xref: /kernel/linux/linux-6.6/drivers/md/dm-raid.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010-2011 Neil Brown
4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/slab.h>
10#include <linux/module.h>
11
12#include "md.h"
13#include "raid1.h"
14#include "raid5.h"
15#include "raid10.h"
16#include "md-bitmap.h"
17
18#include <linux/device-mapper.h>
19
20#define DM_MSG_PREFIX "raid"
21#define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
22
23/*
24 * Minimum sectors of free reshape space per raid device
25 */
26#define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28/*
29 * Minimum journal space 4 MiB in sectors.
30 */
31#define	MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33static bool devices_handle_discard_safely;
34
35/*
36 * The following flags are used by dm-raid to set up the array state.
37 * They must be cleared before md_run is called.
38 */
39#define FirstUse 10		/* rdev flag */
40
41struct raid_dev {
42	/*
43	 * Two DM devices, one to hold metadata and one to hold the
44	 * actual data/parity.	The reason for this is to not confuse
45	 * ti->len and give more flexibility in altering size and
46	 * characteristics.
47	 *
48	 * While it is possible for this device to be associated
49	 * with a different physical device than the data_dev, it
50	 * is intended for it to be the same.
51	 *    |--------- Physical Device ---------|
52	 *    |- meta_dev -|------ data_dev ------|
53	 */
54	struct dm_dev *meta_dev;
55	struct dm_dev *data_dev;
56	struct md_rdev rdev;
57};
58
59/*
60 * Bits for establishing rs->ctr_flags
61 *
62 * 1 = no flag value
63 * 2 = flag with value
64 */
65#define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
67#define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
71#define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
73#define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
74#define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
75#define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
76#define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
77/* New for v1.9.0 */
78#define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79#define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82/* New for v1.10.0 */
83#define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85/* New for v1.11.1 */
86#define __CTR_FLAG_JOURNAL_MODE		16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88/*
89 * Flags for rs->ctr_flags field.
90 */
91#define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
92#define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
93#define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
94#define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
95#define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96#define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97#define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98#define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
99#define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
100#define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
101#define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
102#define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
103#define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
104#define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
105#define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106#define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
107#define CTR_FLAG_JOURNAL_MODE		(1 << __CTR_FLAG_JOURNAL_MODE)
108
109/*
110 * Definitions of various constructor flags to
111 * be used in checks of valid / invalid flags
112 * per raid level.
113 */
114/* Define all any sync flags */
115#define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117/* Define flags for options without argument (e.g. 'nosync') */
118#define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
119					 CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121/* Define flags for options with one argument (e.g. 'delta_disks +2') */
122#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123				  CTR_FLAG_WRITE_MOSTLY | \
124				  CTR_FLAG_DAEMON_SLEEP | \
125				  CTR_FLAG_MIN_RECOVERY_RATE | \
126				  CTR_FLAG_MAX_RECOVERY_RATE | \
127				  CTR_FLAG_MAX_WRITE_BEHIND | \
128				  CTR_FLAG_STRIPE_CACHE | \
129				  CTR_FLAG_REGION_SIZE | \
130				  CTR_FLAG_RAID10_COPIES | \
131				  CTR_FLAG_RAID10_FORMAT | \
132				  CTR_FLAG_DELTA_DISKS | \
133				  CTR_FLAG_DATA_OFFSET | \
134				  CTR_FLAG_JOURNAL_DEV | \
135				  CTR_FLAG_JOURNAL_MODE)
136
137/* Valid options definitions per raid level... */
138
139/* "raid0" does only accept data offset */
140#define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
141
142/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143#define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
144				 CTR_FLAG_REBUILD | \
145				 CTR_FLAG_WRITE_MOSTLY | \
146				 CTR_FLAG_DAEMON_SLEEP | \
147				 CTR_FLAG_MIN_RECOVERY_RATE | \
148				 CTR_FLAG_MAX_RECOVERY_RATE | \
149				 CTR_FLAG_MAX_WRITE_BEHIND | \
150				 CTR_FLAG_REGION_SIZE | \
151				 CTR_FLAG_DELTA_DISKS | \
152				 CTR_FLAG_DATA_OFFSET)
153
154/* "raid10" does not accept any raid1 or stripe cache options */
155#define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
156				 CTR_FLAG_REBUILD | \
157				 CTR_FLAG_DAEMON_SLEEP | \
158				 CTR_FLAG_MIN_RECOVERY_RATE | \
159				 CTR_FLAG_MAX_RECOVERY_RATE | \
160				 CTR_FLAG_REGION_SIZE | \
161				 CTR_FLAG_RAID10_COPIES | \
162				 CTR_FLAG_RAID10_FORMAT | \
163				 CTR_FLAG_DELTA_DISKS | \
164				 CTR_FLAG_DATA_OFFSET | \
165				 CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167/*
168 * "raid4/5/6" do not accept any raid1 or raid10 specific options
169 *
170 * "raid6" does not accept "nosync", because it is not guaranteed
171 * that both parity and q-syndrome are being written properly with
172 * any writes
173 */
174#define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
175				 CTR_FLAG_REBUILD | \
176				 CTR_FLAG_DAEMON_SLEEP | \
177				 CTR_FLAG_MIN_RECOVERY_RATE | \
178				 CTR_FLAG_MAX_RECOVERY_RATE | \
179				 CTR_FLAG_STRIPE_CACHE | \
180				 CTR_FLAG_REGION_SIZE | \
181				 CTR_FLAG_DELTA_DISKS | \
182				 CTR_FLAG_DATA_OFFSET | \
183				 CTR_FLAG_JOURNAL_DEV | \
184				 CTR_FLAG_JOURNAL_MODE)
185
186#define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
187				 CTR_FLAG_REBUILD | \
188				 CTR_FLAG_DAEMON_SLEEP | \
189				 CTR_FLAG_MIN_RECOVERY_RATE | \
190				 CTR_FLAG_MAX_RECOVERY_RATE | \
191				 CTR_FLAG_STRIPE_CACHE | \
192				 CTR_FLAG_REGION_SIZE | \
193				 CTR_FLAG_DELTA_DISKS | \
194				 CTR_FLAG_DATA_OFFSET | \
195				 CTR_FLAG_JOURNAL_DEV | \
196				 CTR_FLAG_JOURNAL_MODE)
197/* ...valid options definitions per raid level */
198
199/*
200 * Flags for rs->runtime_flags field
201 * (RT_FLAG prefix meaning "runtime flag")
202 *
203 * These are all internal and used to define runtime state,
204 * e.g. to prevent another resume from preresume processing
205 * the raid set all over again.
206 */
207#define RT_FLAG_RS_PRERESUMED		0
208#define RT_FLAG_RS_RESUMED		1
209#define RT_FLAG_RS_BITMAP_LOADED	2
210#define RT_FLAG_UPDATE_SBS		3
211#define RT_FLAG_RESHAPE_RS		4
212#define RT_FLAG_RS_SUSPENDED		5
213#define RT_FLAG_RS_IN_SYNC		6
214#define RT_FLAG_RS_RESYNCING		7
215#define RT_FLAG_RS_GROW			8
216
217/* Array elements of 64 bit needed for rebuild/failed disk bits */
218#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
219
220/*
221 * raid set level, layout and chunk sectors backup/restore
222 */
223struct rs_layout {
224	int new_level;
225	int new_layout;
226	int new_chunk_sectors;
227};
228
229struct raid_set {
230	struct dm_target *ti;
231
232	uint32_t stripe_cache_entries;
233	unsigned long ctr_flags;
234	unsigned long runtime_flags;
235
236	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238	int raid_disks;
239	int delta_disks;
240	int data_offset;
241	int raid10_copies;
242	int requested_bitmap_chunk_sectors;
243
244	struct mddev md;
245	struct raid_type *raid_type;
246
247	sector_t array_sectors;
248	sector_t dev_sectors;
249
250	/* Optional raid4/5/6 journal device */
251	struct journal_dev {
252		struct dm_dev *dev;
253		struct md_rdev rdev;
254		int mode;
255	} journal_dev;
256
257	struct raid_dev dev[];
258};
259
260static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261{
262	struct mddev *mddev = &rs->md;
263
264	l->new_level = mddev->new_level;
265	l->new_layout = mddev->new_layout;
266	l->new_chunk_sectors = mddev->new_chunk_sectors;
267}
268
269static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270{
271	struct mddev *mddev = &rs->md;
272
273	mddev->new_level = l->new_level;
274	mddev->new_layout = l->new_layout;
275	mddev->new_chunk_sectors = l->new_chunk_sectors;
276}
277
278/* raid10 algorithms (i.e. formats) */
279#define	ALGORITHM_RAID10_DEFAULT	0
280#define	ALGORITHM_RAID10_NEAR		1
281#define	ALGORITHM_RAID10_OFFSET		2
282#define	ALGORITHM_RAID10_FAR		3
283
284/* Supported raid types and properties. */
285static struct raid_type {
286	const char *name;		/* RAID algorithm. */
287	const char *descr;		/* Descriptor text for logging. */
288	const unsigned int parity_devs;	/* # of parity devices. */
289	const unsigned int minimal_devs;/* minimal # of devices in set. */
290	const unsigned int level;	/* RAID level. */
291	const unsigned int algorithm;	/* RAID algorithm. */
292} raid_types[] = {
293	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
294	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
295	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
296	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
297	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
298	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
301	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
302	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
303	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
304	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
305	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
306	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
307	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
308	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
309	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
310	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
311	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
312	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
313};
314
315/* True, if @v is in inclusive range [@min, @max] */
316static bool __within_range(long v, long min, long max)
317{
318	return v >= min && v <= max;
319}
320
321/* All table line arguments are defined here */
322static struct arg_name_flag {
323	const unsigned long flag;
324	const char *name;
325} __arg_name_flags[] = {
326	{ CTR_FLAG_SYNC, "sync"},
327	{ CTR_FLAG_NOSYNC, "nosync"},
328	{ CTR_FLAG_REBUILD, "rebuild"},
329	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335	{ CTR_FLAG_REGION_SIZE, "region_size"},
336	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
339	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
340	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342	{ CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343};
344
345/* Return argument name string for given @flag */
346static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347{
348	if (hweight32(flag) == 1) {
349		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350
351		while (anf-- > __arg_name_flags)
352			if (flag & anf->flag)
353				return anf->name;
354
355	} else
356		DMERR("%s called with more than one flag!", __func__);
357
358	return NULL;
359}
360
361/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362static struct {
363	const int mode;
364	const char *param;
365} _raid456_journal_mode[] = {
366	{ R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
367	{ R5C_JOURNAL_MODE_WRITE_BACK,    "writeback" }
368};
369
370/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
371static int dm_raid_journal_mode_to_md(const char *mode)
372{
373	int m = ARRAY_SIZE(_raid456_journal_mode);
374
375	while (m--)
376		if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377			return _raid456_journal_mode[m].mode;
378
379	return -EINVAL;
380}
381
382/* Return dm-raid raid4/5/6 journal mode string for @mode */
383static const char *md_journal_mode_to_dm_raid(const int mode)
384{
385	int m = ARRAY_SIZE(_raid456_journal_mode);
386
387	while (m--)
388		if (mode == _raid456_journal_mode[m].mode)
389			return _raid456_journal_mode[m].param;
390
391	return "unknown";
392}
393
394/*
395 * Bool helpers to test for various raid levels of a raid set.
396 * It's level as reported by the superblock rather than
397 * the requested raid_type passed to the constructor.
398 */
399/* Return true, if raid set in @rs is raid0 */
400static bool rs_is_raid0(struct raid_set *rs)
401{
402	return !rs->md.level;
403}
404
405/* Return true, if raid set in @rs is raid1 */
406static bool rs_is_raid1(struct raid_set *rs)
407{
408	return rs->md.level == 1;
409}
410
411/* Return true, if raid set in @rs is raid10 */
412static bool rs_is_raid10(struct raid_set *rs)
413{
414	return rs->md.level == 10;
415}
416
417/* Return true, if raid set in @rs is level 6 */
418static bool rs_is_raid6(struct raid_set *rs)
419{
420	return rs->md.level == 6;
421}
422
423/* Return true, if raid set in @rs is level 4, 5 or 6 */
424static bool rs_is_raid456(struct raid_set *rs)
425{
426	return __within_range(rs->md.level, 4, 6);
427}
428
429/* Return true, if raid set in @rs is reshapable */
430static bool __is_raid10_far(int layout);
431static bool rs_is_reshapable(struct raid_set *rs)
432{
433	return rs_is_raid456(rs) ||
434	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435}
436
437/* Return true, if raid set in @rs is recovering */
438static bool rs_is_recovering(struct raid_set *rs)
439{
440	return rs->md.recovery_cp < rs->md.dev_sectors;
441}
442
443/* Return true, if raid set in @rs is reshaping */
444static bool rs_is_reshaping(struct raid_set *rs)
445{
446	return rs->md.reshape_position != MaxSector;
447}
448
449/*
450 * bool helpers to test for various raid levels of a raid type @rt
451 */
452
453/* Return true, if raid type in @rt is raid0 */
454static bool rt_is_raid0(struct raid_type *rt)
455{
456	return !rt->level;
457}
458
459/* Return true, if raid type in @rt is raid1 */
460static bool rt_is_raid1(struct raid_type *rt)
461{
462	return rt->level == 1;
463}
464
465/* Return true, if raid type in @rt is raid10 */
466static bool rt_is_raid10(struct raid_type *rt)
467{
468	return rt->level == 10;
469}
470
471/* Return true, if raid type in @rt is raid4/5 */
472static bool rt_is_raid45(struct raid_type *rt)
473{
474	return __within_range(rt->level, 4, 5);
475}
476
477/* Return true, if raid type in @rt is raid6 */
478static bool rt_is_raid6(struct raid_type *rt)
479{
480	return rt->level == 6;
481}
482
483/* Return true, if raid type in @rt is raid4/5/6 */
484static bool rt_is_raid456(struct raid_type *rt)
485{
486	return __within_range(rt->level, 4, 6);
487}
488/* END: raid level bools */
489
490/* Return valid ctr flags for the raid level of @rs */
491static unsigned long __valid_flags(struct raid_set *rs)
492{
493	if (rt_is_raid0(rs->raid_type))
494		return RAID0_VALID_FLAGS;
495	else if (rt_is_raid1(rs->raid_type))
496		return RAID1_VALID_FLAGS;
497	else if (rt_is_raid10(rs->raid_type))
498		return RAID10_VALID_FLAGS;
499	else if (rt_is_raid45(rs->raid_type))
500		return RAID45_VALID_FLAGS;
501	else if (rt_is_raid6(rs->raid_type))
502		return RAID6_VALID_FLAGS;
503
504	return 0;
505}
506
507/*
508 * Check for valid flags set on @rs
509 *
510 * Has to be called after parsing of the ctr flags!
511 */
512static int rs_check_for_valid_flags(struct raid_set *rs)
513{
514	if (rs->ctr_flags & ~__valid_flags(rs)) {
515		rs->ti->error = "Invalid flags combination";
516		return -EINVAL;
517	}
518
519	return 0;
520}
521
522/* MD raid10 bit definitions and helpers */
523#define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
524#define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525#define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
526#define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
527
528/* Return md raid10 near copies for @layout */
529static unsigned int __raid10_near_copies(int layout)
530{
531	return layout & 0xFF;
532}
533
534/* Return md raid10 far copies for @layout */
535static unsigned int __raid10_far_copies(int layout)
536{
537	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538}
539
540/* Return true if md raid10 offset for @layout */
541static bool __is_raid10_offset(int layout)
542{
543	return !!(layout & RAID10_OFFSET);
544}
545
546/* Return true if md raid10 near for @layout */
547static bool __is_raid10_near(int layout)
548{
549	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550}
551
552/* Return true if md raid10 far for @layout */
553static bool __is_raid10_far(int layout)
554{
555	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556}
557
558/* Return md raid10 layout string for @layout */
559static const char *raid10_md_layout_to_format(int layout)
560{
561	/*
562	 * Bit 16 stands for "offset"
563	 * (i.e. adjacent stripes hold copies)
564	 *
565	 * Refer to MD's raid10.c for details
566	 */
567	if (__is_raid10_offset(layout))
568		return "offset";
569
570	if (__raid10_near_copies(layout) > 1)
571		return "near";
572
573	if (__raid10_far_copies(layout) > 1)
574		return "far";
575
576	return "unknown";
577}
578
579/* Return md raid10 algorithm for @name */
580static int raid10_name_to_format(const char *name)
581{
582	if (!strcasecmp(name, "near"))
583		return ALGORITHM_RAID10_NEAR;
584	else if (!strcasecmp(name, "offset"))
585		return ALGORITHM_RAID10_OFFSET;
586	else if (!strcasecmp(name, "far"))
587		return ALGORITHM_RAID10_FAR;
588
589	return -EINVAL;
590}
591
592/* Return md raid10 copies for @layout */
593static unsigned int raid10_md_layout_to_copies(int layout)
594{
595	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596}
597
598/* Return md raid10 format id for @format string */
599static int raid10_format_to_md_layout(struct raid_set *rs,
600				      unsigned int algorithm,
601				      unsigned int copies)
602{
603	unsigned int n = 1, f = 1, r = 0;
604
605	/*
606	 * MD resilienece flaw:
607	 *
608	 * enabling use_far_sets for far/offset formats causes copies
609	 * to be colocated on the same devs together with their origins!
610	 *
611	 * -> disable it for now in the definition above
612	 */
613	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614	    algorithm == ALGORITHM_RAID10_NEAR)
615		n = copies;
616
617	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618		f = copies;
619		r = RAID10_OFFSET;
620		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621			r |= RAID10_USE_FAR_SETS;
622
623	} else if (algorithm == ALGORITHM_RAID10_FAR) {
624		f = copies;
625		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626			r |= RAID10_USE_FAR_SETS;
627
628	} else
629		return -EINVAL;
630
631	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632}
633/* END: MD raid10 bit definitions and helpers */
634
635/* Check for any of the raid10 algorithms */
636static bool __got_raid10(struct raid_type *rtp, const int layout)
637{
638	if (rtp->level == 10) {
639		switch (rtp->algorithm) {
640		case ALGORITHM_RAID10_DEFAULT:
641		case ALGORITHM_RAID10_NEAR:
642			return __is_raid10_near(layout);
643		case ALGORITHM_RAID10_OFFSET:
644			return __is_raid10_offset(layout);
645		case ALGORITHM_RAID10_FAR:
646			return __is_raid10_far(layout);
647		default:
648			break;
649		}
650	}
651
652	return false;
653}
654
655/* Return raid_type for @name */
656static struct raid_type *get_raid_type(const char *name)
657{
658	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659
660	while (rtp-- > raid_types)
661		if (!strcasecmp(rtp->name, name))
662			return rtp;
663
664	return NULL;
665}
666
667/* Return raid_type for @name based derived from @level and @layout */
668static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669{
670	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672	while (rtp-- > raid_types) {
673		/* RAID10 special checks based on @layout flags/properties */
674		if (rtp->level == level &&
675		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676			return rtp;
677	}
678
679	return NULL;
680}
681
682/* Adjust rdev sectors */
683static void rs_set_rdev_sectors(struct raid_set *rs)
684{
685	struct mddev *mddev = &rs->md;
686	struct md_rdev *rdev;
687
688	/*
689	 * raid10 sets rdev->sector to the device size, which
690	 * is unintended in case of out-of-place reshaping
691	 */
692	rdev_for_each(rdev, mddev)
693		if (!test_bit(Journal, &rdev->flags))
694			rdev->sectors = mddev->dev_sectors;
695}
696
697/*
698 * Change bdev capacity of @rs in case of a disk add/remove reshape
699 */
700static void rs_set_capacity(struct raid_set *rs)
701{
702	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703
704	set_capacity_and_notify(gendisk, rs->md.array_sectors);
705}
706
707/*
708 * Set the mddev properties in @rs to the current
709 * ones retrieved from the freshest superblock
710 */
711static void rs_set_cur(struct raid_set *rs)
712{
713	struct mddev *mddev = &rs->md;
714
715	mddev->new_level = mddev->level;
716	mddev->new_layout = mddev->layout;
717	mddev->new_chunk_sectors = mddev->chunk_sectors;
718}
719
720/*
721 * Set the mddev properties in @rs to the new
722 * ones requested by the ctr
723 */
724static void rs_set_new(struct raid_set *rs)
725{
726	struct mddev *mddev = &rs->md;
727
728	mddev->level = mddev->new_level;
729	mddev->layout = mddev->new_layout;
730	mddev->chunk_sectors = mddev->new_chunk_sectors;
731	mddev->raid_disks = rs->raid_disks;
732	mddev->delta_disks = 0;
733}
734
735static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736				       unsigned int raid_devs)
737{
738	unsigned int i;
739	struct raid_set *rs;
740
741	if (raid_devs <= raid_type->parity_devs) {
742		ti->error = "Insufficient number of devices";
743		return ERR_PTR(-EINVAL);
744	}
745
746	rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747	if (!rs) {
748		ti->error = "Cannot allocate raid context";
749		return ERR_PTR(-ENOMEM);
750	}
751
752	mddev_init(&rs->md);
753
754	rs->raid_disks = raid_devs;
755	rs->delta_disks = 0;
756
757	rs->ti = ti;
758	rs->raid_type = raid_type;
759	rs->stripe_cache_entries = 256;
760	rs->md.raid_disks = raid_devs;
761	rs->md.level = raid_type->level;
762	rs->md.new_level = rs->md.level;
763	rs->md.layout = raid_type->algorithm;
764	rs->md.new_layout = rs->md.layout;
765	rs->md.delta_disks = 0;
766	rs->md.recovery_cp = MaxSector;
767
768	for (i = 0; i < raid_devs; i++)
769		md_rdev_init(&rs->dev[i].rdev);
770
771	/*
772	 * Remaining items to be initialized by further RAID params:
773	 *  rs->md.persistent
774	 *  rs->md.external
775	 *  rs->md.chunk_sectors
776	 *  rs->md.new_chunk_sectors
777	 *  rs->md.dev_sectors
778	 */
779
780	return rs;
781}
782
783/* Free all @rs allocations */
784static void raid_set_free(struct raid_set *rs)
785{
786	int i;
787
788	if (rs->journal_dev.dev) {
789		md_rdev_clear(&rs->journal_dev.rdev);
790		dm_put_device(rs->ti, rs->journal_dev.dev);
791	}
792
793	for (i = 0; i < rs->raid_disks; i++) {
794		if (rs->dev[i].meta_dev)
795			dm_put_device(rs->ti, rs->dev[i].meta_dev);
796		md_rdev_clear(&rs->dev[i].rdev);
797		if (rs->dev[i].data_dev)
798			dm_put_device(rs->ti, rs->dev[i].data_dev);
799	}
800
801	kfree(rs);
802}
803
804/*
805 * For every device we have two words
806 *  <meta_dev>: meta device name or '-' if missing
807 *  <data_dev>: data device name or '-' if missing
808 *
809 * The following are permitted:
810 *    - -
811 *    - <data_dev>
812 *    <meta_dev> <data_dev>
813 *
814 * The following is not allowed:
815 *    <meta_dev> -
816 *
817 * This code parses those words.  If there is a failure,
818 * the caller must use raid_set_free() to unwind the operations.
819 */
820static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
821{
822	int i;
823	int rebuild = 0;
824	int metadata_available = 0;
825	int r = 0;
826	const char *arg;
827
828	/* Put off the number of raid devices argument to get to dev pairs */
829	arg = dm_shift_arg(as);
830	if (!arg)
831		return -EINVAL;
832
833	for (i = 0; i < rs->raid_disks; i++) {
834		rs->dev[i].rdev.raid_disk = i;
835
836		rs->dev[i].meta_dev = NULL;
837		rs->dev[i].data_dev = NULL;
838
839		/*
840		 * There are no offsets initially.
841		 * Out of place reshape will set them accordingly.
842		 */
843		rs->dev[i].rdev.data_offset = 0;
844		rs->dev[i].rdev.new_data_offset = 0;
845		rs->dev[i].rdev.mddev = &rs->md;
846
847		arg = dm_shift_arg(as);
848		if (!arg)
849			return -EINVAL;
850
851		if (strcmp(arg, "-")) {
852			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
853					  &rs->dev[i].meta_dev);
854			if (r) {
855				rs->ti->error = "RAID metadata device lookup failure";
856				return r;
857			}
858
859			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
860			if (!rs->dev[i].rdev.sb_page) {
861				rs->ti->error = "Failed to allocate superblock page";
862				return -ENOMEM;
863			}
864		}
865
866		arg = dm_shift_arg(as);
867		if (!arg)
868			return -EINVAL;
869
870		if (!strcmp(arg, "-")) {
871			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
872			    (!rs->dev[i].rdev.recovery_offset)) {
873				rs->ti->error = "Drive designated for rebuild not specified";
874				return -EINVAL;
875			}
876
877			if (rs->dev[i].meta_dev) {
878				rs->ti->error = "No data device supplied with metadata device";
879				return -EINVAL;
880			}
881
882			continue;
883		}
884
885		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
886				  &rs->dev[i].data_dev);
887		if (r) {
888			rs->ti->error = "RAID device lookup failure";
889			return r;
890		}
891
892		if (rs->dev[i].meta_dev) {
893			metadata_available = 1;
894			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
895		}
896		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
897		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
898		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
899			rebuild++;
900	}
901
902	if (rs->journal_dev.dev)
903		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
904
905	if (metadata_available) {
906		rs->md.external = 0;
907		rs->md.persistent = 1;
908		rs->md.major_version = 2;
909	} else if (rebuild && !rs->md.recovery_cp) {
910		/*
911		 * Without metadata, we will not be able to tell if the array
912		 * is in-sync or not - we must assume it is not.  Therefore,
913		 * it is impossible to rebuild a drive.
914		 *
915		 * Even if there is metadata, the on-disk information may
916		 * indicate that the array is not in-sync and it will then
917		 * fail at that time.
918		 *
919		 * User could specify 'nosync' option if desperate.
920		 */
921		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
922		return -EINVAL;
923	}
924
925	return 0;
926}
927
928/*
929 * validate_region_size
930 * @rs
931 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
932 *
933 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
934 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
935 *
936 * Returns: 0 on success, -EINVAL on failure.
937 */
938static int validate_region_size(struct raid_set *rs, unsigned long region_size)
939{
940	unsigned long min_region_size = rs->ti->len / (1 << 21);
941
942	if (rs_is_raid0(rs))
943		return 0;
944
945	if (!region_size) {
946		/*
947		 * Choose a reasonable default.	 All figures in sectors.
948		 */
949		if (min_region_size > (1 << 13)) {
950			/* If not a power of 2, make it the next power of 2 */
951			region_size = roundup_pow_of_two(min_region_size);
952			DMINFO("Choosing default region size of %lu sectors",
953			       region_size);
954		} else {
955			DMINFO("Choosing default region size of 4MiB");
956			region_size = 1 << 13; /* sectors */
957		}
958	} else {
959		/*
960		 * Validate user-supplied value.
961		 */
962		if (region_size > rs->ti->len) {
963			rs->ti->error = "Supplied region size is too large";
964			return -EINVAL;
965		}
966
967		if (region_size < min_region_size) {
968			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
969			      region_size, min_region_size);
970			rs->ti->error = "Supplied region size is too small";
971			return -EINVAL;
972		}
973
974		if (!is_power_of_2(region_size)) {
975			rs->ti->error = "Region size is not a power of 2";
976			return -EINVAL;
977		}
978
979		if (region_size < rs->md.chunk_sectors) {
980			rs->ti->error = "Region size is smaller than the chunk size";
981			return -EINVAL;
982		}
983	}
984
985	/*
986	 * Convert sectors to bytes.
987	 */
988	rs->md.bitmap_info.chunksize = to_bytes(region_size);
989
990	return 0;
991}
992
993/*
994 * validate_raid_redundancy
995 * @rs
996 *
997 * Determine if there are enough devices in the array that haven't
998 * failed (or are being rebuilt) to form a usable array.
999 *
1000 * Returns: 0 on success, -EINVAL on failure.
1001 */
1002static int validate_raid_redundancy(struct raid_set *rs)
1003{
1004	unsigned int i, rebuild_cnt = 0;
1005	unsigned int rebuilds_per_group = 0, copies, raid_disks;
1006	unsigned int group_size, last_group_start;
1007
1008	for (i = 0; i < rs->raid_disks; i++)
1009		if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1010		    ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1011		      !rs->dev[i].rdev.sb_page)))
1012			rebuild_cnt++;
1013
1014	switch (rs->md.level) {
1015	case 0:
1016		break;
1017	case 1:
1018		if (rebuild_cnt >= rs->md.raid_disks)
1019			goto too_many;
1020		break;
1021	case 4:
1022	case 5:
1023	case 6:
1024		if (rebuild_cnt > rs->raid_type->parity_devs)
1025			goto too_many;
1026		break;
1027	case 10:
1028		copies = raid10_md_layout_to_copies(rs->md.new_layout);
1029		if (copies < 2) {
1030			DMERR("Bogus raid10 data copies < 2!");
1031			return -EINVAL;
1032		}
1033
1034		if (rebuild_cnt < copies)
1035			break;
1036
1037		/*
1038		 * It is possible to have a higher rebuild count for RAID10,
1039		 * as long as the failed devices occur in different mirror
1040		 * groups (i.e. different stripes).
1041		 *
1042		 * When checking "near" format, make sure no adjacent devices
1043		 * have failed beyond what can be handled.  In addition to the
1044		 * simple case where the number of devices is a multiple of the
1045		 * number of copies, we must also handle cases where the number
1046		 * of devices is not a multiple of the number of copies.
1047		 * E.g.	   dev1 dev2 dev3 dev4 dev5
1048		 *	    A	 A    B	   B	C
1049		 *	    C	 D    D	   E	E
1050		 */
1051		raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1052		if (__is_raid10_near(rs->md.new_layout)) {
1053			for (i = 0; i < raid_disks; i++) {
1054				if (!(i % copies))
1055					rebuilds_per_group = 0;
1056				if ((!rs->dev[i].rdev.sb_page ||
1057				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1058				    (++rebuilds_per_group >= copies))
1059					goto too_many;
1060			}
1061			break;
1062		}
1063
1064		/*
1065		 * When checking "far" and "offset" formats, we need to ensure
1066		 * that the device that holds its copy is not also dead or
1067		 * being rebuilt.  (Note that "far" and "offset" formats only
1068		 * support two copies right now.  These formats also only ever
1069		 * use the 'use_far_sets' variant.)
1070		 *
1071		 * This check is somewhat complicated by the need to account
1072		 * for arrays that are not a multiple of (far) copies.	This
1073		 * results in the need to treat the last (potentially larger)
1074		 * set differently.
1075		 */
1076		group_size = (raid_disks / copies);
1077		last_group_start = (raid_disks / group_size) - 1;
1078		last_group_start *= group_size;
1079		for (i = 0; i < raid_disks; i++) {
1080			if (!(i % copies) && !(i > last_group_start))
1081				rebuilds_per_group = 0;
1082			if ((!rs->dev[i].rdev.sb_page ||
1083			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1084			    (++rebuilds_per_group >= copies))
1085				goto too_many;
1086		}
1087		break;
1088	default:
1089		if (rebuild_cnt)
1090			return -EINVAL;
1091	}
1092
1093	return 0;
1094
1095too_many:
1096	return -EINVAL;
1097}
1098
1099/*
1100 * Possible arguments are...
1101 *	<chunk_size> [optional_args]
1102 *
1103 * Argument definitions
1104 *    <chunk_size>			The number of sectors per disk that
1105 *					will form the "stripe"
1106 *    [[no]sync]			Force or prevent recovery of the
1107 *					entire array
1108 *    [rebuild <idx>]			Rebuild the drive indicated by the index
1109 *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1110 *					clear bits
1111 *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1112 *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1113 *    [write_mostly <idx>]		Indicate a write mostly drive via index
1114 *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1115 *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1116 *    [region_size <sectors>]		Defines granularity of bitmap
1117 *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1118 *					(i.e. write hole closing log)
1119 *
1120 * RAID10-only options:
1121 *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1122 *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1123 */
1124static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1125			     unsigned int num_raid_params)
1126{
1127	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1128	unsigned int raid10_copies = 2;
1129	unsigned int i, write_mostly = 0;
1130	unsigned int region_size = 0;
1131	sector_t max_io_len;
1132	const char *arg, *key;
1133	struct raid_dev *rd;
1134	struct raid_type *rt = rs->raid_type;
1135
1136	arg = dm_shift_arg(as);
1137	num_raid_params--; /* Account for chunk_size argument */
1138
1139	if (kstrtoint(arg, 10, &value) < 0) {
1140		rs->ti->error = "Bad numerical argument given for chunk_size";
1141		return -EINVAL;
1142	}
1143
1144	/*
1145	 * First, parse the in-order required arguments
1146	 * "chunk_size" is the only argument of this type.
1147	 */
1148	if (rt_is_raid1(rt)) {
1149		if (value)
1150			DMERR("Ignoring chunk size parameter for RAID 1");
1151		value = 0;
1152	} else if (!is_power_of_2(value)) {
1153		rs->ti->error = "Chunk size must be a power of 2";
1154		return -EINVAL;
1155	} else if (value < 8) {
1156		rs->ti->error = "Chunk size value is too small";
1157		return -EINVAL;
1158	}
1159
1160	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1161
1162	/*
1163	 * We set each individual device as In_sync with a completed
1164	 * 'recovery_offset'.  If there has been a device failure or
1165	 * replacement then one of the following cases applies:
1166	 *
1167	 *   1) User specifies 'rebuild'.
1168	 *	- Device is reset when param is read.
1169	 *   2) A new device is supplied.
1170	 *	- No matching superblock found, resets device.
1171	 *   3) Device failure was transient and returns on reload.
1172	 *	- Failure noticed, resets device for bitmap replay.
1173	 *   4) Device hadn't completed recovery after previous failure.
1174	 *	- Superblock is read and overrides recovery_offset.
1175	 *
1176	 * What is found in the superblocks of the devices is always
1177	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1178	 */
1179	for (i = 0; i < rs->raid_disks; i++) {
1180		set_bit(In_sync, &rs->dev[i].rdev.flags);
1181		rs->dev[i].rdev.recovery_offset = MaxSector;
1182	}
1183
1184	/*
1185	 * Second, parse the unordered optional arguments
1186	 */
1187	for (i = 0; i < num_raid_params; i++) {
1188		key = dm_shift_arg(as);
1189		if (!key) {
1190			rs->ti->error = "Not enough raid parameters given";
1191			return -EINVAL;
1192		}
1193
1194		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1195			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1196				rs->ti->error = "Only one 'nosync' argument allowed";
1197				return -EINVAL;
1198			}
1199			continue;
1200		}
1201		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1202			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1203				rs->ti->error = "Only one 'sync' argument allowed";
1204				return -EINVAL;
1205			}
1206			continue;
1207		}
1208		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1209			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1210				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1211				return -EINVAL;
1212			}
1213			continue;
1214		}
1215
1216		arg = dm_shift_arg(as);
1217		i++; /* Account for the argument pairs */
1218		if (!arg) {
1219			rs->ti->error = "Wrong number of raid parameters given";
1220			return -EINVAL;
1221		}
1222
1223		/*
1224		 * Parameters that take a string value are checked here.
1225		 */
1226		/* "raid10_format {near|offset|far} */
1227		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1228			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1229				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1230				return -EINVAL;
1231			}
1232			if (!rt_is_raid10(rt)) {
1233				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1234				return -EINVAL;
1235			}
1236			raid10_format = raid10_name_to_format(arg);
1237			if (raid10_format < 0) {
1238				rs->ti->error = "Invalid 'raid10_format' value given";
1239				return raid10_format;
1240			}
1241			continue;
1242		}
1243
1244		/* "journal_dev <dev>" */
1245		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1246			int r;
1247			struct md_rdev *jdev;
1248
1249			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1250				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1251				return -EINVAL;
1252			}
1253			if (!rt_is_raid456(rt)) {
1254				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1255				return -EINVAL;
1256			}
1257			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1258					  &rs->journal_dev.dev);
1259			if (r) {
1260				rs->ti->error = "raid4/5/6 journal device lookup failure";
1261				return r;
1262			}
1263			jdev = &rs->journal_dev.rdev;
1264			md_rdev_init(jdev);
1265			jdev->mddev = &rs->md;
1266			jdev->bdev = rs->journal_dev.dev->bdev;
1267			jdev->sectors = bdev_nr_sectors(jdev->bdev);
1268			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1269				rs->ti->error = "No space for raid4/5/6 journal";
1270				return -ENOSPC;
1271			}
1272			rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1273			set_bit(Journal, &jdev->flags);
1274			continue;
1275		}
1276
1277		/* "journal_mode <mode>" ("journal_dev" mandatory!) */
1278		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1279			int r;
1280
1281			if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1282				rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1283				return -EINVAL;
1284			}
1285			if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1286				rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1287				return -EINVAL;
1288			}
1289			r = dm_raid_journal_mode_to_md(arg);
1290			if (r < 0) {
1291				rs->ti->error = "Invalid 'journal_mode' argument";
1292				return r;
1293			}
1294			rs->journal_dev.mode = r;
1295			continue;
1296		}
1297
1298		/*
1299		 * Parameters with number values from here on.
1300		 */
1301		if (kstrtoint(arg, 10, &value) < 0) {
1302			rs->ti->error = "Bad numerical argument given in raid params";
1303			return -EINVAL;
1304		}
1305
1306		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1307			/*
1308			 * "rebuild" is being passed in by userspace to provide
1309			 * indexes of replaced devices and to set up additional
1310			 * devices on raid level takeover.
1311			 */
1312			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1313				rs->ti->error = "Invalid rebuild index given";
1314				return -EINVAL;
1315			}
1316
1317			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1318				rs->ti->error = "rebuild for this index already given";
1319				return -EINVAL;
1320			}
1321
1322			rd = rs->dev + value;
1323			clear_bit(In_sync, &rd->rdev.flags);
1324			clear_bit(Faulty, &rd->rdev.flags);
1325			rd->rdev.recovery_offset = 0;
1326			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1327		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1328			if (!rt_is_raid1(rt)) {
1329				rs->ti->error = "write_mostly option is only valid for RAID1";
1330				return -EINVAL;
1331			}
1332
1333			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1334				rs->ti->error = "Invalid write_mostly index given";
1335				return -EINVAL;
1336			}
1337
1338			write_mostly++;
1339			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1340			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1341		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1342			if (!rt_is_raid1(rt)) {
1343				rs->ti->error = "max_write_behind option is only valid for RAID1";
1344				return -EINVAL;
1345			}
1346
1347			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1348				rs->ti->error = "Only one max_write_behind argument pair allowed";
1349				return -EINVAL;
1350			}
1351
1352			/*
1353			 * In device-mapper, we specify things in sectors, but
1354			 * MD records this value in kB
1355			 */
1356			if (value < 0 || value / 2 > COUNTER_MAX) {
1357				rs->ti->error = "Max write-behind limit out of range";
1358				return -EINVAL;
1359			}
1360
1361			rs->md.bitmap_info.max_write_behind = value / 2;
1362		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1363			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1364				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1365				return -EINVAL;
1366			}
1367			if (value < 0) {
1368				rs->ti->error = "daemon sleep period out of range";
1369				return -EINVAL;
1370			}
1371			rs->md.bitmap_info.daemon_sleep = value;
1372		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1373			/* Userspace passes new data_offset after having extended the data image LV */
1374			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1375				rs->ti->error = "Only one data_offset argument pair allowed";
1376				return -EINVAL;
1377			}
1378			/* Ensure sensible data offset */
1379			if (value < 0 ||
1380			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1381				rs->ti->error = "Bogus data_offset value";
1382				return -EINVAL;
1383			}
1384			rs->data_offset = value;
1385		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1386			/* Define the +/-# of disks to add to/remove from the given raid set */
1387			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1388				rs->ti->error = "Only one delta_disks argument pair allowed";
1389				return -EINVAL;
1390			}
1391			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1392			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1393				rs->ti->error = "Too many delta_disk requested";
1394				return -EINVAL;
1395			}
1396
1397			rs->delta_disks = value;
1398		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1399			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1400				rs->ti->error = "Only one stripe_cache argument pair allowed";
1401				return -EINVAL;
1402			}
1403
1404			if (!rt_is_raid456(rt)) {
1405				rs->ti->error = "Inappropriate argument: stripe_cache";
1406				return -EINVAL;
1407			}
1408
1409			if (value < 0) {
1410				rs->ti->error = "Bogus stripe cache entries value";
1411				return -EINVAL;
1412			}
1413			rs->stripe_cache_entries = value;
1414		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1415			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1416				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1417				return -EINVAL;
1418			}
1419
1420			if (value < 0) {
1421				rs->ti->error = "min_recovery_rate out of range";
1422				return -EINVAL;
1423			}
1424			rs->md.sync_speed_min = value;
1425		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1426			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1427				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1428				return -EINVAL;
1429			}
1430
1431			if (value < 0) {
1432				rs->ti->error = "max_recovery_rate out of range";
1433				return -EINVAL;
1434			}
1435			rs->md.sync_speed_max = value;
1436		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1437			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1438				rs->ti->error = "Only one region_size argument pair allowed";
1439				return -EINVAL;
1440			}
1441
1442			region_size = value;
1443			rs->requested_bitmap_chunk_sectors = value;
1444		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1445			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1446				rs->ti->error = "Only one raid10_copies argument pair allowed";
1447				return -EINVAL;
1448			}
1449
1450			if (!__within_range(value, 2, rs->md.raid_disks)) {
1451				rs->ti->error = "Bad value for 'raid10_copies'";
1452				return -EINVAL;
1453			}
1454
1455			raid10_copies = value;
1456		} else {
1457			DMERR("Unable to parse RAID parameter: %s", key);
1458			rs->ti->error = "Unable to parse RAID parameter";
1459			return -EINVAL;
1460		}
1461	}
1462
1463	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1464	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1465		rs->ti->error = "sync and nosync are mutually exclusive";
1466		return -EINVAL;
1467	}
1468
1469	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1470	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1471	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1472		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1473		return -EINVAL;
1474	}
1475
1476	if (write_mostly >= rs->md.raid_disks) {
1477		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1478		return -EINVAL;
1479	}
1480
1481	if (rs->md.sync_speed_max &&
1482	    rs->md.sync_speed_min > rs->md.sync_speed_max) {
1483		rs->ti->error = "Bogus recovery rates";
1484		return -EINVAL;
1485	}
1486
1487	if (validate_region_size(rs, region_size))
1488		return -EINVAL;
1489
1490	if (rs->md.chunk_sectors)
1491		max_io_len = rs->md.chunk_sectors;
1492	else
1493		max_io_len = region_size;
1494
1495	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1496		return -EINVAL;
1497
1498	if (rt_is_raid10(rt)) {
1499		if (raid10_copies > rs->md.raid_disks) {
1500			rs->ti->error = "Not enough devices to satisfy specification";
1501			return -EINVAL;
1502		}
1503
1504		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1505		if (rs->md.new_layout < 0) {
1506			rs->ti->error = "Error getting raid10 format";
1507			return rs->md.new_layout;
1508		}
1509
1510		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1511		if (!rt) {
1512			rs->ti->error = "Failed to recognize new raid10 layout";
1513			return -EINVAL;
1514		}
1515
1516		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1517		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1518		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1519			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1520			return -EINVAL;
1521		}
1522	}
1523
1524	rs->raid10_copies = raid10_copies;
1525
1526	/* Assume there are no metadata devices until the drives are parsed */
1527	rs->md.persistent = 0;
1528	rs->md.external = 1;
1529
1530	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1531	return rs_check_for_valid_flags(rs);
1532}
1533
1534/* Set raid4/5/6 cache size */
1535static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1536{
1537	int r;
1538	struct r5conf *conf;
1539	struct mddev *mddev = &rs->md;
1540	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1541	uint32_t nr_stripes = rs->stripe_cache_entries;
1542
1543	if (!rt_is_raid456(rs->raid_type)) {
1544		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1545		return -EINVAL;
1546	}
1547
1548	if (nr_stripes < min_stripes) {
1549		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1550		       nr_stripes, min_stripes);
1551		nr_stripes = min_stripes;
1552	}
1553
1554	conf = mddev->private;
1555	if (!conf) {
1556		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1557		return -EINVAL;
1558	}
1559
1560	/* Try setting number of stripes in raid456 stripe cache */
1561	if (conf->min_nr_stripes != nr_stripes) {
1562		r = raid5_set_cache_size(mddev, nr_stripes);
1563		if (r) {
1564			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1565			return r;
1566		}
1567
1568		DMINFO("%u stripe cache entries", nr_stripes);
1569	}
1570
1571	return 0;
1572}
1573
1574/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1575static unsigned int mddev_data_stripes(struct raid_set *rs)
1576{
1577	return rs->md.raid_disks - rs->raid_type->parity_devs;
1578}
1579
1580/* Return # of data stripes of @rs (i.e. as of ctr) */
1581static unsigned int rs_data_stripes(struct raid_set *rs)
1582{
1583	return rs->raid_disks - rs->raid_type->parity_devs;
1584}
1585
1586/*
1587 * Retrieve rdev->sectors from any valid raid device of @rs
1588 * to allow userpace to pass in arbitray "- -" device tupples.
1589 */
1590static sector_t __rdev_sectors(struct raid_set *rs)
1591{
1592	int i;
1593
1594	for (i = 0; i < rs->raid_disks; i++) {
1595		struct md_rdev *rdev = &rs->dev[i].rdev;
1596
1597		if (!test_bit(Journal, &rdev->flags) &&
1598		    rdev->bdev && rdev->sectors)
1599			return rdev->sectors;
1600	}
1601
1602	return 0;
1603}
1604
1605/* Check that calculated dev_sectors fits all component devices. */
1606static int _check_data_dev_sectors(struct raid_set *rs)
1607{
1608	sector_t ds = ~0;
1609	struct md_rdev *rdev;
1610
1611	rdev_for_each(rdev, &rs->md)
1612		if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1613			ds = min(ds, bdev_nr_sectors(rdev->bdev));
1614			if (ds < rs->md.dev_sectors) {
1615				rs->ti->error = "Component device(s) too small";
1616				return -EINVAL;
1617			}
1618		}
1619
1620	return 0;
1621}
1622
1623/* Calculate the sectors per device and per array used for @rs */
1624static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1625{
1626	int delta_disks;
1627	unsigned int data_stripes;
1628	sector_t array_sectors = sectors, dev_sectors = sectors;
1629	struct mddev *mddev = &rs->md;
1630
1631	if (use_mddev) {
1632		delta_disks = mddev->delta_disks;
1633		data_stripes = mddev_data_stripes(rs);
1634	} else {
1635		delta_disks = rs->delta_disks;
1636		data_stripes = rs_data_stripes(rs);
1637	}
1638
1639	/* Special raid1 case w/o delta_disks support (yet) */
1640	if (rt_is_raid1(rs->raid_type))
1641		;
1642	else if (rt_is_raid10(rs->raid_type)) {
1643		if (rs->raid10_copies < 2 ||
1644		    delta_disks < 0) {
1645			rs->ti->error = "Bogus raid10 data copies or delta disks";
1646			return -EINVAL;
1647		}
1648
1649		dev_sectors *= rs->raid10_copies;
1650		if (sector_div(dev_sectors, data_stripes))
1651			goto bad;
1652
1653		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1654		if (sector_div(array_sectors, rs->raid10_copies))
1655			goto bad;
1656
1657	} else if (sector_div(dev_sectors, data_stripes))
1658		goto bad;
1659
1660	else
1661		/* Striped layouts */
1662		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1663
1664	mddev->array_sectors = array_sectors;
1665	mddev->dev_sectors = dev_sectors;
1666	rs_set_rdev_sectors(rs);
1667
1668	return _check_data_dev_sectors(rs);
1669bad:
1670	rs->ti->error = "Target length not divisible by number of data devices";
1671	return -EINVAL;
1672}
1673
1674/* Setup recovery on @rs */
1675static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1676{
1677	/* raid0 does not recover */
1678	if (rs_is_raid0(rs))
1679		rs->md.recovery_cp = MaxSector;
1680	/*
1681	 * A raid6 set has to be recovered either
1682	 * completely or for the grown part to
1683	 * ensure proper parity and Q-Syndrome
1684	 */
1685	else if (rs_is_raid6(rs))
1686		rs->md.recovery_cp = dev_sectors;
1687	/*
1688	 * Other raid set types may skip recovery
1689	 * depending on the 'nosync' flag.
1690	 */
1691	else
1692		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1693				     ? MaxSector : dev_sectors;
1694}
1695
1696static void do_table_event(struct work_struct *ws)
1697{
1698	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1699
1700	smp_rmb(); /* Make sure we access most actual mddev properties */
1701	if (!rs_is_reshaping(rs)) {
1702		if (rs_is_raid10(rs))
1703			rs_set_rdev_sectors(rs);
1704		rs_set_capacity(rs);
1705	}
1706	dm_table_event(rs->ti->table);
1707}
1708
1709/*
1710 * Make sure a valid takover (level switch) is being requested on @rs
1711 *
1712 * Conversions of raid sets from one MD personality to another
1713 * have to conform to restrictions which are enforced here.
1714 */
1715static int rs_check_takeover(struct raid_set *rs)
1716{
1717	struct mddev *mddev = &rs->md;
1718	unsigned int near_copies;
1719
1720	if (rs->md.degraded) {
1721		rs->ti->error = "Can't takeover degraded raid set";
1722		return -EPERM;
1723	}
1724
1725	if (rs_is_reshaping(rs)) {
1726		rs->ti->error = "Can't takeover reshaping raid set";
1727		return -EPERM;
1728	}
1729
1730	switch (mddev->level) {
1731	case 0:
1732		/* raid0 -> raid1/5 with one disk */
1733		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1734		    mddev->raid_disks == 1)
1735			return 0;
1736
1737		/* raid0 -> raid10 */
1738		if (mddev->new_level == 10 &&
1739		    !(rs->raid_disks % mddev->raid_disks))
1740			return 0;
1741
1742		/* raid0 with multiple disks -> raid4/5/6 */
1743		if (__within_range(mddev->new_level, 4, 6) &&
1744		    mddev->new_layout == ALGORITHM_PARITY_N &&
1745		    mddev->raid_disks > 1)
1746			return 0;
1747
1748		break;
1749
1750	case 10:
1751		/* Can't takeover raid10_offset! */
1752		if (__is_raid10_offset(mddev->layout))
1753			break;
1754
1755		near_copies = __raid10_near_copies(mddev->layout);
1756
1757		/* raid10* -> raid0 */
1758		if (mddev->new_level == 0) {
1759			/* Can takeover raid10_near with raid disks divisable by data copies! */
1760			if (near_copies > 1 &&
1761			    !(mddev->raid_disks % near_copies)) {
1762				mddev->raid_disks /= near_copies;
1763				mddev->delta_disks = mddev->raid_disks;
1764				return 0;
1765			}
1766
1767			/* Can takeover raid10_far */
1768			if (near_copies == 1 &&
1769			    __raid10_far_copies(mddev->layout) > 1)
1770				return 0;
1771
1772			break;
1773		}
1774
1775		/* raid10_{near,far} -> raid1 */
1776		if (mddev->new_level == 1 &&
1777		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1778			return 0;
1779
1780		/* raid10_{near,far} with 2 disks -> raid4/5 */
1781		if (__within_range(mddev->new_level, 4, 5) &&
1782		    mddev->raid_disks == 2)
1783			return 0;
1784		break;
1785
1786	case 1:
1787		/* raid1 with 2 disks -> raid4/5 */
1788		if (__within_range(mddev->new_level, 4, 5) &&
1789		    mddev->raid_disks == 2) {
1790			mddev->degraded = 1;
1791			return 0;
1792		}
1793
1794		/* raid1 -> raid0 */
1795		if (mddev->new_level == 0 &&
1796		    mddev->raid_disks == 1)
1797			return 0;
1798
1799		/* raid1 -> raid10 */
1800		if (mddev->new_level == 10)
1801			return 0;
1802		break;
1803
1804	case 4:
1805		/* raid4 -> raid0 */
1806		if (mddev->new_level == 0)
1807			return 0;
1808
1809		/* raid4 -> raid1/5 with 2 disks */
1810		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1811		    mddev->raid_disks == 2)
1812			return 0;
1813
1814		/* raid4 -> raid5/6 with parity N */
1815		if (__within_range(mddev->new_level, 5, 6) &&
1816		    mddev->layout == ALGORITHM_PARITY_N)
1817			return 0;
1818		break;
1819
1820	case 5:
1821		/* raid5 with parity N -> raid0 */
1822		if (mddev->new_level == 0 &&
1823		    mddev->layout == ALGORITHM_PARITY_N)
1824			return 0;
1825
1826		/* raid5 with parity N -> raid4 */
1827		if (mddev->new_level == 4 &&
1828		    mddev->layout == ALGORITHM_PARITY_N)
1829			return 0;
1830
1831		/* raid5 with 2 disks -> raid1/4/10 */
1832		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1833		    mddev->raid_disks == 2)
1834			return 0;
1835
1836		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1837		if (mddev->new_level == 6 &&
1838		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1839		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1840			return 0;
1841		break;
1842
1843	case 6:
1844		/* raid6 with parity N -> raid0 */
1845		if (mddev->new_level == 0 &&
1846		    mddev->layout == ALGORITHM_PARITY_N)
1847			return 0;
1848
1849		/* raid6 with parity N -> raid4 */
1850		if (mddev->new_level == 4 &&
1851		    mddev->layout == ALGORITHM_PARITY_N)
1852			return 0;
1853
1854		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1855		if (mddev->new_level == 5 &&
1856		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1857		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1858			return 0;
1859		break;
1860
1861	default:
1862		break;
1863	}
1864
1865	rs->ti->error = "takeover not possible";
1866	return -EINVAL;
1867}
1868
1869/* True if @rs requested to be taken over */
1870static bool rs_takeover_requested(struct raid_set *rs)
1871{
1872	return rs->md.new_level != rs->md.level;
1873}
1874
1875/* True if layout is set to reshape. */
1876static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1877{
1878	return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1879	       rs->md.new_layout != rs->md.layout ||
1880	       rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1881}
1882
1883/* True if @rs is requested to reshape by ctr */
1884static bool rs_reshape_requested(struct raid_set *rs)
1885{
1886	bool change;
1887	struct mddev *mddev = &rs->md;
1888
1889	if (rs_takeover_requested(rs))
1890		return false;
1891
1892	if (rs_is_raid0(rs))
1893		return false;
1894
1895	change = rs_is_layout_change(rs, false);
1896
1897	/* Historical case to support raid1 reshape without delta disks */
1898	if (rs_is_raid1(rs)) {
1899		if (rs->delta_disks)
1900			return !!rs->delta_disks;
1901
1902		return !change &&
1903		       mddev->raid_disks != rs->raid_disks;
1904	}
1905
1906	if (rs_is_raid10(rs))
1907		return change &&
1908		       !__is_raid10_far(mddev->new_layout) &&
1909		       rs->delta_disks >= 0;
1910
1911	return change;
1912}
1913
1914/*  Features */
1915#define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1916
1917/* State flags for sb->flags */
1918#define	SB_FLAG_RESHAPE_ACTIVE		0x1
1919#define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1920
1921/*
1922 * This structure is never routinely used by userspace, unlike md superblocks.
1923 * Devices with this superblock should only ever be accessed via device-mapper.
1924 */
1925#define DM_RAID_MAGIC 0x64526D44
1926struct dm_raid_superblock {
1927	__le32 magic;		/* "DmRd" */
1928	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1929
1930	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1931	__le32 array_position;	/* The position of this drive in the raid set */
1932
1933	__le64 events;		/* Incremented by md when superblock updated */
1934	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1935				/* indicate failures (see extension below) */
1936
1937	/*
1938	 * This offset tracks the progress of the repair or replacement of
1939	 * an individual drive.
1940	 */
1941	__le64 disk_recovery_offset;
1942
1943	/*
1944	 * This offset tracks the progress of the initial raid set
1945	 * synchronisation/parity calculation.
1946	 */
1947	__le64 array_resync_offset;
1948
1949	/*
1950	 * raid characteristics
1951	 */
1952	__le32 level;
1953	__le32 layout;
1954	__le32 stripe_sectors;
1955
1956	/********************************************************************
1957	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1958	 *
1959	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1960	 */
1961
1962	__le32 flags; /* Flags defining array states for reshaping */
1963
1964	/*
1965	 * This offset tracks the progress of a raid
1966	 * set reshape in order to be able to restart it
1967	 */
1968	__le64 reshape_position;
1969
1970	/*
1971	 * These define the properties of the array in case of an interrupted reshape
1972	 */
1973	__le32 new_level;
1974	__le32 new_layout;
1975	__le32 new_stripe_sectors;
1976	__le32 delta_disks;
1977
1978	__le64 array_sectors; /* Array size in sectors */
1979
1980	/*
1981	 * Sector offsets to data on devices (reshaping).
1982	 * Needed to support out of place reshaping, thus
1983	 * not writing over any stripes whilst converting
1984	 * them from old to new layout
1985	 */
1986	__le64 data_offset;
1987	__le64 new_data_offset;
1988
1989	__le64 sectors; /* Used device size in sectors */
1990
1991	/*
1992	 * Additional Bit field of devices indicating failures to support
1993	 * up to 256 devices with the 1.9.0 on-disk metadata format
1994	 */
1995	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1996
1997	__le32 incompat_features;	/* Used to indicate any incompatible features */
1998
1999	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2000} __packed;
2001
2002/*
2003 * Check for reshape constraints on raid set @rs:
2004 *
2005 * - reshape function non-existent
2006 * - degraded set
2007 * - ongoing recovery
2008 * - ongoing reshape
2009 *
2010 * Returns 0 if none or -EPERM if given constraint
2011 * and error message reference in @errmsg
2012 */
2013static int rs_check_reshape(struct raid_set *rs)
2014{
2015	struct mddev *mddev = &rs->md;
2016
2017	if (!mddev->pers || !mddev->pers->check_reshape)
2018		rs->ti->error = "Reshape not supported";
2019	else if (mddev->degraded)
2020		rs->ti->error = "Can't reshape degraded raid set";
2021	else if (rs_is_recovering(rs))
2022		rs->ti->error = "Convert request on recovering raid set prohibited";
2023	else if (rs_is_reshaping(rs))
2024		rs->ti->error = "raid set already reshaping!";
2025	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2026		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2027	else
2028		return 0;
2029
2030	return -EPERM;
2031}
2032
2033static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2034{
2035	BUG_ON(!rdev->sb_page);
2036
2037	if (rdev->sb_loaded && !force_reload)
2038		return 0;
2039
2040	rdev->sb_loaded = 0;
2041
2042	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2043		DMERR("Failed to read superblock of device at position %d",
2044		      rdev->raid_disk);
2045		md_error(rdev->mddev, rdev);
2046		set_bit(Faulty, &rdev->flags);
2047		return -EIO;
2048	}
2049
2050	rdev->sb_loaded = 1;
2051
2052	return 0;
2053}
2054
2055static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2056{
2057	failed_devices[0] = le64_to_cpu(sb->failed_devices);
2058	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2059
2060	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061		int i = ARRAY_SIZE(sb->extended_failed_devices);
2062
2063		while (i--)
2064			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2065	}
2066}
2067
2068static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2069{
2070	int i = ARRAY_SIZE(sb->extended_failed_devices);
2071
2072	sb->failed_devices = cpu_to_le64(failed_devices[0]);
2073	while (i--)
2074		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2075}
2076
2077/*
2078 * Synchronize the superblock members with the raid set properties
2079 *
2080 * All superblock data is little endian.
2081 */
2082static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2083{
2084	bool update_failed_devices = false;
2085	unsigned int i;
2086	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2087	struct dm_raid_superblock *sb;
2088	struct raid_set *rs = container_of(mddev, struct raid_set, md);
2089
2090	/* No metadata device, no superblock */
2091	if (!rdev->meta_bdev)
2092		return;
2093
2094	BUG_ON(!rdev->sb_page);
2095
2096	sb = page_address(rdev->sb_page);
2097
2098	sb_retrieve_failed_devices(sb, failed_devices);
2099
2100	for (i = 0; i < rs->raid_disks; i++)
2101		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2102			update_failed_devices = true;
2103			set_bit(i, (void *) failed_devices);
2104		}
2105
2106	if (update_failed_devices)
2107		sb_update_failed_devices(sb, failed_devices);
2108
2109	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2110	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2111
2112	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2113	sb->array_position = cpu_to_le32(rdev->raid_disk);
2114
2115	sb->events = cpu_to_le64(mddev->events);
2116
2117	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2118	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2119
2120	sb->level = cpu_to_le32(mddev->level);
2121	sb->layout = cpu_to_le32(mddev->layout);
2122	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2123
2124	/********************************************************************
2125	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2126	 *
2127	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2128	 */
2129	sb->new_level = cpu_to_le32(mddev->new_level);
2130	sb->new_layout = cpu_to_le32(mddev->new_layout);
2131	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2132
2133	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2134
2135	smp_rmb(); /* Make sure we access most recent reshape position */
2136	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2137	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2138		/* Flag ongoing reshape */
2139		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2140
2141		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2142			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2143	} else {
2144		/* Clear reshape flags */
2145		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2146	}
2147
2148	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2149	sb->data_offset = cpu_to_le64(rdev->data_offset);
2150	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2151	sb->sectors = cpu_to_le64(rdev->sectors);
2152	sb->incompat_features = cpu_to_le32(0);
2153
2154	/* Zero out the rest of the payload after the size of the superblock */
2155	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2156}
2157
2158/*
2159 * super_load
2160 *
2161 * This function creates a superblock if one is not found on the device
2162 * and will decide which superblock to use if there's a choice.
2163 *
2164 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2165 */
2166static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2167{
2168	int r;
2169	struct dm_raid_superblock *sb;
2170	struct dm_raid_superblock *refsb;
2171	uint64_t events_sb, events_refsb;
2172
2173	r = read_disk_sb(rdev, rdev->sb_size, false);
2174	if (r)
2175		return r;
2176
2177	sb = page_address(rdev->sb_page);
2178
2179	/*
2180	 * Two cases that we want to write new superblocks and rebuild:
2181	 * 1) New device (no matching magic number)
2182	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2183	 */
2184	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2185	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2186		super_sync(rdev->mddev, rdev);
2187
2188		set_bit(FirstUse, &rdev->flags);
2189		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2190
2191		/* Force writing of superblocks to disk */
2192		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2193
2194		/* Any superblock is better than none, choose that if given */
2195		return refdev ? 0 : 1;
2196	}
2197
2198	if (!refdev)
2199		return 1;
2200
2201	events_sb = le64_to_cpu(sb->events);
2202
2203	refsb = page_address(refdev->sb_page);
2204	events_refsb = le64_to_cpu(refsb->events);
2205
2206	return (events_sb > events_refsb) ? 1 : 0;
2207}
2208
2209static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2210{
2211	int role;
2212	struct mddev *mddev = &rs->md;
2213	uint64_t events_sb;
2214	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2215	struct dm_raid_superblock *sb;
2216	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2217	struct md_rdev *r;
2218	struct dm_raid_superblock *sb2;
2219
2220	sb = page_address(rdev->sb_page);
2221	events_sb = le64_to_cpu(sb->events);
2222
2223	/*
2224	 * Initialise to 1 if this is a new superblock.
2225	 */
2226	mddev->events = events_sb ? : 1;
2227
2228	mddev->reshape_position = MaxSector;
2229
2230	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2231	mddev->level = le32_to_cpu(sb->level);
2232	mddev->layout = le32_to_cpu(sb->layout);
2233	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2234
2235	/*
2236	 * Reshaping is supported, e.g. reshape_position is valid
2237	 * in superblock and superblock content is authoritative.
2238	 */
2239	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2240		/* Superblock is authoritative wrt given raid set layout! */
2241		mddev->new_level = le32_to_cpu(sb->new_level);
2242		mddev->new_layout = le32_to_cpu(sb->new_layout);
2243		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2244		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2245		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2246
2247		/* raid was reshaping and got interrupted */
2248		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2249			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2250				DMERR("Reshape requested but raid set is still reshaping");
2251				return -EINVAL;
2252			}
2253
2254			if (mddev->delta_disks < 0 ||
2255			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2256				mddev->reshape_backwards = 1;
2257			else
2258				mddev->reshape_backwards = 0;
2259
2260			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2261			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2262		}
2263
2264	} else {
2265		/*
2266		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2267		 */
2268		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2269		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2270
2271		if (rs_takeover_requested(rs)) {
2272			if (rt_cur && rt_new)
2273				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2274				      rt_cur->name, rt_new->name);
2275			else
2276				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2277			return -EINVAL;
2278		} else if (rs_reshape_requested(rs)) {
2279			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2280			if (mddev->layout != mddev->new_layout) {
2281				if (rt_cur && rt_new)
2282					DMERR("	 current layout %s vs new layout %s",
2283					      rt_cur->name, rt_new->name);
2284				else
2285					DMERR("	 current layout 0x%X vs new layout 0x%X",
2286					      le32_to_cpu(sb->layout), mddev->new_layout);
2287			}
2288			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2289				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2290				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2291			if (rs->delta_disks)
2292				DMERR("	 current %u disks vs new %u disks",
2293				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2294			if (rs_is_raid10(rs)) {
2295				DMERR("	 Old layout: %s w/ %u copies",
2296				      raid10_md_layout_to_format(mddev->layout),
2297				      raid10_md_layout_to_copies(mddev->layout));
2298				DMERR("	 New layout: %s w/ %u copies",
2299				      raid10_md_layout_to_format(mddev->new_layout),
2300				      raid10_md_layout_to_copies(mddev->new_layout));
2301			}
2302			return -EINVAL;
2303		}
2304
2305		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2306	}
2307
2308	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2309		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2310
2311	/*
2312	 * During load, we set FirstUse if a new superblock was written.
2313	 * There are two reasons we might not have a superblock:
2314	 * 1) The raid set is brand new - in which case, all of the
2315	 *    devices must have their In_sync bit set.	Also,
2316	 *    recovery_cp must be 0, unless forced.
2317	 * 2) This is a new device being added to an old raid set
2318	 *    and the new device needs to be rebuilt - in which
2319	 *    case the In_sync bit will /not/ be set and
2320	 *    recovery_cp must be MaxSector.
2321	 * 3) This is/are a new device(s) being added to an old
2322	 *    raid set during takeover to a higher raid level
2323	 *    to provide capacity for redundancy or during reshape
2324	 *    to add capacity to grow the raid set.
2325	 */
2326	rdev_for_each(r, mddev) {
2327		if (test_bit(Journal, &rdev->flags))
2328			continue;
2329
2330		if (test_bit(FirstUse, &r->flags))
2331			new_devs++;
2332
2333		if (!test_bit(In_sync, &r->flags)) {
2334			DMINFO("Device %d specified for rebuild; clearing superblock",
2335				r->raid_disk);
2336			rebuilds++;
2337
2338			if (test_bit(FirstUse, &r->flags))
2339				rebuild_and_new++;
2340		}
2341	}
2342
2343	if (new_devs == rs->raid_disks || !rebuilds) {
2344		/* Replace a broken device */
2345		if (new_devs == rs->raid_disks) {
2346			DMINFO("Superblocks created for new raid set");
2347			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2348		} else if (new_devs != rebuilds &&
2349			   new_devs != rs->delta_disks) {
2350			DMERR("New device injected into existing raid set without "
2351			      "'delta_disks' or 'rebuild' parameter specified");
2352			return -EINVAL;
2353		}
2354	} else if (new_devs && new_devs != rebuilds) {
2355		DMERR("%u 'rebuild' devices cannot be injected into"
2356		      " a raid set with %u other first-time devices",
2357		      rebuilds, new_devs);
2358		return -EINVAL;
2359	} else if (rebuilds) {
2360		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2361			DMERR("new device%s provided without 'rebuild'",
2362			      new_devs > 1 ? "s" : "");
2363			return -EINVAL;
2364		} else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2365			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2366			      (unsigned long long) mddev->recovery_cp);
2367			return -EINVAL;
2368		} else if (rs_is_reshaping(rs)) {
2369			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2370			      (unsigned long long) mddev->reshape_position);
2371			return -EINVAL;
2372		}
2373	}
2374
2375	/*
2376	 * Now we set the Faulty bit for those devices that are
2377	 * recorded in the superblock as failed.
2378	 */
2379	sb_retrieve_failed_devices(sb, failed_devices);
2380	rdev_for_each(r, mddev) {
2381		if (test_bit(Journal, &rdev->flags) ||
2382		    !r->sb_page)
2383			continue;
2384		sb2 = page_address(r->sb_page);
2385		sb2->failed_devices = 0;
2386		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2387
2388		/*
2389		 * Check for any device re-ordering.
2390		 */
2391		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2392			role = le32_to_cpu(sb2->array_position);
2393			if (role < 0)
2394				continue;
2395
2396			if (role != r->raid_disk) {
2397				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2398					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2399					    rs->raid_disks % rs->raid10_copies) {
2400						rs->ti->error =
2401							"Cannot change raid10 near set to odd # of devices!";
2402						return -EINVAL;
2403					}
2404
2405					sb2->array_position = cpu_to_le32(r->raid_disk);
2406
2407				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2408					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2409					   !rt_is_raid1(rs->raid_type)) {
2410					rs->ti->error = "Cannot change device positions in raid set";
2411					return -EINVAL;
2412				}
2413
2414				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2415			}
2416
2417			/*
2418			 * Partial recovery is performed on
2419			 * returning failed devices.
2420			 */
2421			if (test_bit(role, (void *) failed_devices))
2422				set_bit(Faulty, &r->flags);
2423		}
2424	}
2425
2426	return 0;
2427}
2428
2429static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2430{
2431	struct mddev *mddev = &rs->md;
2432	struct dm_raid_superblock *sb;
2433
2434	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2435		return 0;
2436
2437	sb = page_address(rdev->sb_page);
2438
2439	/*
2440	 * If mddev->events is not set, we know we have not yet initialized
2441	 * the array.
2442	 */
2443	if (!mddev->events && super_init_validation(rs, rdev))
2444		return -EINVAL;
2445
2446	if (le32_to_cpu(sb->compat_features) &&
2447	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2448		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2449		return -EINVAL;
2450	}
2451
2452	if (sb->incompat_features) {
2453		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2454		return -EINVAL;
2455	}
2456
2457	/* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2458	mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2459	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2460
2461	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2462		/*
2463		 * Retrieve rdev size stored in superblock to be prepared for shrink.
2464		 * Check extended superblock members are present otherwise the size
2465		 * will not be set!
2466		 */
2467		if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2468			rdev->sectors = le64_to_cpu(sb->sectors);
2469
2470		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2471		if (rdev->recovery_offset == MaxSector)
2472			set_bit(In_sync, &rdev->flags);
2473		/*
2474		 * If no reshape in progress -> we're recovering single
2475		 * disk(s) and have to set the device(s) to out-of-sync
2476		 */
2477		else if (!rs_is_reshaping(rs))
2478			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2479	}
2480
2481	/*
2482	 * If a device comes back, set it as not In_sync and no longer faulty.
2483	 */
2484	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2485		rdev->recovery_offset = 0;
2486		clear_bit(In_sync, &rdev->flags);
2487		rdev->saved_raid_disk = rdev->raid_disk;
2488	}
2489
2490	/* Reshape support -> restore repective data offsets */
2491	rdev->data_offset = le64_to_cpu(sb->data_offset);
2492	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2493
2494	return 0;
2495}
2496
2497/*
2498 * Analyse superblocks and select the freshest.
2499 */
2500static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2501{
2502	int r;
2503	struct md_rdev *rdev, *freshest;
2504	struct mddev *mddev = &rs->md;
2505
2506	freshest = NULL;
2507	rdev_for_each(rdev, mddev) {
2508		if (test_bit(Journal, &rdev->flags))
2509			continue;
2510
2511		if (!rdev->meta_bdev)
2512			continue;
2513
2514		/* Set superblock offset/size for metadata device. */
2515		rdev->sb_start = 0;
2516		rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2517		if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2518			DMERR("superblock size of a logical block is no longer valid");
2519			return -EINVAL;
2520		}
2521
2522		/*
2523		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2524		 * the array to undergo initialization again as
2525		 * though it were new.	This is the intended effect
2526		 * of the "sync" directive.
2527		 *
2528		 * With reshaping capability added, we must ensure that
2529		 * the "sync" directive is disallowed during the reshape.
2530		 */
2531		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2532			continue;
2533
2534		r = super_load(rdev, freshest);
2535
2536		switch (r) {
2537		case 1:
2538			freshest = rdev;
2539			break;
2540		case 0:
2541			break;
2542		default:
2543			/* This is a failure to read the superblock from the metadata device. */
2544			/*
2545			 * We have to keep any raid0 data/metadata device pairs or
2546			 * the MD raid0 personality will fail to start the array.
2547			 */
2548			if (rs_is_raid0(rs))
2549				continue;
2550
2551			/*
2552			 * We keep the dm_devs to be able to emit the device tuple
2553			 * properly on the table line in raid_status() (rather than
2554			 * mistakenly acting as if '- -' got passed into the constructor).
2555			 *
2556			 * The rdev has to stay on the same_set list to allow for
2557			 * the attempt to restore faulty devices on second resume.
2558			 */
2559			rdev->raid_disk = rdev->saved_raid_disk = -1;
2560			break;
2561		}
2562	}
2563
2564	if (!freshest)
2565		return 0;
2566
2567	/*
2568	 * Validation of the freshest device provides the source of
2569	 * validation for the remaining devices.
2570	 */
2571	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2572	if (super_validate(rs, freshest))
2573		return -EINVAL;
2574
2575	if (validate_raid_redundancy(rs)) {
2576		rs->ti->error = "Insufficient redundancy to activate array";
2577		return -EINVAL;
2578	}
2579
2580	rdev_for_each(rdev, mddev)
2581		if (!test_bit(Journal, &rdev->flags) &&
2582		    rdev != freshest &&
2583		    super_validate(rs, rdev))
2584			return -EINVAL;
2585	return 0;
2586}
2587
2588/*
2589 * Adjust data_offset and new_data_offset on all disk members of @rs
2590 * for out of place reshaping if requested by constructor
2591 *
2592 * We need free space at the beginning of each raid disk for forward
2593 * and at the end for backward reshapes which userspace has to provide
2594 * via remapping/reordering of space.
2595 */
2596static int rs_adjust_data_offsets(struct raid_set *rs)
2597{
2598	sector_t data_offset = 0, new_data_offset = 0;
2599	struct md_rdev *rdev;
2600
2601	/* Constructor did not request data offset change */
2602	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2603		if (!rs_is_reshapable(rs))
2604			goto out;
2605
2606		return 0;
2607	}
2608
2609	/* HM FIXME: get In_Sync raid_dev? */
2610	rdev = &rs->dev[0].rdev;
2611
2612	if (rs->delta_disks < 0) {
2613		/*
2614		 * Removing disks (reshaping backwards):
2615		 *
2616		 * - before reshape: data is at offset 0 and free space
2617		 *		     is at end of each component LV
2618		 *
2619		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2620		 */
2621		data_offset = 0;
2622		new_data_offset = rs->data_offset;
2623
2624	} else if (rs->delta_disks > 0) {
2625		/*
2626		 * Adding disks (reshaping forwards):
2627		 *
2628		 * - before reshape: data is at offset rs->data_offset != 0 and
2629		 *		     free space is at begin of each component LV
2630		 *
2631		 * - after reshape: data is at offset 0 on each component LV
2632		 */
2633		data_offset = rs->data_offset;
2634		new_data_offset = 0;
2635
2636	} else {
2637		/*
2638		 * User space passes in 0 for data offset after having removed reshape space
2639		 *
2640		 * - or - (data offset != 0)
2641		 *
2642		 * Changing RAID layout or chunk size -> toggle offsets
2643		 *
2644		 * - before reshape: data is at offset rs->data_offset 0 and
2645		 *		     free space is at end of each component LV
2646		 *		     -or-
2647		 *                   data is at offset rs->data_offset != 0 and
2648		 *		     free space is at begin of each component LV
2649		 *
2650		 * - after reshape: data is at offset 0 if it was at offset != 0
2651		 *                  or at offset != 0 if it was at offset 0
2652		 *                  on each component LV
2653		 *
2654		 */
2655		data_offset = rs->data_offset ? rdev->data_offset : 0;
2656		new_data_offset = data_offset ? 0 : rs->data_offset;
2657		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2658	}
2659
2660	/*
2661	 * Make sure we got a minimum amount of free sectors per device
2662	 */
2663	if (rs->data_offset &&
2664	    bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2665		rs->ti->error = data_offset ? "No space for forward reshape" :
2666					      "No space for backward reshape";
2667		return -ENOSPC;
2668	}
2669out:
2670	/*
2671	 * Raise recovery_cp in case data_offset != 0 to
2672	 * avoid false recovery positives in the constructor.
2673	 */
2674	if (rs->md.recovery_cp < rs->md.dev_sectors)
2675		rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2676
2677	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2678	rdev_for_each(rdev, &rs->md) {
2679		if (!test_bit(Journal, &rdev->flags)) {
2680			rdev->data_offset = data_offset;
2681			rdev->new_data_offset = new_data_offset;
2682		}
2683	}
2684
2685	return 0;
2686}
2687
2688/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2689static void __reorder_raid_disk_indexes(struct raid_set *rs)
2690{
2691	int i = 0;
2692	struct md_rdev *rdev;
2693
2694	rdev_for_each(rdev, &rs->md) {
2695		if (!test_bit(Journal, &rdev->flags)) {
2696			rdev->raid_disk = i++;
2697			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2698		}
2699	}
2700}
2701
2702/*
2703 * Setup @rs for takeover by a different raid level
2704 */
2705static int rs_setup_takeover(struct raid_set *rs)
2706{
2707	struct mddev *mddev = &rs->md;
2708	struct md_rdev *rdev;
2709	unsigned int d = mddev->raid_disks = rs->raid_disks;
2710	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2711
2712	if (rt_is_raid10(rs->raid_type)) {
2713		if (rs_is_raid0(rs)) {
2714			/* Userpace reordered disks -> adjust raid_disk indexes */
2715			__reorder_raid_disk_indexes(rs);
2716
2717			/* raid0 -> raid10_far layout */
2718			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2719								   rs->raid10_copies);
2720		} else if (rs_is_raid1(rs))
2721			/* raid1 -> raid10_near layout */
2722			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2723								   rs->raid_disks);
2724		else
2725			return -EINVAL;
2726
2727	}
2728
2729	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2730	mddev->recovery_cp = MaxSector;
2731
2732	while (d--) {
2733		rdev = &rs->dev[d].rdev;
2734
2735		if (test_bit(d, (void *) rs->rebuild_disks)) {
2736			clear_bit(In_sync, &rdev->flags);
2737			clear_bit(Faulty, &rdev->flags);
2738			mddev->recovery_cp = rdev->recovery_offset = 0;
2739			/* Bitmap has to be created when we do an "up" takeover */
2740			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2741		}
2742
2743		rdev->new_data_offset = new_data_offset;
2744	}
2745
2746	return 0;
2747}
2748
2749/* Prepare @rs for reshape */
2750static int rs_prepare_reshape(struct raid_set *rs)
2751{
2752	bool reshape;
2753	struct mddev *mddev = &rs->md;
2754
2755	if (rs_is_raid10(rs)) {
2756		if (rs->raid_disks != mddev->raid_disks &&
2757		    __is_raid10_near(mddev->layout) &&
2758		    rs->raid10_copies &&
2759		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2760			/*
2761			 * raid disk have to be multiple of data copies to allow this conversion,
2762			 *
2763			 * This is actually not a reshape it is a
2764			 * rebuild of any additional mirrors per group
2765			 */
2766			if (rs->raid_disks % rs->raid10_copies) {
2767				rs->ti->error = "Can't reshape raid10 mirror groups";
2768				return -EINVAL;
2769			}
2770
2771			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2772			__reorder_raid_disk_indexes(rs);
2773			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2774								   rs->raid10_copies);
2775			mddev->new_layout = mddev->layout;
2776			reshape = false;
2777		} else
2778			reshape = true;
2779
2780	} else if (rs_is_raid456(rs))
2781		reshape = true;
2782
2783	else if (rs_is_raid1(rs)) {
2784		if (rs->delta_disks) {
2785			/* Process raid1 via delta_disks */
2786			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2787			reshape = true;
2788		} else {
2789			/* Process raid1 without delta_disks */
2790			mddev->raid_disks = rs->raid_disks;
2791			reshape = false;
2792		}
2793	} else {
2794		rs->ti->error = "Called with bogus raid type";
2795		return -EINVAL;
2796	}
2797
2798	if (reshape) {
2799		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2800		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2801	} else if (mddev->raid_disks < rs->raid_disks)
2802		/* Create new superblocks and bitmaps, if any new disks */
2803		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804
2805	return 0;
2806}
2807
2808/* Get reshape sectors from data_offsets or raid set */
2809static sector_t _get_reshape_sectors(struct raid_set *rs)
2810{
2811	struct md_rdev *rdev;
2812	sector_t reshape_sectors = 0;
2813
2814	rdev_for_each(rdev, &rs->md)
2815		if (!test_bit(Journal, &rdev->flags)) {
2816			reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2817					rdev->data_offset - rdev->new_data_offset :
2818					rdev->new_data_offset - rdev->data_offset;
2819			break;
2820		}
2821
2822	return max(reshape_sectors, (sector_t) rs->data_offset);
2823}
2824
2825/*
2826 * Reshape:
2827 * - change raid layout
2828 * - change chunk size
2829 * - add disks
2830 * - remove disks
2831 */
2832static int rs_setup_reshape(struct raid_set *rs)
2833{
2834	int r = 0;
2835	unsigned int cur_raid_devs, d;
2836	sector_t reshape_sectors = _get_reshape_sectors(rs);
2837	struct mddev *mddev = &rs->md;
2838	struct md_rdev *rdev;
2839
2840	mddev->delta_disks = rs->delta_disks;
2841	cur_raid_devs = mddev->raid_disks;
2842
2843	/* Ignore impossible layout change whilst adding/removing disks */
2844	if (mddev->delta_disks &&
2845	    mddev->layout != mddev->new_layout) {
2846		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2847		mddev->new_layout = mddev->layout;
2848	}
2849
2850	/*
2851	 * Adjust array size:
2852	 *
2853	 * - in case of adding disk(s), array size has
2854	 *   to grow after the disk adding reshape,
2855	 *   which'll happen in the event handler;
2856	 *   reshape will happen forward, so space has to
2857	 *   be available at the beginning of each disk
2858	 *
2859	 * - in case of removing disk(s), array size
2860	 *   has to shrink before starting the reshape,
2861	 *   which'll happen here;
2862	 *   reshape will happen backward, so space has to
2863	 *   be available at the end of each disk
2864	 *
2865	 * - data_offset and new_data_offset are
2866	 *   adjusted for aforementioned out of place
2867	 *   reshaping based on userspace passing in
2868	 *   the "data_offset <sectors>" key/value
2869	 *   pair via the constructor
2870	 */
2871
2872	/* Add disk(s) */
2873	if (rs->delta_disks > 0) {
2874		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2875		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2876			rdev = &rs->dev[d].rdev;
2877			clear_bit(In_sync, &rdev->flags);
2878
2879			/*
2880			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2881			 * by md, which'll store that erroneously in the superblock on reshape
2882			 */
2883			rdev->saved_raid_disk = -1;
2884			rdev->raid_disk = d;
2885
2886			rdev->sectors = mddev->dev_sectors;
2887			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2888		}
2889
2890		mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2891
2892	/* Remove disk(s) */
2893	} else if (rs->delta_disks < 0) {
2894		r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2895		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2896
2897	/* Change layout and/or chunk size */
2898	} else {
2899		/*
2900		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2901		 *
2902		 * keeping number of disks and do layout change ->
2903		 *
2904		 * toggle reshape_backward depending on data_offset:
2905		 *
2906		 * - free space upfront -> reshape forward
2907		 *
2908		 * - free space at the end -> reshape backward
2909		 *
2910		 *
2911		 * This utilizes free reshape space avoiding the need
2912		 * for userspace to move (parts of) LV segments in
2913		 * case of layout/chunksize change  (for disk
2914		 * adding/removing reshape space has to be at
2915		 * the proper address (see above with delta_disks):
2916		 *
2917		 * add disk(s)   -> begin
2918		 * remove disk(s)-> end
2919		 */
2920		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2921	}
2922
2923	/*
2924	 * Adjust device size for forward reshape
2925	 * because md_finish_reshape() reduces it.
2926	 */
2927	if (!mddev->reshape_backwards)
2928		rdev_for_each(rdev, &rs->md)
2929			if (!test_bit(Journal, &rdev->flags))
2930				rdev->sectors += reshape_sectors;
2931
2932	return r;
2933}
2934
2935/*
2936 * If the md resync thread has updated superblock with max reshape position
2937 * at the end of a reshape but not (yet) reset the layout configuration
2938 * changes -> reset the latter.
2939 */
2940static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2941{
2942	if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2943		rs_set_cur(rs);
2944		rs->md.delta_disks = 0;
2945		rs->md.reshape_backwards = 0;
2946	}
2947}
2948
2949/*
2950 * Enable/disable discard support on RAID set depending on
2951 * RAID level and discard properties of underlying RAID members.
2952 */
2953static void configure_discard_support(struct raid_set *rs)
2954{
2955	int i;
2956	bool raid456;
2957	struct dm_target *ti = rs->ti;
2958
2959	/*
2960	 * XXX: RAID level 4,5,6 require zeroing for safety.
2961	 */
2962	raid456 = rs_is_raid456(rs);
2963
2964	for (i = 0; i < rs->raid_disks; i++) {
2965		if (!rs->dev[i].rdev.bdev ||
2966		    !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2967			return;
2968
2969		if (raid456) {
2970			if (!devices_handle_discard_safely) {
2971				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2972				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2973				return;
2974			}
2975		}
2976	}
2977
2978	ti->num_discard_bios = 1;
2979}
2980
2981/*
2982 * Construct a RAID0/1/10/4/5/6 mapping:
2983 * Args:
2984 *	<raid_type> <#raid_params> <raid_params>{0,}	\
2985 *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2986 *
2987 * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2988 * details on possible <raid_params>.
2989 *
2990 * Userspace is free to initialize the metadata devices, hence the superblocks to
2991 * enforce recreation based on the passed in table parameters.
2992 *
2993 */
2994static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2995{
2996	int r;
2997	bool resize = false;
2998	struct raid_type *rt;
2999	unsigned int num_raid_params, num_raid_devs;
3000	sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3001	struct raid_set *rs = NULL;
3002	const char *arg;
3003	struct rs_layout rs_layout;
3004	struct dm_arg_set as = { argc, argv }, as_nrd;
3005	struct dm_arg _args[] = {
3006		{ 0, as.argc, "Cannot understand number of raid parameters" },
3007		{ 1, 254, "Cannot understand number of raid devices parameters" }
3008	};
3009
3010	arg = dm_shift_arg(&as);
3011	if (!arg) {
3012		ti->error = "No arguments";
3013		return -EINVAL;
3014	}
3015
3016	rt = get_raid_type(arg);
3017	if (!rt) {
3018		ti->error = "Unrecognised raid_type";
3019		return -EINVAL;
3020	}
3021
3022	/* Must have <#raid_params> */
3023	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3024		return -EINVAL;
3025
3026	/* number of raid device tupples <meta_dev data_dev> */
3027	as_nrd = as;
3028	dm_consume_args(&as_nrd, num_raid_params);
3029	_args[1].max = (as_nrd.argc - 1) / 2;
3030	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3031		return -EINVAL;
3032
3033	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3034		ti->error = "Invalid number of supplied raid devices";
3035		return -EINVAL;
3036	}
3037
3038	rs = raid_set_alloc(ti, rt, num_raid_devs);
3039	if (IS_ERR(rs))
3040		return PTR_ERR(rs);
3041
3042	r = parse_raid_params(rs, &as, num_raid_params);
3043	if (r)
3044		goto bad;
3045
3046	r = parse_dev_params(rs, &as);
3047	if (r)
3048		goto bad;
3049
3050	rs->md.sync_super = super_sync;
3051
3052	/*
3053	 * Calculate ctr requested array and device sizes to allow
3054	 * for superblock analysis needing device sizes defined.
3055	 *
3056	 * Any existing superblock will overwrite the array and device sizes
3057	 */
3058	r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3059	if (r)
3060		goto bad;
3061
3062	/* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3063	rs->array_sectors = rs->md.array_sectors;
3064	rs->dev_sectors = rs->md.dev_sectors;
3065
3066	/*
3067	 * Backup any new raid set level, layout, ...
3068	 * requested to be able to compare to superblock
3069	 * members for conversion decisions.
3070	 */
3071	rs_config_backup(rs, &rs_layout);
3072
3073	r = analyse_superblocks(ti, rs);
3074	if (r)
3075		goto bad;
3076
3077	/* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3078	sb_array_sectors = rs->md.array_sectors;
3079	rdev_sectors = __rdev_sectors(rs);
3080	if (!rdev_sectors) {
3081		ti->error = "Invalid rdev size";
3082		r = -EINVAL;
3083		goto bad;
3084	}
3085
3086
3087	reshape_sectors = _get_reshape_sectors(rs);
3088	if (rs->dev_sectors != rdev_sectors) {
3089		resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3090		if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3091			set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3092	}
3093
3094	INIT_WORK(&rs->md.event_work, do_table_event);
3095	ti->private = rs;
3096	ti->num_flush_bios = 1;
3097	ti->needs_bio_set_dev = true;
3098
3099	/* Restore any requested new layout for conversion decision */
3100	rs_config_restore(rs, &rs_layout);
3101
3102	/*
3103	 * Now that we have any superblock metadata available,
3104	 * check for new, recovering, reshaping, to be taken over,
3105	 * to be reshaped or an existing, unchanged raid set to
3106	 * run in sequence.
3107	 */
3108	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3109		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3110		if (rs_is_raid6(rs) &&
3111		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3112			ti->error = "'nosync' not allowed for new raid6 set";
3113			r = -EINVAL;
3114			goto bad;
3115		}
3116		rs_setup_recovery(rs, 0);
3117		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3118		rs_set_new(rs);
3119	} else if (rs_is_recovering(rs)) {
3120		/* A recovering raid set may be resized */
3121		goto size_check;
3122	} else if (rs_is_reshaping(rs)) {
3123		/* Have to reject size change request during reshape */
3124		if (resize) {
3125			ti->error = "Can't resize a reshaping raid set";
3126			r = -EPERM;
3127			goto bad;
3128		}
3129		/* skip setup rs */
3130	} else if (rs_takeover_requested(rs)) {
3131		if (rs_is_reshaping(rs)) {
3132			ti->error = "Can't takeover a reshaping raid set";
3133			r = -EPERM;
3134			goto bad;
3135		}
3136
3137		/* We can't takeover a journaled raid4/5/6 */
3138		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3139			ti->error = "Can't takeover a journaled raid4/5/6 set";
3140			r = -EPERM;
3141			goto bad;
3142		}
3143
3144		/*
3145		 * If a takeover is needed, userspace sets any additional
3146		 * devices to rebuild and we can check for a valid request here.
3147		 *
3148		 * If acceptable, set the level to the new requested
3149		 * one, prohibit requesting recovery, allow the raid
3150		 * set to run and store superblocks during resume.
3151		 */
3152		r = rs_check_takeover(rs);
3153		if (r)
3154			goto bad;
3155
3156		r = rs_setup_takeover(rs);
3157		if (r)
3158			goto bad;
3159
3160		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3161		/* Takeover ain't recovery, so disable recovery */
3162		rs_setup_recovery(rs, MaxSector);
3163		rs_set_new(rs);
3164	} else if (rs_reshape_requested(rs)) {
3165		/* Only request grow on raid set size extensions, not on reshapes. */
3166		clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3167
3168		/*
3169		 * No need to check for 'ongoing' takeover here, because takeover
3170		 * is an instant operation as oposed to an ongoing reshape.
3171		 */
3172
3173		/* We can't reshape a journaled raid4/5/6 */
3174		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3175			ti->error = "Can't reshape a journaled raid4/5/6 set";
3176			r = -EPERM;
3177			goto bad;
3178		}
3179
3180		/* Out-of-place space has to be available to allow for a reshape unless raid1! */
3181		if (reshape_sectors || rs_is_raid1(rs)) {
3182			/*
3183			 * We can only prepare for a reshape here, because the
3184			 * raid set needs to run to provide the repective reshape
3185			 * check functions via its MD personality instance.
3186			 *
3187			 * So do the reshape check after md_run() succeeded.
3188			 */
3189			r = rs_prepare_reshape(rs);
3190			if (r)
3191				goto bad;
3192
3193			/* Reshaping ain't recovery, so disable recovery */
3194			rs_setup_recovery(rs, MaxSector);
3195		}
3196		rs_set_cur(rs);
3197	} else {
3198size_check:
3199		/* May not set recovery when a device rebuild is requested */
3200		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3201			clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3202			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3203			rs_setup_recovery(rs, MaxSector);
3204		} else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3205			/*
3206			 * Set raid set to current size, i.e. size as of
3207			 * superblocks to grow to larger size in preresume.
3208			 */
3209			r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3210			if (r)
3211				goto bad;
3212
3213			rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3214		} else {
3215			/* This is no size change or it is shrinking, update size and record in superblocks */
3216			r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3217			if (r)
3218				goto bad;
3219
3220			if (sb_array_sectors > rs->array_sectors)
3221				set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3222		}
3223		rs_set_cur(rs);
3224	}
3225
3226	/* If constructor requested it, change data and new_data offsets */
3227	r = rs_adjust_data_offsets(rs);
3228	if (r)
3229		goto bad;
3230
3231	/* Catch any inconclusive reshape superblock content. */
3232	rs_reset_inconclusive_reshape(rs);
3233
3234	/* Start raid set read-only and assumed clean to change in raid_resume() */
3235	rs->md.ro = 1;
3236	rs->md.in_sync = 1;
3237
3238	/* Keep array frozen until resume. */
3239	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3240
3241	/* Has to be held on running the array */
3242	mddev_lock_nointr(&rs->md);
3243	r = md_run(&rs->md);
3244	rs->md.in_sync = 0; /* Assume already marked dirty */
3245	if (r) {
3246		ti->error = "Failed to run raid array";
3247		mddev_unlock(&rs->md);
3248		goto bad;
3249	}
3250
3251	r = md_start(&rs->md);
3252	if (r) {
3253		ti->error = "Failed to start raid array";
3254		goto bad_unlock;
3255	}
3256
3257	/* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3258	if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3259		r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3260		if (r) {
3261			ti->error = "Failed to set raid4/5/6 journal mode";
3262			goto bad_unlock;
3263		}
3264	}
3265
3266	mddev_suspend(&rs->md);
3267	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3268
3269	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3270	if (rs_is_raid456(rs)) {
3271		r = rs_set_raid456_stripe_cache(rs);
3272		if (r)
3273			goto bad_unlock;
3274	}
3275
3276	/* Now do an early reshape check */
3277	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3278		r = rs_check_reshape(rs);
3279		if (r)
3280			goto bad_unlock;
3281
3282		/* Restore new, ctr requested layout to perform check */
3283		rs_config_restore(rs, &rs_layout);
3284
3285		if (rs->md.pers->start_reshape) {
3286			r = rs->md.pers->check_reshape(&rs->md);
3287			if (r) {
3288				ti->error = "Reshape check failed";
3289				goto bad_unlock;
3290			}
3291		}
3292	}
3293
3294	/* Disable/enable discard support on raid set. */
3295	configure_discard_support(rs);
3296
3297	mddev_unlock(&rs->md);
3298	return 0;
3299
3300bad_unlock:
3301	md_stop(&rs->md);
3302	mddev_unlock(&rs->md);
3303bad:
3304	raid_set_free(rs);
3305
3306	return r;
3307}
3308
3309static void raid_dtr(struct dm_target *ti)
3310{
3311	struct raid_set *rs = ti->private;
3312
3313	mddev_lock_nointr(&rs->md);
3314	md_stop(&rs->md);
3315	mddev_unlock(&rs->md);
3316	raid_set_free(rs);
3317}
3318
3319static int raid_map(struct dm_target *ti, struct bio *bio)
3320{
3321	struct raid_set *rs = ti->private;
3322	struct mddev *mddev = &rs->md;
3323
3324	/*
3325	 * If we're reshaping to add disk(s), ti->len and
3326	 * mddev->array_sectors will differ during the process
3327	 * (ti->len > mddev->array_sectors), so we have to requeue
3328	 * bios with addresses > mddev->array_sectors here or
3329	 * there will occur accesses past EOD of the component
3330	 * data images thus erroring the raid set.
3331	 */
3332	if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3333		return DM_MAPIO_REQUEUE;
3334
3335	md_handle_request(mddev, bio);
3336
3337	return DM_MAPIO_SUBMITTED;
3338}
3339
3340/* Return sync state string for @state */
3341enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3342static const char *sync_str(enum sync_state state)
3343{
3344	/* Has to be in above sync_state order! */
3345	static const char *sync_strs[] = {
3346		"frozen",
3347		"reshape",
3348		"resync",
3349		"check",
3350		"repair",
3351		"recover",
3352		"idle"
3353	};
3354
3355	return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3356};
3357
3358/* Return enum sync_state for @mddev derived from @recovery flags */
3359static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3360{
3361	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3362		return st_frozen;
3363
3364	/* The MD sync thread can be done with io or be interrupted but still be running */
3365	if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3366	    (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3367	     (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3368		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3369			return st_reshape;
3370
3371		if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3372			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3373				return st_resync;
3374			if (test_bit(MD_RECOVERY_CHECK, &recovery))
3375				return st_check;
3376			return st_repair;
3377		}
3378
3379		if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3380			return st_recover;
3381
3382		if (mddev->reshape_position != MaxSector)
3383			return st_reshape;
3384	}
3385
3386	return st_idle;
3387}
3388
3389/*
3390 * Return status string for @rdev
3391 *
3392 * Status characters:
3393 *
3394 *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3395 *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3396 *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3397 *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3398 */
3399static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3400{
3401	if (!rdev->bdev)
3402		return "-";
3403	else if (test_bit(Faulty, &rdev->flags))
3404		return "D";
3405	else if (test_bit(Journal, &rdev->flags))
3406		return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3407	else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3408		 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3409		  !test_bit(In_sync, &rdev->flags)))
3410		return "a";
3411	else
3412		return "A";
3413}
3414
3415/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3416static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3417				enum sync_state state, sector_t resync_max_sectors)
3418{
3419	sector_t r;
3420	struct mddev *mddev = &rs->md;
3421
3422	clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3423	clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3424
3425	if (rs_is_raid0(rs)) {
3426		r = resync_max_sectors;
3427		set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3428
3429	} else {
3430		if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3431			r = mddev->recovery_cp;
3432		else
3433			r = mddev->curr_resync_completed;
3434
3435		if (state == st_idle && r >= resync_max_sectors) {
3436			/*
3437			 * Sync complete.
3438			 */
3439			/* In case we have finished recovering, the array is in sync. */
3440			if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3441				set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3442
3443		} else if (state == st_recover)
3444			/*
3445			 * In case we are recovering, the array is not in sync
3446			 * and health chars should show the recovering legs.
3447			 *
3448			 * Already retrieved recovery offset from curr_resync_completed above.
3449			 */
3450			;
3451
3452		else if (state == st_resync || state == st_reshape)
3453			/*
3454			 * If "resync/reshape" is occurring, the raid set
3455			 * is or may be out of sync hence the health
3456			 * characters shall be 'a'.
3457			 */
3458			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3459
3460		else if (state == st_check || state == st_repair)
3461			/*
3462			 * If "check" or "repair" is occurring, the raid set has
3463			 * undergone an initial sync and the health characters
3464			 * should not be 'a' anymore.
3465			 */
3466			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3467
3468		else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3469			/*
3470			 * We are idle and recovery is needed, prevent 'A' chars race
3471			 * caused by components still set to in-sync by constructor.
3472			 */
3473			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3474
3475		else {
3476			/*
3477			 * We are idle and the raid set may be doing an initial
3478			 * sync, or it may be rebuilding individual components.
3479			 * If all the devices are In_sync, then it is the raid set
3480			 * that is being initialized.
3481			 */
3482			struct md_rdev *rdev;
3483
3484			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3485			rdev_for_each(rdev, mddev)
3486				if (!test_bit(Journal, &rdev->flags) &&
3487				    !test_bit(In_sync, &rdev->flags)) {
3488					clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3489					break;
3490				}
3491		}
3492	}
3493
3494	return min(r, resync_max_sectors);
3495}
3496
3497/* Helper to return @dev name or "-" if !@dev */
3498static const char *__get_dev_name(struct dm_dev *dev)
3499{
3500	return dev ? dev->name : "-";
3501}
3502
3503static void raid_status(struct dm_target *ti, status_type_t type,
3504			unsigned int status_flags, char *result, unsigned int maxlen)
3505{
3506	struct raid_set *rs = ti->private;
3507	struct mddev *mddev = &rs->md;
3508	struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3509	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3510	unsigned long recovery;
3511	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3512	unsigned int sz = 0;
3513	unsigned int rebuild_writemostly_count = 0;
3514	sector_t progress, resync_max_sectors, resync_mismatches;
3515	enum sync_state state;
3516	struct raid_type *rt;
3517
3518	switch (type) {
3519	case STATUSTYPE_INFO:
3520		/* *Should* always succeed */
3521		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3522		if (!rt)
3523			return;
3524
3525		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3526
3527		/* Access most recent mddev properties for status output */
3528		smp_rmb();
3529		/* Get sensible max sectors even if raid set not yet started */
3530		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3531				      mddev->resync_max_sectors : mddev->dev_sectors;
3532		recovery = rs->md.recovery;
3533		state = decipher_sync_action(mddev, recovery);
3534		progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3535		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3536				    atomic64_read(&mddev->resync_mismatches) : 0;
3537
3538		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3539		for (i = 0; i < rs->raid_disks; i++)
3540			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3541
3542		/*
3543		 * In-sync/Reshape ratio:
3544		 *  The in-sync ratio shows the progress of:
3545		 *   - Initializing the raid set
3546		 *   - Rebuilding a subset of devices of the raid set
3547		 *  The user can distinguish between the two by referring
3548		 *  to the status characters.
3549		 *
3550		 *  The reshape ratio shows the progress of
3551		 *  changing the raid layout or the number of
3552		 *  disks of a raid set
3553		 */
3554		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3555				     (unsigned long long) resync_max_sectors);
3556
3557		/*
3558		 * v1.5.0+:
3559		 *
3560		 * Sync action:
3561		 *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3562		 *   information on each of these states.
3563		 */
3564		DMEMIT(" %s", sync_str(state));
3565
3566		/*
3567		 * v1.5.0+:
3568		 *
3569		 * resync_mismatches/mismatch_cnt
3570		 *   This field shows the number of discrepancies found when
3571		 *   performing a "check" of the raid set.
3572		 */
3573		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3574
3575		/*
3576		 * v1.9.0+:
3577		 *
3578		 * data_offset (needed for out of space reshaping)
3579		 *   This field shows the data offset into the data
3580		 *   image LV where the first stripes data starts.
3581		 *
3582		 * We keep data_offset equal on all raid disks of the set,
3583		 * so retrieving it from the first raid disk is sufficient.
3584		 */
3585		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3586
3587		/*
3588		 * v1.10.0+:
3589		 */
3590		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3591			      __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3592		break;
3593
3594	case STATUSTYPE_TABLE:
3595		/* Report the table line string you would use to construct this raid set */
3596
3597		/*
3598		 * Count any rebuild or writemostly argument pairs and subtract the
3599		 * hweight count being added below of any rebuild and writemostly ctr flags.
3600		 */
3601		for (i = 0; i < rs->raid_disks; i++) {
3602			rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3603						     (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3604		}
3605		rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3606					     (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3607		/* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3608		raid_param_cnt += rebuild_writemostly_count +
3609				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3610				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3611		/* Emit table line */
3612		/* This has to be in the documented order for userspace! */
3613		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3614		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3615			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3616		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3617			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3618		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3619			for (i = 0; i < rs->raid_disks; i++)
3620				if (test_bit(i, (void *) rs->rebuild_disks))
3621					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3622		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3623			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3624					  mddev->bitmap_info.daemon_sleep);
3625		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3626			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3627					 mddev->sync_speed_min);
3628		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3629			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3630					 mddev->sync_speed_max);
3631		if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3632			for (i = 0; i < rs->raid_disks; i++)
3633				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3634					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3635					       rs->dev[i].rdev.raid_disk);
3636		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3637			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3638					  mddev->bitmap_info.max_write_behind);
3639		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3640			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3641					 max_nr_stripes);
3642		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3643			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3644					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3645		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3646			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3647					 raid10_md_layout_to_copies(mddev->layout));
3648		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3649			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3650					 raid10_md_layout_to_format(mddev->layout));
3651		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3652			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3653					 max(rs->delta_disks, mddev->delta_disks));
3654		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3655			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3656					   (unsigned long long) rs->data_offset);
3657		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3658			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3659					__get_dev_name(rs->journal_dev.dev));
3660		if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3661			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3662					 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3663		DMEMIT(" %d", rs->raid_disks);
3664		for (i = 0; i < rs->raid_disks; i++)
3665			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3666					 __get_dev_name(rs->dev[i].data_dev));
3667		break;
3668
3669	case STATUSTYPE_IMA:
3670		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3671		if (!rt)
3672			return;
3673
3674		DMEMIT_TARGET_NAME_VERSION(ti->type);
3675		DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3676
3677		/* Access most recent mddev properties for status output */
3678		smp_rmb();
3679		recovery = rs->md.recovery;
3680		state = decipher_sync_action(mddev, recovery);
3681		DMEMIT(",raid_state=%s", sync_str(state));
3682
3683		for (i = 0; i < rs->raid_disks; i++) {
3684			DMEMIT(",raid_device_%d_status=", i);
3685			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3686		}
3687
3688		if (rt_is_raid456(rt)) {
3689			DMEMIT(",journal_dev_mode=");
3690			switch (rs->journal_dev.mode) {
3691			case R5C_JOURNAL_MODE_WRITE_THROUGH:
3692				DMEMIT("%s",
3693				       _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3694				break;
3695			case R5C_JOURNAL_MODE_WRITE_BACK:
3696				DMEMIT("%s",
3697				       _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3698				break;
3699			default:
3700				DMEMIT("invalid");
3701				break;
3702			}
3703		}
3704		DMEMIT(";");
3705		break;
3706	}
3707}
3708
3709static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3710			char *result, unsigned int maxlen)
3711{
3712	struct raid_set *rs = ti->private;
3713	struct mddev *mddev = &rs->md;
3714
3715	if (!mddev->pers || !mddev->pers->sync_request)
3716		return -EINVAL;
3717
3718	if (!strcasecmp(argv[0], "frozen"))
3719		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3720	else
3721		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3722
3723	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3724		if (mddev->sync_thread) {
3725			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3726			md_reap_sync_thread(mddev);
3727		}
3728	} else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3729		return -EBUSY;
3730	else if (!strcasecmp(argv[0], "resync"))
3731		; /* MD_RECOVERY_NEEDED set below */
3732	else if (!strcasecmp(argv[0], "recover"))
3733		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3734	else {
3735		if (!strcasecmp(argv[0], "check")) {
3736			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3737			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3738			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3739		} else if (!strcasecmp(argv[0], "repair")) {
3740			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3741			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3742		} else
3743			return -EINVAL;
3744	}
3745	if (mddev->ro == 2) {
3746		/* A write to sync_action is enough to justify
3747		 * canceling read-auto mode
3748		 */
3749		mddev->ro = 0;
3750		if (!mddev->suspended)
3751			md_wakeup_thread(mddev->sync_thread);
3752	}
3753	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3754	if (!mddev->suspended)
3755		md_wakeup_thread(mddev->thread);
3756
3757	return 0;
3758}
3759
3760static int raid_iterate_devices(struct dm_target *ti,
3761				iterate_devices_callout_fn fn, void *data)
3762{
3763	struct raid_set *rs = ti->private;
3764	unsigned int i;
3765	int r = 0;
3766
3767	for (i = 0; !r && i < rs->raid_disks; i++) {
3768		if (rs->dev[i].data_dev) {
3769			r = fn(ti, rs->dev[i].data_dev,
3770			       0, /* No offset on data devs */
3771			       rs->md.dev_sectors, data);
3772		}
3773	}
3774
3775	return r;
3776}
3777
3778static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3779{
3780	struct raid_set *rs = ti->private;
3781	unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3782
3783	blk_limits_io_min(limits, chunk_size_bytes);
3784	blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3785}
3786
3787static void raid_postsuspend(struct dm_target *ti)
3788{
3789	struct raid_set *rs = ti->private;
3790
3791	if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3792		/* Writes have to be stopped before suspending to avoid deadlocks. */
3793		if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3794			md_stop_writes(&rs->md);
3795
3796		mddev_lock_nointr(&rs->md);
3797		mddev_suspend(&rs->md);
3798		mddev_unlock(&rs->md);
3799	}
3800}
3801
3802static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3803{
3804	int i;
3805	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3806	unsigned long flags;
3807	bool cleared = false;
3808	struct dm_raid_superblock *sb;
3809	struct mddev *mddev = &rs->md;
3810	struct md_rdev *r;
3811
3812	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3813	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3814		return;
3815
3816	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3817
3818	for (i = 0; i < rs->raid_disks; i++) {
3819		r = &rs->dev[i].rdev;
3820		/* HM FIXME: enhance journal device recovery processing */
3821		if (test_bit(Journal, &r->flags))
3822			continue;
3823
3824		if (test_bit(Faulty, &r->flags) &&
3825		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3826			DMINFO("Faulty %s device #%d has readable super block."
3827			       "  Attempting to revive it.",
3828			       rs->raid_type->name, i);
3829
3830			/*
3831			 * Faulty bit may be set, but sometimes the array can
3832			 * be suspended before the personalities can respond
3833			 * by removing the device from the array (i.e. calling
3834			 * 'hot_remove_disk').	If they haven't yet removed
3835			 * the failed device, its 'raid_disk' number will be
3836			 * '>= 0' - meaning we must call this function
3837			 * ourselves.
3838			 */
3839			flags = r->flags;
3840			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3841			if (r->raid_disk >= 0) {
3842				if (mddev->pers->hot_remove_disk(mddev, r)) {
3843					/* Failed to revive this device, try next */
3844					r->flags = flags;
3845					continue;
3846				}
3847			} else
3848				r->raid_disk = r->saved_raid_disk = i;
3849
3850			clear_bit(Faulty, &r->flags);
3851			clear_bit(WriteErrorSeen, &r->flags);
3852
3853			if (mddev->pers->hot_add_disk(mddev, r)) {
3854				/* Failed to revive this device, try next */
3855				r->raid_disk = r->saved_raid_disk = -1;
3856				r->flags = flags;
3857			} else {
3858				clear_bit(In_sync, &r->flags);
3859				r->recovery_offset = 0;
3860				set_bit(i, (void *) cleared_failed_devices);
3861				cleared = true;
3862			}
3863		}
3864	}
3865
3866	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3867	if (cleared) {
3868		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3869
3870		rdev_for_each(r, &rs->md) {
3871			if (test_bit(Journal, &r->flags))
3872				continue;
3873
3874			sb = page_address(r->sb_page);
3875			sb_retrieve_failed_devices(sb, failed_devices);
3876
3877			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3878				failed_devices[i] &= ~cleared_failed_devices[i];
3879
3880			sb_update_failed_devices(sb, failed_devices);
3881		}
3882	}
3883}
3884
3885static int __load_dirty_region_bitmap(struct raid_set *rs)
3886{
3887	int r = 0;
3888
3889	/* Try loading the bitmap unless "raid0", which does not have one */
3890	if (!rs_is_raid0(rs) &&
3891	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3892		r = md_bitmap_load(&rs->md);
3893		if (r)
3894			DMERR("Failed to load bitmap");
3895	}
3896
3897	return r;
3898}
3899
3900/* Enforce updating all superblocks */
3901static void rs_update_sbs(struct raid_set *rs)
3902{
3903	struct mddev *mddev = &rs->md;
3904	int ro = mddev->ro;
3905
3906	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3907	mddev->ro = 0;
3908	md_update_sb(mddev, 1);
3909	mddev->ro = ro;
3910}
3911
3912/*
3913 * Reshape changes raid algorithm of @rs to new one within personality
3914 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3915 * disks from a raid set thus growing/shrinking it or resizes the set
3916 *
3917 * Call mddev_lock_nointr() before!
3918 */
3919static int rs_start_reshape(struct raid_set *rs)
3920{
3921	int r;
3922	struct mddev *mddev = &rs->md;
3923	struct md_personality *pers = mddev->pers;
3924
3925	/* Don't allow the sync thread to work until the table gets reloaded. */
3926	set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3927
3928	r = rs_setup_reshape(rs);
3929	if (r)
3930		return r;
3931
3932	/*
3933	 * Check any reshape constraints enforced by the personalility
3934	 *
3935	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3936	 */
3937	r = pers->check_reshape(mddev);
3938	if (r) {
3939		rs->ti->error = "pers->check_reshape() failed";
3940		return r;
3941	}
3942
3943	/*
3944	 * Personality may not provide start reshape method in which
3945	 * case check_reshape above has already covered everything
3946	 */
3947	if (pers->start_reshape) {
3948		r = pers->start_reshape(mddev);
3949		if (r) {
3950			rs->ti->error = "pers->start_reshape() failed";
3951			return r;
3952		}
3953	}
3954
3955	/*
3956	 * Now reshape got set up, update superblocks to
3957	 * reflect the fact so that a table reload will
3958	 * access proper superblock content in the ctr.
3959	 */
3960	rs_update_sbs(rs);
3961
3962	return 0;
3963}
3964
3965static int raid_preresume(struct dm_target *ti)
3966{
3967	int r;
3968	struct raid_set *rs = ti->private;
3969	struct mddev *mddev = &rs->md;
3970
3971	/* This is a resume after a suspend of the set -> it's already started. */
3972	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3973		return 0;
3974
3975	/*
3976	 * The superblocks need to be updated on disk if the
3977	 * array is new or new devices got added (thus zeroed
3978	 * out by userspace) or __load_dirty_region_bitmap
3979	 * will overwrite them in core with old data or fail.
3980	 */
3981	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3982		rs_update_sbs(rs);
3983
3984	/* Load the bitmap from disk unless raid0 */
3985	r = __load_dirty_region_bitmap(rs);
3986	if (r)
3987		return r;
3988
3989	/* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3990	if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3991		mddev->array_sectors = rs->array_sectors;
3992		mddev->dev_sectors = rs->dev_sectors;
3993		rs_set_rdev_sectors(rs);
3994		rs_set_capacity(rs);
3995	}
3996
3997	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3998	if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3999	    (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4000	     (rs->requested_bitmap_chunk_sectors &&
4001	       mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4002		int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4003
4004		r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4005		if (r)
4006			DMERR("Failed to resize bitmap");
4007	}
4008
4009	/* Check for any resize/reshape on @rs and adjust/initiate */
4010	/* Be prepared for mddev_resume() in raid_resume() */
4011	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4012	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4013		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4014		mddev->resync_min = mddev->recovery_cp;
4015		if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4016			mddev->resync_max_sectors = mddev->dev_sectors;
4017	}
4018
4019	/* Check for any reshape request unless new raid set */
4020	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4021		/* Initiate a reshape. */
4022		rs_set_rdev_sectors(rs);
4023		mddev_lock_nointr(mddev);
4024		r = rs_start_reshape(rs);
4025		mddev_unlock(mddev);
4026		if (r)
4027			DMWARN("Failed to check/start reshape, continuing without change");
4028		r = 0;
4029	}
4030
4031	return r;
4032}
4033
4034static void raid_resume(struct dm_target *ti)
4035{
4036	struct raid_set *rs = ti->private;
4037	struct mddev *mddev = &rs->md;
4038
4039	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4040		/*
4041		 * A secondary resume while the device is active.
4042		 * Take this opportunity to check whether any failed
4043		 * devices are reachable again.
4044		 */
4045		mddev_lock_nointr(mddev);
4046		attempt_restore_of_faulty_devices(rs);
4047		mddev_unlock(mddev);
4048	}
4049
4050	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4051		/* Only reduce raid set size before running a disk removing reshape. */
4052		if (mddev->delta_disks < 0)
4053			rs_set_capacity(rs);
4054
4055		mddev_lock_nointr(mddev);
4056		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4057		mddev->ro = 0;
4058		mddev->in_sync = 0;
4059		mddev_resume(mddev);
4060		mddev_unlock(mddev);
4061	}
4062}
4063
4064static struct target_type raid_target = {
4065	.name = "raid",
4066	.version = {1, 15, 1},
4067	.module = THIS_MODULE,
4068	.ctr = raid_ctr,
4069	.dtr = raid_dtr,
4070	.map = raid_map,
4071	.status = raid_status,
4072	.message = raid_message,
4073	.iterate_devices = raid_iterate_devices,
4074	.io_hints = raid_io_hints,
4075	.postsuspend = raid_postsuspend,
4076	.preresume = raid_preresume,
4077	.resume = raid_resume,
4078};
4079module_dm(raid);
4080
4081module_param(devices_handle_discard_safely, bool, 0644);
4082MODULE_PARM_DESC(devices_handle_discard_safely,
4083		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4084
4085MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4086MODULE_ALIAS("dm-raid0");
4087MODULE_ALIAS("dm-raid1");
4088MODULE_ALIAS("dm-raid10");
4089MODULE_ALIAS("dm-raid4");
4090MODULE_ALIAS("dm-raid5");
4091MODULE_ALIAS("dm-raid6");
4092MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4093MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4094MODULE_LICENSE("GPL");
4095