *ti = tio->ti;
1398	struct dm_io *io = tio->io;
1399	struct mapped_device *md = io->md;
1400	int r;
1401
1402	clone->bi_end_io = clone_endio;
1403
1404	/*
1405	 * Map the clone.
1406	 */
1407	tio->old_sector = clone->bi_iter.bi_sector;
1408
1409	if (static_branch_unlikely(&swap_bios_enabled) &&
1410	    unlikely(swap_bios_limit(ti, clone))) {
1411		int latch = get_swap_bios();
1412
1413		if (unlikely(latch != md->swap_bios))
1414			__set_swap_bios_limit(md, latch);
1415		down(&md->swap_bios_semaphore);
1416	}
1417
1418	if (static_branch_unlikely(&zoned_enabled)) {
1419		/*
1420		 * Check if the IO needs a special mapping due to zone append
1421		 * emulation on zoned target. In this case, dm_zone_map_bio()
1422		 * calls the target map operation.
1423		 */
1424		if (unlikely(dm_emulate_zone_append(md)))
1425			r = dm_zone_map_bio(tio);
1426		else
1427			r = ti->type->map(ti, clone);
1428	} else
1429		r = ti->type->map(ti, clone);
1430
1431	switch (r) {
1432	case DM_MAPIO_SUBMITTED:
1433		/* target has assumed ownership of this io */
1434		if (!ti->accounts_remapped_io)
1435			dm_start_io_acct(io, clone);
1436		break;
1437	case DM_MAPIO_REMAPPED:
1438		dm_submit_bio_remap(clone, NULL);
1439		break;
1440	case DM_MAPIO_KILL:
1441	case DM_MAPIO_REQUEUE:
1442		if (static_branch_unlikely(&swap_bios_enabled) &&
1443		    unlikely(swap_bios_limit(ti, clone)))
1444			up(&md->swap_bios_semaphore);
1445		free_tio(clone);
1446		if (r == DM_MAPIO_KILL)
1447			dm_io_dec_pending(io, BLK_STS_IOERR);
1448		else
1449			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1450		break;
1451	default:
1452		DMCRIT("unimplemented target map return value: %d", r);
1453		BUG();
1454	}
1455}
1456
1457static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1458{
1459	struct dm_io *io = ci->io;
1460
1461	if (ci->sector_count > len) {
1462		/*
1463		 * Split needed, save the mapped part for accounting.
1464		 * NOTE: dm_accept_partial_bio() will update accordingly.
1465		 */
1466		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1467		io->sectors = len;
1468		io->sector_offset = bio_sectors(ci->bio);
1469	}
1470}
1471
1472static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1473				struct dm_target *ti, unsigned int num_bios,
1474				unsigned *len)
1475{
1476	struct bio *bio;
1477	int try;
1478
1479	for (try = 0; try < 2; try++) {
1480		int bio_nr;
1481
1482		if (try)
1483			mutex_lock(&ci->io->md->table_devices_lock);
1484		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1485			bio = alloc_tio(ci, ti, bio_nr, len,
1486					try ? GFP_NOIO : GFP_NOWAIT);
1487			if (!bio)
1488				break;
1489
1490			bio_list_add(blist, bio);
1491		}
1492		if (try)
1493			mutex_unlock(&ci->io->md->table_devices_lock);
1494		if (bio_nr == num_bios)
1495			return;
1496
1497		while ((bio = bio_list_pop(blist)))
1498			free_tio(bio);
1499	}
1500}
1501
1502static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1503				 unsigned int num_bios, unsigned int *len)
1504{
1505	struct bio_list blist = BIO_EMPTY_LIST;
1506	struct bio *clone;
1507	unsigned int ret = 0;
1508
1509	switch (num_bios) {
1510	case 0:
1511		break;
1512	case 1:
1513		if (len)
1514			setup_split_accounting(ci, *len);
1515		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1516		__map_bio(clone);
1517		ret = 1;
1518		break;
1519	default:
1520		if (len)
1521			setup_split_accounting(ci, *len);
1522		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1523		alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1524		while ((clone = bio_list_pop(&blist))) {
1525			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1526			__map_bio(clone);
1527			ret += 1;
1528		}
1529		break;
1530	}
1531
1532	return ret;
1533}
1534
1535static void __send_empty_flush(struct clone_info *ci)
1536{
1537	struct dm_table *t = ci->map;
1538	struct bio flush_bio;
1539
1540	/*
1541	 * Use an on-stack bio for this, it's safe since we don't
1542	 * need to reference it after submit. It's just used as
1543	 * the basis for the clone(s).
1544	 */
1545	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1546		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1547
1548	ci->bio = &flush_bio;
1549	ci->sector_count = 0;
1550	ci->io->tio.clone.bi_iter.bi_size = 0;
1551
1552	for (unsigned int i = 0; i < t->num_targets; i++) {
1553		unsigned int bios;
1554		struct dm_target *ti = dm_table_get_target(t, i);
1555
1556		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1557		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1558		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1559	}
1560
1561	/*
1562	 * alloc_io() takes one extra reference for submission, so the
1563	 * reference won't reach 0 without the following subtraction
1564	 */
1565	atomic_sub(1, &ci->io->io_count);
1566
1567	bio_uninit(ci->bio);
1568}
1569
1570static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1571					unsigned int num_bios,
1572					unsigned int max_granularity,
1573					unsigned int max_sectors)
1574{
1575	unsigned int len, bios;
1576
1577	len = min_t(sector_t, ci->sector_count,
1578		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1579
1580	atomic_add(num_bios, &ci->io->io_count);
1581	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1582	/*
1583	 * alloc_io() takes one extra reference for submission, so the
1584	 * reference won't reach 0 without the following (+1) subtraction
1585	 */
1586	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1587
1588	ci->sector += len;
1589	ci->sector_count -= len;
1590}
1591
1592static bool is_abnormal_io(struct bio *bio)
1593{
1594	enum req_op op = bio_op(bio);
1595
1596	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1597		switch (op) {
1598		case REQ_OP_DISCARD:
1599		case REQ_OP_SECURE_ERASE:
1600		case REQ_OP_WRITE_ZEROES:
1601			return true;
1602		default:
1603			break;
1604		}
1605	}
1606
1607	return false;
1608}
1609
1610static blk_status_t __process_abnormal_io(struct clone_info *ci,
1611					  struct dm_target *ti)
1612{
1613	unsigned int num_bios = 0;
1614	unsigned int max_granularity = 0;
1615	unsigned int max_sectors = 0;
1616	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1617
1618	switch (bio_op(ci->bio)) {
1619	case REQ_OP_DISCARD:
1620		num_bios = ti->num_discard_bios;
1621		max_sectors = limits->max_discard_sectors;
1622		if (ti->max_discard_granularity)
1623			max_granularity = max_sectors;
1624		break;
1625	case REQ_OP_SECURE_ERASE:
1626		num_bios = ti->num_secure_erase_bios;
1627		max_sectors = limits->max_secure_erase_sectors;
1628		if (ti->max_secure_erase_granularity)
1629			max_granularity = max_sectors;
1630		break;
1631	case REQ_OP_WRITE_ZEROES:
1632		num_bios = ti->num_write_zeroes_bios;
1633		max_sectors = limits->max_write_zeroes_sectors;
1634		if (ti->max_write_zeroes_granularity)
1635			max_granularity = max_sectors;
1636		break;
1637	default:
1638		break;
1639	}
1640
1641	/*
1642	 * Even though the device advertised support for this type of
1643	 * request, that does not mean every target supports it, and
1644	 * reconfiguration might also have changed that since the
1645	 * check was performed.
1646	 */
1647	if (unlikely(!num_bios))
1648		return BLK_STS_NOTSUPP;
1649
1650	__send_changing_extent_only(ci, ti, num_bios,
1651				    max_granularity, max_sectors);
1652	return BLK_STS_OK;
1653}
1654
1655/*
1656 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1657 * associated with this bio, and this bio's bi_private needs to be
1658 * stored in dm_io->data before the reuse.
1659 *
1660 * bio->bi_private is owned by fs or upper layer, so block layer won't
1661 * touch it after splitting. Meantime it won't be changed by anyone after
1662 * bio is submitted. So this reuse is safe.
1663 */
1664static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1665{
1666	return (struct dm_io **)&bio->bi_private;
1667}
1668
1669static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1670{
1671	struct dm_io **head = dm_poll_list_head(bio);
1672
1673	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1674		bio->bi_opf |= REQ_DM_POLL_LIST;
1675		/*
1676		 * Save .bi_private into dm_io, so that we can reuse
1677		 * .bi_private as dm_io list head for storing dm_io list
1678		 */
1679		io->data = bio->bi_private;
1680
1681		/* tell block layer to poll for completion */
1682		bio->bi_cookie = ~BLK_QC_T_NONE;
1683
1684		io->next = NULL;
1685	} else {
1686		/*
1687		 * bio recursed due to split, reuse original poll list,
1688		 * and save bio->bi_private too.
1689		 */
1690		io->data = (*head)->data;
1691		io->next = *head;
1692	}
1693
1694	*head = io;
1695}
1696
1697/*
1698 * Select the correct strategy for processing a non-flush bio.
1699 */
1700static blk_status_t __split_and_process_bio(struct clone_info *ci)
1701{
1702	struct bio *clone;
1703	struct dm_target *ti;
1704	unsigned int len;
1705
1706	ti = dm_table_find_target(ci->map, ci->sector);
1707	if (unlikely(!ti))
1708		return BLK_STS_IOERR;
1709
1710	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1711	    unlikely(!dm_target_supports_nowait(ti->type)))
1712		return BLK_STS_NOTSUPP;
1713
1714	if (unlikely(ci->is_abnormal_io))
1715		return __process_abnormal_io(ci, ti);
1716
1717	/*
1718	 * Only support bio polling for normal IO, and the target io is
1719	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1720	 */
1721	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1722
1723	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1724	setup_split_accounting(ci, len);
1725	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1726	__map_bio(clone);
1727
1728	ci->sector += len;
1729	ci->sector_count -= len;
1730
1731	return BLK_STS_OK;
1732}
1733
1734static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1735			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1736{
1737	ci->map = map;
1738	ci->io = alloc_io(md, bio);
1739	ci->bio = bio;
1740	ci->is_abnormal_io = is_abnormal;
1741	ci->submit_as_polled = false;
1742	ci->sector = bio->bi_iter.bi_sector;
1743	ci->sector_count = bio_sectors(bio);
1744
1745	/* Shouldn't happen but sector_count was being set to 0 so... */
1746	if (static_branch_unlikely(&zoned_enabled) &&
1747	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1748		ci->sector_count = 0;
1749}
1750
1751/*
1752 * Entry point to split a bio into clones and submit them to the targets.
1753 */
1754static void dm_split_and_process_bio(struct mapped_device *md,
1755				     struct dm_table *map, struct bio *bio)
1756{
1757	struct clone_info ci;
1758	struct dm_io *io;
1759	blk_status_t error = BLK_STS_OK;
1760	bool is_abnormal;
1761
1762	is_abnormal = is_abnormal_io(bio);
1763	if (unlikely(is_abnormal)) {
1764		/*
1765		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1766		 * otherwise associated queue_limits won't be imposed.
1767		 */
1768		bio = bio_split_to_limits(bio);
1769		if (!bio)
1770			return;
1771	}
1772
1773	init_clone_info(&ci, md, map, bio, is_abnormal);
1774	io = ci.io;
1775
1776	if (bio->bi_opf & REQ_PREFLUSH) {
1777		__send_empty_flush(&ci);
1778		/* dm_io_complete submits any data associated with flush */
1779		goto out;
1780	}
1781
1782	error = __split_and_process_bio(&ci);
1783	if (error || !ci.sector_count)
1784		goto out;
1785	/*
1786	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1787	 * *after* bios already submitted have been completely processed.
1788	 */
1789	bio_trim(bio, io->sectors, ci.sector_count);
1790	trace_block_split(bio, bio->bi_iter.bi_sector);
1791	bio_inc_remaining(bio);
1792	submit_bio_noacct(bio);
1793out:
1794	/*
1795	 * Drop the extra reference count for non-POLLED bio, and hold one
1796	 * reference for POLLED bio, which will be released in dm_poll_bio
1797	 *
1798	 * Add every dm_io instance into the dm_io list head which is stored
1799	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1800	 */
1801	if (error || !ci.submit_as_polled) {
1802		/*
1803		 * In case of submission failure, the extra reference for
1804		 * submitting io isn't consumed yet
1805		 */
1806		if (error)
1807			atomic_dec(&io->io_count);
1808		dm_io_dec_pending(io, error);
1809	} else
1810		dm_queue_poll_io(bio, io);
1811}
1812
1813static void dm_submit_bio(struct bio *bio)
1814{
1815	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1816	int srcu_idx;
1817	struct dm_table *map;
1818
1819	map = dm_get_live_table(md, &srcu_idx);
1820
1821	/* If suspended, or map not yet available, queue this IO for later */
1822	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1823	    unlikely(!map)) {
1824		if (bio->bi_opf & REQ_NOWAIT)
1825			bio_wouldblock_error(bio);
1826		else if (bio->bi_opf & REQ_RAHEAD)
1827			bio_io_error(bio);
1828		else
1829			queue_io(md, bio);
1830		goto out;
1831	}
1832
1833	dm_split_and_process_bio(md, map, bio);
1834out:
1835	dm_put_live_table(md, srcu_idx);
1836}
1837
1838static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1839			  unsigned int flags)
1840{
1841	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1842
1843	/* don't poll if the mapped io is done */
1844	if (atomic_read(&io->io_count) > 1)
1845		bio_poll(&io->tio.clone, iob, flags);
1846
1847	/* bio_poll holds the last reference */
1848	return atomic_read(&io->io_count) == 1;
1849}
1850
1851static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1852		       unsigned int flags)
1853{
1854	struct dm_io **head = dm_poll_list_head(bio);
1855	struct dm_io *list = *head;
1856	struct dm_io *tmp = NULL;
1857	struct dm_io *curr, *next;
1858
1859	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1860	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1861		return 0;
1862
1863	WARN_ON_ONCE(!list);
1864
1865	/*
1866	 * Restore .bi_private before possibly completing dm_io.
1867	 *
1868	 * bio_poll() is only possible once @bio has been completely
1869	 * submitted via submit_bio_noacct()'s depth-first submission.
1870	 * So there is no dm_queue_poll_io() race associated with
1871	 * clearing REQ_DM_POLL_LIST here.
1872	 */
1873	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1874	bio->bi_private = list->data;
1875
1876	for (curr = list, next = curr->next; curr; curr = next, next =
1877			curr ? curr->next : NULL) {
1878		if (dm_poll_dm_io(curr, iob, flags)) {
1879			/*
1880			 * clone_endio() has already occurred, so no
1881			 * error handling is needed here.
1882			 */
1883			__dm_io_dec_pending(curr);
1884		} else {
1885			curr->next = tmp;
1886			tmp = curr;
1887		}
1888	}
1889
1890	/* Not done? */
1891	if (tmp) {
1892		bio->bi_opf |= REQ_DM_POLL_LIST;
1893		/* Reset bio->bi_private to dm_io list head */
1894		*head = tmp;
1895		return 0;
1896	}
1897	return 1;
1898}
1899
1900/*
1901 *---------------------------------------------------------------
1902 * An IDR is used to keep track of allocated minor numbers.
1903 *---------------------------------------------------------------
1904 */
1905static void free_minor(int minor)
1906{
1907	spin_lock(&_minor_lock);
1908	idr_remove(&_minor_idr, minor);
1909	spin_unlock(&_minor_lock);
1910}
1911
1912/*
1913 * See if the device with a specific minor # is free.
1914 */
1915static int specific_minor(int minor)
1916{
1917	int r;
1918
1919	if (minor >= (1 << MINORBITS))
1920		return -EINVAL;
1921
1922	idr_preload(GFP_KERNEL);
1923	spin_lock(&_minor_lock);
1924
1925	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1926
1927	spin_unlock(&_minor_lock);
1928	idr_preload_end();
1929	if (r < 0)
1930		return r == -ENOSPC ? -EBUSY : r;
1931	return 0;
1932}
1933
1934static int next_free_minor(int *minor)
1935{
1936	int r;
1937
1938	idr_preload(GFP_KERNEL);
1939	spin_lock(&_minor_lock);
1940
1941	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1942
1943	spin_unlock(&_minor_lock);
1944	idr_preload_end();
1945	if (r < 0)
1946		return r;
1947	*minor = r;
1948	return 0;
1949}
1950
1951static const struct block_device_operations dm_blk_dops;
1952static const struct block_device_operations dm_rq_blk_dops;
1953static const struct dax_operations dm_dax_ops;
1954
1955static void dm_wq_work(struct work_struct *work);
1956
1957#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1958static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1959{
1960	dm_destroy_crypto_profile(q->crypto_profile);
1961}
1962
1963#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1964
1965static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1966{
1967}
1968#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1969
1970static void cleanup_mapped_device(struct mapped_device *md)
1971{
1972	if (md->wq)
1973		destroy_workqueue(md->wq);
1974	dm_free_md_mempools(md->mempools);
1975
1976	if (md->dax_dev) {
1977		dax_remove_host(md->disk);
1978		kill_dax(md->dax_dev);
1979		put_dax(md->dax_dev);
1980		md->dax_dev = NULL;
1981	}
1982
1983	dm_cleanup_zoned_dev(md);
1984	if (md->disk) {
1985		spin_lock(&_minor_lock);
1986		md->disk->private_data = NULL;
1987		spin_unlock(&_minor_lock);
1988		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1989			struct table_device *td;
1990
1991			dm_sysfs_exit(md);
1992			list_for_each_entry(td, &md->table_devices, list) {
1993				bd_unlink_disk_holder(td->dm_dev.bdev,
1994						      md->disk);
1995			}
1996
1997			/*
1998			 * Hold lock to make sure del_gendisk() won't concurrent
1999			 * with open/close_table_device().
2000			 */
2001			mutex_lock(&md->table_devices_lock);
2002			del_gendisk(md->disk);
2003			mutex_unlock(&md->table_devices_lock);
2004		}
2005		dm_queue_destroy_crypto_profile(md->queue);
2006		put_disk(md->disk);
2007	}
2008
2009	if (md->pending_io) {
2010		free_percpu(md->pending_io);
2011		md->pending_io = NULL;
2012	}
2013
2014	cleanup_srcu_struct(&md->io_barrier);
2015
2016	mutex_destroy(&md->suspend_lock);
2017	mutex_destroy(&md->type_lock);
2018	mutex_destroy(&md->table_devices_lock);
2019	mutex_destroy(&md->swap_bios_lock);
2020
2021	dm_mq_cleanup_mapped_device(md);
2022}
2023
2024/*
2025 * Allocate and initialise a blank device with a given minor.
2026 */
2027static struct mapped_device *alloc_dev(int minor)
2028{
2029	int r, numa_node_id = dm_get_numa_node();
2030	struct mapped_device *md;
2031	void *old_md;
2032
2033	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2034	if (!md) {
2035		DMERR("unable to allocate device, out of memory.");
2036		return NULL;
2037	}
2038
2039	if (!try_module_get(THIS_MODULE))
2040		goto bad_module_get;
2041
2042	/* get a minor number for the dev */
2043	if (minor == DM_ANY_MINOR)
2044		r = next_free_minor(&minor);
2045	else
2046		r = specific_minor(minor);
2047	if (r < 0)
2048		goto bad_minor;
2049
2050	r = init_srcu_struct(&md->io_barrier);
2051	if (r < 0)
2052		goto bad_io_barrier;
2053
2054	md->numa_node_id = numa_node_id;
2055	md->init_tio_pdu = false;
2056	md->type = DM_TYPE_NONE;
2057	mutex_init(&md->suspend_lock);
2058	mutex_init(&md->type_lock);
2059	mutex_init(&md->table_devices_lock);
2060	spin_lock_init(&md->deferred_lock);
2061	atomic_set(&md->holders, 1);
2062	atomic_set(&md->open_count, 0);
2063	atomic_set(&md->event_nr, 0);
2064	atomic_set(&md->uevent_seq, 0);
2065	INIT_LIST_HEAD(&md->uevent_list);
2066	INIT_LIST_HEAD(&md->table_devices);
2067	spin_lock_init(&md->uevent_lock);
2068
2069	/*
2070	 * default to bio-based until DM table is loaded and md->type
2071	 * established. If request-based table is loaded: blk-mq will
2072	 * override accordingly.
2073	 */
2074	md->disk = blk_alloc_disk(md->numa_node_id);
2075	if (!md->disk)
2076		goto bad;
2077	md->queue = md->disk->queue;
2078
2079	init_waitqueue_head(&md->wait);
2080	INIT_WORK(&md->work, dm_wq_work);
2081	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2082	init_waitqueue_head(&md->eventq);
2083	init_completion(&md->kobj_holder.completion);
2084
2085	md->requeue_list = NULL;
2086	md->swap_bios = get_swap_bios();
2087	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2088	mutex_init(&md->swap_bios_lock);
2089
2090	md->disk->major = _major;
2091	md->disk->first_minor = minor;
2092	md->disk->minors = 1;
2093	md->disk->flags |= GENHD_FL_NO_PART;
2094	md->disk->fops = &dm_blk_dops;
2095	md->disk->private_data = md;
2096	sprintf(md->disk->disk_name, "dm-%d", minor);
2097
2098	if (IS_ENABLED(CONFIG_FS_DAX)) {
2099		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2100		if (IS_ERR(md->dax_dev)) {
2101			md->dax_dev = NULL;
2102			goto bad;
2103		}
2104		set_dax_nocache(md->dax_dev);
2105		set_dax_nomc(md->dax_dev);
2106		if (dax_add_host(md->dax_dev, md->disk))
2107			goto bad;
2108	}
2109
2110	format_dev_t(md->name, MKDEV(_major, minor));
2111
2112	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2113	if (!md->wq)
2114		goto bad;
2115
2116	md->pending_io = alloc_percpu(unsigned long);
2117	if (!md->pending_io)
2118		goto bad;
2119
2120	r = dm_stats_init(&md->stats);
2121	if (r < 0)
2122		goto bad;
2123
2124	/* Populate the mapping, nobody knows we exist yet */
2125	spin_lock(&_minor_lock);
2126	old_md = idr_replace(&_minor_idr, md, minor);
2127	spin_unlock(&_minor_lock);
2128
2129	BUG_ON(old_md != MINOR_ALLOCED);
2130
2131	return md;
2132
2133bad:
2134	cleanup_mapped_device(md);
2135bad_io_barrier:
2136	free_minor(minor);
2137bad_minor:
2138	module_put(THIS_MODULE);
2139bad_module_get:
2140	kvfree(md);
2141	return NULL;
2142}
2143
2144static void unlock_fs(struct mapped_device *md);
2145
2146static void free_dev(struct mapped_device *md)
2147{
2148	int minor = MINOR(disk_devt(md->disk));
2149
2150	unlock_fs(md);
2151
2152	cleanup_mapped_device(md);
2153
2154	WARN_ON_ONCE(!list_empty(&md->table_devices));
2155	dm_stats_cleanup(&md->stats);
2156	free_minor(minor);
2157
2158	module_put(THIS_MODULE);
2159	kvfree(md);
2160}
2161
2162/*
2163 * Bind a table to the device.
2164 */
2165static void event_callback(void *context)
2166{
2167	unsigned long flags;
2168	LIST_HEAD(uevents);
2169	struct mapped_device *md = context;
2170
2171	spin_lock_irqsave(&md->uevent_lock, flags);
2172	list_splice_init(&md->uevent_list, &uevents);
2173	spin_unlock_irqrestore(&md->uevent_lock, flags);
2174
2175	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2176
2177	atomic_inc(&md->event_nr);
2178	wake_up(&md->eventq);
2179	dm_issue_global_event();
2180}
2181
2182/*
2183 * Returns old map, which caller must destroy.
2184 */
2185static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2186			       struct queue_limits *limits)
2187{
2188	struct dm_table *old_map;
2189	sector_t size;
2190	int ret;
2191
2192	lockdep_assert_held(&md->suspend_lock);
2193
2194	size = dm_table_get_size(t);
2195
2196	/*
2197	 * Wipe any geometry if the size of the table changed.
2198	 */
2199	if (size != dm_get_size(md))
2200		memset(&md->geometry, 0, sizeof(md->geometry));
2201
2202	set_capacity(md->disk, size);
2203
2204	dm_table_event_callback(t, event_callback, md);
2205
2206	if (dm_table_request_based(t)) {
2207		/*
2208		 * Leverage the fact that request-based DM targets are
2209		 * immutable singletons - used to optimize dm_mq_queue_rq.
2210		 */
2211		md->immutable_target = dm_table_get_immutable_target(t);
2212
2213		/*
2214		 * There is no need to reload with request-based dm because the
2215		 * size of front_pad doesn't change.
2216		 *
2217		 * Note for future: If you are to reload bioset, prep-ed
2218		 * requests in the queue may refer to bio from the old bioset,
2219		 * so you must walk through the queue to unprep.
2220		 */
2221		if (!md->mempools) {
2222			md->mempools = t->mempools;
2223			t->mempools = NULL;
2224		}
2225	} else {
2226		/*
2227		 * The md may already have mempools that need changing.
2228		 * If so, reload bioset because front_pad may have changed
2229		 * because a different table was loaded.
2230		 */
2231		dm_free_md_mempools(md->mempools);
2232		md->mempools = t->mempools;
2233		t->mempools = NULL;
2234	}
2235
2236	ret = dm_table_set_restrictions(t, md->queue, limits);
2237	if (ret) {
2238		old_map = ERR_PTR(ret);
2239		goto out;
2240	}
2241
2242	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2243	rcu_assign_pointer(md->map, (void *)t);
2244	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2245
2246	if (old_map)
2247		dm_sync_table(md);
2248out:
2249	return old_map;
2250}
2251
2252/*
2253 * Returns unbound table for the caller to free.
2254 */
2255static struct dm_table *__unbind(struct mapped_device *md)
2256{
2257	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2258
2259	if (!map)
2260		return NULL;
2261
2262	dm_table_event_callback(map, NULL, NULL);
2263	RCU_INIT_POINTER(md->map, NULL);
2264	dm_sync_table(md);
2265
2266	return map;
2267}
2268
2269/*
2270 * Constructor for a new device.
2271 */
2272int dm_create(int minor, struct mapped_device **result)
2273{
2274	struct mapped_device *md;
2275
2276	md = alloc_dev(minor);
2277	if (!md)
2278		return -ENXIO;
2279
2280	dm_ima_reset_data(md);
2281
2282	*result = md;
2283	return 0;
2284}
2285
2286/*
2287 * Functions to manage md->type.
2288 * All are required to hold md->type_lock.
2289 */
2290void dm_lock_md_type(struct mapped_device *md)
2291{
2292	mutex_lock(&md->type_lock);
2293}
2294
2295void dm_unlock_md_type(struct mapped_device *md)
2296{
2297	mutex_unlock(&md->type_lock);
2298}
2299
2300void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2301{
2302	BUG_ON(!mutex_is_locked(&md->type_lock));
2303	md->type = type;
2304}
2305
2306enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2307{
2308	return md->type;
2309}
2310
2311struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2312{
2313	return md->immutable_target_type;
2314}
2315
2316/*
2317 * Setup the DM device's queue based on md's type
2318 */
2319int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2320{
2321	enum dm_queue_mode type = dm_table_get_type(t);
2322	struct queue_limits limits;
2323	struct table_device *td;
2324	int r;
2325
2326	switch (type) {
2327	case DM_TYPE_REQUEST_BASED:
2328		md->disk->fops = &dm_rq_blk_dops;
2329		r = dm_mq_init_request_queue(md, t);
2330		if (r) {
2331			DMERR("Cannot initialize queue for request-based dm mapped device");
2332			return r;
2333		}
2334		break;
2335	case DM_TYPE_BIO_BASED:
2336	case DM_TYPE_DAX_BIO_BASED:
2337		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2338		break;
2339	case DM_TYPE_NONE:
2340		WARN_ON_ONCE(true);
2341		break;
2342	}
2343
2344	r = dm_calculate_queue_limits(t, &limits);
2345	if (r) {
2346		DMERR("Cannot calculate initial queue limits");
2347		return r;
2348	}
2349	r = dm_table_set_restrictions(t, md->queue, &limits);
2350	if (r)
2351		return r;
2352
2353	/*
2354	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2355	 * with open_table_device() and close_table_device().
2356	 */
2357	mutex_lock(&md->table_devices_lock);
2358	r = add_disk(md->disk);
2359	mutex_unlock(&md->table_devices_lock);
2360	if (r)
2361		return r;
2362
2363	/*
2364	 * Register the holder relationship for devices added before the disk
2365	 * was live.
2366	 */
2367	list_for_each_entry(td, &md->table_devices, list) {
2368		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2369		if (r)
2370			goto out_undo_holders;
2371	}
2372
2373	r = dm_sysfs_init(md);
2374	if (r)
2375		goto out_undo_holders;
2376
2377	md->type = type;
2378	return 0;
2379
2380out_undo_holders:
2381	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2382		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2383	mutex_lock(&md->table_devices_lock);
2384	del_gendisk(md->disk);
2385	mutex_unlock(&md->table_devices_lock);
2386	return r;
2387}
2388
2389struct mapped_device *dm_get_md(dev_t dev)
2390{
2391	struct mapped_device *md;
2392	unsigned int minor = MINOR(dev);
2393
2394	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2395		return NULL;
2396
2397	spin_lock(&_minor_lock);
2398
2399	md = idr_find(&_minor_idr, minor);
2400	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2401	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2402		md = NULL;
2403		goto out;
2404	}
2405	dm_get(md);
2406out:
2407	spin_unlock(&_minor_lock);
2408
2409	return md;
2410}
2411EXPORT_SYMBOL_GPL(dm_get_md);
2412
2413void *dm_get_mdptr(struct mapped_device *md)
2414{
2415	return md->interface_ptr;
2416}
2417
2418void dm_set_mdptr(struct mapped_device *md, void *ptr)
2419{
2420	md->interface_ptr = ptr;
2421}
2422
2423void dm_get(struct mapped_device *md)
2424{
2425	atomic_inc(&md->holders);
2426	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2427}
2428
2429int dm_hold(struct mapped_device *md)
2430{
2431	spin_lock(&_minor_lock);
2432	if (test_bit(DMF_FREEING, &md->flags)) {
2433		spin_unlock(&_minor_lock);
2434		return -EBUSY;
2435	}
2436	dm_get(md);
2437	spin_unlock(&_minor_lock);
2438	return 0;
2439}
2440EXPORT_SYMBOL_GPL(dm_hold);
2441
2442const char *dm_device_name(struct mapped_device *md)
2443{
2444	return md->name;
2445}
2446EXPORT_SYMBOL_GPL(dm_device_name);
2447
2448static void __dm_destroy(struct mapped_device *md, bool wait)
2449{
2450	struct dm_table *map;
2451	int srcu_idx;
2452
2453	might_sleep();
2454
2455	spin_lock(&_minor_lock);
2456	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2457	set_bit(DMF_FREEING, &md->flags);
2458	spin_unlock(&_minor_lock);
2459
2460	blk_mark_disk_dead(md->disk);
2461
2462	/*
2463	 * Take suspend_lock so that presuspend and postsuspend methods
2464	 * do not race with internal suspend.
2465	 */
2466	mutex_lock(&md->suspend_lock);
2467	map = dm_get_live_table(md, &srcu_idx);
2468	if (!dm_suspended_md(md)) {
2469		dm_table_presuspend_targets(map);
2470		set_bit(DMF_SUSPENDED, &md->flags);
2471		set_bit(DMF_POST_SUSPENDING, &md->flags);
2472		dm_table_postsuspend_targets(map);
2473	}
2474	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2475	dm_put_live_table(md, srcu_idx);
2476	mutex_unlock(&md->suspend_lock);
2477
2478	/*
2479	 * Rare, but there may be I/O requests still going to complete,
2480	 * for example.  Wait for all references to disappear.
2481	 * No one should increment the reference count of the mapped_device,
2482	 * after the mapped_device state becomes DMF_FREEING.
2483	 */
2484	if (wait)
2485		while (atomic_read(&md->holders))
2486			fsleep(1000);
2487	else if (atomic_read(&md->holders))
2488		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2489		       dm_device_name(md), atomic_read(&md->holders));
2490
2491	dm_table_destroy(__unbind(md));
2492	free_dev(md);
2493}
2494
2495void dm_destroy(struct mapped_device *md)
2496{
2497	__dm_destroy(md, true);
2498}
2499
2500void dm_destroy_immediate(struct mapped_device *md)
2501{
2502	__dm_destroy(md, false);
2503}
2504
2505void dm_put(struct mapped_device *md)
2506{
2507	atomic_dec(&md->holders);
2508}
2509EXPORT_SYMBOL_GPL(dm_put);
2510
2511static bool dm_in_flight_bios(struct mapped_device *md)
2512{
2513	int cpu;
2514	unsigned long sum = 0;
2515
2516	for_each_possible_cpu(cpu)
2517		sum += *per_cpu_ptr(md->pending_io, cpu);
2518
2519	return sum != 0;
2520}
2521
2522static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2523{
2524	int r = 0;
2525	DEFINE_WAIT(wait);
2526
2527	while (true) {
2528		prepare_to_wait(&md->wait, &wait, task_state);
2529
2530		if (!dm_in_flight_bios(md))
2531			break;
2532
2533		if (signal_pending_state(task_state, current)) {
2534			r = -EINTR;
2535			break;
2536		}
2537
2538		io_schedule();
2539	}
2540	finish_wait(&md->wait, &wait);
2541
2542	smp_rmb();
2543
2544	return r;
2545}
2546
2547static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2548{
2549	int r = 0;
2550
2551	if (!queue_is_mq(md->queue))
2552		return dm_wait_for_bios_completion(md, task_state);
2553
2554	while (true) {
2555		if (!blk_mq_queue_inflight(md->queue))
2556			break;
2557
2558		if (signal_pending_state(task_state, current)) {
2559			r = -EINTR;
2560			break;
2561		}
2562
2563		fsleep(5000);
2564	}
2565
2566	return r;
2567}
2568
2569/*
2570 * Process the deferred bios
2571 */
2572static void dm_wq_work(struct work_struct *work)
2573{
2574	struct mapped_device *md = container_of(work, struct mapped_device, work);
2575	struct bio *bio;
2576
2577	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2578		spin_lock_irq(&md->deferred_lock);
2579		bio = bio_list_pop(&md->deferred);
2580		spin_unlock_irq(&md->deferred_lock);
2581
2582		if (!bio)
2583			break;
2584
2585		submit_bio_noacct(bio);
2586		cond_resched();
2587	}
2588}
2589
2590static void dm_queue_flush(struct mapped_device *md)
2591{
2592	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2593	smp_mb__after_atomic();
2594	queue_work(md->wq, &md->work);
2595}
2596
2597/*
2598 * Swap in a new table, returning the old one for the caller to destroy.
2599 */
2600struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2601{
2602	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2603	struct queue_limits limits;
2604	int r;
2605
2606	mutex_lock(&md->suspend_lock);
2607
2608	/* device must be suspended */
2609	if (!dm_suspended_md(md))
2610		goto out;
2611
2612	/*
2613	 * If the new table has no data devices, retain the existing limits.
2614	 * This helps multipath with queue_if_no_path if all paths disappear,
2615	 * then new I/O is queued based on these limits, and then some paths
2616	 * reappear.
2617	 */
2618	if (dm_table_has_no_data_devices(table)) {
2619		live_map = dm_get_live_table_fast(md);
2620		if (live_map)
2621			limits = md->queue->limits;
2622		dm_put_live_table_fast(md);
2623	}
2624
2625	if (!live_map) {
2626		r = dm_calculate_queue_limits(table, &limits);
2627		if (r) {
2628			map = ERR_PTR(r);
2629			goto out;
2630		}
2631	}
2632
2633	map = __bind(md, table, &limits);
2634	dm_issue_global_event();
2635
2636out:
2637	mutex_unlock(&md->suspend_lock);
2638	return map;
2639}
2640
2641/*
2642 * Functions to lock and unlock any filesystem running on the
2643 * device.
2644 */
2645static int lock_fs(struct mapped_device *md)
2646{
2647	int r;
2648
2649	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2650
2651	r = freeze_bdev(md->disk->part0);
2652	if (!r)
2653		set_bit(DMF_FROZEN, &md->flags);
2654	return r;
2655}
2656
2657static void unlock_fs(struct mapped_device *md)
2658{
2659	if (!test_bit(DMF_FROZEN, &md->flags))
2660		return;
2661	thaw_bdev(md->disk->part0);
2662	clear_bit(DMF_FROZEN, &md->flags);
2663}
2664
2665/*
2666 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2667 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2668 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2669 *
2670 * If __dm_suspend returns 0, the device is completely quiescent
2671 * now. There is no request-processing activity. All new requests
2672 * are being added to md->deferred list.
2673 */
2674static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2675			unsigned int suspend_flags, unsigned int task_state,
2676			int dmf_suspended_flag)
2677{
2678	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2679	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2680	int r;
2681
2682	lockdep_assert_held(&md->suspend_lock);
2683
2684	/*
2685	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2686	 * This flag is cleared before dm_suspend returns.
2687	 */
2688	if (noflush)
2689		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2690	else
2691		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2692
2693	/*
2694	 * This gets reverted if there's an error later and the targets
2695	 * provide the .presuspend_undo hook.
2696	 */
2697	dm_table_presuspend_targets(map);
2698
2699	/*
2700	 * Flush I/O to the device.
2701	 * Any I/O submitted after lock_fs() may not be flushed.
2702	 * noflush takes precedence over do_lockfs.
2703	 * (lock_fs() flushes I/Os and waits for them to complete.)
2704	 */
2705	if (!noflush && do_lockfs) {
2706		r = lock_fs(md);
2707		if (r) {
2708			dm_table_presuspend_undo_targets(map);
2709			return r;
2710		}
2711	}
2712
2713	/*
2714	 * Here we must make sure that no processes are submitting requests
2715	 * to target drivers i.e. no one may be executing
2716	 * dm_split_and_process_bio from dm_submit_bio.
2717	 *
2718	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2719	 * we take the write lock. To prevent any process from reentering
2720	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2721	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2722	 * flush_workqueue(md->wq).
2723	 */
2724	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2725	if (map)
2726		synchronize_srcu(&md->io_barrier);
2727
2728	/*
2729	 * Stop md->queue before flushing md->wq in case request-based
2730	 * dm defers requests to md->wq from md->queue.
2731	 */
2732	if (dm_request_based(md))
2733		dm_stop_queue(md->queue);
2734
2735	flush_workqueue(md->wq);
2736
2737	/*
2738	 * At this point no more requests are entering target request routines.
2739	 * We call dm_wait_for_completion to wait for all existing requests
2740	 * to finish.
2741	 */
2742	r = dm_wait_for_completion(md, task_state);
2743	if (!r)
2744		set_bit(dmf_suspended_flag, &md->flags);
2745
2746	if (noflush)
2747		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2748	if (map)
2749		synchronize_srcu(&md->io_barrier);
2750
2751	/* were we interrupted ? */
2752	if (r < 0) {
2753		dm_queue_flush(md);
2754
2755		if (dm_request_based(md))
2756			dm_start_queue(md->queue);
2757
2758		unlock_fs(md);
2759		dm_table_presuspend_undo_targets(map);
2760		/* pushback list is already flushed, so skip flush */
2761	}
2762
2763	return r;
2764}
2765
2766/*
2767 * We need to be able to change a mapping table under a mounted
2768 * filesystem.  For example we might want to move some data in
2769 * the background.  Before the table can be swapped with
2770 * dm_bind_table, dm_suspend must be called to flush any in
2771 * flight bios and ensure that any further io gets deferred.
2772 */
2773/*
2774 * Suspend mechanism in request-based dm.
2775 *
2776 * 1. Flush all I/Os by lock_fs() if needed.
2777 * 2. Stop dispatching any I/O by stopping the request_queue.
2778 * 3. Wait for all in-flight I/Os to be completed or requeued.
2779 *
2780 * To abort suspend, start the request_queue.
2781 */
2782int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2783{
2784	struct dm_table *map = NULL;
2785	int r = 0;
2786
2787retry:
2788	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2789
2790	if (dm_suspended_md(md)) {
2791		r = -EINVAL;
2792		goto out_unlock;
2793	}
2794
2795	if (dm_suspended_internally_md(md)) {
2796		/* already internally suspended, wait for internal resume */
2797		mutex_unlock(&md->suspend_lock);
2798		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2799		if (r)
2800			return r;
2801		goto retry;
2802	}
2803
2804	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2805	if (!map) {
2806		/* avoid deadlock with fs/namespace.c:do_mount() */
2807		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2808	}
2809
2810	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2811	if (r)
2812		goto out_unlock;
2813
2814	set_bit(DMF_POST_SUSPENDING, &md->flags);
2815	dm_table_postsuspend_targets(map);
2816	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2817
2818out_unlock:
2819	mutex_unlock(&md->suspend_lock);
2820	return r;
2821}
2822
2823static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2824{
2825	if (map) {
2826		int r = dm_table_resume_targets(map);
2827
2828		if (r)
2829			return r;
2830	}
2831
2832	dm_queue_flush(md);
2833
2834	/*
2835	 * Flushing deferred I/Os must be done after targets are resumed
2836	 * so that mapping of targets can work correctly.
2837	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2838	 */
2839	if (dm_request_based(md))
2840		dm_start_queue(md->queue);
2841
2842	unlock_fs(md);
2843
2844	return 0;
2845}
2846
2847int dm_resume(struct mapped_device *md)
2848{
2849	int r;
2850	struct dm_table *map = NULL;
2851
2852retry:
2853	r = -EINVAL;
2854	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2855
2856	if (!dm_suspended_md(md))
2857		goto out;
2858
2859	if (dm_suspended_internally_md(md)) {
2860		/* already internally suspended, wait for internal resume */
2861		mutex_unlock(&md->suspend_lock);
2862		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2863		if (r)
2864			return r;
2865		goto retry;
2866	}
2867
2868	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2869	if (!map || !dm_table_get_size(map))
2870		goto out;
2871
2872	r = __dm_resume(md, map);
2873	if (r)
2874		goto out;
2875
2876	clear_bit(DMF_SUSPENDED, &md->flags);
2877out:
2878	mutex_unlock(&md->suspend_lock);
2879
2880	return r;
2881}
2882
2883/*
2884 * Internal suspend/resume works like userspace-driven suspend. It waits
2885 * until all bios finish and prevents issuing new bios to the target drivers.
2886 * It may be used only from the kernel.
2887 */
2888
2889static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2890{
2891	struct dm_table *map = NULL;
2892
2893	lockdep_assert_held(&md->suspend_lock);
2894
2895	if (md->internal_suspend_count++)
2896		return; /* nested internal suspend */
2897
2898	if (dm_suspended_md(md)) {
2899		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2900		return; /* nest suspend */
2901	}
2902
2903	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2904
2905	/*
2906	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2907	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2908	 * would require changing .presuspend to return an error -- avoid this
2909	 * until there is a need for more elaborate variants of internal suspend.
2910	 */
2911	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2912			    DMF_SUSPENDED_INTERNALLY);
2913
2914	set_bit(DMF_POST_SUSPENDING, &md->flags);
2915	dm_table_postsuspend_targets(map);
2916	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2917}
2918
2919static void __dm_internal_resume(struct mapped_device *md)
2920{
2921	int r;
2922	struct dm_table *map;
2923
2924	BUG_ON(!md->internal_suspend_count);
2925
2926	if (--md->internal_suspend_count)
2927		return; /* resume from nested internal suspend */
2928
2929	if (dm_suspended_md(md))
2930		goto done; /* resume from nested suspend */
2931
2932	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2933	r = __dm_resume(md, map);
2934	if (r) {
2935		/*
2936		 * If a preresume method of some target failed, we are in a
2937		 * tricky situation. We can't return an error to the caller. We
2938		 * can't fake success because then the "resume" and
2939		 * "postsuspend" methods would not be paired correctly, and it
2940		 * would break various targets, for example it would cause list
2941		 * corruption in the "origin" target.
2942		 *
2943		 * So, we fake normal suspend here, to make sure that the
2944		 * "resume" and "postsuspend" methods will be paired correctly.
2945		 */
2946		DMERR("Preresume method failed: %d", r);
2947		set_bit(DMF_SUSPENDED, &md->flags);
2948	}
2949done:
2950	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2951	smp_mb__after_atomic();
2952	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2953}
2954
2955void dm_internal_suspend_noflush(struct mapped_device *md)
2956{
2957	mutex_lock(&md->suspend_lock);
2958	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2959	mutex_unlock(&md->suspend_lock);
2960}
2961EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2962
2963void dm_internal_resume(struct mapped_device *md)
2964{
2965	mutex_lock(&md->suspend_lock);
2966	__dm_internal_resume(md);
2967	mutex_unlock(&md->suspend_lock);
2968}
2969EXPORT_SYMBOL_GPL(dm_internal_resume);
2970
2971/*
2972 * Fast variants of internal suspend/resume hold md->suspend_lock,
2973 * which prevents interaction with userspace-driven suspend.
2974 */
2975
2976void dm_internal_suspend_fast(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2980		return;
2981
2982	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2983	synchronize_srcu(&md->io_barrier);
2984	flush_workqueue(md->wq);
2985	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2986}
2987EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2988
2989void dm_internal_resume_fast(struct mapped_device *md)
2990{
2991	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2992		goto done;
2993
2994	dm_queue_flush(md);
2995
2996done:
2997	mutex_unlock(&md->suspend_lock);
2998}
2999EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3000
3001/*
3002 *---------------------------------------------------------------
3003 * Event notification.
3004 *---------------------------------------------------------------
3005 */
3006int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3007		      unsigned int cookie, bool need_resize_uevent)
3008{
3009	int r;
3010	unsigned int noio_flag;
3011	char udev_cookie[DM_COOKIE_LENGTH];
3012	char *envp[3] = { NULL, NULL, NULL };
3013	char **envpp = envp;
3014	if (cookie) {
3015		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3016			 DM_COOKIE_ENV_VAR_NAME, cookie);
3017		*envpp++ = udev_cookie;
3018	}
3019	if (need_resize_uevent) {
3020		*envpp++ = "RESIZE=1";
3021	}
3022
3023	noio_flag = memalloc_noio_save();
3024
3025	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3026
3027	memalloc_noio_restore(noio_flag);
3028
3029	return r;
3030}
3031
3032uint32_t dm_next_uevent_seq(struct mapped_device *md)
3033{
3034	return atomic_add_return(1, &md->uevent_seq);
3035}
3036
3037uint32_t dm_get_event_nr(struct mapped_device *md)
3038{
3039	return atomic_read(&md->event_nr);
3040}
3041
3042int dm_wait_event(struct mapped_device *md, int event_nr)
3043{
3044	return wait_event_interruptible(md->eventq,
3045			(event_nr != atomic_read(&md->event_nr)));
3046}
3047
3048void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3049{
3050	unsigned long flags;
3051
3052	spin_lock_irqsave(&md->uevent_lock, flags);
3053	list_add(elist, &md->uevent_list);
3054	spin_unlock_irqrestore(&md->uevent_lock, flags);
3055}
3056
3057/*
3058 * The gendisk is only valid as long as you have a reference
3059 * count on 'md'.
3060 */
3061struct gendisk *dm_disk(struct mapped_device *md)
3062{
3063	return md->disk;
3064}
3065EXPORT_SYMBOL_GPL(dm_disk);
3066
3067struct kobject *dm_kobject(struct mapped_device *md)
3068{
3069	return &md->kobj_holder.kobj;
3070}
3071
3072struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3073{
3074	struct mapped_device *md;
3075
3076	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3077
3078	spin_lock(&_minor_lock);
3079	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3080		md = NULL;
3081		goto out;
3082	}
3083	dm_get(md);
3084out:
3085	spin_unlock(&_minor_lock);
3086
3087	return md;
3088}
3089
3090int dm_suspended_md(struct mapped_device *md)
3091{
3092	return test_bit(DMF_SUSPENDED, &md->flags);
3093}
3094
3095static int dm_post_suspending_md(struct mapped_device *md)
3096{
3097	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3098}
3099
3100int dm_suspended_internally_md(struct mapped_device *md)
3101{
3102	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3103}
3104
3105int dm_test_deferred_remove_flag(struct mapped_device *md)
3106{
3107	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3108}
3109
3110int dm_suspended(struct dm_target *ti)
3111{
3112	return dm_suspended_md(ti->table->md);
3113}
3114EXPORT_SYMBOL_GPL(dm_suspended);
3115
3116int dm_post_suspending(struct dm_target *ti)
3117{
3118	return dm_post_suspending_md(ti->table->md);
3119}
3120EXPORT_SYMBOL_GPL(dm_post_suspending);
3121
3122int dm_noflush_suspending(struct dm_target *ti)
3123{
3124	return __noflush_suspending(ti->table->md);
3125}
3126EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3127
3128void dm_free_md_mempools(struct dm_md_mempools *pools)
3129{
3130	if (!pools)
3131		return;
3132
3133	bioset_exit(&pools->bs);
3134	bioset_exit(&pools->io_bs);
3135
3136	kfree(pools);
3137}
3138
3139struct dm_pr {
3140	u64	old_key;
3141	u64	new_key;
3142	u32	flags;
3143	bool	abort;
3144	bool	fail_early;
3145	int	ret;
3146	enum pr_type type;
3147	struct pr_keys *read_keys;
3148	struct pr_held_reservation *rsv;
3149};
3150
3151static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3152		      struct dm_pr *pr)
3153{
3154	struct mapped_device *md = bdev->bd_disk->private_data;
3155	struct dm_table *table;
3156	struct dm_target *ti;
3157	int ret = -ENOTTY, srcu_idx;
3158
3159	table = dm_get_live_table(md, &srcu_idx);
3160	if (!table || !dm_table_get_size(table))
3161		goto out;
3162
3163	/* We only support devices that have a single target */
3164	if (table->num_targets != 1)
3165		goto out;
3166	ti = dm_table_get_target(table, 0);
3167
3168	if (dm_suspended_md(md)) {
3169		ret = -EAGAIN;
3170		goto out;
3171	}
3172
3173	ret = -EINVAL;
3174	if (!ti->type->iterate_devices)
3175		goto out;
3176
3177	ti->type->iterate_devices(ti, fn, pr);
3178	ret = 0;
3179out:
3180	dm_put_live_table(md, srcu_idx);
3181	return ret;
3182}
3183
3184/*
3185 * For register / unregister we need to manually call out to every path.
3186 */
3187static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3188			    sector_t start, sector_t len, void *data)
3189{
3190	struct dm_pr *pr = data;
3191	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3192	int ret;
3193
3194	if (!ops || !ops->pr_register) {
3195		pr->ret = -EOPNOTSUPP;
3196		return -1;
3197	}
3198
3199	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3200	if (!ret)
3201		return 0;
3202
3203	if (!pr->ret)
3204		pr->ret = ret;
3205
3206	if (pr->fail_early)
3207		return -1;
3208
3209	return 0;
3210}
3211
3212static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3213			  u32 flags)
3214{
3215	struct dm_pr pr = {
3216		.old_key	= old_key,
3217		.new_key	= new_key,
3218		.flags		= flags,
3219		.fail_early	= true,
3220		.ret		= 0,
3221	};
3222	int ret;
3223
3224	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3225	if (ret) {
3226		/* Didn't even get to register a path */
3227		return ret;
3228	}
3229
3230	if (!pr.ret)
3231		return 0;
3232	ret = pr.ret;
3233
3234	if (!new_key)
3235		return ret;
3236
3237	/* unregister all paths if we failed to register any path */
3238	pr.old_key = new_key;
3239	pr.new_key = 0;
3240	pr.flags = 0;
3241	pr.fail_early = false;
3242	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3243	return ret;
3244}
3245
3246
3247static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3248			   sector_t start, sector_t len, void *data)
3249{
3250	struct dm_pr *pr = data;
3251	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3252
3253	if (!ops || !ops->pr_reserve) {
3254		pr->ret = -EOPNOTSUPP;
3255		return -1;
3256	}
3257
3258	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3259	if (!pr->ret)
3260		return -1;
3261
3262	return 0;
3263}
3264
3265static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3266			 u32 flags)
3267{
3268	struct dm_pr pr = {
3269		.old_key	= key,
3270		.flags		= flags,
3271		.type		= type,
3272		.fail_early	= false,
3273		.ret		= 0,
3274	};
3275	int ret;
3276
3277	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3278	if (ret)
3279		return ret;
3280
3281	return pr.ret;
3282}
3283
3284/*
3285 * If there is a non-All Registrants type of reservation, the release must be
3286 * sent down the holding path. For the cases where there is no reservation or
3287 * the path is not the holder the device will also return success, so we must
3288 * try each path to make sure we got the correct path.
3289 */
3290static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3291			   sector_t start, sector_t len, void *data)
3292{
3293	struct dm_pr *pr = data;
3294	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3295
3296	if (!ops || !ops->pr_release) {
3297		pr->ret = -EOPNOTSUPP;
3298		return -1;
3299	}
3300
3301	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3302	if (pr->ret)
3303		return -1;
3304
3305	return 0;
3306}
3307
3308static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3309{
3310	struct dm_pr pr = {
3311		.old_key	= key,
3312		.type		= type,
3313		.fail_early	= false,
3314	};
3315	int ret;
3316
3317	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3318	if (ret)
3319		return ret;
3320
3321	return pr.ret;
3322}
3323
3324static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3325			   sector_t start, sector_t len, void *data)
3326{
3327	struct dm_pr *pr = data;
3328	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3329
3330	if (!ops || !ops->pr_preempt) {
3331		pr->ret = -EOPNOTSUPP;
3332		return -1;
3333	}
3334
3335	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3336				  pr->abort);
3337	if (!pr->ret)
3338		return -1;
3339
3340	return 0;
3341}
3342
3343static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3344			 enum pr_type type, bool abort)
3345{
3346	struct dm_pr pr = {
3347		.new_key	= new_key,
3348		.old_key	= old_key,
3349		.type		= type,
3350		.fail_early	= false,
3351	};
3352	int ret;
3353
3354	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3355	if (ret)
3356		return ret;
3357
3358	return pr.ret;
3359}
3360
3361static int dm_pr_clear(struct block_device *bdev, u64 key)
3362{
3363	struct mapped_device *md = bdev->bd_disk->private_data;
3364	const struct pr_ops *ops;
3365	int r, srcu_idx;
3366
3367	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3368	if (r < 0)
3369		goto out;
3370
3371	ops = bdev->bd_disk->fops->pr_ops;
3372	if (ops && ops->pr_clear)
3373		r = ops->pr_clear(bdev, key);
3374	else
3375		r = -EOPNOTSUPP;
3376out:
3377	dm_unprepare_ioctl(md, srcu_idx);
3378	return r;
3379}
3380
3381static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3382			     sector_t start, sector_t len, void *data)
3383{
3384	struct dm_pr *pr = data;
3385	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3386
3387	if (!ops || !ops->pr_read_keys) {
3388		pr->ret = -EOPNOTSUPP;
3389		return -1;
3390	}
3391
3392	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3393	if (!pr->ret)
3394		return -1;
3395
3396	return 0;
3397}
3398
3399static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3400{
3401	struct dm_pr pr = {
3402		.read_keys = keys,
3403	};
3404	int ret;
3405
3406	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3407	if (ret)
3408		return ret;
3409
3410	return pr.ret;
3411}
3412
3413static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3414				    sector_t start, sector_t len, void *data)
3415{
3416	struct dm_pr *pr = data;
3417	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3418
3419	if (!ops || !ops->pr_read_reservation) {
3420		pr->ret = -EOPNOTSUPP;
3421		return -1;
3422	}
3423
3424	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3425	if (!pr->ret)
3426		return -1;
3427
3428	return 0;
3429}
3430
3431static int dm_pr_read_reservation(struct block_device *bdev,
3432				  struct pr_held_reservation *rsv)
3433{
3434	struct dm_pr pr = {
3435		.rsv = rsv,
3436	};
3437	int ret;
3438
3439	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3440	if (ret)
3441		return ret;
3442
3443	return pr.ret;
3444}
3445
3446static const struct pr_ops dm_pr_ops = {
3447	.pr_register	= dm_pr_register,
3448	.pr_reserve	= dm_pr_reserve,
3449	.pr_release	= dm_pr_release,
3450	.pr_preempt	= dm_pr_preempt,
3451	.pr_clear	= dm_pr_clear,
3452	.pr_read_keys	= dm_pr_read_keys,
3453	.pr_read_reservation = dm_pr_read_reservation,
3454};
3455
3456static const struct block_device_operations dm_blk_dops = {
3457	.submit_bio = dm_submit_bio,
3458	.poll_bio = dm_poll_bio,
3459	.open = dm_blk_open,
3460	.release = dm_blk_close,
3461	.ioctl = dm_blk_ioctl,
3462	.getgeo = dm_blk_getgeo,
3463	.report_zones = dm_blk_report_zones,
3464	.pr_ops = &dm_pr_ops,
3465	.owner = THIS_MODULE
3466};
3467
3468static const struct block_device_operations dm_rq_blk_dops = {
3469	.open = dm_blk_open,
3470	.release = dm_blk_close,
3471	.ioctl = dm_blk_ioctl,
3472	.getgeo = dm_blk_getgeo,
3473	.pr_ops = &dm_pr_ops,
3474	.owner = THIS_MODULE
3475};
3476
3477static const struct dax_operations dm_dax_ops = {
3478	.direct_access = dm_dax_direct_access,
3479	.zero_page_range = dm_dax_zero_page_range,
3480	.recovery_write = dm_dax_recovery_write,
3481};
3482
3483/*
3484 * module hooks
3485 */
3486module_init(dm_init);
3487module_exit(dm_exit);
3488
3489module_param(major, uint, 0);
3490MODULE_PARM_DESC(major, "The major number of the device mapper");
3491
3492module_param(reserved_bio_based_ios, uint, 0644);
3493MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3494
3495module_param(dm_numa_node, int, 0644);
3496MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3497
3498module_param(swap_bios, int, 0644);
3499MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3500
3501MODULE_DESCRIPTION(DM_NAME " driver");
3502MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3503MODULE_LICENSE("GPL");
3504