xref: /kernel/linux/linux-6.6/drivers/macintosh/smu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * PowerMac G5 SMU driver
4 *
5 * Copyright 2004 J. Mayer <l_indien@magic.fr>
6 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 */
8
9/*
10 * TODO:
11 *  - maybe add timeout to commands ?
12 *  - blocking version of time functions
13 *  - polling version of i2c commands (including timer that works with
14 *    interrupts off)
15 *  - maybe avoid some data copies with i2c by directly using the smu cmd
16 *    buffer and a lower level internal interface
17 *  - understand SMU -> CPU events and implement reception of them via
18 *    the userland interface
19 */
20
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/device.h>
24#include <linux/dmapool.h>
25#include <linux/memblock.h>
26#include <linux/vmalloc.h>
27#include <linux/highmem.h>
28#include <linux/jiffies.h>
29#include <linux/interrupt.h>
30#include <linux/rtc.h>
31#include <linux/completion.h>
32#include <linux/miscdevice.h>
33#include <linux/delay.h>
34#include <linux/poll.h>
35#include <linux/mutex.h>
36#include <linux/of.h>
37#include <linux/of_address.h>
38#include <linux/of_irq.h>
39#include <linux/of_platform.h>
40#include <linux/platform_device.h>
41#include <linux/slab.h>
42#include <linux/sched/signal.h>
43
44#include <asm/byteorder.h>
45#include <asm/io.h>
46#include <asm/machdep.h>
47#include <asm/pmac_feature.h>
48#include <asm/smu.h>
49#include <asm/sections.h>
50#include <linux/uaccess.h>
51
52#define VERSION "0.7"
53#define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55#undef DEBUG_SMU
56
57#ifdef DEBUG_SMU
58#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59#else
60#define DPRINTK(fmt, args...) do { } while (0)
61#endif
62
63/*
64 * This is the command buffer passed to the SMU hardware
65 */
66#define SMU_MAX_DATA	254
67
68struct smu_cmd_buf {
69	u8 cmd;
70	u8 length;
71	u8 data[SMU_MAX_DATA];
72};
73
74struct smu_device {
75	spinlock_t		lock;
76	struct device_node	*of_node;
77	struct platform_device	*of_dev;
78	int			doorbell;	/* doorbell gpio */
79	u32 __iomem		*db_buf;	/* doorbell buffer */
80	struct device_node	*db_node;
81	unsigned int		db_irq;
82	int			msg;
83	struct device_node	*msg_node;
84	unsigned int		msg_irq;
85	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
86	u32			cmd_buf_abs;	/* command buffer absolute */
87	struct list_head	cmd_list;
88	struct smu_cmd		*cmd_cur;	/* pending command */
89	int			broken_nap;
90	struct list_head	cmd_i2c_list;
91	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
92	struct timer_list	i2c_timer;
93};
94
95/*
96 * I don't think there will ever be more than one SMU, so
97 * for now, just hard code that
98 */
99static DEFINE_MUTEX(smu_mutex);
100static struct smu_device	*smu;
101static DEFINE_MUTEX(smu_part_access);
102static int smu_irq_inited;
103static unsigned long smu_cmdbuf_abs;
104
105static void smu_i2c_retry(struct timer_list *t);
106
107/*
108 * SMU driver low level stuff
109 */
110
111static void smu_start_cmd(void)
112{
113	unsigned long faddr, fend;
114	struct smu_cmd *cmd;
115
116	if (list_empty(&smu->cmd_list))
117		return;
118
119	/* Fetch first command in queue */
120	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
121	smu->cmd_cur = cmd;
122	list_del(&cmd->link);
123
124	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
125		cmd->data_len);
126	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
127
128	/* Fill the SMU command buffer */
129	smu->cmd_buf->cmd = cmd->cmd;
130	smu->cmd_buf->length = cmd->data_len;
131	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
132
133	/* Flush command and data to RAM */
134	faddr = (unsigned long)smu->cmd_buf;
135	fend = faddr + smu->cmd_buf->length + 2;
136	flush_dcache_range(faddr, fend);
137
138
139	/* We also disable NAP mode for the duration of the command
140	 * on U3 based machines.
141	 * This is slightly racy as it can be written back to 1 by a sysctl
142	 * but that never happens in practice. There seem to be an issue with
143	 * U3 based machines such as the iMac G5 where napping for the
144	 * whole duration of the command prevents the SMU from fetching it
145	 * from memory. This might be related to the strange i2c based
146	 * mechanism the SMU uses to access memory.
147	 */
148	if (smu->broken_nap)
149		powersave_nap = 0;
150
151	/* This isn't exactly a DMA mapping here, I suspect
152	 * the SMU is actually communicating with us via i2c to the
153	 * northbridge or the CPU to access RAM.
154	 */
155	writel(smu->cmd_buf_abs, smu->db_buf);
156
157	/* Ring the SMU doorbell */
158	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
159}
160
161
162static irqreturn_t smu_db_intr(int irq, void *arg)
163{
164	unsigned long flags;
165	struct smu_cmd *cmd;
166	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
167	void *misc = NULL;
168	u8 gpio;
169	int rc = 0;
170
171	/* SMU completed the command, well, we hope, let's make sure
172	 * of it
173	 */
174	spin_lock_irqsave(&smu->lock, flags);
175
176	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
177	if ((gpio & 7) != 7) {
178		spin_unlock_irqrestore(&smu->lock, flags);
179		return IRQ_HANDLED;
180	}
181
182	cmd = smu->cmd_cur;
183	smu->cmd_cur = NULL;
184	if (cmd == NULL)
185		goto bail;
186
187	if (rc == 0) {
188		unsigned long faddr;
189		int reply_len;
190		u8 ack;
191
192		/* CPU might have brought back the cache line, so we need
193		 * to flush again before peeking at the SMU response. We
194		 * flush the entire buffer for now as we haven't read the
195		 * reply length (it's only 2 cache lines anyway)
196		 */
197		faddr = (unsigned long)smu->cmd_buf;
198		flush_dcache_range(faddr, faddr + 256);
199
200		/* Now check ack */
201		ack = (~cmd->cmd) & 0xff;
202		if (ack != smu->cmd_buf->cmd) {
203			DPRINTK("SMU: incorrect ack, want %x got %x\n",
204				ack, smu->cmd_buf->cmd);
205			rc = -EIO;
206		}
207		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
208		DPRINTK("SMU: reply len: %d\n", reply_len);
209		if (reply_len > cmd->reply_len) {
210			printk(KERN_WARNING "SMU: reply buffer too small,"
211			       "got %d bytes for a %d bytes buffer\n",
212			       reply_len, cmd->reply_len);
213			reply_len = cmd->reply_len;
214		}
215		cmd->reply_len = reply_len;
216		if (cmd->reply_buf && reply_len)
217			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
218	}
219
220	/* Now complete the command. Write status last in order as we lost
221	 * ownership of the command structure as soon as it's no longer -1
222	 */
223	done = cmd->done;
224	misc = cmd->misc;
225	mb();
226	cmd->status = rc;
227
228	/* Re-enable NAP mode */
229	if (smu->broken_nap)
230		powersave_nap = 1;
231 bail:
232	/* Start next command if any */
233	smu_start_cmd();
234	spin_unlock_irqrestore(&smu->lock, flags);
235
236	/* Call command completion handler if any */
237	if (done)
238		done(cmd, misc);
239
240	/* It's an edge interrupt, nothing to do */
241	return IRQ_HANDLED;
242}
243
244
245static irqreturn_t smu_msg_intr(int irq, void *arg)
246{
247	/* I don't quite know what to do with this one, we seem to never
248	 * receive it, so I suspect we have to arm it someway in the SMU
249	 * to start getting events that way.
250	 */
251
252	printk(KERN_INFO "SMU: message interrupt !\n");
253
254	/* It's an edge interrupt, nothing to do */
255	return IRQ_HANDLED;
256}
257
258
259/*
260 * Queued command management.
261 *
262 */
263
264int smu_queue_cmd(struct smu_cmd *cmd)
265{
266	unsigned long flags;
267
268	if (smu == NULL)
269		return -ENODEV;
270	if (cmd->data_len > SMU_MAX_DATA ||
271	    cmd->reply_len > SMU_MAX_DATA)
272		return -EINVAL;
273
274	cmd->status = 1;
275	spin_lock_irqsave(&smu->lock, flags);
276	list_add_tail(&cmd->link, &smu->cmd_list);
277	if (smu->cmd_cur == NULL)
278		smu_start_cmd();
279	spin_unlock_irqrestore(&smu->lock, flags);
280
281	/* Workaround for early calls when irq isn't available */
282	if (!smu_irq_inited || !smu->db_irq)
283		smu_spinwait_cmd(cmd);
284
285	return 0;
286}
287EXPORT_SYMBOL(smu_queue_cmd);
288
289
290int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
291		     unsigned int data_len,
292		     void (*done)(struct smu_cmd *cmd, void *misc),
293		     void *misc, ...)
294{
295	struct smu_cmd *cmd = &scmd->cmd;
296	va_list list;
297	int i;
298
299	if (data_len > sizeof(scmd->buffer))
300		return -EINVAL;
301
302	memset(scmd, 0, sizeof(*scmd));
303	cmd->cmd = command;
304	cmd->data_len = data_len;
305	cmd->data_buf = scmd->buffer;
306	cmd->reply_len = sizeof(scmd->buffer);
307	cmd->reply_buf = scmd->buffer;
308	cmd->done = done;
309	cmd->misc = misc;
310
311	va_start(list, misc);
312	for (i = 0; i < data_len; ++i)
313		scmd->buffer[i] = (u8)va_arg(list, int);
314	va_end(list);
315
316	return smu_queue_cmd(cmd);
317}
318EXPORT_SYMBOL(smu_queue_simple);
319
320
321void smu_poll(void)
322{
323	u8 gpio;
324
325	if (smu == NULL)
326		return;
327
328	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
329	if ((gpio & 7) == 7)
330		smu_db_intr(smu->db_irq, smu);
331}
332EXPORT_SYMBOL(smu_poll);
333
334
335void smu_done_complete(struct smu_cmd *cmd, void *misc)
336{
337	struct completion *comp = misc;
338
339	complete(comp);
340}
341EXPORT_SYMBOL(smu_done_complete);
342
343
344void smu_spinwait_cmd(struct smu_cmd *cmd)
345{
346	while(cmd->status == 1)
347		smu_poll();
348}
349EXPORT_SYMBOL(smu_spinwait_cmd);
350
351
352/* RTC low level commands */
353static inline int bcd2hex (int n)
354{
355	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
356}
357
358
359static inline int hex2bcd (int n)
360{
361	return ((n / 10) << 4) + (n % 10);
362}
363
364
365static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
366					struct rtc_time *time)
367{
368	cmd_buf->cmd = 0x8e;
369	cmd_buf->length = 8;
370	cmd_buf->data[0] = 0x80;
371	cmd_buf->data[1] = hex2bcd(time->tm_sec);
372	cmd_buf->data[2] = hex2bcd(time->tm_min);
373	cmd_buf->data[3] = hex2bcd(time->tm_hour);
374	cmd_buf->data[4] = time->tm_wday;
375	cmd_buf->data[5] = hex2bcd(time->tm_mday);
376	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
377	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
378}
379
380
381int smu_get_rtc_time(struct rtc_time *time, int spinwait)
382{
383	struct smu_simple_cmd cmd;
384	int rc;
385
386	if (smu == NULL)
387		return -ENODEV;
388
389	memset(time, 0, sizeof(struct rtc_time));
390	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
391			      SMU_CMD_RTC_GET_DATETIME);
392	if (rc)
393		return rc;
394	smu_spinwait_simple(&cmd);
395
396	time->tm_sec = bcd2hex(cmd.buffer[0]);
397	time->tm_min = bcd2hex(cmd.buffer[1]);
398	time->tm_hour = bcd2hex(cmd.buffer[2]);
399	time->tm_wday = bcd2hex(cmd.buffer[3]);
400	time->tm_mday = bcd2hex(cmd.buffer[4]);
401	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
402	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
403
404	return 0;
405}
406
407
408int smu_set_rtc_time(struct rtc_time *time, int spinwait)
409{
410	struct smu_simple_cmd cmd;
411	int rc;
412
413	if (smu == NULL)
414		return -ENODEV;
415
416	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
417			      SMU_CMD_RTC_SET_DATETIME,
418			      hex2bcd(time->tm_sec),
419			      hex2bcd(time->tm_min),
420			      hex2bcd(time->tm_hour),
421			      time->tm_wday,
422			      hex2bcd(time->tm_mday),
423			      hex2bcd(time->tm_mon) + 1,
424			      hex2bcd(time->tm_year - 100));
425	if (rc)
426		return rc;
427	smu_spinwait_simple(&cmd);
428
429	return 0;
430}
431
432
433void smu_shutdown(void)
434{
435	struct smu_simple_cmd cmd;
436
437	if (smu == NULL)
438		return;
439
440	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
441			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
442		return;
443	smu_spinwait_simple(&cmd);
444	for (;;)
445		;
446}
447
448
449void smu_restart(void)
450{
451	struct smu_simple_cmd cmd;
452
453	if (smu == NULL)
454		return;
455
456	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
457			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
458		return;
459	smu_spinwait_simple(&cmd);
460	for (;;)
461		;
462}
463
464
465int smu_present(void)
466{
467	return smu != NULL;
468}
469EXPORT_SYMBOL(smu_present);
470
471
472int __init smu_init (void)
473{
474	struct device_node *np;
475	u64 data;
476	int ret = 0;
477
478        np = of_find_node_by_type(NULL, "smu");
479        if (np == NULL)
480		return -ENODEV;
481
482	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483
484	/*
485	 * SMU based G5s need some memory below 2Gb. Thankfully this is
486	 * called at a time where memblock is still available.
487	 */
488	smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
489	if (smu_cmdbuf_abs == 0) {
490		printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
491		ret = -EINVAL;
492		goto fail_np;
493	}
494
495	smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
496	if (!smu)
497		panic("%s: Failed to allocate %zu bytes\n", __func__,
498		      sizeof(struct smu_device));
499
500	spin_lock_init(&smu->lock);
501	INIT_LIST_HEAD(&smu->cmd_list);
502	INIT_LIST_HEAD(&smu->cmd_i2c_list);
503	smu->of_node = np;
504	smu->db_irq = 0;
505	smu->msg_irq = 0;
506
507	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
508	 * 32 bits value safely
509	 */
510	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
511	smu->cmd_buf = __va(smu_cmdbuf_abs);
512
513	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
514	if (smu->db_node == NULL) {
515		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
516		ret = -ENXIO;
517		goto fail_bootmem;
518	}
519	if (of_property_read_reg(smu->db_node, 0, &data, NULL)) {
520		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
521		ret = -ENXIO;
522		goto fail_db_node;
523	}
524
525	/* Current setup has one doorbell GPIO that does both doorbell
526	 * and ack. GPIOs are at 0x50, best would be to find that out
527	 * in the device-tree though.
528	 */
529	smu->doorbell = data;
530	if (smu->doorbell < 0x50)
531		smu->doorbell += 0x50;
532
533	/* Now look for the smu-interrupt GPIO */
534	do {
535		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
536		if (smu->msg_node == NULL)
537			break;
538		if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) {
539			of_node_put(smu->msg_node);
540			smu->msg_node = NULL;
541			break;
542		}
543		smu->msg = data;
544		if (smu->msg < 0x50)
545			smu->msg += 0x50;
546	} while(0);
547
548	/* Doorbell buffer is currently hard-coded, I didn't find a proper
549	 * device-tree entry giving the address. Best would probably to use
550	 * an offset for K2 base though, but let's do it that way for now.
551	 */
552	smu->db_buf = ioremap(0x8000860c, 0x1000);
553	if (smu->db_buf == NULL) {
554		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
555		ret = -ENXIO;
556		goto fail_msg_node;
557	}
558
559	/* U3 has an issue with NAP mode when issuing SMU commands */
560	smu->broken_nap = pmac_get_uninorth_variant() < 4;
561	if (smu->broken_nap)
562		printk(KERN_INFO "SMU: using NAP mode workaround\n");
563
564	sys_ctrler = SYS_CTRLER_SMU;
565	return 0;
566
567fail_msg_node:
568	of_node_put(smu->msg_node);
569fail_db_node:
570	of_node_put(smu->db_node);
571fail_bootmem:
572	memblock_free(smu, sizeof(struct smu_device));
573	smu = NULL;
574fail_np:
575	of_node_put(np);
576	return ret;
577}
578
579
580static int smu_late_init(void)
581{
582	if (!smu)
583		return 0;
584
585	timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
586
587	if (smu->db_node) {
588		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589		if (!smu->db_irq)
590			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
591			       smu->db_node);
592	}
593	if (smu->msg_node) {
594		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595		if (!smu->msg_irq)
596			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
597			       smu->msg_node);
598	}
599
600	/*
601	 * Try to request the interrupts
602	 */
603
604	if (smu->db_irq) {
605		if (request_irq(smu->db_irq, smu_db_intr,
606				IRQF_SHARED, "SMU doorbell", smu) < 0) {
607			printk(KERN_WARNING "SMU: can't "
608			       "request interrupt %d\n",
609			       smu->db_irq);
610			smu->db_irq = 0;
611		}
612	}
613
614	if (smu->msg_irq) {
615		if (request_irq(smu->msg_irq, smu_msg_intr,
616				IRQF_SHARED, "SMU message", smu) < 0) {
617			printk(KERN_WARNING "SMU: can't "
618			       "request interrupt %d\n",
619			       smu->msg_irq);
620			smu->msg_irq = 0;
621		}
622	}
623
624	smu_irq_inited = 1;
625	return 0;
626}
627/* This has to be before arch_initcall as the low i2c stuff relies on the
628 * above having been done before we reach arch_initcalls
629 */
630core_initcall(smu_late_init);
631
632/*
633 * sysfs visibility
634 */
635
636static void smu_expose_childs(struct work_struct *unused)
637{
638	struct device_node *np;
639
640	for_each_child_of_node(smu->of_node, np)
641		if (of_device_is_compatible(np, "smu-sensors"))
642			of_platform_device_create(np, "smu-sensors",
643						  &smu->of_dev->dev);
644}
645
646static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648static int smu_platform_probe(struct platform_device* dev)
649{
650	if (!smu)
651		return -ENODEV;
652	smu->of_dev = dev;
653
654	/*
655	 * Ok, we are matched, now expose all i2c busses. We have to defer
656	 * that unfortunately or it would deadlock inside the device model
657	 */
658	schedule_work(&smu_expose_childs_work);
659
660	return 0;
661}
662
663static const struct of_device_id smu_platform_match[] =
664{
665	{
666		.type		= "smu",
667	},
668	{},
669};
670
671static struct platform_driver smu_of_platform_driver =
672{
673	.driver = {
674		.name = "smu",
675		.of_match_table = smu_platform_match,
676	},
677	.probe		= smu_platform_probe,
678};
679
680static int __init smu_init_sysfs(void)
681{
682	/*
683	 * For now, we don't power manage machines with an SMU chip,
684	 * I'm a bit too far from figuring out how that works with those
685	 * new chipsets, but that will come back and bite us
686	 */
687	platform_driver_register(&smu_of_platform_driver);
688	return 0;
689}
690
691device_initcall(smu_init_sysfs);
692
693struct platform_device *smu_get_ofdev(void)
694{
695	if (!smu)
696		return NULL;
697	return smu->of_dev;
698}
699
700EXPORT_SYMBOL_GPL(smu_get_ofdev);
701
702/*
703 * i2c interface
704 */
705
706static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
707{
708	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
709	void *misc = cmd->misc;
710	unsigned long flags;
711
712	/* Check for read case */
713	if (!fail && cmd->read) {
714		if (cmd->pdata[0] < 1)
715			fail = 1;
716		else
717			memcpy(cmd->info.data, &cmd->pdata[1],
718			       cmd->info.datalen);
719	}
720
721	DPRINTK("SMU: completing, success: %d\n", !fail);
722
723	/* Update status and mark no pending i2c command with lock
724	 * held so nobody comes in while we dequeue an eventual
725	 * pending next i2c command
726	 */
727	spin_lock_irqsave(&smu->lock, flags);
728	smu->cmd_i2c_cur = NULL;
729	wmb();
730	cmd->status = fail ? -EIO : 0;
731
732	/* Is there another i2c command waiting ? */
733	if (!list_empty(&smu->cmd_i2c_list)) {
734		struct smu_i2c_cmd *newcmd;
735
736		/* Fetch it, new current, remove from list */
737		newcmd = list_entry(smu->cmd_i2c_list.next,
738				    struct smu_i2c_cmd, link);
739		smu->cmd_i2c_cur = newcmd;
740		list_del(&cmd->link);
741
742		/* Queue with low level smu */
743		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
744		if (smu->cmd_cur == NULL)
745			smu_start_cmd();
746	}
747	spin_unlock_irqrestore(&smu->lock, flags);
748
749	/* Call command completion handler if any */
750	if (done)
751		done(cmd, misc);
752
753}
754
755
756static void smu_i2c_retry(struct timer_list *unused)
757{
758	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
759
760	DPRINTK("SMU: i2c failure, requeuing...\n");
761
762	/* requeue command simply by resetting reply_len */
763	cmd->pdata[0] = 0xff;
764	cmd->scmd.reply_len = sizeof(cmd->pdata);
765	smu_queue_cmd(&cmd->scmd);
766}
767
768
769static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
770{
771	struct smu_i2c_cmd	*cmd = misc;
772	int			fail = 0;
773
774	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
775		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
776
777	/* Check for possible status */
778	if (scmd->status < 0)
779		fail = 1;
780	else if (cmd->read) {
781		if (cmd->stage == 0)
782			fail = cmd->pdata[0] != 0;
783		else
784			fail = cmd->pdata[0] >= 0x80;
785	} else {
786		fail = cmd->pdata[0] != 0;
787	}
788
789	/* Handle failures by requeuing command, after 5ms interval
790	 */
791	if (fail && --cmd->retries > 0) {
792		DPRINTK("SMU: i2c failure, starting timer...\n");
793		BUG_ON(cmd != smu->cmd_i2c_cur);
794		if (!smu_irq_inited) {
795			mdelay(5);
796			smu_i2c_retry(NULL);
797			return;
798		}
799		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
800		return;
801	}
802
803	/* If failure or stage 1, command is complete */
804	if (fail || cmd->stage != 0) {
805		smu_i2c_complete_command(cmd, fail);
806		return;
807	}
808
809	DPRINTK("SMU: going to stage 1\n");
810
811	/* Ok, initial command complete, now poll status */
812	scmd->reply_buf = cmd->pdata;
813	scmd->reply_len = sizeof(cmd->pdata);
814	scmd->data_buf = cmd->pdata;
815	scmd->data_len = 1;
816	cmd->pdata[0] = 0;
817	cmd->stage = 1;
818	cmd->retries = 20;
819	smu_queue_cmd(scmd);
820}
821
822
823int smu_queue_i2c(struct smu_i2c_cmd *cmd)
824{
825	unsigned long flags;
826
827	if (smu == NULL)
828		return -ENODEV;
829
830	/* Fill most fields of scmd */
831	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
832	cmd->scmd.done = smu_i2c_low_completion;
833	cmd->scmd.misc = cmd;
834	cmd->scmd.reply_buf = cmd->pdata;
835	cmd->scmd.reply_len = sizeof(cmd->pdata);
836	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
837	cmd->scmd.status = 1;
838	cmd->stage = 0;
839	cmd->pdata[0] = 0xff;
840	cmd->retries = 20;
841	cmd->status = 1;
842
843	/* Check transfer type, sanitize some "info" fields
844	 * based on transfer type and do more checking
845	 */
846	cmd->info.caddr = cmd->info.devaddr;
847	cmd->read = cmd->info.devaddr & 0x01;
848	switch(cmd->info.type) {
849	case SMU_I2C_TRANSFER_SIMPLE:
850		cmd->info.sublen = 0;
851		memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr));
852		break;
853	case SMU_I2C_TRANSFER_COMBINED:
854		cmd->info.devaddr &= 0xfe;
855		fallthrough;
856	case SMU_I2C_TRANSFER_STDSUB:
857		if (cmd->info.sublen > 3)
858			return -EINVAL;
859		break;
860	default:
861		return -EINVAL;
862	}
863
864	/* Finish setting up command based on transfer direction
865	 */
866	if (cmd->read) {
867		if (cmd->info.datalen > SMU_I2C_READ_MAX)
868			return -EINVAL;
869		memset(cmd->info.data, 0xff, cmd->info.datalen);
870		cmd->scmd.data_len = 9;
871	} else {
872		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
873			return -EINVAL;
874		cmd->scmd.data_len = 9 + cmd->info.datalen;
875	}
876
877	DPRINTK("SMU: i2c enqueuing command\n");
878	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
879		cmd->read ? "read" : "write", cmd->info.datalen,
880		cmd->info.bus, cmd->info.caddr,
881		cmd->info.subaddr[0], cmd->info.type);
882
883
884	/* Enqueue command in i2c list, and if empty, enqueue also in
885	 * main command list
886	 */
887	spin_lock_irqsave(&smu->lock, flags);
888	if (smu->cmd_i2c_cur == NULL) {
889		smu->cmd_i2c_cur = cmd;
890		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
891		if (smu->cmd_cur == NULL)
892			smu_start_cmd();
893	} else
894		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
895	spin_unlock_irqrestore(&smu->lock, flags);
896
897	return 0;
898}
899
900/*
901 * Handling of "partitions"
902 */
903
904static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
905{
906	DECLARE_COMPLETION_ONSTACK(comp);
907	unsigned int chunk;
908	struct smu_cmd cmd;
909	int rc;
910	u8 params[8];
911
912	/* We currently use a chunk size of 0xe. We could check the
913	 * SMU firmware version and use bigger sizes though
914	 */
915	chunk = 0xe;
916
917	while (len) {
918		unsigned int clen = min(len, chunk);
919
920		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
921		cmd.data_len = 7;
922		cmd.data_buf = params;
923		cmd.reply_len = chunk;
924		cmd.reply_buf = dest;
925		cmd.done = smu_done_complete;
926		cmd.misc = &comp;
927		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
928		params[1] = 0x4;
929		*((u32 *)&params[2]) = addr;
930		params[6] = clen;
931
932		rc = smu_queue_cmd(&cmd);
933		if (rc)
934			return rc;
935		wait_for_completion(&comp);
936		if (cmd.status != 0)
937			return rc;
938		if (cmd.reply_len != clen) {
939			printk(KERN_DEBUG "SMU: short read in "
940			       "smu_read_datablock, got: %d, want: %d\n",
941			       cmd.reply_len, clen);
942			return -EIO;
943		}
944		len -= clen;
945		addr += clen;
946		dest += clen;
947	}
948	return 0;
949}
950
951static struct smu_sdbp_header *smu_create_sdb_partition(int id)
952{
953	DECLARE_COMPLETION_ONSTACK(comp);
954	struct smu_simple_cmd cmd;
955	unsigned int addr, len, tlen;
956	struct smu_sdbp_header *hdr;
957	struct property *prop;
958
959	/* First query the partition info */
960	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
961	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
962			 smu_done_complete, &comp,
963			 SMU_CMD_PARTITION_LATEST, id);
964	wait_for_completion(&comp);
965	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
966		cmd.cmd.status, cmd.cmd.reply_len);
967
968	/* Partition doesn't exist (or other error) */
969	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
970		return NULL;
971
972	/* Fetch address and length from reply */
973	addr = *((u16 *)cmd.buffer);
974	len = cmd.buffer[3] << 2;
975	/* Calucluate total length to allocate, including the 17 bytes
976	 * for "sdb-partition-XX" that we append at the end of the buffer
977	 */
978	tlen = sizeof(struct property) + len + 18;
979
980	prop = kzalloc(tlen, GFP_KERNEL);
981	if (prop == NULL)
982		return NULL;
983	hdr = (struct smu_sdbp_header *)(prop + 1);
984	prop->name = ((char *)prop) + tlen - 18;
985	sprintf(prop->name, "sdb-partition-%02x", id);
986	prop->length = len;
987	prop->value = hdr;
988	prop->next = NULL;
989
990	/* Read the datablock */
991	if (smu_read_datablock((u8 *)hdr, addr, len)) {
992		printk(KERN_DEBUG "SMU: datablock read failed while reading "
993		       "partition %02x !\n", id);
994		goto failure;
995	}
996
997	/* Got it, check a few things and create the property */
998	if (hdr->id != id) {
999		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000		       "%02x !\n", id, hdr->id);
1001		goto failure;
1002	}
1003	if (of_add_property(smu->of_node, prop)) {
1004		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005		       "property !\n", id);
1006		goto failure;
1007	}
1008
1009	return hdr;
1010 failure:
1011	kfree(prop);
1012	return NULL;
1013}
1014
1015/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016 * when interruptible is 1
1017 */
1018static const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019		unsigned int *size, int interruptible)
1020{
1021	char pname[32];
1022	const struct smu_sdbp_header *part;
1023
1024	if (!smu)
1025		return NULL;
1026
1027	sprintf(pname, "sdb-partition-%02x", id);
1028
1029	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031	if (interruptible) {
1032		int rc;
1033		rc = mutex_lock_interruptible(&smu_part_access);
1034		if (rc)
1035			return ERR_PTR(rc);
1036	} else
1037		mutex_lock(&smu_part_access);
1038
1039	part = of_get_property(smu->of_node, pname, size);
1040	if (part == NULL) {
1041		DPRINTK("trying to extract from SMU ...\n");
1042		part = smu_create_sdb_partition(id);
1043		if (part != NULL && size)
1044			*size = part->len << 2;
1045	}
1046	mutex_unlock(&smu_part_access);
1047	return part;
1048}
1049
1050const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051{
1052	return __smu_get_sdb_partition(id, size, 0);
1053}
1054EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057/*
1058 * Userland driver interface
1059 */
1060
1061
1062static LIST_HEAD(smu_clist);
1063static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065enum smu_file_mode {
1066	smu_file_commands,
1067	smu_file_events,
1068	smu_file_closing
1069};
1070
1071struct smu_private
1072{
1073	struct list_head	list;
1074	enum smu_file_mode	mode;
1075	int			busy;
1076	struct smu_cmd		cmd;
1077	spinlock_t		lock;
1078	wait_queue_head_t	wait;
1079	u8			buffer[SMU_MAX_DATA];
1080};
1081
1082
1083static int smu_open(struct inode *inode, struct file *file)
1084{
1085	struct smu_private *pp;
1086	unsigned long flags;
1087
1088	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089	if (!pp)
1090		return -ENOMEM;
1091	spin_lock_init(&pp->lock);
1092	pp->mode = smu_file_commands;
1093	init_waitqueue_head(&pp->wait);
1094
1095	mutex_lock(&smu_mutex);
1096	spin_lock_irqsave(&smu_clist_lock, flags);
1097	list_add(&pp->list, &smu_clist);
1098	spin_unlock_irqrestore(&smu_clist_lock, flags);
1099	file->private_data = pp;
1100	mutex_unlock(&smu_mutex);
1101
1102	return 0;
1103}
1104
1105
1106static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107{
1108	struct smu_private *pp = misc;
1109
1110	wake_up_all(&pp->wait);
1111}
1112
1113
1114static ssize_t smu_write(struct file *file, const char __user *buf,
1115			 size_t count, loff_t *ppos)
1116{
1117	struct smu_private *pp = file->private_data;
1118	unsigned long flags;
1119	struct smu_user_cmd_hdr hdr;
1120	int rc = 0;
1121
1122	if (pp->busy)
1123		return -EBUSY;
1124	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125		return -EFAULT;
1126	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127		pp->mode = smu_file_events;
1128		return 0;
1129	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130		const struct smu_sdbp_header *part;
1131		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132		if (part == NULL)
1133			return -EINVAL;
1134		else if (IS_ERR(part))
1135			return PTR_ERR(part);
1136		return 0;
1137	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138		return -EINVAL;
1139	else if (pp->mode != smu_file_commands)
1140		return -EBADFD;
1141	else if (hdr.data_len > SMU_MAX_DATA)
1142		return -EINVAL;
1143
1144	spin_lock_irqsave(&pp->lock, flags);
1145	if (pp->busy) {
1146		spin_unlock_irqrestore(&pp->lock, flags);
1147		return -EBUSY;
1148	}
1149	pp->busy = 1;
1150	pp->cmd.status = 1;
1151	spin_unlock_irqrestore(&pp->lock, flags);
1152
1153	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154		pp->busy = 0;
1155		return -EFAULT;
1156	}
1157
1158	pp->cmd.cmd = hdr.cmd;
1159	pp->cmd.data_len = hdr.data_len;
1160	pp->cmd.reply_len = SMU_MAX_DATA;
1161	pp->cmd.data_buf = pp->buffer;
1162	pp->cmd.reply_buf = pp->buffer;
1163	pp->cmd.done = smu_user_cmd_done;
1164	pp->cmd.misc = pp;
1165	rc = smu_queue_cmd(&pp->cmd);
1166	if (rc < 0)
1167		return rc;
1168	return count;
1169}
1170
1171
1172static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173				char __user *buf, size_t count)
1174{
1175	DECLARE_WAITQUEUE(wait, current);
1176	struct smu_user_reply_hdr hdr;
1177	unsigned long flags;
1178	int size, rc = 0;
1179
1180	if (!pp->busy)
1181		return 0;
1182	if (count < sizeof(struct smu_user_reply_hdr))
1183		return -EOVERFLOW;
1184	spin_lock_irqsave(&pp->lock, flags);
1185	if (pp->cmd.status == 1) {
1186		if (file->f_flags & O_NONBLOCK) {
1187			spin_unlock_irqrestore(&pp->lock, flags);
1188			return -EAGAIN;
1189		}
1190		add_wait_queue(&pp->wait, &wait);
1191		for (;;) {
1192			set_current_state(TASK_INTERRUPTIBLE);
1193			rc = 0;
1194			if (pp->cmd.status != 1)
1195				break;
1196			rc = -ERESTARTSYS;
1197			if (signal_pending(current))
1198				break;
1199			spin_unlock_irqrestore(&pp->lock, flags);
1200			schedule();
1201			spin_lock_irqsave(&pp->lock, flags);
1202		}
1203		set_current_state(TASK_RUNNING);
1204		remove_wait_queue(&pp->wait, &wait);
1205	}
1206	spin_unlock_irqrestore(&pp->lock, flags);
1207	if (rc)
1208		return rc;
1209	if (pp->cmd.status != 0)
1210		pp->cmd.reply_len = 0;
1211	size = sizeof(hdr) + pp->cmd.reply_len;
1212	if (count < size)
1213		size = count;
1214	rc = size;
1215	hdr.status = pp->cmd.status;
1216	hdr.reply_len = pp->cmd.reply_len;
1217	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1218		return -EFAULT;
1219	size -= sizeof(hdr);
1220	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1221		return -EFAULT;
1222	pp->busy = 0;
1223
1224	return rc;
1225}
1226
1227
1228static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229			       char __user *buf, size_t count)
1230{
1231	/* Not implemented */
1232	msleep_interruptible(1000);
1233	return 0;
1234}
1235
1236
1237static ssize_t smu_read(struct file *file, char __user *buf,
1238			size_t count, loff_t *ppos)
1239{
1240	struct smu_private *pp = file->private_data;
1241
1242	if (pp->mode == smu_file_commands)
1243		return smu_read_command(file, pp, buf, count);
1244	if (pp->mode == smu_file_events)
1245		return smu_read_events(file, pp, buf, count);
1246
1247	return -EBADFD;
1248}
1249
1250static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1251{
1252	struct smu_private *pp = file->private_data;
1253	__poll_t mask = 0;
1254	unsigned long flags;
1255
1256	if (!pp)
1257		return 0;
1258
1259	if (pp->mode == smu_file_commands) {
1260		poll_wait(file, &pp->wait, wait);
1261
1262		spin_lock_irqsave(&pp->lock, flags);
1263		if (pp->busy && pp->cmd.status != 1)
1264			mask |= EPOLLIN;
1265		spin_unlock_irqrestore(&pp->lock, flags);
1266	}
1267	if (pp->mode == smu_file_events) {
1268		/* Not yet implemented */
1269	}
1270	return mask;
1271}
1272
1273static int smu_release(struct inode *inode, struct file *file)
1274{
1275	struct smu_private *pp = file->private_data;
1276	unsigned long flags;
1277	unsigned int busy;
1278
1279	if (!pp)
1280		return 0;
1281
1282	file->private_data = NULL;
1283
1284	/* Mark file as closing to avoid races with new request */
1285	spin_lock_irqsave(&pp->lock, flags);
1286	pp->mode = smu_file_closing;
1287	busy = pp->busy;
1288
1289	/* Wait for any pending request to complete */
1290	if (busy && pp->cmd.status == 1) {
1291		DECLARE_WAITQUEUE(wait, current);
1292
1293		add_wait_queue(&pp->wait, &wait);
1294		for (;;) {
1295			set_current_state(TASK_UNINTERRUPTIBLE);
1296			if (pp->cmd.status != 1)
1297				break;
1298			spin_unlock_irqrestore(&pp->lock, flags);
1299			schedule();
1300			spin_lock_irqsave(&pp->lock, flags);
1301		}
1302		set_current_state(TASK_RUNNING);
1303		remove_wait_queue(&pp->wait, &wait);
1304	}
1305	spin_unlock_irqrestore(&pp->lock, flags);
1306
1307	spin_lock_irqsave(&smu_clist_lock, flags);
1308	list_del(&pp->list);
1309	spin_unlock_irqrestore(&smu_clist_lock, flags);
1310	kfree(pp);
1311
1312	return 0;
1313}
1314
1315
1316static const struct file_operations smu_device_fops = {
1317	.llseek		= no_llseek,
1318	.read		= smu_read,
1319	.write		= smu_write,
1320	.poll		= smu_fpoll,
1321	.open		= smu_open,
1322	.release	= smu_release,
1323};
1324
1325static struct miscdevice pmu_device = {
1326	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1327};
1328
1329static int smu_device_init(void)
1330{
1331	if (!smu)
1332		return -ENODEV;
1333	if (misc_register(&pmu_device) < 0)
1334		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1335	return 0;
1336}
1337device_initcall(smu_device_init);
1338