1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10#include "dm-bio-record.h"
11
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/device-mapper.h>
15#include <linux/dm-io.h>
16#include <linux/vmalloc.h>
17#include <linux/sort.h>
18#include <linux/rbtree.h>
19#include <linux/delay.h>
20#include <linux/random.h>
21#include <linux/reboot.h>
22#include <crypto/hash.h>
23#include <crypto/skcipher.h>
24#include <linux/async_tx.h>
25#include <linux/dm-bufio.h>
26
27#include "dm-audit.h"
28
29#define DM_MSG_PREFIX "integrity"
30
31#define DEFAULT_INTERLEAVE_SECTORS	32768
32#define DEFAULT_JOURNAL_SIZE_FACTOR	7
33#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34#define DEFAULT_BUFFER_SECTORS		128
35#define DEFAULT_JOURNAL_WATERMARK	50
36#define DEFAULT_SYNC_MSEC		10000
37#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38#define MIN_LOG2_INTERLEAVE_SECTORS	3
39#define MAX_LOG2_INTERLEAVE_SECTORS	31
40#define METADATA_WORKQUEUE_MAX_ACTIVE	16
41#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42#define RECALC_WRITE_SUPER		16
43#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45#define DISCARD_FILLER			0xf6
46#define SALT_SIZE			16
47
48/*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52//#define DEBUG_PRINT
53//#define INTERNAL_VERIFY
54
55/*
56 * On disk structures
57 */
58
59#define SB_MAGIC			"integrt"
60#define SB_VERSION_1			1
61#define SB_VERSION_2			2
62#define SB_VERSION_3			3
63#define SB_VERSION_4			4
64#define SB_VERSION_5			5
65#define SB_SECTORS			8
66#define MAX_SECTORS_PER_BLOCK		8
67
68struct superblock {
69	__u8 magic[8];
70	__u8 version;
71	__u8 log2_interleave_sectors;
72	__le16 integrity_tag_size;
73	__le32 journal_sections;
74	__le64 provided_data_sectors;	/* userspace uses this value */
75	__le32 flags;
76	__u8 log2_sectors_per_block;
77	__u8 log2_blocks_per_bitmap_bit;
78	__u8 pad[2];
79	__le64 recalc_sector;
80	__u8 pad2[8];
81	__u8 salt[SALT_SIZE];
82};
83
84#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85#define SB_FLAG_RECALCULATING		0x2
86#define SB_FLAG_DIRTY_BITMAP		0x4
87#define SB_FLAG_FIXED_PADDING		0x8
88#define SB_FLAG_FIXED_HMAC		0x10
89
90#define	JOURNAL_ENTRY_ROUNDUP		8
91
92typedef __le64 commit_id_t;
93#define JOURNAL_MAC_PER_SECTOR		8
94
95struct journal_entry {
96	union {
97		struct {
98			__le32 sector_lo;
99			__le32 sector_hi;
100		} s;
101		__le64 sector;
102	} u;
103	commit_id_t last_bytes[];
104	/* __u8 tag[0]; */
105};
106
107#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109#if BITS_PER_LONG == 64
110#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111#else
112#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113#endif
114#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116#define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118#define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120#define JOURNAL_BLOCK_SECTORS		8
121#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124struct journal_sector {
125	struct_group(sectors,
126		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128	);
129	commit_id_t commit_id;
130};
131
132#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134#define METADATA_PADDING_SECTORS	8
135
136#define N_COMMIT_IDS			4
137
138static unsigned char prev_commit_seq(unsigned char seq)
139{
140	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141}
142
143static unsigned char next_commit_seq(unsigned char seq)
144{
145	return (seq + 1) % N_COMMIT_IDS;
146}
147
148/*
149 * In-memory structures
150 */
151
152struct journal_node {
153	struct rb_node node;
154	sector_t sector;
155};
156
157struct alg_spec {
158	char *alg_string;
159	char *key_string;
160	__u8 *key;
161	unsigned int key_size;
162};
163
164struct dm_integrity_c {
165	struct dm_dev *dev;
166	struct dm_dev *meta_dev;
167	unsigned int tag_size;
168	__s8 log2_tag_size;
169	sector_t start;
170	mempool_t journal_io_mempool;
171	struct dm_io_client *io;
172	struct dm_bufio_client *bufio;
173	struct workqueue_struct *metadata_wq;
174	struct superblock *sb;
175	unsigned int journal_pages;
176	unsigned int n_bitmap_blocks;
177
178	struct page_list *journal;
179	struct page_list *journal_io;
180	struct page_list *journal_xor;
181	struct page_list *recalc_bitmap;
182	struct page_list *may_write_bitmap;
183	struct bitmap_block_status *bbs;
184	unsigned int bitmap_flush_interval;
185	int synchronous_mode;
186	struct bio_list synchronous_bios;
187	struct delayed_work bitmap_flush_work;
188
189	struct crypto_skcipher *journal_crypt;
190	struct scatterlist **journal_scatterlist;
191	struct scatterlist **journal_io_scatterlist;
192	struct skcipher_request **sk_requests;
193
194	struct crypto_shash *journal_mac;
195
196	struct journal_node *journal_tree;
197	struct rb_root journal_tree_root;
198
199	sector_t provided_data_sectors;
200
201	unsigned short journal_entry_size;
202	unsigned char journal_entries_per_sector;
203	unsigned char journal_section_entries;
204	unsigned short journal_section_sectors;
205	unsigned int journal_sections;
206	unsigned int journal_entries;
207	sector_t data_device_sectors;
208	sector_t meta_device_sectors;
209	unsigned int initial_sectors;
210	unsigned int metadata_run;
211	__s8 log2_metadata_run;
212	__u8 log2_buffer_sectors;
213	__u8 sectors_per_block;
214	__u8 log2_blocks_per_bitmap_bit;
215
216	unsigned char mode;
217
218	int failed;
219
220	struct crypto_shash *internal_hash;
221
222	struct dm_target *ti;
223
224	/* these variables are locked with endio_wait.lock */
225	struct rb_root in_progress;
226	struct list_head wait_list;
227	wait_queue_head_t endio_wait;
228	struct workqueue_struct *wait_wq;
229	struct workqueue_struct *offload_wq;
230
231	unsigned char commit_seq;
232	commit_id_t commit_ids[N_COMMIT_IDS];
233
234	unsigned int committed_section;
235	unsigned int n_committed_sections;
236
237	unsigned int uncommitted_section;
238	unsigned int n_uncommitted_sections;
239
240	unsigned int free_section;
241	unsigned char free_section_entry;
242	unsigned int free_sectors;
243
244	unsigned int free_sectors_threshold;
245
246	struct workqueue_struct *commit_wq;
247	struct work_struct commit_work;
248
249	struct workqueue_struct *writer_wq;
250	struct work_struct writer_work;
251
252	struct workqueue_struct *recalc_wq;
253	struct work_struct recalc_work;
254
255	struct bio_list flush_bio_list;
256
257	unsigned long autocommit_jiffies;
258	struct timer_list autocommit_timer;
259	unsigned int autocommit_msec;
260
261	wait_queue_head_t copy_to_journal_wait;
262
263	struct completion crypto_backoff;
264
265	bool wrote_to_journal;
266	bool journal_uptodate;
267	bool just_formatted;
268	bool recalculate_flag;
269	bool reset_recalculate_flag;
270	bool discard;
271	bool fix_padding;
272	bool fix_hmac;
273	bool legacy_recalculate;
274
275	struct alg_spec internal_hash_alg;
276	struct alg_spec journal_crypt_alg;
277	struct alg_spec journal_mac_alg;
278
279	atomic64_t number_of_mismatches;
280
281	mempool_t recheck_pool;
282
283	struct notifier_block reboot_notifier;
284};
285
286struct dm_integrity_range {
287	sector_t logical_sector;
288	sector_t n_sectors;
289	bool waiting;
290	union {
291		struct rb_node node;
292		struct {
293			struct task_struct *task;
294			struct list_head wait_entry;
295		};
296	};
297};
298
299struct dm_integrity_io {
300	struct work_struct work;
301
302	struct dm_integrity_c *ic;
303	enum req_op op;
304	bool fua;
305
306	struct dm_integrity_range range;
307
308	sector_t metadata_block;
309	unsigned int metadata_offset;
310
311	atomic_t in_flight;
312	blk_status_t bi_status;
313
314	struct completion *completion;
315
316	struct dm_bio_details bio_details;
317};
318
319struct journal_completion {
320	struct dm_integrity_c *ic;
321	atomic_t in_flight;
322	struct completion comp;
323};
324
325struct journal_io {
326	struct dm_integrity_range range;
327	struct journal_completion *comp;
328};
329
330struct bitmap_block_status {
331	struct work_struct work;
332	struct dm_integrity_c *ic;
333	unsigned int idx;
334	unsigned long *bitmap;
335	struct bio_list bio_queue;
336	spinlock_t bio_queue_lock;
337
338};
339
340static struct kmem_cache *journal_io_cache;
341
342#define JOURNAL_IO_MEMPOOL	32
343
344#ifdef DEBUG_PRINT
345#define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346#define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347						       len ? ": " : "", len, bytes)
348#else
349#define DEBUG_print(x, ...)			do { } while (0)
350#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351#endif
352
353static void dm_integrity_prepare(struct request *rq)
354{
355}
356
357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358{
359}
360
361/*
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
363 */
364static const struct blk_integrity_profile dm_integrity_profile = {
365	.name			= "DM-DIF-EXT-TAG",
366	.generate_fn		= NULL,
367	.verify_fn		= NULL,
368	.prepare_fn		= dm_integrity_prepare,
369	.complete_fn		= dm_integrity_complete,
370};
371
372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373static void integrity_bio_wait(struct work_struct *w);
374static void dm_integrity_dtr(struct dm_target *ti);
375
376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377{
378	if (err == -EILSEQ)
379		atomic64_inc(&ic->number_of_mismatches);
380	if (!cmpxchg(&ic->failed, 0, err))
381		DMERR("Error on %s: %d", msg, err);
382}
383
384static int dm_integrity_failed(struct dm_integrity_c *ic)
385{
386	return READ_ONCE(ic->failed);
387}
388
389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390{
391	if (ic->legacy_recalculate)
392		return false;
393	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396		return true;
397	return false;
398}
399
400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401					  unsigned int j, unsigned char seq)
402{
403	/*
404	 * Xor the number with section and sector, so that if a piece of
405	 * journal is written at wrong place, it is detected.
406	 */
407	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408}
409
410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411				sector_t *area, sector_t *offset)
412{
413	if (!ic->meta_dev) {
414		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415		*area = data_sector >> log2_interleave_sectors;
416		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417	} else {
418		*area = 0;
419		*offset = data_sector;
420	}
421}
422
423#define sector_to_block(ic, n)						\
424do {									\
425	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427} while (0)
428
429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430					    sector_t offset, unsigned int *metadata_offset)
431{
432	__u64 ms;
433	unsigned int mo;
434
435	ms = area << ic->sb->log2_interleave_sectors;
436	if (likely(ic->log2_metadata_run >= 0))
437		ms += area << ic->log2_metadata_run;
438	else
439		ms += area * ic->metadata_run;
440	ms >>= ic->log2_buffer_sectors;
441
442	sector_to_block(ic, offset);
443
444	if (likely(ic->log2_tag_size >= 0)) {
445		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447	} else {
448		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450	}
451	*metadata_offset = mo;
452	return ms;
453}
454
455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456{
457	sector_t result;
458
459	if (ic->meta_dev)
460		return offset;
461
462	result = area << ic->sb->log2_interleave_sectors;
463	if (likely(ic->log2_metadata_run >= 0))
464		result += (area + 1) << ic->log2_metadata_run;
465	else
466		result += (area + 1) * ic->metadata_run;
467
468	result += (sector_t)ic->initial_sectors + offset;
469	result += ic->start;
470
471	return result;
472}
473
474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475{
476	if (unlikely(*sec_ptr >= ic->journal_sections))
477		*sec_ptr -= ic->journal_sections;
478}
479
480static void sb_set_version(struct dm_integrity_c *ic)
481{
482	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483		ic->sb->version = SB_VERSION_5;
484	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485		ic->sb->version = SB_VERSION_4;
486	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487		ic->sb->version = SB_VERSION_3;
488	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489		ic->sb->version = SB_VERSION_2;
490	else
491		ic->sb->version = SB_VERSION_1;
492}
493
494static int sb_mac(struct dm_integrity_c *ic, bool wr)
495{
496	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497	int r;
498	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
499
500	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502		return -EINVAL;
503	}
504
505	desc->tfm = ic->journal_mac;
506
507	r = crypto_shash_init(desc);
508	if (unlikely(r < 0)) {
509		dm_integrity_io_error(ic, "crypto_shash_init", r);
510		return r;
511	}
512
513	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514	if (unlikely(r < 0)) {
515		dm_integrity_io_error(ic, "crypto_shash_update", r);
516		return r;
517	}
518
519	if (likely(wr)) {
520		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521		if (unlikely(r < 0)) {
522			dm_integrity_io_error(ic, "crypto_shash_final", r);
523			return r;
524		}
525	} else {
526		__u8 result[HASH_MAX_DIGESTSIZE];
527
528		r = crypto_shash_final(desc, result);
529		if (unlikely(r < 0)) {
530			dm_integrity_io_error(ic, "crypto_shash_final", r);
531			return r;
532		}
533		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
536			return -EILSEQ;
537		}
538	}
539
540	return 0;
541}
542
543static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
544{
545	struct dm_io_request io_req;
546	struct dm_io_region io_loc;
547	const enum req_op op = opf & REQ_OP_MASK;
548	int r;
549
550	io_req.bi_opf = opf;
551	io_req.mem.type = DM_IO_KMEM;
552	io_req.mem.ptr.addr = ic->sb;
553	io_req.notify.fn = NULL;
554	io_req.client = ic->io;
555	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556	io_loc.sector = ic->start;
557	io_loc.count = SB_SECTORS;
558
559	if (op == REQ_OP_WRITE) {
560		sb_set_version(ic);
561		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562			r = sb_mac(ic, true);
563			if (unlikely(r))
564				return r;
565		}
566	}
567
568	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
569	if (unlikely(r))
570		return r;
571
572	if (op == REQ_OP_READ) {
573		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574			r = sb_mac(ic, false);
575			if (unlikely(r))
576				return r;
577		}
578	}
579
580	return 0;
581}
582
583#define BITMAP_OP_TEST_ALL_SET		0
584#define BITMAP_OP_TEST_ALL_CLEAR	1
585#define BITMAP_OP_SET			2
586#define BITMAP_OP_CLEAR			3
587
588static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589			    sector_t sector, sector_t n_sectors, int mode)
590{
591	unsigned long bit, end_bit, this_end_bit, page, end_page;
592	unsigned long *data;
593
594	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
596			sector,
597			n_sectors,
598			ic->sb->log2_sectors_per_block,
599			ic->log2_blocks_per_bitmap_bit,
600			mode);
601		BUG();
602	}
603
604	if (unlikely(!n_sectors))
605		return true;
606
607	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608	end_bit = (sector + n_sectors - 1) >>
609		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610
611	page = bit / (PAGE_SIZE * 8);
612	bit %= PAGE_SIZE * 8;
613
614	end_page = end_bit / (PAGE_SIZE * 8);
615	end_bit %= PAGE_SIZE * 8;
616
617repeat:
618	if (page < end_page)
619		this_end_bit = PAGE_SIZE * 8 - 1;
620	else
621		this_end_bit = end_bit;
622
623	data = lowmem_page_address(bitmap[page].page);
624
625	if (mode == BITMAP_OP_TEST_ALL_SET) {
626		while (bit <= this_end_bit) {
627			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628				do {
629					if (data[bit / BITS_PER_LONG] != -1)
630						return false;
631					bit += BITS_PER_LONG;
632				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
633				continue;
634			}
635			if (!test_bit(bit, data))
636				return false;
637			bit++;
638		}
639	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640		while (bit <= this_end_bit) {
641			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642				do {
643					if (data[bit / BITS_PER_LONG] != 0)
644						return false;
645					bit += BITS_PER_LONG;
646				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
647				continue;
648			}
649			if (test_bit(bit, data))
650				return false;
651			bit++;
652		}
653	} else if (mode == BITMAP_OP_SET) {
654		while (bit <= this_end_bit) {
655			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
656				do {
657					data[bit / BITS_PER_LONG] = -1;
658					bit += BITS_PER_LONG;
659				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
660				continue;
661			}
662			__set_bit(bit, data);
663			bit++;
664		}
665	} else if (mode == BITMAP_OP_CLEAR) {
666		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
667			clear_page(data);
668		else {
669			while (bit <= this_end_bit) {
670				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671					do {
672						data[bit / BITS_PER_LONG] = 0;
673						bit += BITS_PER_LONG;
674					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
675					continue;
676				}
677				__clear_bit(bit, data);
678				bit++;
679			}
680		}
681	} else {
682		BUG();
683	}
684
685	if (unlikely(page < end_page)) {
686		bit = 0;
687		page++;
688		goto repeat;
689	}
690
691	return true;
692}
693
694static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
695{
696	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
697	unsigned int i;
698
699	for (i = 0; i < n_bitmap_pages; i++) {
700		unsigned long *dst_data = lowmem_page_address(dst[i].page);
701		unsigned long *src_data = lowmem_page_address(src[i].page);
702
703		copy_page(dst_data, src_data);
704	}
705}
706
707static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
708{
709	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
711
712	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713	return &ic->bbs[bitmap_block];
714}
715
716static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717				 bool e, const char *function)
718{
719#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
721
722	if (unlikely(section >= ic->journal_sections) ||
723	    unlikely(offset >= limit)) {
724		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725		       function, section, offset, ic->journal_sections, limit);
726		BUG();
727	}
728#endif
729}
730
731static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732			       unsigned int *pl_index, unsigned int *pl_offset)
733{
734	unsigned int sector;
735
736	access_journal_check(ic, section, offset, false, "page_list_location");
737
738	sector = section * ic->journal_section_sectors + offset;
739
740	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
742}
743
744static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
746{
747	unsigned int pl_index, pl_offset;
748	char *va;
749
750	page_list_location(ic, section, offset, &pl_index, &pl_offset);
751
752	if (n_sectors)
753		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
754
755	va = lowmem_page_address(pl[pl_index].page);
756
757	return (struct journal_sector *)(va + pl_offset);
758}
759
760static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
761{
762	return access_page_list(ic, ic->journal, section, offset, NULL);
763}
764
765static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766{
767	unsigned int rel_sector, offset;
768	struct journal_sector *js;
769
770	access_journal_check(ic, section, n, true, "access_journal_entry");
771
772	rel_sector = n % JOURNAL_BLOCK_SECTORS;
773	offset = n / JOURNAL_BLOCK_SECTORS;
774
775	js = access_journal(ic, section, rel_sector);
776	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
777}
778
779static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
780{
781	n <<= ic->sb->log2_sectors_per_block;
782
783	n += JOURNAL_BLOCK_SECTORS;
784
785	access_journal_check(ic, section, n, false, "access_journal_data");
786
787	return access_journal(ic, section, n);
788}
789
790static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
791{
792	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
793	int r;
794	unsigned int j, size;
795
796	desc->tfm = ic->journal_mac;
797
798	r = crypto_shash_init(desc);
799	if (unlikely(r < 0)) {
800		dm_integrity_io_error(ic, "crypto_shash_init", r);
801		goto err;
802	}
803
804	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
805		__le64 section_le;
806
807		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808		if (unlikely(r < 0)) {
809			dm_integrity_io_error(ic, "crypto_shash_update", r);
810			goto err;
811		}
812
813		section_le = cpu_to_le64(section);
814		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
815		if (unlikely(r < 0)) {
816			dm_integrity_io_error(ic, "crypto_shash_update", r);
817			goto err;
818		}
819	}
820
821	for (j = 0; j < ic->journal_section_entries; j++) {
822		struct journal_entry *je = access_journal_entry(ic, section, j);
823
824		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825		if (unlikely(r < 0)) {
826			dm_integrity_io_error(ic, "crypto_shash_update", r);
827			goto err;
828		}
829	}
830
831	size = crypto_shash_digestsize(ic->journal_mac);
832
833	if (likely(size <= JOURNAL_MAC_SIZE)) {
834		r = crypto_shash_final(desc, result);
835		if (unlikely(r < 0)) {
836			dm_integrity_io_error(ic, "crypto_shash_final", r);
837			goto err;
838		}
839		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
840	} else {
841		__u8 digest[HASH_MAX_DIGESTSIZE];
842
843		if (WARN_ON(size > sizeof(digest))) {
844			dm_integrity_io_error(ic, "digest_size", -EINVAL);
845			goto err;
846		}
847		r = crypto_shash_final(desc, digest);
848		if (unlikely(r < 0)) {
849			dm_integrity_io_error(ic, "crypto_shash_final", r);
850			goto err;
851		}
852		memcpy(result, digest, JOURNAL_MAC_SIZE);
853	}
854
855	return;
856err:
857	memset(result, 0, JOURNAL_MAC_SIZE);
858}
859
860static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
861{
862	__u8 result[JOURNAL_MAC_SIZE];
863	unsigned int j;
864
865	if (!ic->journal_mac)
866		return;
867
868	section_mac(ic, section, result);
869
870	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871		struct journal_sector *js = access_journal(ic, section, j);
872
873		if (likely(wr))
874			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
875		else {
876			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
879			}
880		}
881	}
882}
883
884static void complete_journal_op(void *context)
885{
886	struct journal_completion *comp = context;
887
888	BUG_ON(!atomic_read(&comp->in_flight));
889	if (likely(atomic_dec_and_test(&comp->in_flight)))
890		complete(&comp->comp);
891}
892
893static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894			unsigned int n_sections, struct journal_completion *comp)
895{
896	struct async_submit_ctl submit;
897	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898	unsigned int pl_index, pl_offset, section_index;
899	struct page_list *source_pl, *target_pl;
900
901	if (likely(encrypt)) {
902		source_pl = ic->journal;
903		target_pl = ic->journal_io;
904	} else {
905		source_pl = ic->journal_io;
906		target_pl = ic->journal;
907	}
908
909	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910
911	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912
913	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914
915	section_index = pl_index;
916
917	do {
918		size_t this_step;
919		struct page *src_pages[2];
920		struct page *dst_page;
921
922		while (unlikely(pl_index == section_index)) {
923			unsigned int dummy;
924
925			if (likely(encrypt))
926				rw_section_mac(ic, section, true);
927			section++;
928			n_sections--;
929			if (!n_sections)
930				break;
931			page_list_location(ic, section, 0, &section_index, &dummy);
932		}
933
934		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935		dst_page = target_pl[pl_index].page;
936		src_pages[0] = source_pl[pl_index].page;
937		src_pages[1] = ic->journal_xor[pl_index].page;
938
939		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940
941		pl_index++;
942		pl_offset = 0;
943		n_bytes -= this_step;
944	} while (n_bytes);
945
946	BUG_ON(n_sections);
947
948	async_tx_issue_pending_all();
949}
950
951static void complete_journal_encrypt(void *data, int err)
952{
953	struct journal_completion *comp = data;
954
955	if (unlikely(err)) {
956		if (likely(err == -EINPROGRESS)) {
957			complete(&comp->ic->crypto_backoff);
958			return;
959		}
960		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
961	}
962	complete_journal_op(comp);
963}
964
965static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
966{
967	int r;
968
969	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970				      complete_journal_encrypt, comp);
971	if (likely(encrypt))
972		r = crypto_skcipher_encrypt(req);
973	else
974		r = crypto_skcipher_decrypt(req);
975	if (likely(!r))
976		return false;
977	if (likely(r == -EINPROGRESS))
978		return true;
979	if (likely(r == -EBUSY)) {
980		wait_for_completion(&comp->ic->crypto_backoff);
981		reinit_completion(&comp->ic->crypto_backoff);
982		return true;
983	}
984	dm_integrity_io_error(comp->ic, "encrypt", r);
985	return false;
986}
987
988static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989			  unsigned int n_sections, struct journal_completion *comp)
990{
991	struct scatterlist **source_sg;
992	struct scatterlist **target_sg;
993
994	atomic_add(2, &comp->in_flight);
995
996	if (likely(encrypt)) {
997		source_sg = ic->journal_scatterlist;
998		target_sg = ic->journal_io_scatterlist;
999	} else {
1000		source_sg = ic->journal_io_scatterlist;
1001		target_sg = ic->journal_scatterlist;
1002	}
1003
1004	do {
1005		struct skcipher_request *req;
1006		unsigned int ivsize;
1007		char *iv;
1008
1009		if (likely(encrypt))
1010			rw_section_mac(ic, section, true);
1011
1012		req = ic->sk_requests[section];
1013		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1014		iv = req->iv;
1015
1016		memcpy(iv, iv + ivsize, ivsize);
1017
1018		req->src = source_sg[section];
1019		req->dst = target_sg[section];
1020
1021		if (unlikely(do_crypt(encrypt, req, comp)))
1022			atomic_inc(&comp->in_flight);
1023
1024		section++;
1025		n_sections--;
1026	} while (n_sections);
1027
1028	atomic_dec(&comp->in_flight);
1029	complete_journal_op(comp);
1030}
1031
1032static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033			    unsigned int n_sections, struct journal_completion *comp)
1034{
1035	if (ic->journal_xor)
1036		return xor_journal(ic, encrypt, section, n_sections, comp);
1037	else
1038		return crypt_journal(ic, encrypt, section, n_sections, comp);
1039}
1040
1041static void complete_journal_io(unsigned long error, void *context)
1042{
1043	struct journal_completion *comp = context;
1044
1045	if (unlikely(error != 0))
1046		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047	complete_journal_op(comp);
1048}
1049
1050static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051			       unsigned int sector, unsigned int n_sectors,
1052			       struct journal_completion *comp)
1053{
1054	struct dm_io_request io_req;
1055	struct dm_io_region io_loc;
1056	unsigned int pl_index, pl_offset;
1057	int r;
1058
1059	if (unlikely(dm_integrity_failed(ic))) {
1060		if (comp)
1061			complete_journal_io(-1UL, comp);
1062		return;
1063	}
1064
1065	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067
1068	io_req.bi_opf = opf;
1069	io_req.mem.type = DM_IO_PAGE_LIST;
1070	if (ic->journal_io)
1071		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1072	else
1073		io_req.mem.ptr.pl = &ic->journal[pl_index];
1074	io_req.mem.offset = pl_offset;
1075	if (likely(comp != NULL)) {
1076		io_req.notify.fn = complete_journal_io;
1077		io_req.notify.context = comp;
1078	} else {
1079		io_req.notify.fn = NULL;
1080	}
1081	io_req.client = ic->io;
1082	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083	io_loc.sector = ic->start + SB_SECTORS + sector;
1084	io_loc.count = n_sectors;
1085
1086	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1087	if (unlikely(r)) {
1088		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089				      "reading journal" : "writing journal", r);
1090		if (comp) {
1091			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092			complete_journal_io(-1UL, comp);
1093		}
1094	}
1095}
1096
1097static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098		       unsigned int section, unsigned int n_sections,
1099		       struct journal_completion *comp)
1100{
1101	unsigned int sector, n_sectors;
1102
1103	sector = section * ic->journal_section_sectors;
1104	n_sectors = n_sections * ic->journal_section_sectors;
1105
1106	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1107}
1108
1109static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1110{
1111	struct journal_completion io_comp;
1112	struct journal_completion crypt_comp_1;
1113	struct journal_completion crypt_comp_2;
1114	unsigned int i;
1115
1116	io_comp.ic = ic;
1117	init_completion(&io_comp.comp);
1118
1119	if (commit_start + commit_sections <= ic->journal_sections) {
1120		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121		if (ic->journal_io) {
1122			crypt_comp_1.ic = ic;
1123			init_completion(&crypt_comp_1.comp);
1124			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126			wait_for_completion_io(&crypt_comp_1.comp);
1127		} else {
1128			for (i = 0; i < commit_sections; i++)
1129				rw_section_mac(ic, commit_start + i, true);
1130		}
1131		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132			   commit_sections, &io_comp);
1133	} else {
1134		unsigned int to_end;
1135
1136		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137		to_end = ic->journal_sections - commit_start;
1138		if (ic->journal_io) {
1139			crypt_comp_1.ic = ic;
1140			init_completion(&crypt_comp_1.comp);
1141			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145					   commit_start, to_end, &io_comp);
1146				reinit_completion(&crypt_comp_1.comp);
1147				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149				wait_for_completion_io(&crypt_comp_1.comp);
1150			} else {
1151				crypt_comp_2.ic = ic;
1152				init_completion(&crypt_comp_2.comp);
1153				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155				wait_for_completion_io(&crypt_comp_1.comp);
1156				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157				wait_for_completion_io(&crypt_comp_2.comp);
1158			}
1159		} else {
1160			for (i = 0; i < to_end; i++)
1161				rw_section_mac(ic, commit_start + i, true);
1162			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163			for (i = 0; i < commit_sections - to_end; i++)
1164				rw_section_mac(ic, i, true);
1165		}
1166		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1167	}
1168
1169	wait_for_completion_io(&io_comp.comp);
1170}
1171
1172static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1174{
1175	struct dm_io_request io_req;
1176	struct dm_io_region io_loc;
1177	int r;
1178	unsigned int sector, pl_index, pl_offset;
1179
1180	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1181
1182	if (unlikely(dm_integrity_failed(ic))) {
1183		fn(-1UL, data);
1184		return;
1185	}
1186
1187	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1188
1189	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1191
1192	io_req.bi_opf = REQ_OP_WRITE;
1193	io_req.mem.type = DM_IO_PAGE_LIST;
1194	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195	io_req.mem.offset = pl_offset;
1196	io_req.notify.fn = fn;
1197	io_req.notify.context = data;
1198	io_req.client = ic->io;
1199	io_loc.bdev = ic->dev->bdev;
1200	io_loc.sector = target;
1201	io_loc.count = n_sectors;
1202
1203	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1204	if (unlikely(r)) {
1205		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206		fn(-1UL, data);
1207	}
1208}
1209
1210static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211{
1212	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214}
1215
1216static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217{
1218	struct rb_node **n = &ic->in_progress.rb_node;
1219	struct rb_node *parent;
1220
1221	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1222
1223	if (likely(check_waiting)) {
1224		struct dm_integrity_range *range;
1225
1226		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227			if (unlikely(ranges_overlap(range, new_range)))
1228				return false;
1229		}
1230	}
1231
1232	parent = NULL;
1233
1234	while (*n) {
1235		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1236
1237		parent = *n;
1238		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239			n = &range->node.rb_left;
1240		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241			n = &range->node.rb_right;
1242		else
1243			return false;
1244	}
1245
1246	rb_link_node(&new_range->node, parent, n);
1247	rb_insert_color(&new_range->node, &ic->in_progress);
1248
1249	return true;
1250}
1251
1252static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253{
1254	rb_erase(&range->node, &ic->in_progress);
1255	while (unlikely(!list_empty(&ic->wait_list))) {
1256		struct dm_integrity_range *last_range =
1257			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258		struct task_struct *last_range_task;
1259
1260		last_range_task = last_range->task;
1261		list_del(&last_range->wait_entry);
1262		if (!add_new_range(ic, last_range, false)) {
1263			last_range->task = last_range_task;
1264			list_add(&last_range->wait_entry, &ic->wait_list);
1265			break;
1266		}
1267		last_range->waiting = false;
1268		wake_up_process(last_range_task);
1269	}
1270}
1271
1272static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1273{
1274	unsigned long flags;
1275
1276	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277	remove_range_unlocked(ic, range);
1278	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1279}
1280
1281static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282{
1283	new_range->waiting = true;
1284	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285	new_range->task = current;
1286	do {
1287		__set_current_state(TASK_UNINTERRUPTIBLE);
1288		spin_unlock_irq(&ic->endio_wait.lock);
1289		io_schedule();
1290		spin_lock_irq(&ic->endio_wait.lock);
1291	} while (unlikely(new_range->waiting));
1292}
1293
1294static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1295{
1296	if (unlikely(!add_new_range(ic, new_range, true)))
1297		wait_and_add_new_range(ic, new_range);
1298}
1299
1300static void init_journal_node(struct journal_node *node)
1301{
1302	RB_CLEAR_NODE(&node->node);
1303	node->sector = (sector_t)-1;
1304}
1305
1306static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1307{
1308	struct rb_node **link;
1309	struct rb_node *parent;
1310
1311	node->sector = sector;
1312	BUG_ON(!RB_EMPTY_NODE(&node->node));
1313
1314	link = &ic->journal_tree_root.rb_node;
1315	parent = NULL;
1316
1317	while (*link) {
1318		struct journal_node *j;
1319
1320		parent = *link;
1321		j = container_of(parent, struct journal_node, node);
1322		if (sector < j->sector)
1323			link = &j->node.rb_left;
1324		else
1325			link = &j->node.rb_right;
1326	}
1327
1328	rb_link_node(&node->node, parent, link);
1329	rb_insert_color(&node->node, &ic->journal_tree_root);
1330}
1331
1332static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1333{
1334	BUG_ON(RB_EMPTY_NODE(&node->node));
1335	rb_erase(&node->node, &ic->journal_tree_root);
1336	init_journal_node(node);
1337}
1338
1339#define NOT_FOUND	(-1U)
1340
1341static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1342{
1343	struct rb_node *n = ic->journal_tree_root.rb_node;
1344	unsigned int found = NOT_FOUND;
1345
1346	*next_sector = (sector_t)-1;
1347	while (n) {
1348		struct journal_node *j = container_of(n, struct journal_node, node);
1349
1350		if (sector == j->sector)
1351			found = j - ic->journal_tree;
1352
1353		if (sector < j->sector) {
1354			*next_sector = j->sector;
1355			n = j->node.rb_left;
1356		} else
1357			n = j->node.rb_right;
1358	}
1359
1360	return found;
1361}
1362
1363static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364{
1365	struct journal_node *node, *next_node;
1366	struct rb_node *next;
1367
1368	if (unlikely(pos >= ic->journal_entries))
1369		return false;
1370	node = &ic->journal_tree[pos];
1371	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372		return false;
1373	if (unlikely(node->sector != sector))
1374		return false;
1375
1376	next = rb_next(&node->node);
1377	if (unlikely(!next))
1378		return true;
1379
1380	next_node = container_of(next, struct journal_node, node);
1381	return next_node->sector != sector;
1382}
1383
1384static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385{
1386	struct rb_node *next;
1387	struct journal_node *next_node;
1388	unsigned int next_section;
1389
1390	BUG_ON(RB_EMPTY_NODE(&node->node));
1391
1392	next = rb_next(&node->node);
1393	if (unlikely(!next))
1394		return false;
1395
1396	next_node = container_of(next, struct journal_node, node);
1397
1398	if (next_node->sector != node->sector)
1399		return false;
1400
1401	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402	if (next_section >= ic->committed_section &&
1403	    next_section < ic->committed_section + ic->n_committed_sections)
1404		return true;
1405	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406		return true;
1407
1408	return false;
1409}
1410
1411#define TAG_READ	0
1412#define TAG_WRITE	1
1413#define TAG_CMP		2
1414
1415static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416			       unsigned int *metadata_offset, unsigned int total_size, int op)
1417{
1418#define MAY_BE_FILLER		1
1419#define MAY_BE_HASH		2
1420	unsigned int hash_offset = 0;
1421	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422
1423	do {
1424		unsigned char *data, *dp;
1425		struct dm_buffer *b;
1426		unsigned int to_copy;
1427		int r;
1428
1429		r = dm_integrity_failed(ic);
1430		if (unlikely(r))
1431			return r;
1432
1433		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434		if (IS_ERR(data))
1435			return PTR_ERR(data);
1436
1437		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438		dp = data + *metadata_offset;
1439		if (op == TAG_READ) {
1440			memcpy(tag, dp, to_copy);
1441		} else if (op == TAG_WRITE) {
1442			if (memcmp(dp, tag, to_copy)) {
1443				memcpy(dp, tag, to_copy);
1444				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445			}
1446		} else {
1447			/* e.g.: op == TAG_CMP */
1448
1449			if (likely(is_power_of_2(ic->tag_size))) {
1450				if (unlikely(memcmp(dp, tag, to_copy)))
1451					if (unlikely(!ic->discard) ||
1452					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453						goto thorough_test;
1454				}
1455			} else {
1456				unsigned int i, ts;
1457thorough_test:
1458				ts = total_size;
1459
1460				for (i = 0; i < to_copy; i++, ts--) {
1461					if (unlikely(dp[i] != tag[i]))
1462						may_be &= ~MAY_BE_HASH;
1463					if (likely(dp[i] != DISCARD_FILLER))
1464						may_be &= ~MAY_BE_FILLER;
1465					hash_offset++;
1466					if (unlikely(hash_offset == ic->tag_size)) {
1467						if (unlikely(!may_be)) {
1468							dm_bufio_release(b);
1469							return ts;
1470						}
1471						hash_offset = 0;
1472						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473					}
1474				}
1475			}
1476		}
1477		dm_bufio_release(b);
1478
1479		tag += to_copy;
1480		*metadata_offset += to_copy;
1481		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482			(*metadata_block)++;
1483			*metadata_offset = 0;
1484		}
1485
1486		if (unlikely(!is_power_of_2(ic->tag_size)))
1487			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488
1489		total_size -= to_copy;
1490	} while (unlikely(total_size));
1491
1492	return 0;
1493#undef MAY_BE_FILLER
1494#undef MAY_BE_HASH
1495}
1496
1497struct flush_request {
1498	struct dm_io_request io_req;
1499	struct dm_io_region io_reg;
1500	struct dm_integrity_c *ic;
1501	struct completion comp;
1502};
1503
1504static void flush_notify(unsigned long error, void *fr_)
1505{
1506	struct flush_request *fr = fr_;
1507
1508	if (unlikely(error != 0))
1509		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510	complete(&fr->comp);
1511}
1512
1513static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514{
1515	int r;
1516	struct flush_request fr;
1517
1518	if (!ic->meta_dev)
1519		flush_data = false;
1520	if (flush_data) {
1521		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522		fr.io_req.mem.type = DM_IO_KMEM,
1523		fr.io_req.mem.ptr.addr = NULL,
1524		fr.io_req.notify.fn = flush_notify,
1525		fr.io_req.notify.context = &fr;
1526		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527		fr.io_reg.bdev = ic->dev->bdev,
1528		fr.io_reg.sector = 0,
1529		fr.io_reg.count = 0,
1530		fr.ic = ic;
1531		init_completion(&fr.comp);
1532		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1533		BUG_ON(r);
1534	}
1535
1536	r = dm_bufio_write_dirty_buffers(ic->bufio);
1537	if (unlikely(r))
1538		dm_integrity_io_error(ic, "writing tags", r);
1539
1540	if (flush_data)
1541		wait_for_completion(&fr.comp);
1542}
1543
1544static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1545{
1546	DECLARE_WAITQUEUE(wait, current);
1547
1548	__add_wait_queue(&ic->endio_wait, &wait);
1549	__set_current_state(TASK_UNINTERRUPTIBLE);
1550	spin_unlock_irq(&ic->endio_wait.lock);
1551	io_schedule();
1552	spin_lock_irq(&ic->endio_wait.lock);
1553	__remove_wait_queue(&ic->endio_wait, &wait);
1554}
1555
1556static void autocommit_fn(struct timer_list *t)
1557{
1558	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559
1560	if (likely(!dm_integrity_failed(ic)))
1561		queue_work(ic->commit_wq, &ic->commit_work);
1562}
1563
1564static void schedule_autocommit(struct dm_integrity_c *ic)
1565{
1566	if (!timer_pending(&ic->autocommit_timer))
1567		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568}
1569
1570static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571{
1572	struct bio *bio;
1573	unsigned long flags;
1574
1575	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577	bio_list_add(&ic->flush_bio_list, bio);
1578	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579
1580	queue_work(ic->commit_wq, &ic->commit_work);
1581}
1582
1583static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584{
1585	int r;
1586
1587	r = dm_integrity_failed(ic);
1588	if (unlikely(r) && !bio->bi_status)
1589		bio->bi_status = errno_to_blk_status(r);
1590	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591		unsigned long flags;
1592
1593		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594		bio_list_add(&ic->synchronous_bios, bio);
1595		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1597		return;
1598	}
1599	bio_endio(bio);
1600}
1601
1602static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1603{
1604	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1605
1606	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607		submit_flush_bio(ic, dio);
1608	else
1609		do_endio(ic, bio);
1610}
1611
1612static void dec_in_flight(struct dm_integrity_io *dio)
1613{
1614	if (atomic_dec_and_test(&dio->in_flight)) {
1615		struct dm_integrity_c *ic = dio->ic;
1616		struct bio *bio;
1617
1618		remove_range(ic, &dio->range);
1619
1620		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621			schedule_autocommit(ic);
1622
1623		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624		if (unlikely(dio->bi_status) && !bio->bi_status)
1625			bio->bi_status = dio->bi_status;
1626		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627			dio->range.logical_sector += dio->range.n_sectors;
1628			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629			INIT_WORK(&dio->work, integrity_bio_wait);
1630			queue_work(ic->offload_wq, &dio->work);
1631			return;
1632		}
1633		do_endio_flush(ic, dio);
1634	}
1635}
1636
1637static void integrity_end_io(struct bio *bio)
1638{
1639	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1640
1641	dm_bio_restore(&dio->bio_details, bio);
1642	if (bio->bi_integrity)
1643		bio->bi_opf |= REQ_INTEGRITY;
1644
1645	if (dio->completion)
1646		complete(dio->completion);
1647
1648	dec_in_flight(dio);
1649}
1650
1651static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652				      const char *data, char *result)
1653{
1654	__le64 sector_le = cpu_to_le64(sector);
1655	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1656	int r;
1657	unsigned int digest_size;
1658
1659	req->tfm = ic->internal_hash;
1660
1661	r = crypto_shash_init(req);
1662	if (unlikely(r < 0)) {
1663		dm_integrity_io_error(ic, "crypto_shash_init", r);
1664		goto failed;
1665	}
1666
1667	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669		if (unlikely(r < 0)) {
1670			dm_integrity_io_error(ic, "crypto_shash_update", r);
1671			goto failed;
1672		}
1673	}
1674
1675	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1676	if (unlikely(r < 0)) {
1677		dm_integrity_io_error(ic, "crypto_shash_update", r);
1678		goto failed;
1679	}
1680
1681	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682	if (unlikely(r < 0)) {
1683		dm_integrity_io_error(ic, "crypto_shash_update", r);
1684		goto failed;
1685	}
1686
1687	r = crypto_shash_final(req, result);
1688	if (unlikely(r < 0)) {
1689		dm_integrity_io_error(ic, "crypto_shash_final", r);
1690		goto failed;
1691	}
1692
1693	digest_size = crypto_shash_digestsize(ic->internal_hash);
1694	if (unlikely(digest_size < ic->tag_size))
1695		memset(result + digest_size, 0, ic->tag_size - digest_size);
1696
1697	return;
1698
1699failed:
1700	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1701	get_random_bytes(result, ic->tag_size);
1702}
1703
1704static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1705{
1706	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1707	struct dm_integrity_c *ic = dio->ic;
1708	struct bvec_iter iter;
1709	struct bio_vec bv;
1710	sector_t sector, logical_sector, area, offset;
1711	struct page *page;
1712
1713	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1714	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1715							     &dio->metadata_offset);
1716	sector = get_data_sector(ic, area, offset);
1717	logical_sector = dio->range.logical_sector;
1718
1719	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1720
1721	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1722		unsigned pos = 0;
1723
1724		do {
1725			sector_t alignment;
1726			char *mem;
1727			char *buffer = page_to_virt(page);
1728			int r;
1729			struct dm_io_request io_req;
1730			struct dm_io_region io_loc;
1731			io_req.bi_opf = REQ_OP_READ;
1732			io_req.mem.type = DM_IO_KMEM;
1733			io_req.mem.ptr.addr = buffer;
1734			io_req.notify.fn = NULL;
1735			io_req.client = ic->io;
1736			io_loc.bdev = ic->dev->bdev;
1737			io_loc.sector = sector;
1738			io_loc.count = ic->sectors_per_block;
1739
1740			/* Align the bio to logical block size */
1741			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1742			alignment &= -alignment;
1743			io_loc.sector = round_down(io_loc.sector, alignment);
1744			io_loc.count += sector - io_loc.sector;
1745			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1746			io_loc.count = round_up(io_loc.count, alignment);
1747
1748			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1749			if (unlikely(r)) {
1750				dio->bi_status = errno_to_blk_status(r);
1751				goto free_ret;
1752			}
1753
1754			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1755			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1756						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1757			if (r) {
1758				if (r > 0) {
1759					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1760						    bio->bi_bdev, logical_sector);
1761					atomic64_inc(&ic->number_of_mismatches);
1762					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1763							 bio, logical_sector, 0);
1764					r = -EILSEQ;
1765				}
1766				dio->bi_status = errno_to_blk_status(r);
1767				goto free_ret;
1768			}
1769
1770			mem = bvec_kmap_local(&bv);
1771			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1772			kunmap_local(mem);
1773
1774			pos += ic->sectors_per_block << SECTOR_SHIFT;
1775			sector += ic->sectors_per_block;
1776			logical_sector += ic->sectors_per_block;
1777		} while (pos < bv.bv_len);
1778	}
1779free_ret:
1780	mempool_free(page, &ic->recheck_pool);
1781}
1782
1783static void integrity_metadata(struct work_struct *w)
1784{
1785	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1786	struct dm_integrity_c *ic = dio->ic;
1787
1788	int r;
1789
1790	if (ic->internal_hash) {
1791		struct bvec_iter iter;
1792		struct bio_vec bv;
1793		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1794		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1795		char *checksums;
1796		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1797		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1798		sector_t sector;
1799		unsigned int sectors_to_process;
1800
1801		if (unlikely(ic->mode == 'R'))
1802			goto skip_io;
1803
1804		if (likely(dio->op != REQ_OP_DISCARD))
1805			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1806					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1807		else
1808			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1809		if (!checksums) {
1810			checksums = checksums_onstack;
1811			if (WARN_ON(extra_space &&
1812				    digest_size > sizeof(checksums_onstack))) {
1813				r = -EINVAL;
1814				goto error;
1815			}
1816		}
1817
1818		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1819			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1820			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1821			unsigned int max_blocks = max_size / ic->tag_size;
1822
1823			memset(checksums, DISCARD_FILLER, max_size);
1824
1825			while (bi_size) {
1826				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1827
1828				this_step_blocks = min(this_step_blocks, max_blocks);
1829				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1830							this_step_blocks * ic->tag_size, TAG_WRITE);
1831				if (unlikely(r)) {
1832					if (likely(checksums != checksums_onstack))
1833						kfree(checksums);
1834					goto error;
1835				}
1836
1837				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1838			}
1839
1840			if (likely(checksums != checksums_onstack))
1841				kfree(checksums);
1842			goto skip_io;
1843		}
1844
1845		sector = dio->range.logical_sector;
1846		sectors_to_process = dio->range.n_sectors;
1847
1848		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1849			struct bio_vec bv_copy = bv;
1850			unsigned int pos;
1851			char *mem, *checksums_ptr;
1852
1853again:
1854			mem = bvec_kmap_local(&bv_copy);
1855			pos = 0;
1856			checksums_ptr = checksums;
1857			do {
1858				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1859				checksums_ptr += ic->tag_size;
1860				sectors_to_process -= ic->sectors_per_block;
1861				pos += ic->sectors_per_block << SECTOR_SHIFT;
1862				sector += ic->sectors_per_block;
1863			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1864			kunmap_local(mem);
1865
1866			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1867						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1868			if (unlikely(r)) {
1869				if (likely(checksums != checksums_onstack))
1870					kfree(checksums);
1871				if (r > 0) {
1872					integrity_recheck(dio, checksums_onstack);
1873					goto skip_io;
1874				}
1875				goto error;
1876			}
1877
1878			if (!sectors_to_process)
1879				break;
1880
1881			if (unlikely(pos < bv_copy.bv_len)) {
1882				bv_copy.bv_offset += pos;
1883				bv_copy.bv_len -= pos;
1884				goto again;
1885			}
1886		}
1887
1888		if (likely(checksums != checksums_onstack))
1889			kfree(checksums);
1890	} else {
1891		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1892
1893		if (bip) {
1894			struct bio_vec biv;
1895			struct bvec_iter iter;
1896			unsigned int data_to_process = dio->range.n_sectors;
1897
1898			sector_to_block(ic, data_to_process);
1899			data_to_process *= ic->tag_size;
1900
1901			bip_for_each_vec(biv, bip, iter) {
1902				unsigned char *tag;
1903				unsigned int this_len;
1904
1905				BUG_ON(PageHighMem(biv.bv_page));
1906				tag = bvec_virt(&biv);
1907				this_len = min(biv.bv_len, data_to_process);
1908				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1909							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1910				if (unlikely(r))
1911					goto error;
1912				data_to_process -= this_len;
1913				if (!data_to_process)
1914					break;
1915			}
1916		}
1917	}
1918skip_io:
1919	dec_in_flight(dio);
1920	return;
1921error:
1922	dio->bi_status = errno_to_blk_status(r);
1923	dec_in_flight(dio);
1924}
1925
1926static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1927{
1928	struct dm_integrity_c *ic = ti->private;
1929	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1930	struct bio_integrity_payload *bip;
1931
1932	sector_t area, offset;
1933
1934	dio->ic = ic;
1935	dio->bi_status = 0;
1936	dio->op = bio_op(bio);
1937
1938	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1939		if (ti->max_io_len) {
1940			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1942			sector_t start_boundary = sec >> log2_max_io_len;
1943			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1944
1945			if (start_boundary < end_boundary) {
1946				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1947
1948				dm_accept_partial_bio(bio, len);
1949			}
1950		}
1951	}
1952
1953	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1954		submit_flush_bio(ic, dio);
1955		return DM_MAPIO_SUBMITTED;
1956	}
1957
1958	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1959	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1960	if (unlikely(dio->fua)) {
1961		/*
1962		 * Don't pass down the FUA flag because we have to flush
1963		 * disk cache anyway.
1964		 */
1965		bio->bi_opf &= ~REQ_FUA;
1966	}
1967	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1968		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1969		      dio->range.logical_sector, bio_sectors(bio),
1970		      ic->provided_data_sectors);
1971		return DM_MAPIO_KILL;
1972	}
1973	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1974		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1975		      ic->sectors_per_block,
1976		      dio->range.logical_sector, bio_sectors(bio));
1977		return DM_MAPIO_KILL;
1978	}
1979
1980	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1981		struct bvec_iter iter;
1982		struct bio_vec bv;
1983
1984		bio_for_each_segment(bv, bio, iter) {
1985			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1986				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1987					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1988				return DM_MAPIO_KILL;
1989			}
1990		}
1991	}
1992
1993	bip = bio_integrity(bio);
1994	if (!ic->internal_hash) {
1995		if (bip) {
1996			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997
1998			if (ic->log2_tag_size >= 0)
1999				wanted_tag_size <<= ic->log2_tag_size;
2000			else
2001				wanted_tag_size *= ic->tag_size;
2002			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003				DMERR("Invalid integrity data size %u, expected %u",
2004				      bip->bip_iter.bi_size, wanted_tag_size);
2005				return DM_MAPIO_KILL;
2006			}
2007		}
2008	} else {
2009		if (unlikely(bip != NULL)) {
2010			DMERR("Unexpected integrity data when using internal hash");
2011			return DM_MAPIO_KILL;
2012		}
2013	}
2014
2015	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016		return DM_MAPIO_KILL;
2017
2018	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021
2022	dm_integrity_map_continue(dio, true);
2023	return DM_MAPIO_SUBMITTED;
2024}
2025
2026static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027				 unsigned int journal_section, unsigned int journal_entry)
2028{
2029	struct dm_integrity_c *ic = dio->ic;
2030	sector_t logical_sector;
2031	unsigned int n_sectors;
2032
2033	logical_sector = dio->range.logical_sector;
2034	n_sectors = dio->range.n_sectors;
2035	do {
2036		struct bio_vec bv = bio_iovec(bio);
2037		char *mem;
2038
2039		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040			bv.bv_len = n_sectors << SECTOR_SHIFT;
2041		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043retry_kmap:
2044		mem = kmap_local_page(bv.bv_page);
2045		if (likely(dio->op == REQ_OP_WRITE))
2046			flush_dcache_page(bv.bv_page);
2047
2048		do {
2049			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050
2051			if (unlikely(dio->op == REQ_OP_READ)) {
2052				struct journal_sector *js;
2053				char *mem_ptr;
2054				unsigned int s;
2055
2056				if (unlikely(journal_entry_is_inprogress(je))) {
2057					flush_dcache_page(bv.bv_page);
2058					kunmap_local(mem);
2059
2060					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061					goto retry_kmap;
2062				}
2063				smp_rmb();
2064				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065				js = access_journal_data(ic, journal_section, journal_entry);
2066				mem_ptr = mem + bv.bv_offset;
2067				s = 0;
2068				do {
2069					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071					js++;
2072					mem_ptr += 1 << SECTOR_SHIFT;
2073				} while (++s < ic->sectors_per_block);
2074#ifdef INTERNAL_VERIFY
2075				if (ic->internal_hash) {
2076					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077
2078					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081							    logical_sector);
2082						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083								 bio, logical_sector, 0);
2084					}
2085				}
2086#endif
2087			}
2088
2089			if (!ic->internal_hash) {
2090				struct bio_integrity_payload *bip = bio_integrity(bio);
2091				unsigned int tag_todo = ic->tag_size;
2092				char *tag_ptr = journal_entry_tag(ic, je);
2093
2094				if (bip) {
2095					do {
2096						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097						unsigned int tag_now = min(biv.bv_len, tag_todo);
2098						char *tag_addr;
2099
2100						BUG_ON(PageHighMem(biv.bv_page));
2101						tag_addr = bvec_virt(&biv);
2102						if (likely(dio->op == REQ_OP_WRITE))
2103							memcpy(tag_ptr, tag_addr, tag_now);
2104						else
2105							memcpy(tag_addr, tag_ptr, tag_now);
2106						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107						tag_ptr += tag_now;
2108						tag_todo -= tag_now;
2109					} while (unlikely(tag_todo));
2110				} else if (likely(dio->op == REQ_OP_WRITE))
2111					memset(tag_ptr, 0, tag_todo);
2112			}
2113
2114			if (likely(dio->op == REQ_OP_WRITE)) {
2115				struct journal_sector *js;
2116				unsigned int s;
2117
2118				js = access_journal_data(ic, journal_section, journal_entry);
2119				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120
2121				s = 0;
2122				do {
2123					je->last_bytes[s] = js[s].commit_id;
2124				} while (++s < ic->sectors_per_block);
2125
2126				if (ic->internal_hash) {
2127					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128
2129					if (unlikely(digest_size > ic->tag_size)) {
2130						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131
2132						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134					} else
2135						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136				}
2137
2138				journal_entry_set_sector(je, logical_sector);
2139			}
2140			logical_sector += ic->sectors_per_block;
2141
2142			journal_entry++;
2143			if (unlikely(journal_entry == ic->journal_section_entries)) {
2144				journal_entry = 0;
2145				journal_section++;
2146				wraparound_section(ic, &journal_section);
2147			}
2148
2149			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151
2152		if (unlikely(dio->op == REQ_OP_READ))
2153			flush_dcache_page(bv.bv_page);
2154		kunmap_local(mem);
2155	} while (n_sectors);
2156
2157	if (likely(dio->op == REQ_OP_WRITE)) {
2158		smp_mb();
2159		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160			wake_up(&ic->copy_to_journal_wait);
2161		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162			queue_work(ic->commit_wq, &ic->commit_work);
2163		else
2164			schedule_autocommit(ic);
2165	} else
2166		remove_range(ic, &dio->range);
2167
2168	if (unlikely(bio->bi_iter.bi_size)) {
2169		sector_t area, offset;
2170
2171		dio->range.logical_sector = logical_sector;
2172		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174		return true;
2175	}
2176
2177	return false;
2178}
2179
2180static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181{
2182	struct dm_integrity_c *ic = dio->ic;
2183	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184	unsigned int journal_section, journal_entry;
2185	unsigned int journal_read_pos;
2186	struct completion read_comp;
2187	bool discard_retried = false;
2188	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2189
2190	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2191		need_sync_io = true;
2192
2193	if (need_sync_io && from_map) {
2194		INIT_WORK(&dio->work, integrity_bio_wait);
2195		queue_work(ic->offload_wq, &dio->work);
2196		return;
2197	}
2198
2199lock_retry:
2200	spin_lock_irq(&ic->endio_wait.lock);
2201retry:
2202	if (unlikely(dm_integrity_failed(ic))) {
2203		spin_unlock_irq(&ic->endio_wait.lock);
2204		do_endio(ic, bio);
2205		return;
2206	}
2207	dio->range.n_sectors = bio_sectors(bio);
2208	journal_read_pos = NOT_FOUND;
2209	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2210		if (dio->op == REQ_OP_WRITE) {
2211			unsigned int next_entry, i, pos;
2212			unsigned int ws, we, range_sectors;
2213
2214			dio->range.n_sectors = min(dio->range.n_sectors,
2215						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2216			if (unlikely(!dio->range.n_sectors)) {
2217				if (from_map)
2218					goto offload_to_thread;
2219				sleep_on_endio_wait(ic);
2220				goto retry;
2221			}
2222			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2223			ic->free_sectors -= range_sectors;
2224			journal_section = ic->free_section;
2225			journal_entry = ic->free_section_entry;
2226
2227			next_entry = ic->free_section_entry + range_sectors;
2228			ic->free_section_entry = next_entry % ic->journal_section_entries;
2229			ic->free_section += next_entry / ic->journal_section_entries;
2230			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2231			wraparound_section(ic, &ic->free_section);
2232
2233			pos = journal_section * ic->journal_section_entries + journal_entry;
2234			ws = journal_section;
2235			we = journal_entry;
2236			i = 0;
2237			do {
2238				struct journal_entry *je;
2239
2240				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2241				pos++;
2242				if (unlikely(pos >= ic->journal_entries))
2243					pos = 0;
2244
2245				je = access_journal_entry(ic, ws, we);
2246				BUG_ON(!journal_entry_is_unused(je));
2247				journal_entry_set_inprogress(je);
2248				we++;
2249				if (unlikely(we == ic->journal_section_entries)) {
2250					we = 0;
2251					ws++;
2252					wraparound_section(ic, &ws);
2253				}
2254			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2255
2256			spin_unlock_irq(&ic->endio_wait.lock);
2257			goto journal_read_write;
2258		} else {
2259			sector_t next_sector;
2260
2261			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2262			if (likely(journal_read_pos == NOT_FOUND)) {
2263				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2264					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2265			} else {
2266				unsigned int i;
2267				unsigned int jp = journal_read_pos + 1;
2268
2269				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2270					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2271						break;
2272				}
2273				dio->range.n_sectors = i;
2274			}
2275		}
2276	}
2277	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2278		/*
2279		 * We must not sleep in the request routine because it could
2280		 * stall bios on current->bio_list.
2281		 * So, we offload the bio to a workqueue if we have to sleep.
2282		 */
2283		if (from_map) {
2284offload_to_thread:
2285			spin_unlock_irq(&ic->endio_wait.lock);
2286			INIT_WORK(&dio->work, integrity_bio_wait);
2287			queue_work(ic->wait_wq, &dio->work);
2288			return;
2289		}
2290		if (journal_read_pos != NOT_FOUND)
2291			dio->range.n_sectors = ic->sectors_per_block;
2292		wait_and_add_new_range(ic, &dio->range);
2293		/*
2294		 * wait_and_add_new_range drops the spinlock, so the journal
2295		 * may have been changed arbitrarily. We need to recheck.
2296		 * To simplify the code, we restrict I/O size to just one block.
2297		 */
2298		if (journal_read_pos != NOT_FOUND) {
2299			sector_t next_sector;
2300			unsigned int new_pos;
2301
2302			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2303			if (unlikely(new_pos != journal_read_pos)) {
2304				remove_range_unlocked(ic, &dio->range);
2305				goto retry;
2306			}
2307		}
2308	}
2309	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2310		sector_t next_sector;
2311		unsigned int new_pos;
2312
2313		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2314		if (unlikely(new_pos != NOT_FOUND) ||
2315		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2316			remove_range_unlocked(ic, &dio->range);
2317			spin_unlock_irq(&ic->endio_wait.lock);
2318			queue_work(ic->commit_wq, &ic->commit_work);
2319			flush_workqueue(ic->commit_wq);
2320			queue_work(ic->writer_wq, &ic->writer_work);
2321			flush_workqueue(ic->writer_wq);
2322			discard_retried = true;
2323			goto lock_retry;
2324		}
2325	}
2326	spin_unlock_irq(&ic->endio_wait.lock);
2327
2328	if (unlikely(journal_read_pos != NOT_FOUND)) {
2329		journal_section = journal_read_pos / ic->journal_section_entries;
2330		journal_entry = journal_read_pos % ic->journal_section_entries;
2331		goto journal_read_write;
2332	}
2333
2334	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2335		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2336				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2337			struct bitmap_block_status *bbs;
2338
2339			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2340			spin_lock(&bbs->bio_queue_lock);
2341			bio_list_add(&bbs->bio_queue, bio);
2342			spin_unlock(&bbs->bio_queue_lock);
2343			queue_work(ic->writer_wq, &bbs->work);
2344			return;
2345		}
2346	}
2347
2348	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2349
2350	if (need_sync_io) {
2351		init_completion(&read_comp);
2352		dio->completion = &read_comp;
2353	} else
2354		dio->completion = NULL;
2355
2356	dm_bio_record(&dio->bio_details, bio);
2357	bio_set_dev(bio, ic->dev->bdev);
2358	bio->bi_integrity = NULL;
2359	bio->bi_opf &= ~REQ_INTEGRITY;
2360	bio->bi_end_io = integrity_end_io;
2361	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2362
2363	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2364		integrity_metadata(&dio->work);
2365		dm_integrity_flush_buffers(ic, false);
2366
2367		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2368		dio->completion = NULL;
2369
2370		submit_bio_noacct(bio);
2371
2372		return;
2373	}
2374
2375	submit_bio_noacct(bio);
2376
2377	if (need_sync_io) {
2378		wait_for_completion_io(&read_comp);
2379		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2380		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2381			goto skip_check;
2382		if (ic->mode == 'B') {
2383			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2384					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2385				goto skip_check;
2386		}
2387
2388		if (likely(!bio->bi_status))
2389			integrity_metadata(&dio->work);
2390		else
2391skip_check:
2392			dec_in_flight(dio);
2393	} else {
2394		INIT_WORK(&dio->work, integrity_metadata);
2395		queue_work(ic->metadata_wq, &dio->work);
2396	}
2397
2398	return;
2399
2400journal_read_write:
2401	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2402		goto lock_retry;
2403
2404	do_endio_flush(ic, dio);
2405}
2406
2407
2408static void integrity_bio_wait(struct work_struct *w)
2409{
2410	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2411
2412	dm_integrity_map_continue(dio, false);
2413}
2414
2415static void pad_uncommitted(struct dm_integrity_c *ic)
2416{
2417	if (ic->free_section_entry) {
2418		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2419		ic->free_section_entry = 0;
2420		ic->free_section++;
2421		wraparound_section(ic, &ic->free_section);
2422		ic->n_uncommitted_sections++;
2423	}
2424	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2425		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2426		    ic->journal_section_entries + ic->free_sectors)) {
2427		DMCRIT("journal_sections %u, journal_section_entries %u, "
2428		       "n_uncommitted_sections %u, n_committed_sections %u, "
2429		       "journal_section_entries %u, free_sectors %u",
2430		       ic->journal_sections, ic->journal_section_entries,
2431		       ic->n_uncommitted_sections, ic->n_committed_sections,
2432		       ic->journal_section_entries, ic->free_sectors);
2433	}
2434}
2435
2436static void integrity_commit(struct work_struct *w)
2437{
2438	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2439	unsigned int commit_start, commit_sections;
2440	unsigned int i, j, n;
2441	struct bio *flushes;
2442
2443	del_timer(&ic->autocommit_timer);
2444
2445	spin_lock_irq(&ic->endio_wait.lock);
2446	flushes = bio_list_get(&ic->flush_bio_list);
2447	if (unlikely(ic->mode != 'J')) {
2448		spin_unlock_irq(&ic->endio_wait.lock);
2449		dm_integrity_flush_buffers(ic, true);
2450		goto release_flush_bios;
2451	}
2452
2453	pad_uncommitted(ic);
2454	commit_start = ic->uncommitted_section;
2455	commit_sections = ic->n_uncommitted_sections;
2456	spin_unlock_irq(&ic->endio_wait.lock);
2457
2458	if (!commit_sections)
2459		goto release_flush_bios;
2460
2461	ic->wrote_to_journal = true;
2462
2463	i = commit_start;
2464	for (n = 0; n < commit_sections; n++) {
2465		for (j = 0; j < ic->journal_section_entries; j++) {
2466			struct journal_entry *je;
2467
2468			je = access_journal_entry(ic, i, j);
2469			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2470		}
2471		for (j = 0; j < ic->journal_section_sectors; j++) {
2472			struct journal_sector *js;
2473
2474			js = access_journal(ic, i, j);
2475			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2476		}
2477		i++;
2478		if (unlikely(i >= ic->journal_sections))
2479			ic->commit_seq = next_commit_seq(ic->commit_seq);
2480		wraparound_section(ic, &i);
2481	}
2482	smp_rmb();
2483
2484	write_journal(ic, commit_start, commit_sections);
2485
2486	spin_lock_irq(&ic->endio_wait.lock);
2487	ic->uncommitted_section += commit_sections;
2488	wraparound_section(ic, &ic->uncommitted_section);
2489	ic->n_uncommitted_sections -= commit_sections;
2490	ic->n_committed_sections += commit_sections;
2491	spin_unlock_irq(&ic->endio_wait.lock);
2492
2493	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2494		queue_work(ic->writer_wq, &ic->writer_work);
2495
2496release_flush_bios:
2497	while (flushes) {
2498		struct bio *next = flushes->bi_next;
2499
2500		flushes->bi_next = NULL;
2501		do_endio(ic, flushes);
2502		flushes = next;
2503	}
2504}
2505
2506static void complete_copy_from_journal(unsigned long error, void *context)
2507{
2508	struct journal_io *io = context;
2509	struct journal_completion *comp = io->comp;
2510	struct dm_integrity_c *ic = comp->ic;
2511
2512	remove_range(ic, &io->range);
2513	mempool_free(io, &ic->journal_io_mempool);
2514	if (unlikely(error != 0))
2515		dm_integrity_io_error(ic, "copying from journal", -EIO);
2516	complete_journal_op(comp);
2517}
2518
2519static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2520			       struct journal_entry *je)
2521{
2522	unsigned int s = 0;
2523
2524	do {
2525		js->commit_id = je->last_bytes[s];
2526		js++;
2527	} while (++s < ic->sectors_per_block);
2528}
2529
2530static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2531			     unsigned int write_sections, bool from_replay)
2532{
2533	unsigned int i, j, n;
2534	struct journal_completion comp;
2535	struct blk_plug plug;
2536
2537	blk_start_plug(&plug);
2538
2539	comp.ic = ic;
2540	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2541	init_completion(&comp.comp);
2542
2543	i = write_start;
2544	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2545#ifndef INTERNAL_VERIFY
2546		if (unlikely(from_replay))
2547#endif
2548			rw_section_mac(ic, i, false);
2549		for (j = 0; j < ic->journal_section_entries; j++) {
2550			struct journal_entry *je = access_journal_entry(ic, i, j);
2551			sector_t sec, area, offset;
2552			unsigned int k, l, next_loop;
2553			sector_t metadata_block;
2554			unsigned int metadata_offset;
2555			struct journal_io *io;
2556
2557			if (journal_entry_is_unused(je))
2558				continue;
2559			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2560			sec = journal_entry_get_sector(je);
2561			if (unlikely(from_replay)) {
2562				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2563					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2564					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2565				}
2566				if (unlikely(sec >= ic->provided_data_sectors)) {
2567					journal_entry_set_unused(je);
2568					continue;
2569				}
2570			}
2571			get_area_and_offset(ic, sec, &area, &offset);
2572			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2573			for (k = j + 1; k < ic->journal_section_entries; k++) {
2574				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2575				sector_t sec2, area2, offset2;
2576
2577				if (journal_entry_is_unused(je2))
2578					break;
2579				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2580				sec2 = journal_entry_get_sector(je2);
2581				if (unlikely(sec2 >= ic->provided_data_sectors))
2582					break;
2583				get_area_and_offset(ic, sec2, &area2, &offset2);
2584				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2585					break;
2586				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2587			}
2588			next_loop = k - 1;
2589
2590			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2591			io->comp = &comp;
2592			io->range.logical_sector = sec;
2593			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2594
2595			spin_lock_irq(&ic->endio_wait.lock);
2596			add_new_range_and_wait(ic, &io->range);
2597
2598			if (likely(!from_replay)) {
2599				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2600
2601				/* don't write if there is newer committed sector */
2602				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2603					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2604
2605					journal_entry_set_unused(je2);
2606					remove_journal_node(ic, &section_node[j]);
2607					j++;
2608					sec += ic->sectors_per_block;
2609					offset += ic->sectors_per_block;
2610				}
2611				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2612					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2613
2614					journal_entry_set_unused(je2);
2615					remove_journal_node(ic, &section_node[k - 1]);
2616					k--;
2617				}
2618				if (j == k) {
2619					remove_range_unlocked(ic, &io->range);
2620					spin_unlock_irq(&ic->endio_wait.lock);
2621					mempool_free(io, &ic->journal_io_mempool);
2622					goto skip_io;
2623				}
2624				for (l = j; l < k; l++)
2625					remove_journal_node(ic, &section_node[l]);
2626			}
2627			spin_unlock_irq(&ic->endio_wait.lock);
2628
2629			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2630			for (l = j; l < k; l++) {
2631				int r;
2632				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2633
2634				if (
2635#ifndef INTERNAL_VERIFY
2636				    unlikely(from_replay) &&
2637#endif
2638				    ic->internal_hash) {
2639					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2640
2641					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2642								  (char *)access_journal_data(ic, i, l), test_tag);
2643					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2644						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2645						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2646					}
2647				}
2648
2649				journal_entry_set_unused(je2);
2650				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2651							ic->tag_size, TAG_WRITE);
2652				if (unlikely(r))
2653					dm_integrity_io_error(ic, "reading tags", r);
2654			}
2655
2656			atomic_inc(&comp.in_flight);
2657			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2658					  (k - j) << ic->sb->log2_sectors_per_block,
2659					  get_data_sector(ic, area, offset),
2660					  complete_copy_from_journal, io);
2661skip_io:
2662			j = next_loop;
2663		}
2664	}
2665
2666	dm_bufio_write_dirty_buffers_async(ic->bufio);
2667
2668	blk_finish_plug(&plug);
2669
2670	complete_journal_op(&comp);
2671	wait_for_completion_io(&comp.comp);
2672
2673	dm_integrity_flush_buffers(ic, true);
2674}
2675
2676static void integrity_writer(struct work_struct *w)
2677{
2678	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2679	unsigned int write_start, write_sections;
2680	unsigned int prev_free_sectors;
2681
2682	spin_lock_irq(&ic->endio_wait.lock);
2683	write_start = ic->committed_section;
2684	write_sections = ic->n_committed_sections;
2685	spin_unlock_irq(&ic->endio_wait.lock);
2686
2687	if (!write_sections)
2688		return;
2689
2690	do_journal_write(ic, write_start, write_sections, false);
2691
2692	spin_lock_irq(&ic->endio_wait.lock);
2693
2694	ic->committed_section += write_sections;
2695	wraparound_section(ic, &ic->committed_section);
2696	ic->n_committed_sections -= write_sections;
2697
2698	prev_free_sectors = ic->free_sectors;
2699	ic->free_sectors += write_sections * ic->journal_section_entries;
2700	if (unlikely(!prev_free_sectors))
2701		wake_up_locked(&ic->endio_wait);
2702
2703	spin_unlock_irq(&ic->endio_wait.lock);
2704}
2705
2706static void recalc_write_super(struct dm_integrity_c *ic)
2707{
2708	int r;
2709
2710	dm_integrity_flush_buffers(ic, false);
2711	if (dm_integrity_failed(ic))
2712		return;
2713
2714	r = sync_rw_sb(ic, REQ_OP_WRITE);
2715	if (unlikely(r))
2716		dm_integrity_io_error(ic, "writing superblock", r);
2717}
2718
2719static void integrity_recalc(struct work_struct *w)
2720{
2721	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2722	size_t recalc_tags_size;
2723	u8 *recalc_buffer = NULL;
2724	u8 *recalc_tags = NULL;
2725	struct dm_integrity_range range;
2726	struct dm_io_request io_req;
2727	struct dm_io_region io_loc;
2728	sector_t area, offset;
2729	sector_t metadata_block;
2730	unsigned int metadata_offset;
2731	sector_t logical_sector, n_sectors;
2732	__u8 *t;
2733	unsigned int i;
2734	int r;
2735	unsigned int super_counter = 0;
2736	unsigned recalc_sectors = RECALC_SECTORS;
2737
2738retry:
2739	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2740	if (!recalc_buffer) {
2741oom:
2742		recalc_sectors >>= 1;
2743		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2744			goto retry;
2745		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2746		goto free_ret;
2747	}
2748	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2749	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2750		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2751	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2752	if (!recalc_tags) {
2753		vfree(recalc_buffer);
2754		recalc_buffer = NULL;
2755		goto oom;
2756	}
2757
2758	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2759
2760	spin_lock_irq(&ic->endio_wait.lock);
2761
2762next_chunk:
2763
2764	if (unlikely(dm_post_suspending(ic->ti)))
2765		goto unlock_ret;
2766
2767	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2768	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2769		if (ic->mode == 'B') {
2770			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2771			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2772			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2773		}
2774		goto unlock_ret;
2775	}
2776
2777	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2778	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2779	if (!ic->meta_dev)
2780		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2781
2782	add_new_range_and_wait(ic, &range);
2783	spin_unlock_irq(&ic->endio_wait.lock);
2784	logical_sector = range.logical_sector;
2785	n_sectors = range.n_sectors;
2786
2787	if (ic->mode == 'B') {
2788		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2789			goto advance_and_next;
2790
2791		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2792				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2793			logical_sector += ic->sectors_per_block;
2794			n_sectors -= ic->sectors_per_block;
2795			cond_resched();
2796		}
2797		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2798				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2799			n_sectors -= ic->sectors_per_block;
2800			cond_resched();
2801		}
2802		get_area_and_offset(ic, logical_sector, &area, &offset);
2803	}
2804
2805	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2806
2807	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2808		recalc_write_super(ic);
2809		if (ic->mode == 'B')
2810			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2811
2812		super_counter = 0;
2813	}
2814
2815	if (unlikely(dm_integrity_failed(ic)))
2816		goto err;
2817
2818	io_req.bi_opf = REQ_OP_READ;
2819	io_req.mem.type = DM_IO_VMA;
2820	io_req.mem.ptr.addr = recalc_buffer;
2821	io_req.notify.fn = NULL;
2822	io_req.client = ic->io;
2823	io_loc.bdev = ic->dev->bdev;
2824	io_loc.sector = get_data_sector(ic, area, offset);
2825	io_loc.count = n_sectors;
2826
2827	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2828	if (unlikely(r)) {
2829		dm_integrity_io_error(ic, "reading data", r);
2830		goto err;
2831	}
2832
2833	t = recalc_tags;
2834	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2835		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2836		t += ic->tag_size;
2837	}
2838
2839	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2840
2841	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2842	if (unlikely(r)) {
2843		dm_integrity_io_error(ic, "writing tags", r);
2844		goto err;
2845	}
2846
2847	if (ic->mode == 'B') {
2848		sector_t start, end;
2849
2850		start = (range.logical_sector >>
2851			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2852			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2853		end = ((range.logical_sector + range.n_sectors) >>
2854		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2855			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2856		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2857	}
2858
2859advance_and_next:
2860	cond_resched();
2861
2862	spin_lock_irq(&ic->endio_wait.lock);
2863	remove_range_unlocked(ic, &range);
2864	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2865	goto next_chunk;
2866
2867err:
2868	remove_range(ic, &range);
2869	goto free_ret;
2870
2871unlock_ret:
2872	spin_unlock_irq(&ic->endio_wait.lock);
2873
2874	recalc_write_super(ic);
2875
2876free_ret:
2877	vfree(recalc_buffer);
2878	kvfree(recalc_tags);
2879}
2880
2881static void bitmap_block_work(struct work_struct *w)
2882{
2883	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2884	struct dm_integrity_c *ic = bbs->ic;
2885	struct bio *bio;
2886	struct bio_list bio_queue;
2887	struct bio_list waiting;
2888
2889	bio_list_init(&waiting);
2890
2891	spin_lock(&bbs->bio_queue_lock);
2892	bio_queue = bbs->bio_queue;
2893	bio_list_init(&bbs->bio_queue);
2894	spin_unlock(&bbs->bio_queue_lock);
2895
2896	while ((bio = bio_list_pop(&bio_queue))) {
2897		struct dm_integrity_io *dio;
2898
2899		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2900
2901		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2902				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2903			remove_range(ic, &dio->range);
2904			INIT_WORK(&dio->work, integrity_bio_wait);
2905			queue_work(ic->offload_wq, &dio->work);
2906		} else {
2907			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2908					dio->range.n_sectors, BITMAP_OP_SET);
2909			bio_list_add(&waiting, bio);
2910		}
2911	}
2912
2913	if (bio_list_empty(&waiting))
2914		return;
2915
2916	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2917			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2918			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2919
2920	while ((bio = bio_list_pop(&waiting))) {
2921		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2922
2923		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2924				dio->range.n_sectors, BITMAP_OP_SET);
2925
2926		remove_range(ic, &dio->range);
2927		INIT_WORK(&dio->work, integrity_bio_wait);
2928		queue_work(ic->offload_wq, &dio->work);
2929	}
2930
2931	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2932}
2933
2934static void bitmap_flush_work(struct work_struct *work)
2935{
2936	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2937	struct dm_integrity_range range;
2938	unsigned long limit;
2939	struct bio *bio;
2940
2941	dm_integrity_flush_buffers(ic, false);
2942
2943	range.logical_sector = 0;
2944	range.n_sectors = ic->provided_data_sectors;
2945
2946	spin_lock_irq(&ic->endio_wait.lock);
2947	add_new_range_and_wait(ic, &range);
2948	spin_unlock_irq(&ic->endio_wait.lock);
2949
2950	dm_integrity_flush_buffers(ic, true);
2951
2952	limit = ic->provided_data_sectors;
2953	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2954		limit = le64_to_cpu(ic->sb->recalc_sector)
2955			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2956			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2957	}
2958	/*DEBUG_print("zeroing journal\n");*/
2959	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2960	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2961
2962	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2963			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2964
2965	spin_lock_irq(&ic->endio_wait.lock);
2966	remove_range_unlocked(ic, &range);
2967	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2968		bio_endio(bio);
2969		spin_unlock_irq(&ic->endio_wait.lock);
2970		spin_lock_irq(&ic->endio_wait.lock);
2971	}
2972	spin_unlock_irq(&ic->endio_wait.lock);
2973}
2974
2975
2976static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2977			 unsigned int n_sections, unsigned char commit_seq)
2978{
2979	unsigned int i, j, n;
2980
2981	if (!n_sections)
2982		return;
2983
2984	for (n = 0; n < n_sections; n++) {
2985		i = start_section + n;
2986		wraparound_section(ic, &i);
2987		for (j = 0; j < ic->journal_section_sectors; j++) {
2988			struct journal_sector *js = access_journal(ic, i, j);
2989
2990			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2991			memset(&js->sectors, 0, sizeof(js->sectors));
2992			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2993		}
2994		for (j = 0; j < ic->journal_section_entries; j++) {
2995			struct journal_entry *je = access_journal_entry(ic, i, j);
2996
2997			journal_entry_set_unused(je);
2998		}
2999	}
3000
3001	write_journal(ic, start_section, n_sections);
3002}
3003
3004static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3005{
3006	unsigned char k;
3007
3008	for (k = 0; k < N_COMMIT_IDS; k++) {
3009		if (dm_integrity_commit_id(ic, i, j, k) == id)
3010			return k;
3011	}
3012	dm_integrity_io_error(ic, "journal commit id", -EIO);
3013	return -EIO;
3014}
3015
3016static void replay_journal(struct dm_integrity_c *ic)
3017{
3018	unsigned int i, j;
3019	bool used_commit_ids[N_COMMIT_IDS];
3020	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3021	unsigned int write_start, write_sections;
3022	unsigned int continue_section;
3023	bool journal_empty;
3024	unsigned char unused, last_used, want_commit_seq;
3025
3026	if (ic->mode == 'R')
3027		return;
3028
3029	if (ic->journal_uptodate)
3030		return;
3031
3032	last_used = 0;
3033	write_start = 0;
3034
3035	if (!ic->just_formatted) {
3036		DEBUG_print("reading journal\n");
3037		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3038		if (ic->journal_io)
3039			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3040		if (ic->journal_io) {
3041			struct journal_completion crypt_comp;
3042
3043			crypt_comp.ic = ic;
3044			init_completion(&crypt_comp.comp);
3045			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3046			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3047			wait_for_completion(&crypt_comp.comp);
3048		}
3049		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3050	}
3051
3052	if (dm_integrity_failed(ic))
3053		goto clear_journal;
3054
3055	journal_empty = true;
3056	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3057	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3058	for (i = 0; i < ic->journal_sections; i++) {
3059		for (j = 0; j < ic->journal_section_sectors; j++) {
3060			int k;
3061			struct journal_sector *js = access_journal(ic, i, j);
3062
3063			k = find_commit_seq(ic, i, j, js->commit_id);
3064			if (k < 0)
3065				goto clear_journal;
3066			used_commit_ids[k] = true;
3067			max_commit_id_sections[k] = i;
3068		}
3069		if (journal_empty) {
3070			for (j = 0; j < ic->journal_section_entries; j++) {
3071				struct journal_entry *je = access_journal_entry(ic, i, j);
3072
3073				if (!journal_entry_is_unused(je)) {
3074					journal_empty = false;
3075					break;
3076				}
3077			}
3078		}
3079	}
3080
3081	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3082		unused = N_COMMIT_IDS - 1;
3083		while (unused && !used_commit_ids[unused - 1])
3084			unused--;
3085	} else {
3086		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3087			if (!used_commit_ids[unused])
3088				break;
3089		if (unused == N_COMMIT_IDS) {
3090			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3091			goto clear_journal;
3092		}
3093	}
3094	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3095		    unused, used_commit_ids[0], used_commit_ids[1],
3096		    used_commit_ids[2], used_commit_ids[3]);
3097
3098	last_used = prev_commit_seq(unused);
3099	want_commit_seq = prev_commit_seq(last_used);
3100
3101	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3102		journal_empty = true;
3103
3104	write_start = max_commit_id_sections[last_used] + 1;
3105	if (unlikely(write_start >= ic->journal_sections))
3106		want_commit_seq = next_commit_seq(want_commit_seq);
3107	wraparound_section(ic, &write_start);
3108
3109	i = write_start;
3110	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3111		for (j = 0; j < ic->journal_section_sectors; j++) {
3112			struct journal_sector *js = access_journal(ic, i, j);
3113
3114			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3115				/*
3116				 * This could be caused by crash during writing.
3117				 * We won't replay the inconsistent part of the
3118				 * journal.
3119				 */
3120				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3121					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3122				goto brk;
3123			}
3124		}
3125		i++;
3126		if (unlikely(i >= ic->journal_sections))
3127			want_commit_seq = next_commit_seq(want_commit_seq);
3128		wraparound_section(ic, &i);
3129	}
3130brk:
3131
3132	if (!journal_empty) {
3133		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3134			    write_sections, write_start, want_commit_seq);
3135		do_journal_write(ic, write_start, write_sections, true);
3136	}
3137
3138	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3139		continue_section = write_start;
3140		ic->commit_seq = want_commit_seq;
3141		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3142	} else {
3143		unsigned int s;
3144		unsigned char erase_seq;
3145
3146clear_journal:
3147		DEBUG_print("clearing journal\n");
3148
3149		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3150		s = write_start;
3151		init_journal(ic, s, 1, erase_seq);
3152		s++;
3153		wraparound_section(ic, &s);
3154		if (ic->journal_sections >= 2) {
3155			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3156			s += ic->journal_sections - 2;
3157			wraparound_section(ic, &s);
3158			init_journal(ic, s, 1, erase_seq);
3159		}
3160
3161		continue_section = 0;
3162		ic->commit_seq = next_commit_seq(erase_seq);
3163	}
3164
3165	ic->committed_section = continue_section;
3166	ic->n_committed_sections = 0;
3167
3168	ic->uncommitted_section = continue_section;
3169	ic->n_uncommitted_sections = 0;
3170
3171	ic->free_section = continue_section;
3172	ic->free_section_entry = 0;
3173	ic->free_sectors = ic->journal_entries;
3174
3175	ic->journal_tree_root = RB_ROOT;
3176	for (i = 0; i < ic->journal_entries; i++)
3177		init_journal_node(&ic->journal_tree[i]);
3178}
3179
3180static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3181{
3182	DEBUG_print("%s\n", __func__);
3183
3184	if (ic->mode == 'B') {
3185		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3186		ic->synchronous_mode = 1;
3187
3188		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3189		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3190		flush_workqueue(ic->commit_wq);
3191	}
3192}
3193
3194static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3195{
3196	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3197
3198	DEBUG_print("%s\n", __func__);
3199
3200	dm_integrity_enter_synchronous_mode(ic);
3201
3202	return NOTIFY_DONE;
3203}
3204
3205static void dm_integrity_postsuspend(struct dm_target *ti)
3206{
3207	struct dm_integrity_c *ic = ti->private;
3208	int r;
3209
3210	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3211
3212	del_timer_sync(&ic->autocommit_timer);
3213
3214	if (ic->recalc_wq)
3215		drain_workqueue(ic->recalc_wq);
3216
3217	if (ic->mode == 'B')
3218		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3219
3220	queue_work(ic->commit_wq, &ic->commit_work);
3221	drain_workqueue(ic->commit_wq);
3222
3223	if (ic->mode == 'J') {
3224		queue_work(ic->writer_wq, &ic->writer_work);
3225		drain_workqueue(ic->writer_wq);
3226		dm_integrity_flush_buffers(ic, true);
3227		if (ic->wrote_to_journal) {
3228			init_journal(ic, ic->free_section,
3229				     ic->journal_sections - ic->free_section, ic->commit_seq);
3230			if (ic->free_section) {
3231				init_journal(ic, 0, ic->free_section,
3232					     next_commit_seq(ic->commit_seq));
3233			}
3234		}
3235	}
3236
3237	if (ic->mode == 'B') {
3238		dm_integrity_flush_buffers(ic, true);
3239#if 1
3240		/* set to 0 to test bitmap replay code */
3241		init_journal(ic, 0, ic->journal_sections, 0);
3242		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3243		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3244		if (unlikely(r))
3245			dm_integrity_io_error(ic, "writing superblock", r);
3246#endif
3247	}
3248
3249	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3250
3251	ic->journal_uptodate = true;
3252}
3253
3254static void dm_integrity_resume(struct dm_target *ti)
3255{
3256	struct dm_integrity_c *ic = ti->private;
3257	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3258	int r;
3259
3260	DEBUG_print("resume\n");
3261
3262	ic->wrote_to_journal = false;
3263
3264	if (ic->provided_data_sectors != old_provided_data_sectors) {
3265		if (ic->provided_data_sectors > old_provided_data_sectors &&
3266		    ic->mode == 'B' &&
3267		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3268			rw_journal_sectors(ic, REQ_OP_READ, 0,
3269					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3270			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3271					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3272			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3273					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3274		}
3275
3276		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3277		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3278		if (unlikely(r))
3279			dm_integrity_io_error(ic, "writing superblock", r);
3280	}
3281
3282	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3283		DEBUG_print("resume dirty_bitmap\n");
3284		rw_journal_sectors(ic, REQ_OP_READ, 0,
3285				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3286		if (ic->mode == 'B') {
3287			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3288			    !ic->reset_recalculate_flag) {
3289				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3290				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3291				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3292						     BITMAP_OP_TEST_ALL_CLEAR)) {
3293					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3294					ic->sb->recalc_sector = cpu_to_le64(0);
3295				}
3296			} else {
3297				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3298					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3299				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3300				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3301				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3302				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3303				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3304						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3305				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3306				ic->sb->recalc_sector = cpu_to_le64(0);
3307			}
3308		} else {
3309			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3310			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3311			    ic->reset_recalculate_flag) {
3312				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3313				ic->sb->recalc_sector = cpu_to_le64(0);
3314			}
3315			init_journal(ic, 0, ic->journal_sections, 0);
3316			replay_journal(ic);
3317			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3318		}
3319		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3320		if (unlikely(r))
3321			dm_integrity_io_error(ic, "writing superblock", r);
3322	} else {
3323		replay_journal(ic);
3324		if (ic->reset_recalculate_flag) {
3325			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3326			ic->sb->recalc_sector = cpu_to_le64(0);
3327		}
3328		if (ic->mode == 'B') {
3329			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3330			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3331			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3332			if (unlikely(r))
3333				dm_integrity_io_error(ic, "writing superblock", r);
3334
3335			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3336			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3337			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3338			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3339			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3340				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3341						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3342				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3343						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3344				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3345						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3346			}
3347			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3348					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3349		}
3350	}
3351
3352	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3353	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3354		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3355
3356		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3357		if (recalc_pos < ic->provided_data_sectors) {
3358			queue_work(ic->recalc_wq, &ic->recalc_work);
3359		} else if (recalc_pos > ic->provided_data_sectors) {
3360			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3361			recalc_write_super(ic);
3362		}
3363	}
3364
3365	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3366	ic->reboot_notifier.next = NULL;
3367	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3368	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3369
3370#if 0
3371	/* set to 1 to stress test synchronous mode */
3372	dm_integrity_enter_synchronous_mode(ic);
3373#endif
3374}
3375
3376static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3377				unsigned int status_flags, char *result, unsigned int maxlen)
3378{
3379	struct dm_integrity_c *ic = ti->private;
3380	unsigned int arg_count;
3381	size_t sz = 0;
3382
3383	switch (type) {
3384	case STATUSTYPE_INFO:
3385		DMEMIT("%llu %llu",
3386			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3387			ic->provided_data_sectors);
3388		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3389			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3390		else
3391			DMEMIT(" -");
3392		break;
3393
3394	case STATUSTYPE_TABLE: {
3395		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3396
3397		watermark_percentage += ic->journal_entries / 2;
3398		do_div(watermark_percentage, ic->journal_entries);
3399		arg_count = 3;
3400		arg_count += !!ic->meta_dev;
3401		arg_count += ic->sectors_per_block != 1;
3402		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3403		arg_count += ic->reset_recalculate_flag;
3404		arg_count += ic->discard;
3405		arg_count += ic->mode == 'J';
3406		arg_count += ic->mode == 'J';
3407		arg_count += ic->mode == 'B';
3408		arg_count += ic->mode == 'B';
3409		arg_count += !!ic->internal_hash_alg.alg_string;
3410		arg_count += !!ic->journal_crypt_alg.alg_string;
3411		arg_count += !!ic->journal_mac_alg.alg_string;
3412		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3413		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3414		arg_count += ic->legacy_recalculate;
3415		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3416		       ic->tag_size, ic->mode, arg_count);
3417		if (ic->meta_dev)
3418			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3419		if (ic->sectors_per_block != 1)
3420			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3421		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3422			DMEMIT(" recalculate");
3423		if (ic->reset_recalculate_flag)
3424			DMEMIT(" reset_recalculate");
3425		if (ic->discard)
3426			DMEMIT(" allow_discards");
3427		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3428		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3429		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3430		if (ic->mode == 'J') {
3431			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3432			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3433		}
3434		if (ic->mode == 'B') {
3435			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3436			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3437		}
3438		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3439			DMEMIT(" fix_padding");
3440		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3441			DMEMIT(" fix_hmac");
3442		if (ic->legacy_recalculate)
3443			DMEMIT(" legacy_recalculate");
3444
3445#define EMIT_ALG(a, n)							\
3446		do {							\
3447			if (ic->a.alg_string) {				\
3448				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3449				if (ic->a.key_string)			\
3450					DMEMIT(":%s", ic->a.key_string);\
3451			}						\
3452		} while (0)
3453		EMIT_ALG(internal_hash_alg, "internal_hash");
3454		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3455		EMIT_ALG(journal_mac_alg, "journal_mac");
3456		break;
3457	}
3458	case STATUSTYPE_IMA:
3459		DMEMIT_TARGET_NAME_VERSION(ti->type);
3460		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3461			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3462
3463		if (ic->meta_dev)
3464			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3465		if (ic->sectors_per_block != 1)
3466			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3467
3468		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3469		       'y' : 'n');
3470		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3471		DMEMIT(",fix_padding=%c",
3472		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3473		DMEMIT(",fix_hmac=%c",
3474		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3475		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3476
3477		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3478		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3479		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3480		DMEMIT(";");
3481		break;
3482	}
3483}
3484
3485static int dm_integrity_iterate_devices(struct dm_target *ti,
3486					iterate_devices_callout_fn fn, void *data)
3487{
3488	struct dm_integrity_c *ic = ti->private;
3489
3490	if (!ic->meta_dev)
3491		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3492	else
3493		return fn(ti, ic->dev, 0, ti->len, data);
3494}
3495
3496static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3497{
3498	struct dm_integrity_c *ic = ti->private;
3499
3500	if (ic->sectors_per_block > 1) {
3501		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3502		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3503		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3504		limits->dma_alignment = limits->logical_block_size - 1;
3505	}
3506}
3507
3508static void calculate_journal_section_size(struct dm_integrity_c *ic)
3509{
3510	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3511
3512	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3513	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3514					 JOURNAL_ENTRY_ROUNDUP);
3515
3516	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3517		sector_space -= JOURNAL_MAC_PER_SECTOR;
3518	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3519	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3520	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3521	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3522}
3523
3524static int calculate_device_limits(struct dm_integrity_c *ic)
3525{
3526	__u64 initial_sectors;
3527
3528	calculate_journal_section_size(ic);
3529	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3530	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3531		return -EINVAL;
3532	ic->initial_sectors = initial_sectors;
3533
3534	if (!ic->meta_dev) {
3535		sector_t last_sector, last_area, last_offset;
3536
3537		/* we have to maintain excessive padding for compatibility with existing volumes */
3538		__u64 metadata_run_padding =
3539			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3540			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3541			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3542
3543		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3544					    metadata_run_padding) >> SECTOR_SHIFT;
3545		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3546			ic->log2_metadata_run = __ffs(ic->metadata_run);
3547		else
3548			ic->log2_metadata_run = -1;
3549
3550		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3551		last_sector = get_data_sector(ic, last_area, last_offset);
3552		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3553			return -EINVAL;
3554	} else {
3555		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3556
3557		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3558				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3559		meta_size <<= ic->log2_buffer_sectors;
3560		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3561		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3562			return -EINVAL;
3563		ic->metadata_run = 1;
3564		ic->log2_metadata_run = 0;
3565	}
3566
3567	return 0;
3568}
3569
3570static void get_provided_data_sectors(struct dm_integrity_c *ic)
3571{
3572	if (!ic->meta_dev) {
3573		int test_bit;
3574
3575		ic->provided_data_sectors = 0;
3576		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3577			__u64 prev_data_sectors = ic->provided_data_sectors;
3578
3579			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3580			if (calculate_device_limits(ic))
3581				ic->provided_data_sectors = prev_data_sectors;
3582		}
3583	} else {
3584		ic->provided_data_sectors = ic->data_device_sectors;
3585		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3586	}
3587}
3588
3589static int initialize_superblock(struct dm_integrity_c *ic,
3590				 unsigned int journal_sectors, unsigned int interleave_sectors)
3591{
3592	unsigned int journal_sections;
3593	int test_bit;
3594
3595	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3596	memcpy(ic->sb->magic, SB_MAGIC, 8);
3597	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3598	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3599	if (ic->journal_mac_alg.alg_string)
3600		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3601
3602	calculate_journal_section_size(ic);
3603	journal_sections = journal_sectors / ic->journal_section_sectors;
3604	if (!journal_sections)
3605		journal_sections = 1;
3606
3607	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3608		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3609		get_random_bytes(ic->sb->salt, SALT_SIZE);
3610	}
3611
3612	if (!ic->meta_dev) {
3613		if (ic->fix_padding)
3614			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3615		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3616		if (!interleave_sectors)
3617			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3618		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3619		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3620		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3621
3622		get_provided_data_sectors(ic);
3623		if (!ic->provided_data_sectors)
3624			return -EINVAL;
3625	} else {
3626		ic->sb->log2_interleave_sectors = 0;
3627
3628		get_provided_data_sectors(ic);
3629		if (!ic->provided_data_sectors)
3630			return -EINVAL;
3631
3632try_smaller_buffer:
3633		ic->sb->journal_sections = cpu_to_le32(0);
3634		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3635			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3636			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3637
3638			if (test_journal_sections > journal_sections)
3639				continue;
3640			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3641			if (calculate_device_limits(ic))
3642				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3643
3644		}
3645		if (!le32_to_cpu(ic->sb->journal_sections)) {
3646			if (ic->log2_buffer_sectors > 3) {
3647				ic->log2_buffer_sectors--;
3648				goto try_smaller_buffer;
3649			}
3650			return -EINVAL;
3651		}
3652	}
3653
3654	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3655
3656	sb_set_version(ic);
3657
3658	return 0;
3659}
3660
3661static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3662{
3663	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3664	struct blk_integrity bi;
3665
3666	memset(&bi, 0, sizeof(bi));
3667	bi.profile = &dm_integrity_profile;
3668	bi.tuple_size = ic->tag_size;
3669	bi.tag_size = bi.tuple_size;
3670	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3671
3672	blk_integrity_register(disk, &bi);
3673	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3674}
3675
3676static void dm_integrity_free_page_list(struct page_list *pl)
3677{
3678	unsigned int i;
3679
3680	if (!pl)
3681		return;
3682	for (i = 0; pl[i].page; i++)
3683		__free_page(pl[i].page);
3684	kvfree(pl);
3685}
3686
3687static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3688{
3689	struct page_list *pl;
3690	unsigned int i;
3691
3692	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3693	if (!pl)
3694		return NULL;
3695
3696	for (i = 0; i < n_pages; i++) {
3697		pl[i].page = alloc_page(GFP_KERNEL);
3698		if (!pl[i].page) {
3699			dm_integrity_free_page_list(pl);
3700			return NULL;
3701		}
3702		if (i)
3703			pl[i - 1].next = &pl[i];
3704	}
3705	pl[i].page = NULL;
3706	pl[i].next = NULL;
3707
3708	return pl;
3709}
3710
3711static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3712{
3713	unsigned int i;
3714
3715	for (i = 0; i < ic->journal_sections; i++)
3716		kvfree(sl[i]);
3717	kvfree(sl);
3718}
3719
3720static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3721								   struct page_list *pl)
3722{
3723	struct scatterlist **sl;
3724	unsigned int i;
3725
3726	sl = kvmalloc_array(ic->journal_sections,
3727			    sizeof(struct scatterlist *),
3728			    GFP_KERNEL | __GFP_ZERO);
3729	if (!sl)
3730		return NULL;
3731
3732	for (i = 0; i < ic->journal_sections; i++) {
3733		struct scatterlist *s;
3734		unsigned int start_index, start_offset;
3735		unsigned int end_index, end_offset;
3736		unsigned int n_pages;
3737		unsigned int idx;
3738
3739		page_list_location(ic, i, 0, &start_index, &start_offset);
3740		page_list_location(ic, i, ic->journal_section_sectors - 1,
3741				   &end_index, &end_offset);
3742
3743		n_pages = (end_index - start_index + 1);
3744
3745		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3746				   GFP_KERNEL);
3747		if (!s) {
3748			dm_integrity_free_journal_scatterlist(ic, sl);
3749			return NULL;
3750		}
3751
3752		sg_init_table(s, n_pages);
3753		for (idx = start_index; idx <= end_index; idx++) {
3754			char *va = lowmem_page_address(pl[idx].page);
3755			unsigned int start = 0, end = PAGE_SIZE;
3756
3757			if (idx == start_index)
3758				start = start_offset;
3759			if (idx == end_index)
3760				end = end_offset + (1 << SECTOR_SHIFT);
3761			sg_set_buf(&s[idx - start_index], va + start, end - start);
3762		}
3763
3764		sl[i] = s;
3765	}
3766
3767	return sl;
3768}
3769
3770static void free_alg(struct alg_spec *a)
3771{
3772	kfree_sensitive(a->alg_string);
3773	kfree_sensitive(a->key);
3774	memset(a, 0, sizeof(*a));
3775}
3776
3777static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3778{
3779	char *k;
3780
3781	free_alg(a);
3782
3783	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3784	if (!a->alg_string)
3785		goto nomem;
3786
3787	k = strchr(a->alg_string, ':');
3788	if (k) {
3789		*k = 0;
3790		a->key_string = k + 1;
3791		if (strlen(a->key_string) & 1)
3792			goto inval;
3793
3794		a->key_size = strlen(a->key_string) / 2;
3795		a->key = kmalloc(a->key_size, GFP_KERNEL);
3796		if (!a->key)
3797			goto nomem;
3798		if (hex2bin(a->key, a->key_string, a->key_size))
3799			goto inval;
3800	}
3801
3802	return 0;
3803inval:
3804	*error = error_inval;
3805	return -EINVAL;
3806nomem:
3807	*error = "Out of memory for an argument";
3808	return -ENOMEM;
3809}
3810
3811static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3812		   char *error_alg, char *error_key)
3813{
3814	int r;
3815
3816	if (a->alg_string) {
3817		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3818		if (IS_ERR(*hash)) {
3819			*error = error_alg;
3820			r = PTR_ERR(*hash);
3821			*hash = NULL;
3822			return r;
3823		}
3824
3825		if (a->key) {
3826			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3827			if (r) {
3828				*error = error_key;
3829				return r;
3830			}
3831		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3832			*error = error_key;
3833			return -ENOKEY;
3834		}
3835	}
3836
3837	return 0;
3838}
3839
3840static int create_journal(struct dm_integrity_c *ic, char **error)
3841{
3842	int r = 0;
3843	unsigned int i;
3844	__u64 journal_pages, journal_desc_size, journal_tree_size;
3845	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3846	struct skcipher_request *req = NULL;
3847
3848	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3849	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3850	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3851	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3852
3853	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3854				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3855	journal_desc_size = journal_pages * sizeof(struct page_list);
3856	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3857		*error = "Journal doesn't fit into memory";
3858		r = -ENOMEM;
3859		goto bad;
3860	}
3861	ic->journal_pages = journal_pages;
3862
3863	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3864	if (!ic->journal) {
3865		*error = "Could not allocate memory for journal";
3866		r = -ENOMEM;
3867		goto bad;
3868	}
3869	if (ic->journal_crypt_alg.alg_string) {
3870		unsigned int ivsize, blocksize;
3871		struct journal_completion comp;
3872
3873		comp.ic = ic;
3874		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3875		if (IS_ERR(ic->journal_crypt)) {
3876			*error = "Invalid journal cipher";
3877			r = PTR_ERR(ic->journal_crypt);
3878			ic->journal_crypt = NULL;
3879			goto bad;
3880		}
3881		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3882		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3883
3884		if (ic->journal_crypt_alg.key) {
3885			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3886						   ic->journal_crypt_alg.key_size);
3887			if (r) {
3888				*error = "Error setting encryption key";
3889				goto bad;
3890			}
3891		}
3892		DEBUG_print("cipher %s, block size %u iv size %u\n",
3893			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3894
3895		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3896		if (!ic->journal_io) {
3897			*error = "Could not allocate memory for journal io";
3898			r = -ENOMEM;
3899			goto bad;
3900		}
3901
3902		if (blocksize == 1) {
3903			struct scatterlist *sg;
3904
3905			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3906			if (!req) {
3907				*error = "Could not allocate crypt request";
3908				r = -ENOMEM;
3909				goto bad;
3910			}
3911
3912			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3913			if (!crypt_iv) {
3914				*error = "Could not allocate iv";
3915				r = -ENOMEM;
3916				goto bad;
3917			}
3918
3919			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3920			if (!ic->journal_xor) {
3921				*error = "Could not allocate memory for journal xor";
3922				r = -ENOMEM;
3923				goto bad;
3924			}
3925
3926			sg = kvmalloc_array(ic->journal_pages + 1,
3927					    sizeof(struct scatterlist),
3928					    GFP_KERNEL);
3929			if (!sg) {
3930				*error = "Unable to allocate sg list";
3931				r = -ENOMEM;
3932				goto bad;
3933			}
3934			sg_init_table(sg, ic->journal_pages + 1);
3935			for (i = 0; i < ic->journal_pages; i++) {
3936				char *va = lowmem_page_address(ic->journal_xor[i].page);
3937
3938				clear_page(va);
3939				sg_set_buf(&sg[i], va, PAGE_SIZE);
3940			}
3941			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3942
3943			skcipher_request_set_crypt(req, sg, sg,
3944						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3945			init_completion(&comp.comp);
3946			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3947			if (do_crypt(true, req, &comp))
3948				wait_for_completion(&comp.comp);
3949			kvfree(sg);
3950			r = dm_integrity_failed(ic);
3951			if (r) {
3952				*error = "Unable to encrypt journal";
3953				goto bad;
3954			}
3955			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3956
3957			crypto_free_skcipher(ic->journal_crypt);
3958			ic->journal_crypt = NULL;
3959		} else {
3960			unsigned int crypt_len = roundup(ivsize, blocksize);
3961
3962			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3963			if (!req) {
3964				*error = "Could not allocate crypt request";
3965				r = -ENOMEM;
3966				goto bad;
3967			}
3968
3969			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3970			if (!crypt_iv) {
3971				*error = "Could not allocate iv";
3972				r = -ENOMEM;
3973				goto bad;
3974			}
3975
3976			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3977			if (!crypt_data) {
3978				*error = "Unable to allocate crypt data";
3979				r = -ENOMEM;
3980				goto bad;
3981			}
3982
3983			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3984			if (!ic->journal_scatterlist) {
3985				*error = "Unable to allocate sg list";
3986				r = -ENOMEM;
3987				goto bad;
3988			}
3989			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3990			if (!ic->journal_io_scatterlist) {
3991				*error = "Unable to allocate sg list";
3992				r = -ENOMEM;
3993				goto bad;
3994			}
3995			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3996							 sizeof(struct skcipher_request *),
3997							 GFP_KERNEL | __GFP_ZERO);
3998			if (!ic->sk_requests) {
3999				*error = "Unable to allocate sk requests";
4000				r = -ENOMEM;
4001				goto bad;
4002			}
4003			for (i = 0; i < ic->journal_sections; i++) {
4004				struct scatterlist sg;
4005				struct skcipher_request *section_req;
4006				__le32 section_le = cpu_to_le32(i);
4007
4008				memset(crypt_iv, 0x00, ivsize);
4009				memset(crypt_data, 0x00, crypt_len);
4010				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4011
4012				sg_init_one(&sg, crypt_data, crypt_len);
4013				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4014				init_completion(&comp.comp);
4015				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4016				if (do_crypt(true, req, &comp))
4017					wait_for_completion(&comp.comp);
4018
4019				r = dm_integrity_failed(ic);
4020				if (r) {
4021					*error = "Unable to generate iv";
4022					goto bad;
4023				}
4024
4025				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4026				if (!section_req) {
4027					*error = "Unable to allocate crypt request";
4028					r = -ENOMEM;
4029					goto bad;
4030				}
4031				section_req->iv = kmalloc_array(ivsize, 2,
4032								GFP_KERNEL);
4033				if (!section_req->iv) {
4034					skcipher_request_free(section_req);
4035					*error = "Unable to allocate iv";
4036					r = -ENOMEM;
4037					goto bad;
4038				}
4039				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4040				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4041				ic->sk_requests[i] = section_req;
4042				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4043			}
4044		}
4045	}
4046
4047	for (i = 0; i < N_COMMIT_IDS; i++) {
4048		unsigned int j;
4049
4050retest_commit_id:
4051		for (j = 0; j < i; j++) {
4052			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4053				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4054				goto retest_commit_id;
4055			}
4056		}
4057		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4058	}
4059
4060	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4061	if (journal_tree_size > ULONG_MAX) {
4062		*error = "Journal doesn't fit into memory";
4063		r = -ENOMEM;
4064		goto bad;
4065	}
4066	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4067	if (!ic->journal_tree) {
4068		*error = "Could not allocate memory for journal tree";
4069		r = -ENOMEM;
4070	}
4071bad:
4072	kfree(crypt_data);
4073	kfree(crypt_iv);
4074	skcipher_request_free(req);
4075
4076	return r;
4077}
4078
4079/*
4080 * Construct a integrity mapping
4081 *
4082 * Arguments:
4083 *	device
4084 *	offset from the start of the device
4085 *	tag size
4086 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4087 *	number of optional arguments
4088 *	optional arguments:
4089 *		journal_sectors
4090 *		interleave_sectors
4091 *		buffer_sectors
4092 *		journal_watermark
4093 *		commit_time
4094 *		meta_device
4095 *		block_size
4096 *		sectors_per_bit
4097 *		bitmap_flush_interval
4098 *		internal_hash
4099 *		journal_crypt
4100 *		journal_mac
4101 *		recalculate
4102 */
4103static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4104{
4105	struct dm_integrity_c *ic;
4106	char dummy;
4107	int r;
4108	unsigned int extra_args;
4109	struct dm_arg_set as;
4110	static const struct dm_arg _args[] = {
4111		{0, 18, "Invalid number of feature args"},
4112	};
4113	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4114	bool should_write_sb;
4115	__u64 threshold;
4116	unsigned long long start;
4117	__s8 log2_sectors_per_bitmap_bit = -1;
4118	__s8 log2_blocks_per_bitmap_bit;
4119	__u64 bits_in_journal;
4120	__u64 n_bitmap_bits;
4121
4122#define DIRECT_ARGUMENTS	4
4123
4124	if (argc <= DIRECT_ARGUMENTS) {
4125		ti->error = "Invalid argument count";
4126		return -EINVAL;
4127	}
4128
4129	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4130	if (!ic) {
4131		ti->error = "Cannot allocate integrity context";
4132		return -ENOMEM;
4133	}
4134	ti->private = ic;
4135	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4136	ic->ti = ti;
4137
4138	ic->in_progress = RB_ROOT;
4139	INIT_LIST_HEAD(&ic->wait_list);
4140	init_waitqueue_head(&ic->endio_wait);
4141	bio_list_init(&ic->flush_bio_list);
4142	init_waitqueue_head(&ic->copy_to_journal_wait);
4143	init_completion(&ic->crypto_backoff);
4144	atomic64_set(&ic->number_of_mismatches, 0);
4145	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4146
4147	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4148	if (r) {
4149		ti->error = "Device lookup failed";
4150		goto bad;
4151	}
4152
4153	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4154		ti->error = "Invalid starting offset";
4155		r = -EINVAL;
4156		goto bad;
4157	}
4158	ic->start = start;
4159
4160	if (strcmp(argv[2], "-")) {
4161		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4162			ti->error = "Invalid tag size";
4163			r = -EINVAL;
4164			goto bad;
4165		}
4166	}
4167
4168	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4169	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4170		ic->mode = argv[3][0];
4171	} else {
4172		ti->error = "Invalid mode (expecting J, B, D, R)";
4173		r = -EINVAL;
4174		goto bad;
4175	}
4176
4177	journal_sectors = 0;
4178	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4179	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4180	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4181	sync_msec = DEFAULT_SYNC_MSEC;
4182	ic->sectors_per_block = 1;
4183
4184	as.argc = argc - DIRECT_ARGUMENTS;
4185	as.argv = argv + DIRECT_ARGUMENTS;
4186	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4187	if (r)
4188		goto bad;
4189
4190	while (extra_args--) {
4191		const char *opt_string;
4192		unsigned int val;
4193		unsigned long long llval;
4194
4195		opt_string = dm_shift_arg(&as);
4196		if (!opt_string) {
4197			r = -EINVAL;
4198			ti->error = "Not enough feature arguments";
4199			goto bad;
4200		}
4201		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4202			journal_sectors = val ? val : 1;
4203		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4204			interleave_sectors = val;
4205		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4206			buffer_sectors = val;
4207		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4208			journal_watermark = val;
4209		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4210			sync_msec = val;
4211		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4212			if (ic->meta_dev) {
4213				dm_put_device(ti, ic->meta_dev);
4214				ic->meta_dev = NULL;
4215			}
4216			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4217					  dm_table_get_mode(ti->table), &ic->meta_dev);
4218			if (r) {
4219				ti->error = "Device lookup failed";
4220				goto bad;
4221			}
4222		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4223			if (val < 1 << SECTOR_SHIFT ||
4224			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4225			    (val & (val - 1))) {
4226				r = -EINVAL;
4227				ti->error = "Invalid block_size argument";
4228				goto bad;
4229			}
4230			ic->sectors_per_block = val >> SECTOR_SHIFT;
4231		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4232			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4233		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4234			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4235				r = -EINVAL;
4236				ti->error = "Invalid bitmap_flush_interval argument";
4237				goto bad;
4238			}
4239			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4240		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4241			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4242					    "Invalid internal_hash argument");
4243			if (r)
4244				goto bad;
4245		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4246			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4247					    "Invalid journal_crypt argument");
4248			if (r)
4249				goto bad;
4250		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4251			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4252					    "Invalid journal_mac argument");
4253			if (r)
4254				goto bad;
4255		} else if (!strcmp(opt_string, "recalculate")) {
4256			ic->recalculate_flag = true;
4257		} else if (!strcmp(opt_string, "reset_recalculate")) {
4258			ic->recalculate_flag = true;
4259			ic->reset_recalculate_flag = true;
4260		} else if (!strcmp(opt_string, "allow_discards")) {
4261			ic->discard = true;
4262		} else if (!strcmp(opt_string, "fix_padding")) {
4263			ic->fix_padding = true;
4264		} else if (!strcmp(opt_string, "fix_hmac")) {
4265			ic->fix_hmac = true;
4266		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4267			ic->legacy_recalculate = true;
4268		} else {
4269			r = -EINVAL;
4270			ti->error = "Invalid argument";
4271			goto bad;
4272		}
4273	}
4274
4275	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4276	if (!ic->meta_dev)
4277		ic->meta_device_sectors = ic->data_device_sectors;
4278	else
4279		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4280
4281	if (!journal_sectors) {
4282		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4283				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4284	}
4285
4286	if (!buffer_sectors)
4287		buffer_sectors = 1;
4288	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4289
4290	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4291		    "Invalid internal hash", "Error setting internal hash key");
4292	if (r)
4293		goto bad;
4294
4295	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4296		    "Invalid journal mac", "Error setting journal mac key");
4297	if (r)
4298		goto bad;
4299
4300	if (!ic->tag_size) {
4301		if (!ic->internal_hash) {
4302			ti->error = "Unknown tag size";
4303			r = -EINVAL;
4304			goto bad;
4305		}
4306		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4307	}
4308	if (ic->tag_size > MAX_TAG_SIZE) {
4309		ti->error = "Too big tag size";
4310		r = -EINVAL;
4311		goto bad;
4312	}
4313	if (!(ic->tag_size & (ic->tag_size - 1)))
4314		ic->log2_tag_size = __ffs(ic->tag_size);
4315	else
4316		ic->log2_tag_size = -1;
4317
4318	if (ic->mode == 'B' && !ic->internal_hash) {
4319		r = -EINVAL;
4320		ti->error = "Bitmap mode can be only used with internal hash";
4321		goto bad;
4322	}
4323
4324	if (ic->discard && !ic->internal_hash) {
4325		r = -EINVAL;
4326		ti->error = "Discard can be only used with internal hash";
4327		goto bad;
4328	}
4329
4330	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4331	ic->autocommit_msec = sync_msec;
4332	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4333
4334	ic->io = dm_io_client_create();
4335	if (IS_ERR(ic->io)) {
4336		r = PTR_ERR(ic->io);
4337		ic->io = NULL;
4338		ti->error = "Cannot allocate dm io";
4339		goto bad;
4340	}
4341
4342	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4343	if (r) {
4344		ti->error = "Cannot allocate mempool";
4345		goto bad;
4346	}
4347
4348	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4349	if (r) {
4350		ti->error = "Cannot allocate mempool";
4351		goto bad;
4352	}
4353
4354	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4355					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4356	if (!ic->metadata_wq) {
4357		ti->error = "Cannot allocate workqueue";
4358		r = -ENOMEM;
4359		goto bad;
4360	}
4361
4362	/*
4363	 * If this workqueue weren't ordered, it would cause bio reordering
4364	 * and reduced performance.
4365	 */
4366	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4367	if (!ic->wait_wq) {
4368		ti->error = "Cannot allocate workqueue";
4369		r = -ENOMEM;
4370		goto bad;
4371	}
4372
4373	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4374					  METADATA_WORKQUEUE_MAX_ACTIVE);
4375	if (!ic->offload_wq) {
4376		ti->error = "Cannot allocate workqueue";
4377		r = -ENOMEM;
4378		goto bad;
4379	}
4380
4381	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4382	if (!ic->commit_wq) {
4383		ti->error = "Cannot allocate workqueue";
4384		r = -ENOMEM;
4385		goto bad;
4386	}
4387	INIT_WORK(&ic->commit_work, integrity_commit);
4388
4389	if (ic->mode == 'J' || ic->mode == 'B') {
4390		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4391		if (!ic->writer_wq) {
4392			ti->error = "Cannot allocate workqueue";
4393			r = -ENOMEM;
4394			goto bad;
4395		}
4396		INIT_WORK(&ic->writer_work, integrity_writer);
4397	}
4398
4399	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4400	if (!ic->sb) {
4401		r = -ENOMEM;
4402		ti->error = "Cannot allocate superblock area";
4403		goto bad;
4404	}
4405
4406	r = sync_rw_sb(ic, REQ_OP_READ);
4407	if (r) {
4408		ti->error = "Error reading superblock";
4409		goto bad;
4410	}
4411	should_write_sb = false;
4412	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4413		if (ic->mode != 'R') {
4414			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4415				r = -EINVAL;
4416				ti->error = "The device is not initialized";
4417				goto bad;
4418			}
4419		}
4420
4421		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4422		if (r) {
4423			ti->error = "Could not initialize superblock";
4424			goto bad;
4425		}
4426		if (ic->mode != 'R')
4427			should_write_sb = true;
4428	}
4429
4430	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4431		r = -EINVAL;
4432		ti->error = "Unknown version";
4433		goto bad;
4434	}
4435	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4436		r = -EINVAL;
4437		ti->error = "Tag size doesn't match the information in superblock";
4438		goto bad;
4439	}
4440	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4441		r = -EINVAL;
4442		ti->error = "Block size doesn't match the information in superblock";
4443		goto bad;
4444	}
4445	if (!le32_to_cpu(ic->sb->journal_sections)) {
4446		r = -EINVAL;
4447		ti->error = "Corrupted superblock, journal_sections is 0";
4448		goto bad;
4449	}
4450	/* make sure that ti->max_io_len doesn't overflow */
4451	if (!ic->meta_dev) {
4452		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4453		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4454			r = -EINVAL;
4455			ti->error = "Invalid interleave_sectors in the superblock";
4456			goto bad;
4457		}
4458	} else {
4459		if (ic->sb->log2_interleave_sectors) {
4460			r = -EINVAL;
4461			ti->error = "Invalid interleave_sectors in the superblock";
4462			goto bad;
4463		}
4464	}
4465	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4466		r = -EINVAL;
4467		ti->error = "Journal mac mismatch";
4468		goto bad;
4469	}
4470
4471	get_provided_data_sectors(ic);
4472	if (!ic->provided_data_sectors) {
4473		r = -EINVAL;
4474		ti->error = "The device is too small";
4475		goto bad;
4476	}
4477
4478try_smaller_buffer:
4479	r = calculate_device_limits(ic);
4480	if (r) {
4481		if (ic->meta_dev) {
4482			if (ic->log2_buffer_sectors > 3) {
4483				ic->log2_buffer_sectors--;
4484				goto try_smaller_buffer;
4485			}
4486		}
4487		ti->error = "The device is too small";
4488		goto bad;
4489	}
4490
4491	if (log2_sectors_per_bitmap_bit < 0)
4492		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4493	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4494		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4495
4496	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4497	if (bits_in_journal > UINT_MAX)
4498		bits_in_journal = UINT_MAX;
4499	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4500		log2_sectors_per_bitmap_bit++;
4501
4502	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4503	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4504	if (should_write_sb)
4505		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4506
4507	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4508				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4509	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4510
4511	if (!ic->meta_dev)
4512		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4513
4514	if (ti->len > ic->provided_data_sectors) {
4515		r = -EINVAL;
4516		ti->error = "Not enough provided sectors for requested mapping size";
4517		goto bad;
4518	}
4519
4520
4521	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4522	threshold += 50;
4523	do_div(threshold, 100);
4524	ic->free_sectors_threshold = threshold;
4525
4526	DEBUG_print("initialized:\n");
4527	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4528	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4529	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4530	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4531	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4532	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4533	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4534	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4535	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4536	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4537	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4538	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4539	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4540	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4541	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4542
4543	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4544		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4545		ic->sb->recalc_sector = cpu_to_le64(0);
4546	}
4547
4548	if (ic->internal_hash) {
4549		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4550		if (!ic->recalc_wq) {
4551			ti->error = "Cannot allocate workqueue";
4552			r = -ENOMEM;
4553			goto bad;
4554		}
4555		INIT_WORK(&ic->recalc_work, integrity_recalc);
4556	} else {
4557		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4558			ti->error = "Recalculate can only be specified with internal_hash";
4559			r = -EINVAL;
4560			goto bad;
4561		}
4562	}
4563
4564	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4565	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4566	    dm_integrity_disable_recalculate(ic)) {
4567		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4568		r = -EOPNOTSUPP;
4569		goto bad;
4570	}
4571
4572	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4573			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4574	if (IS_ERR(ic->bufio)) {
4575		r = PTR_ERR(ic->bufio);
4576		ti->error = "Cannot initialize dm-bufio";
4577		ic->bufio = NULL;
4578		goto bad;
4579	}
4580	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4581
4582	if (ic->mode != 'R') {
4583		r = create_journal(ic, &ti->error);
4584		if (r)
4585			goto bad;
4586
4587	}
4588
4589	if (ic->mode == 'B') {
4590		unsigned int i;
4591		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4592
4593		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4594		if (!ic->recalc_bitmap) {
4595			r = -ENOMEM;
4596			goto bad;
4597		}
4598		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4599		if (!ic->may_write_bitmap) {
4600			r = -ENOMEM;
4601			goto bad;
4602		}
4603		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4604		if (!ic->bbs) {
4605			r = -ENOMEM;
4606			goto bad;
4607		}
4608		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4609		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4610			struct bitmap_block_status *bbs = &ic->bbs[i];
4611			unsigned int sector, pl_index, pl_offset;
4612
4613			INIT_WORK(&bbs->work, bitmap_block_work);
4614			bbs->ic = ic;
4615			bbs->idx = i;
4616			bio_list_init(&bbs->bio_queue);
4617			spin_lock_init(&bbs->bio_queue_lock);
4618
4619			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4620			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4621			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4622
4623			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4624		}
4625	}
4626
4627	if (should_write_sb) {
4628		init_journal(ic, 0, ic->journal_sections, 0);
4629		r = dm_integrity_failed(ic);
4630		if (unlikely(r)) {
4631			ti->error = "Error initializing journal";
4632			goto bad;
4633		}
4634		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4635		if (r) {
4636			ti->error = "Error initializing superblock";
4637			goto bad;
4638		}
4639		ic->just_formatted = true;
4640	}
4641
4642	if (!ic->meta_dev) {
4643		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4644		if (r)
4645			goto bad;
4646	}
4647	if (ic->mode == 'B') {
4648		unsigned int max_io_len;
4649
4650		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4651		if (!max_io_len)
4652			max_io_len = 1U << 31;
4653		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4654		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4655			r = dm_set_target_max_io_len(ti, max_io_len);
4656			if (r)
4657				goto bad;
4658		}
4659	}
4660
4661	if (!ic->internal_hash)
4662		dm_integrity_set(ti, ic);
4663
4664	ti->num_flush_bios = 1;
4665	ti->flush_supported = true;
4666	if (ic->discard)
4667		ti->num_discard_bios = 1;
4668
4669	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4670	return 0;
4671
4672bad:
4673	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4674	dm_integrity_dtr(ti);
4675	return r;
4676}
4677
4678static void dm_integrity_dtr(struct dm_target *ti)
4679{
4680	struct dm_integrity_c *ic = ti->private;
4681
4682	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4683	BUG_ON(!list_empty(&ic->wait_list));
4684
4685	if (ic->mode == 'B')
4686		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4687	if (ic->metadata_wq)
4688		destroy_workqueue(ic->metadata_wq);
4689	if (ic->wait_wq)
4690		destroy_workqueue(ic->wait_wq);
4691	if (ic->offload_wq)
4692		destroy_workqueue(ic->offload_wq);
4693	if (ic->commit_wq)
4694		destroy_workqueue(ic->commit_wq);
4695	if (ic->writer_wq)
4696		destroy_workqueue(ic->writer_wq);
4697	if (ic->recalc_wq)
4698		destroy_workqueue(ic->recalc_wq);
4699	kvfree(ic->bbs);
4700	if (ic->bufio)
4701		dm_bufio_client_destroy(ic->bufio);
4702	mempool_exit(&ic->recheck_pool);
4703	mempool_exit(&ic->journal_io_mempool);
4704	if (ic->io)
4705		dm_io_client_destroy(ic->io);
4706	if (ic->dev)
4707		dm_put_device(ti, ic->dev);
4708	if (ic->meta_dev)
4709		dm_put_device(ti, ic->meta_dev);
4710	dm_integrity_free_page_list(ic->journal);
4711	dm_integrity_free_page_list(ic->journal_io);
4712	dm_integrity_free_page_list(ic->journal_xor);
4713	dm_integrity_free_page_list(ic->recalc_bitmap);
4714	dm_integrity_free_page_list(ic->may_write_bitmap);
4715	if (ic->journal_scatterlist)
4716		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4717	if (ic->journal_io_scatterlist)
4718		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4719	if (ic->sk_requests) {
4720		unsigned int i;
4721
4722		for (i = 0; i < ic->journal_sections; i++) {
4723			struct skcipher_request *req;
4724
4725			req = ic->sk_requests[i];
4726			if (req) {
4727				kfree_sensitive(req->iv);
4728				skcipher_request_free(req);
4729			}
4730		}
4731		kvfree(ic->sk_requests);
4732	}
4733	kvfree(ic->journal_tree);
4734	if (ic->sb)
4735		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4736
4737	if (ic->internal_hash)
4738		crypto_free_shash(ic->internal_hash);
4739	free_alg(&ic->internal_hash_alg);
4740
4741	if (ic->journal_crypt)
4742		crypto_free_skcipher(ic->journal_crypt);
4743	free_alg(&ic->journal_crypt_alg);
4744
4745	if (ic->journal_mac)
4746		crypto_free_shash(ic->journal_mac);
4747	free_alg(&ic->journal_mac_alg);
4748
4749	kfree(ic);
4750	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4751}
4752
4753static struct target_type integrity_target = {
4754	.name			= "integrity",
4755	.version		= {1, 10, 0},
4756	.module			= THIS_MODULE,
4757	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4758	.ctr			= dm_integrity_ctr,
4759	.dtr			= dm_integrity_dtr,
4760	.map			= dm_integrity_map,
4761	.postsuspend		= dm_integrity_postsuspend,
4762	.resume			= dm_integrity_resume,
4763	.status			= dm_integrity_status,
4764	.iterate_devices	= dm_integrity_iterate_devices,
4765	.io_hints		= dm_integrity_io_hints,
4766};
4767
4768static int __init dm_integrity_init(void)
4769{
4770	int r;
4771
4772	journal_io_cache = kmem_cache_create("integrity_journal_io",
4773					     sizeof(struct journal_io), 0, 0, NULL);
4774	if (!journal_io_cache) {
4775		DMERR("can't allocate journal io cache");
4776		return -ENOMEM;
4777	}
4778
4779	r = dm_register_target(&integrity_target);
4780	if (r < 0) {
4781		kmem_cache_destroy(journal_io_cache);
4782		return r;
4783	}
4784
4785	return 0;
4786}
4787
4788static void __exit dm_integrity_exit(void)
4789{
4790	dm_unregister_target(&integrity_target);
4791	kmem_cache_destroy(journal_io_cache);
4792}
4793
4794module_init(dm_integrity_init);
4795module_exit(dm_integrity_exit);
4796
4797MODULE_AUTHOR("Milan Broz");
4798MODULE_AUTHOR("Mikulas Patocka");
4799MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4800MODULE_LICENSE("GPL");
4801