1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16#include "dm-verity.h"
17#include "dm-verity-fec.h"
18#include "dm-verity-verify-sig.h"
19#include "dm-audit.h"
20#include <linux/module.h>
21#include <linux/reboot.h>
22#include <linux/scatterlist.h>
23#include <linux/string.h>
24#include <linux/jump_label.h>
25
26#define DM_MSG_PREFIX			"verity"
27
28#define DM_VERITY_ENV_LENGTH		42
29#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30
31#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32
33#define DM_VERITY_MAX_CORRUPTED_ERRS	100
34
35#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
36#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
37#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
38#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
39#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
40#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
41
42#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
43					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
44
45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
46
47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
48
49static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
50
51struct dm_verity_prefetch_work {
52	struct work_struct work;
53	struct dm_verity *v;
54	sector_t block;
55	unsigned int n_blocks;
56};
57
58/*
59 * Auxiliary structure appended to each dm-bufio buffer. If the value
60 * hash_verified is nonzero, hash of the block has been verified.
61 *
62 * The variable hash_verified is set to 0 when allocating the buffer, then
63 * it can be changed to 1 and it is never reset to 0 again.
64 *
65 * There is no lock around this value, a race condition can at worst cause
66 * that multiple processes verify the hash of the same buffer simultaneously
67 * and write 1 to hash_verified simultaneously.
68 * This condition is harmless, so we don't need locking.
69 */
70struct buffer_aux {
71	int hash_verified;
72};
73
74/*
75 * Initialize struct buffer_aux for a freshly created buffer.
76 */
77static void dm_bufio_alloc_callback(struct dm_buffer *buf)
78{
79	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
80
81	aux->hash_verified = 0;
82}
83
84/*
85 * Translate input sector number to the sector number on the target device.
86 */
87static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
88{
89	return v->data_start + dm_target_offset(v->ti, bi_sector);
90}
91
92/*
93 * Return hash position of a specified block at a specified tree level
94 * (0 is the lowest level).
95 * The lowest "hash_per_block_bits"-bits of the result denote hash position
96 * inside a hash block. The remaining bits denote location of the hash block.
97 */
98static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
99					 int level)
100{
101	return block >> (level * v->hash_per_block_bits);
102}
103
104static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
105				const u8 *data, size_t len,
106				struct crypto_wait *wait)
107{
108	struct scatterlist sg;
109
110	if (likely(!is_vmalloc_addr(data))) {
111		sg_init_one(&sg, data, len);
112		ahash_request_set_crypt(req, &sg, NULL, len);
113		return crypto_wait_req(crypto_ahash_update(req), wait);
114	}
115
116	do {
117		int r;
118		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
119
120		flush_kernel_vmap_range((void *)data, this_step);
121		sg_init_table(&sg, 1);
122		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
123		ahash_request_set_crypt(req, &sg, NULL, this_step);
124		r = crypto_wait_req(crypto_ahash_update(req), wait);
125		if (unlikely(r))
126			return r;
127		data += this_step;
128		len -= this_step;
129	} while (len);
130
131	return 0;
132}
133
134/*
135 * Wrapper for crypto_ahash_init, which handles verity salting.
136 */
137static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
138				struct crypto_wait *wait, bool may_sleep)
139{
140	int r;
141
142	ahash_request_set_tfm(req, v->tfm);
143	ahash_request_set_callback(req,
144		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
145		crypto_req_done, (void *)wait);
146	crypto_init_wait(wait);
147
148	r = crypto_wait_req(crypto_ahash_init(req), wait);
149
150	if (unlikely(r < 0)) {
151		if (r != -ENOMEM)
152			DMERR("crypto_ahash_init failed: %d", r);
153		return r;
154	}
155
156	if (likely(v->salt_size && (v->version >= 1)))
157		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158
159	return r;
160}
161
162static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
163			     u8 *digest, struct crypto_wait *wait)
164{
165	int r;
166
167	if (unlikely(v->salt_size && (!v->version))) {
168		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
169
170		if (r < 0) {
171			DMERR("%s failed updating salt: %d", __func__, r);
172			goto out;
173		}
174	}
175
176	ahash_request_set_crypt(req, NULL, digest, 0);
177	r = crypto_wait_req(crypto_ahash_final(req), wait);
178out:
179	return r;
180}
181
182int verity_hash(struct dm_verity *v, struct ahash_request *req,
183		const u8 *data, size_t len, u8 *digest, bool may_sleep)
184{
185	int r;
186	struct crypto_wait wait;
187
188	r = verity_hash_init(v, req, &wait, may_sleep);
189	if (unlikely(r < 0))
190		goto out;
191
192	r = verity_hash_update(v, req, data, len, &wait);
193	if (unlikely(r < 0))
194		goto out;
195
196	r = verity_hash_final(v, req, digest, &wait);
197
198out:
199	return r;
200}
201
202static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
203				 sector_t *hash_block, unsigned int *offset)
204{
205	sector_t position = verity_position_at_level(v, block, level);
206	unsigned int idx;
207
208	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
209
210	if (!offset)
211		return;
212
213	idx = position & ((1 << v->hash_per_block_bits) - 1);
214	if (!v->version)
215		*offset = idx * v->digest_size;
216	else
217		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
218}
219
220/*
221 * Handle verification errors.
222 */
223static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
224			     unsigned long long block)
225{
226	char verity_env[DM_VERITY_ENV_LENGTH];
227	char *envp[] = { verity_env, NULL };
228	const char *type_str = "";
229	struct mapped_device *md = dm_table_get_md(v->ti->table);
230
231	/* Corruption should be visible in device status in all modes */
232	v->hash_failed = true;
233
234	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
235		goto out;
236
237	v->corrupted_errs++;
238
239	switch (type) {
240	case DM_VERITY_BLOCK_TYPE_DATA:
241		type_str = "data";
242		break;
243	case DM_VERITY_BLOCK_TYPE_METADATA:
244		type_str = "metadata";
245		break;
246	default:
247		BUG();
248	}
249
250	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
251		    type_str, block);
252
253	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
254		DMERR("%s: reached maximum errors", v->data_dev->name);
255		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
256	}
257
258	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
259		DM_VERITY_ENV_VAR_NAME, type, block);
260
261	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
262
263out:
264	if (v->mode == DM_VERITY_MODE_LOGGING)
265		return 0;
266
267	if (v->mode == DM_VERITY_MODE_RESTART)
268		kernel_restart("dm-verity device corrupted");
269
270	if (v->mode == DM_VERITY_MODE_PANIC)
271		panic("dm-verity device corrupted");
272
273	return 1;
274}
275
276/*
277 * Verify hash of a metadata block pertaining to the specified data block
278 * ("block" argument) at a specified level ("level" argument).
279 *
280 * On successful return, verity_io_want_digest(v, io) contains the hash value
281 * for a lower tree level or for the data block (if we're at the lowest level).
282 *
283 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
284 * If "skip_unverified" is false, unverified buffer is hashed and verified
285 * against current value of verity_io_want_digest(v, io).
286 */
287static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
288			       sector_t block, int level, bool skip_unverified,
289			       u8 *want_digest)
290{
291	struct dm_buffer *buf;
292	struct buffer_aux *aux;
293	u8 *data;
294	int r;
295	sector_t hash_block;
296	unsigned int offset;
297
298	verity_hash_at_level(v, block, level, &hash_block, &offset);
299
300	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
301		data = dm_bufio_get(v->bufio, hash_block, &buf);
302		if (data == NULL) {
303			/*
304			 * In tasklet and the hash was not in the bufio cache.
305			 * Return early and resume execution from a work-queue
306			 * to read the hash from disk.
307			 */
308			return -EAGAIN;
309		}
310	} else
311		data = dm_bufio_read(v->bufio, hash_block, &buf);
312
313	if (IS_ERR(data))
314		return PTR_ERR(data);
315
316	aux = dm_bufio_get_aux_data(buf);
317
318	if (!aux->hash_verified) {
319		if (skip_unverified) {
320			r = 1;
321			goto release_ret_r;
322		}
323
324		r = verity_hash(v, verity_io_hash_req(v, io),
325				data, 1 << v->hash_dev_block_bits,
326				verity_io_real_digest(v, io), !io->in_tasklet);
327		if (unlikely(r < 0))
328			goto release_ret_r;
329
330		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
331				  v->digest_size) == 0))
332			aux->hash_verified = 1;
333		else if (static_branch_unlikely(&use_tasklet_enabled) &&
334			 io->in_tasklet) {
335			/*
336			 * Error handling code (FEC included) cannot be run in a
337			 * tasklet since it may sleep, so fallback to work-queue.
338			 */
339			r = -EAGAIN;
340			goto release_ret_r;
341		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
342					     hash_block, data, NULL) == 0)
343			aux->hash_verified = 1;
344		else if (verity_handle_err(v,
345					   DM_VERITY_BLOCK_TYPE_METADATA,
346					   hash_block)) {
347			struct bio *bio =
348				dm_bio_from_per_bio_data(io,
349							 v->ti->per_io_data_size);
350			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
351					 block, 0);
352			r = -EIO;
353			goto release_ret_r;
354		}
355	}
356
357	data += offset;
358	memcpy(want_digest, data, v->digest_size);
359	r = 0;
360
361release_ret_r:
362	dm_bufio_release(buf);
363	return r;
364}
365
366/*
367 * Find a hash for a given block, write it to digest and verify the integrity
368 * of the hash tree if necessary.
369 */
370int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
371			  sector_t block, u8 *digest, bool *is_zero)
372{
373	int r = 0, i;
374
375	if (likely(v->levels)) {
376		/*
377		 * First, we try to get the requested hash for
378		 * the current block. If the hash block itself is
379		 * verified, zero is returned. If it isn't, this
380		 * function returns 1 and we fall back to whole
381		 * chain verification.
382		 */
383		r = verity_verify_level(v, io, block, 0, true, digest);
384		if (likely(r <= 0))
385			goto out;
386	}
387
388	memcpy(digest, v->root_digest, v->digest_size);
389
390	for (i = v->levels - 1; i >= 0; i--) {
391		r = verity_verify_level(v, io, block, i, false, digest);
392		if (unlikely(r))
393			goto out;
394	}
395out:
396	if (!r && v->zero_digest)
397		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
398	else
399		*is_zero = false;
400
401	return r;
402}
403
404/*
405 * Calculates the digest for the given bio
406 */
407static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
408			       struct bvec_iter *iter, struct crypto_wait *wait)
409{
410	unsigned int todo = 1 << v->data_dev_block_bits;
411	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
412	struct scatterlist sg;
413	struct ahash_request *req = verity_io_hash_req(v, io);
414
415	do {
416		int r;
417		unsigned int len;
418		struct bio_vec bv = bio_iter_iovec(bio, *iter);
419
420		sg_init_table(&sg, 1);
421
422		len = bv.bv_len;
423
424		if (likely(len >= todo))
425			len = todo;
426		/*
427		 * Operating on a single page at a time looks suboptimal
428		 * until you consider the typical block size is 4,096B.
429		 * Going through this loops twice should be very rare.
430		 */
431		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
432		ahash_request_set_crypt(req, &sg, NULL, len);
433		r = crypto_wait_req(crypto_ahash_update(req), wait);
434
435		if (unlikely(r < 0)) {
436			DMERR("%s crypto op failed: %d", __func__, r);
437			return r;
438		}
439
440		bio_advance_iter(bio, iter, len);
441		todo -= len;
442	} while (todo);
443
444	return 0;
445}
446
447/*
448 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
449 * starting from iter.
450 */
451int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
452			struct bvec_iter *iter,
453			int (*process)(struct dm_verity *v,
454				       struct dm_verity_io *io, u8 *data,
455				       size_t len))
456{
457	unsigned int todo = 1 << v->data_dev_block_bits;
458	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
459
460	do {
461		int r;
462		u8 *page;
463		unsigned int len;
464		struct bio_vec bv = bio_iter_iovec(bio, *iter);
465
466		page = bvec_kmap_local(&bv);
467		len = bv.bv_len;
468
469		if (likely(len >= todo))
470			len = todo;
471
472		r = process(v, io, page, len);
473		kunmap_local(page);
474
475		if (r < 0)
476			return r;
477
478		bio_advance_iter(bio, iter, len);
479		todo -= len;
480	} while (todo);
481
482	return 0;
483}
484
485static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
486			       u8 *data, size_t len)
487{
488	memcpy(data, io->recheck_buffer, len);
489	io->recheck_buffer += len;
490
491	return 0;
492}
493
494static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
495				   struct bvec_iter start, sector_t cur_block)
496{
497	struct page *page;
498	void *buffer;
499	int r;
500	struct dm_io_request io_req;
501	struct dm_io_region io_loc;
502
503	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
504	buffer = page_to_virt(page);
505
506	io_req.bi_opf = REQ_OP_READ;
507	io_req.mem.type = DM_IO_KMEM;
508	io_req.mem.ptr.addr = buffer;
509	io_req.notify.fn = NULL;
510	io_req.client = v->io;
511	io_loc.bdev = v->data_dev->bdev;
512	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
513	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
514	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
515	if (unlikely(r))
516		goto free_ret;
517
518	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
519			1 << v->data_dev_block_bits,
520			verity_io_real_digest(v, io), true);
521	if (unlikely(r))
522		goto free_ret;
523
524	if (memcmp(verity_io_real_digest(v, io),
525		   verity_io_want_digest(v, io), v->digest_size)) {
526		r = -EIO;
527		goto free_ret;
528	}
529
530	io->recheck_buffer = buffer;
531	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
532	if (unlikely(r))
533		goto free_ret;
534
535	r = 0;
536free_ret:
537	mempool_free(page, &v->recheck_pool);
538
539	return r;
540}
541
542static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
543			  u8 *data, size_t len)
544{
545	memset(data, 0, len);
546	return 0;
547}
548
549/*
550 * Moves the bio iter one data block forward.
551 */
552static inline void verity_bv_skip_block(struct dm_verity *v,
553					struct dm_verity_io *io,
554					struct bvec_iter *iter)
555{
556	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
557
558	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
559}
560
561/*
562 * Verify one "dm_verity_io" structure.
563 */
564static int verity_verify_io(struct dm_verity_io *io)
565{
566	bool is_zero;
567	struct dm_verity *v = io->v;
568	struct bvec_iter start;
569	struct bvec_iter iter_copy;
570	struct bvec_iter *iter;
571	struct crypto_wait wait;
572	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
573	unsigned int b;
574
575	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
576		/*
577		 * Copy the iterator in case we need to restart
578		 * verification in a work-queue.
579		 */
580		iter_copy = io->iter;
581		iter = &iter_copy;
582	} else
583		iter = &io->iter;
584
585	for (b = 0; b < io->n_blocks; b++) {
586		int r;
587		sector_t cur_block = io->block + b;
588		struct ahash_request *req = verity_io_hash_req(v, io);
589
590		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
591		    likely(test_bit(cur_block, v->validated_blocks))) {
592			verity_bv_skip_block(v, io, iter);
593			continue;
594		}
595
596		r = verity_hash_for_block(v, io, cur_block,
597					  verity_io_want_digest(v, io),
598					  &is_zero);
599		if (unlikely(r < 0))
600			return r;
601
602		if (is_zero) {
603			/*
604			 * If we expect a zero block, don't validate, just
605			 * return zeros.
606			 */
607			r = verity_for_bv_block(v, io, iter,
608						verity_bv_zero);
609			if (unlikely(r < 0))
610				return r;
611
612			continue;
613		}
614
615		r = verity_hash_init(v, req, &wait, !io->in_tasklet);
616		if (unlikely(r < 0))
617			return r;
618
619		start = *iter;
620		r = verity_for_io_block(v, io, iter, &wait);
621		if (unlikely(r < 0))
622			return r;
623
624		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
625					&wait);
626		if (unlikely(r < 0))
627			return r;
628
629		if (likely(memcmp(verity_io_real_digest(v, io),
630				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
631			if (v->validated_blocks)
632				set_bit(cur_block, v->validated_blocks);
633			continue;
634		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
635			   io->in_tasklet) {
636			/*
637			 * Error handling code (FEC included) cannot be run in a
638			 * tasklet since it may sleep, so fallback to work-queue.
639			 */
640			return -EAGAIN;
641		} else if (verity_recheck(v, io, start, cur_block) == 0) {
642			if (v->validated_blocks)
643				set_bit(cur_block, v->validated_blocks);
644			continue;
645#if defined(CONFIG_DM_VERITY_FEC)
646		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
647					     cur_block, NULL, &start) == 0) {
648			continue;
649#endif
650		} else {
651			if (bio->bi_status) {
652				/*
653				 * Error correction failed; Just return error
654				 */
655				return -EIO;
656			}
657			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
658					      cur_block)) {
659				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
660						 bio, cur_block, 0);
661				return -EIO;
662			}
663		}
664	}
665
666	return 0;
667}
668
669/*
670 * Skip verity work in response to I/O error when system is shutting down.
671 */
672static inline bool verity_is_system_shutting_down(void)
673{
674	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
675		|| system_state == SYSTEM_RESTART;
676}
677
678/*
679 * End one "io" structure with a given error.
680 */
681static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
682{
683	struct dm_verity *v = io->v;
684	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
685
686	bio->bi_end_io = io->orig_bi_end_io;
687	bio->bi_status = status;
688
689	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
690		verity_fec_finish_io(io);
691
692	bio_endio(bio);
693}
694
695static void verity_work(struct work_struct *w)
696{
697	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
698
699	io->in_tasklet = false;
700
701	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
702}
703
704static void verity_end_io(struct bio *bio)
705{
706	struct dm_verity_io *io = bio->bi_private;
707
708	if (bio->bi_status &&
709	    (!verity_fec_is_enabled(io->v) ||
710	     verity_is_system_shutting_down() ||
711	     (bio->bi_opf & REQ_RAHEAD))) {
712		verity_finish_io(io, bio->bi_status);
713		return;
714	}
715
716	INIT_WORK(&io->work, verity_work);
717	queue_work(io->v->verify_wq, &io->work);
718}
719
720/*
721 * Prefetch buffers for the specified io.
722 * The root buffer is not prefetched, it is assumed that it will be cached
723 * all the time.
724 */
725static void verity_prefetch_io(struct work_struct *work)
726{
727	struct dm_verity_prefetch_work *pw =
728		container_of(work, struct dm_verity_prefetch_work, work);
729	struct dm_verity *v = pw->v;
730	int i;
731
732	for (i = v->levels - 2; i >= 0; i--) {
733		sector_t hash_block_start;
734		sector_t hash_block_end;
735
736		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
737		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
738
739		if (!i) {
740			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
741
742			cluster >>= v->data_dev_block_bits;
743			if (unlikely(!cluster))
744				goto no_prefetch_cluster;
745
746			if (unlikely(cluster & (cluster - 1)))
747				cluster = 1 << __fls(cluster);
748
749			hash_block_start &= ~(sector_t)(cluster - 1);
750			hash_block_end |= cluster - 1;
751			if (unlikely(hash_block_end >= v->hash_blocks))
752				hash_block_end = v->hash_blocks - 1;
753		}
754no_prefetch_cluster:
755		dm_bufio_prefetch(v->bufio, hash_block_start,
756				  hash_block_end - hash_block_start + 1);
757	}
758
759	kfree(pw);
760}
761
762static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
763{
764	sector_t block = io->block;
765	unsigned int n_blocks = io->n_blocks;
766	struct dm_verity_prefetch_work *pw;
767
768	if (v->validated_blocks) {
769		while (n_blocks && test_bit(block, v->validated_blocks)) {
770			block++;
771			n_blocks--;
772		}
773		while (n_blocks && test_bit(block + n_blocks - 1,
774					    v->validated_blocks))
775			n_blocks--;
776		if (!n_blocks)
777			return;
778	}
779
780	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
781		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
782
783	if (!pw)
784		return;
785
786	INIT_WORK(&pw->work, verity_prefetch_io);
787	pw->v = v;
788	pw->block = block;
789	pw->n_blocks = n_blocks;
790	queue_work(v->verify_wq, &pw->work);
791}
792
793/*
794 * Bio map function. It allocates dm_verity_io structure and bio vector and
795 * fills them. Then it issues prefetches and the I/O.
796 */
797static int verity_map(struct dm_target *ti, struct bio *bio)
798{
799	struct dm_verity *v = ti->private;
800	struct dm_verity_io *io;
801
802	bio_set_dev(bio, v->data_dev->bdev);
803	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
804
805	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
806	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
807		DMERR_LIMIT("unaligned io");
808		return DM_MAPIO_KILL;
809	}
810
811	if (bio_end_sector(bio) >>
812	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
813		DMERR_LIMIT("io out of range");
814		return DM_MAPIO_KILL;
815	}
816
817	if (bio_data_dir(bio) == WRITE)
818		return DM_MAPIO_KILL;
819
820	io = dm_per_bio_data(bio, ti->per_io_data_size);
821	io->v = v;
822	io->orig_bi_end_io = bio->bi_end_io;
823	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
824	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
825
826	bio->bi_end_io = verity_end_io;
827	bio->bi_private = io;
828	io->iter = bio->bi_iter;
829
830	verity_fec_init_io(io);
831
832	verity_submit_prefetch(v, io);
833
834	submit_bio_noacct(bio);
835
836	return DM_MAPIO_SUBMITTED;
837}
838
839/*
840 * Status: V (valid) or C (corruption found)
841 */
842static void verity_status(struct dm_target *ti, status_type_t type,
843			  unsigned int status_flags, char *result, unsigned int maxlen)
844{
845	struct dm_verity *v = ti->private;
846	unsigned int args = 0;
847	unsigned int sz = 0;
848	unsigned int x;
849
850	switch (type) {
851	case STATUSTYPE_INFO:
852		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
853		break;
854	case STATUSTYPE_TABLE:
855		DMEMIT("%u %s %s %u %u %llu %llu %s ",
856			v->version,
857			v->data_dev->name,
858			v->hash_dev->name,
859			1 << v->data_dev_block_bits,
860			1 << v->hash_dev_block_bits,
861			(unsigned long long)v->data_blocks,
862			(unsigned long long)v->hash_start,
863			v->alg_name
864			);
865		for (x = 0; x < v->digest_size; x++)
866			DMEMIT("%02x", v->root_digest[x]);
867		DMEMIT(" ");
868		if (!v->salt_size)
869			DMEMIT("-");
870		else
871			for (x = 0; x < v->salt_size; x++)
872				DMEMIT("%02x", v->salt[x]);
873		if (v->mode != DM_VERITY_MODE_EIO)
874			args++;
875		if (verity_fec_is_enabled(v))
876			args += DM_VERITY_OPTS_FEC;
877		if (v->zero_digest)
878			args++;
879		if (v->validated_blocks)
880			args++;
881		if (v->use_tasklet)
882			args++;
883		if (v->signature_key_desc)
884			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
885		if (!args)
886			return;
887		DMEMIT(" %u", args);
888		if (v->mode != DM_VERITY_MODE_EIO) {
889			DMEMIT(" ");
890			switch (v->mode) {
891			case DM_VERITY_MODE_LOGGING:
892				DMEMIT(DM_VERITY_OPT_LOGGING);
893				break;
894			case DM_VERITY_MODE_RESTART:
895				DMEMIT(DM_VERITY_OPT_RESTART);
896				break;
897			case DM_VERITY_MODE_PANIC:
898				DMEMIT(DM_VERITY_OPT_PANIC);
899				break;
900			default:
901				BUG();
902			}
903		}
904		if (v->zero_digest)
905			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
906		if (v->validated_blocks)
907			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
908		if (v->use_tasklet)
909			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
910		sz = verity_fec_status_table(v, sz, result, maxlen);
911		if (v->signature_key_desc)
912			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
913				" %s", v->signature_key_desc);
914		break;
915
916	case STATUSTYPE_IMA:
917		DMEMIT_TARGET_NAME_VERSION(ti->type);
918		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
919		DMEMIT(",verity_version=%u", v->version);
920		DMEMIT(",data_device_name=%s", v->data_dev->name);
921		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
922		DMEMIT(",verity_algorithm=%s", v->alg_name);
923
924		DMEMIT(",root_digest=");
925		for (x = 0; x < v->digest_size; x++)
926			DMEMIT("%02x", v->root_digest[x]);
927
928		DMEMIT(",salt=");
929		if (!v->salt_size)
930			DMEMIT("-");
931		else
932			for (x = 0; x < v->salt_size; x++)
933				DMEMIT("%02x", v->salt[x]);
934
935		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
936		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
937		if (v->signature_key_desc)
938			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
939
940		if (v->mode != DM_VERITY_MODE_EIO) {
941			DMEMIT(",verity_mode=");
942			switch (v->mode) {
943			case DM_VERITY_MODE_LOGGING:
944				DMEMIT(DM_VERITY_OPT_LOGGING);
945				break;
946			case DM_VERITY_MODE_RESTART:
947				DMEMIT(DM_VERITY_OPT_RESTART);
948				break;
949			case DM_VERITY_MODE_PANIC:
950				DMEMIT(DM_VERITY_OPT_PANIC);
951				break;
952			default:
953				DMEMIT("invalid");
954			}
955		}
956		DMEMIT(";");
957		break;
958	}
959}
960
961static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
962{
963	struct dm_verity *v = ti->private;
964
965	*bdev = v->data_dev->bdev;
966
967	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
968		return 1;
969	return 0;
970}
971
972static int verity_iterate_devices(struct dm_target *ti,
973				  iterate_devices_callout_fn fn, void *data)
974{
975	struct dm_verity *v = ti->private;
976
977	return fn(ti, v->data_dev, v->data_start, ti->len, data);
978}
979
980static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
981{
982	struct dm_verity *v = ti->private;
983
984	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
985		limits->logical_block_size = 1 << v->data_dev_block_bits;
986
987	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
988		limits->physical_block_size = 1 << v->data_dev_block_bits;
989
990	blk_limits_io_min(limits, limits->logical_block_size);
991}
992
993static void verity_dtr(struct dm_target *ti)
994{
995	struct dm_verity *v = ti->private;
996
997	if (v->verify_wq)
998		destroy_workqueue(v->verify_wq);
999
1000	mempool_exit(&v->recheck_pool);
1001	if (v->io)
1002		dm_io_client_destroy(v->io);
1003
1004	if (v->bufio)
1005		dm_bufio_client_destroy(v->bufio);
1006
1007	kvfree(v->validated_blocks);
1008	kfree(v->salt);
1009	kfree(v->root_digest);
1010	kfree(v->zero_digest);
1011
1012	if (v->tfm)
1013		crypto_free_ahash(v->tfm);
1014
1015	kfree(v->alg_name);
1016
1017	if (v->hash_dev)
1018		dm_put_device(ti, v->hash_dev);
1019
1020	if (v->data_dev)
1021		dm_put_device(ti, v->data_dev);
1022
1023	verity_fec_dtr(v);
1024
1025	kfree(v->signature_key_desc);
1026
1027	if (v->use_tasklet)
1028		static_branch_dec(&use_tasklet_enabled);
1029
1030	kfree(v);
1031
1032	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1033}
1034
1035static int verity_alloc_most_once(struct dm_verity *v)
1036{
1037	struct dm_target *ti = v->ti;
1038
1039	/* the bitset can only handle INT_MAX blocks */
1040	if (v->data_blocks > INT_MAX) {
1041		ti->error = "device too large to use check_at_most_once";
1042		return -E2BIG;
1043	}
1044
1045	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1046				       sizeof(unsigned long),
1047				       GFP_KERNEL);
1048	if (!v->validated_blocks) {
1049		ti->error = "failed to allocate bitset for check_at_most_once";
1050		return -ENOMEM;
1051	}
1052
1053	return 0;
1054}
1055
1056static int verity_alloc_zero_digest(struct dm_verity *v)
1057{
1058	int r = -ENOMEM;
1059	struct ahash_request *req;
1060	u8 *zero_data;
1061
1062	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1063
1064	if (!v->zero_digest)
1065		return r;
1066
1067	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1068
1069	if (!req)
1070		return r; /* verity_dtr will free zero_digest */
1071
1072	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1073
1074	if (!zero_data)
1075		goto out;
1076
1077	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1078			v->zero_digest, true);
1079
1080out:
1081	kfree(req);
1082	kfree(zero_data);
1083
1084	return r;
1085}
1086
1087static inline bool verity_is_verity_mode(const char *arg_name)
1088{
1089	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1090		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1091		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1092}
1093
1094static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1095{
1096	if (v->mode)
1097		return -EINVAL;
1098
1099	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1100		v->mode = DM_VERITY_MODE_LOGGING;
1101	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1102		v->mode = DM_VERITY_MODE_RESTART;
1103	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1104		v->mode = DM_VERITY_MODE_PANIC;
1105
1106	return 0;
1107}
1108
1109static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1110				 struct dm_verity_sig_opts *verify_args,
1111				 bool only_modifier_opts)
1112{
1113	int r = 0;
1114	unsigned int argc;
1115	struct dm_target *ti = v->ti;
1116	const char *arg_name;
1117
1118	static const struct dm_arg _args[] = {
1119		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1120	};
1121
1122	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1123	if (r)
1124		return -EINVAL;
1125
1126	if (!argc)
1127		return 0;
1128
1129	do {
1130		arg_name = dm_shift_arg(as);
1131		argc--;
1132
1133		if (verity_is_verity_mode(arg_name)) {
1134			if (only_modifier_opts)
1135				continue;
1136			r = verity_parse_verity_mode(v, arg_name);
1137			if (r) {
1138				ti->error = "Conflicting error handling parameters";
1139				return r;
1140			}
1141			continue;
1142
1143		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1144			if (only_modifier_opts)
1145				continue;
1146			r = verity_alloc_zero_digest(v);
1147			if (r) {
1148				ti->error = "Cannot allocate zero digest";
1149				return r;
1150			}
1151			continue;
1152
1153		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1154			if (only_modifier_opts)
1155				continue;
1156			r = verity_alloc_most_once(v);
1157			if (r)
1158				return r;
1159			continue;
1160
1161		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1162			v->use_tasklet = true;
1163			static_branch_inc(&use_tasklet_enabled);
1164			continue;
1165
1166		} else if (verity_is_fec_opt_arg(arg_name)) {
1167			if (only_modifier_opts)
1168				continue;
1169			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1170			if (r)
1171				return r;
1172			continue;
1173
1174		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1175			if (only_modifier_opts)
1176				continue;
1177			r = verity_verify_sig_parse_opt_args(as, v,
1178							     verify_args,
1179							     &argc, arg_name);
1180			if (r)
1181				return r;
1182			continue;
1183
1184		} else if (only_modifier_opts) {
1185			/*
1186			 * Ignore unrecognized opt, could easily be an extra
1187			 * argument to an option whose parsing was skipped.
1188			 * Normal parsing (@only_modifier_opts=false) will
1189			 * properly parse all options (and their extra args).
1190			 */
1191			continue;
1192		}
1193
1194		DMERR("Unrecognized verity feature request: %s", arg_name);
1195		ti->error = "Unrecognized verity feature request";
1196		return -EINVAL;
1197	} while (argc && !r);
1198
1199	return r;
1200}
1201
1202/*
1203 * Target parameters:
1204 *	<version>	The current format is version 1.
1205 *			Vsn 0 is compatible with original Chromium OS releases.
1206 *	<data device>
1207 *	<hash device>
1208 *	<data block size>
1209 *	<hash block size>
1210 *	<the number of data blocks>
1211 *	<hash start block>
1212 *	<algorithm>
1213 *	<digest>
1214 *	<salt>		Hex string or "-" if no salt.
1215 */
1216static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1217{
1218	struct dm_verity *v;
1219	struct dm_verity_sig_opts verify_args = {0};
1220	struct dm_arg_set as;
1221	unsigned int num;
1222	unsigned long long num_ll;
1223	int r;
1224	int i;
1225	sector_t hash_position;
1226	char dummy;
1227	char *root_hash_digest_to_validate;
1228
1229	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1230	if (!v) {
1231		ti->error = "Cannot allocate verity structure";
1232		return -ENOMEM;
1233	}
1234	ti->private = v;
1235	v->ti = ti;
1236
1237	r = verity_fec_ctr_alloc(v);
1238	if (r)
1239		goto bad;
1240
1241	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1242		ti->error = "Device must be readonly";
1243		r = -EINVAL;
1244		goto bad;
1245	}
1246
1247	if (argc < 10) {
1248		ti->error = "Not enough arguments";
1249		r = -EINVAL;
1250		goto bad;
1251	}
1252
1253	/* Parse optional parameters that modify primary args */
1254	if (argc > 10) {
1255		as.argc = argc - 10;
1256		as.argv = argv + 10;
1257		r = verity_parse_opt_args(&as, v, &verify_args, true);
1258		if (r < 0)
1259			goto bad;
1260	}
1261
1262	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1263	    num > 1) {
1264		ti->error = "Invalid version";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->version = num;
1269
1270	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1271	if (r) {
1272		ti->error = "Data device lookup failed";
1273		goto bad;
1274	}
1275
1276	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1277	if (r) {
1278		ti->error = "Hash device lookup failed";
1279		goto bad;
1280	}
1281
1282	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1283	    !num || (num & (num - 1)) ||
1284	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1285	    num > PAGE_SIZE) {
1286		ti->error = "Invalid data device block size";
1287		r = -EINVAL;
1288		goto bad;
1289	}
1290	v->data_dev_block_bits = __ffs(num);
1291
1292	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1293	    !num || (num & (num - 1)) ||
1294	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1295	    num > INT_MAX) {
1296		ti->error = "Invalid hash device block size";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->hash_dev_block_bits = __ffs(num);
1301
1302	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1303	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1304	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1305		ti->error = "Invalid data blocks";
1306		r = -EINVAL;
1307		goto bad;
1308	}
1309	v->data_blocks = num_ll;
1310
1311	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1312		ti->error = "Data device is too small";
1313		r = -EINVAL;
1314		goto bad;
1315	}
1316
1317	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1318	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1319	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1320		ti->error = "Invalid hash start";
1321		r = -EINVAL;
1322		goto bad;
1323	}
1324	v->hash_start = num_ll;
1325
1326	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1327	if (!v->alg_name) {
1328		ti->error = "Cannot allocate algorithm name";
1329		r = -ENOMEM;
1330		goto bad;
1331	}
1332
1333	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1334				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1335	if (IS_ERR(v->tfm)) {
1336		ti->error = "Cannot initialize hash function";
1337		r = PTR_ERR(v->tfm);
1338		v->tfm = NULL;
1339		goto bad;
1340	}
1341
1342	/*
1343	 * dm-verity performance can vary greatly depending on which hash
1344	 * algorithm implementation is used.  Help people debug performance
1345	 * problems by logging the ->cra_driver_name.
1346	 */
1347	DMINFO("%s using implementation \"%s\"", v->alg_name,
1348	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1349
1350	v->digest_size = crypto_ahash_digestsize(v->tfm);
1351	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1352		ti->error = "Digest size too big";
1353		r = -EINVAL;
1354		goto bad;
1355	}
1356	v->ahash_reqsize = sizeof(struct ahash_request) +
1357		crypto_ahash_reqsize(v->tfm);
1358
1359	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1360	if (!v->root_digest) {
1361		ti->error = "Cannot allocate root digest";
1362		r = -ENOMEM;
1363		goto bad;
1364	}
1365	if (strlen(argv[8]) != v->digest_size * 2 ||
1366	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1367		ti->error = "Invalid root digest";
1368		r = -EINVAL;
1369		goto bad;
1370	}
1371	root_hash_digest_to_validate = argv[8];
1372
1373	if (strcmp(argv[9], "-")) {
1374		v->salt_size = strlen(argv[9]) / 2;
1375		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1376		if (!v->salt) {
1377			ti->error = "Cannot allocate salt";
1378			r = -ENOMEM;
1379			goto bad;
1380		}
1381		if (strlen(argv[9]) != v->salt_size * 2 ||
1382		    hex2bin(v->salt, argv[9], v->salt_size)) {
1383			ti->error = "Invalid salt";
1384			r = -EINVAL;
1385			goto bad;
1386		}
1387	}
1388
1389	argv += 10;
1390	argc -= 10;
1391
1392	/* Optional parameters */
1393	if (argc) {
1394		as.argc = argc;
1395		as.argv = argv;
1396		r = verity_parse_opt_args(&as, v, &verify_args, false);
1397		if (r < 0)
1398			goto bad;
1399	}
1400
1401	/* Root hash signature is  a optional parameter*/
1402	r = verity_verify_root_hash(root_hash_digest_to_validate,
1403				    strlen(root_hash_digest_to_validate),
1404				    verify_args.sig,
1405				    verify_args.sig_size);
1406	if (r < 0) {
1407		ti->error = "Root hash verification failed";
1408		goto bad;
1409	}
1410	v->hash_per_block_bits =
1411		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1412
1413	v->levels = 0;
1414	if (v->data_blocks)
1415		while (v->hash_per_block_bits * v->levels < 64 &&
1416		       (unsigned long long)(v->data_blocks - 1) >>
1417		       (v->hash_per_block_bits * v->levels))
1418			v->levels++;
1419
1420	if (v->levels > DM_VERITY_MAX_LEVELS) {
1421		ti->error = "Too many tree levels";
1422		r = -E2BIG;
1423		goto bad;
1424	}
1425
1426	hash_position = v->hash_start;
1427	for (i = v->levels - 1; i >= 0; i--) {
1428		sector_t s;
1429
1430		v->hash_level_block[i] = hash_position;
1431		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1432					>> ((i + 1) * v->hash_per_block_bits);
1433		if (hash_position + s < hash_position) {
1434			ti->error = "Hash device offset overflow";
1435			r = -E2BIG;
1436			goto bad;
1437		}
1438		hash_position += s;
1439	}
1440	v->hash_blocks = hash_position;
1441
1442	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1443	if (unlikely(r)) {
1444		ti->error = "Cannot allocate mempool";
1445		goto bad;
1446	}
1447
1448	v->io = dm_io_client_create();
1449	if (IS_ERR(v->io)) {
1450		r = PTR_ERR(v->io);
1451		v->io = NULL;
1452		ti->error = "Cannot allocate dm io";
1453		goto bad;
1454	}
1455
1456	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1457		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1458		dm_bufio_alloc_callback, NULL,
1459		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1460	if (IS_ERR(v->bufio)) {
1461		ti->error = "Cannot initialize dm-bufio";
1462		r = PTR_ERR(v->bufio);
1463		v->bufio = NULL;
1464		goto bad;
1465	}
1466
1467	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1468		ti->error = "Hash device is too small";
1469		r = -E2BIG;
1470		goto bad;
1471	}
1472
1473	/*
1474	 * Using WQ_HIGHPRI improves throughput and completion latency by
1475	 * reducing wait times when reading from a dm-verity device.
1476	 *
1477	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1478	 * allows verify_wq to preempt softirq since verification in tasklet
1479	 * will fall-back to using it for error handling (or if the bufio cache
1480	 * doesn't have required hashes).
1481	 */
1482	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1483	if (!v->verify_wq) {
1484		ti->error = "Cannot allocate workqueue";
1485		r = -ENOMEM;
1486		goto bad;
1487	}
1488
1489	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1490				v->ahash_reqsize + v->digest_size * 2;
1491
1492	r = verity_fec_ctr(v);
1493	if (r)
1494		goto bad;
1495
1496	ti->per_io_data_size = roundup(ti->per_io_data_size,
1497				       __alignof__(struct dm_verity_io));
1498
1499	verity_verify_sig_opts_cleanup(&verify_args);
1500
1501	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1502
1503	return 0;
1504
1505bad:
1506
1507	verity_verify_sig_opts_cleanup(&verify_args);
1508	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1509	verity_dtr(ti);
1510
1511	return r;
1512}
1513
1514/*
1515 * Check whether a DM target is a verity target.
1516 */
1517bool dm_is_verity_target(struct dm_target *ti)
1518{
1519	return ti->type->module == THIS_MODULE;
1520}
1521
1522/*
1523 * Get the verity mode (error behavior) of a verity target.
1524 *
1525 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1526 * target.
1527 */
1528int dm_verity_get_mode(struct dm_target *ti)
1529{
1530	struct dm_verity *v = ti->private;
1531
1532	if (!dm_is_verity_target(ti))
1533		return -EINVAL;
1534
1535	return v->mode;
1536}
1537
1538/*
1539 * Get the root digest of a verity target.
1540 *
1541 * Returns a copy of the root digest, the caller is responsible for
1542 * freeing the memory of the digest.
1543 */
1544int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1545{
1546	struct dm_verity *v = ti->private;
1547
1548	if (!dm_is_verity_target(ti))
1549		return -EINVAL;
1550
1551	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1552	if (*root_digest == NULL)
1553		return -ENOMEM;
1554
1555	*digest_size = v->digest_size;
1556
1557	return 0;
1558}
1559
1560static struct target_type verity_target = {
1561	.name		= "verity",
1562	.features	= DM_TARGET_IMMUTABLE,
1563	.version	= {1, 9, 0},
1564	.module		= THIS_MODULE,
1565	.ctr		= verity_ctr,
1566	.dtr		= verity_dtr,
1567	.map		= verity_map,
1568	.status		= verity_status,
1569	.prepare_ioctl	= verity_prepare_ioctl,
1570	.iterate_devices = verity_iterate_devices,
1571	.io_hints	= verity_io_hints,
1572};
1573module_dm(verity);
1574
1575MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1576MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1577MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1578MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1579MODULE_LICENSE("GPL");
1580