1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#define pr_fmt(fmt)	"GICv3: " fmt
8
9#include <linux/acpi.h>
10#include <linux/cpu.h>
11#include <linux/cpu_pm.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/irqdomain.h>
15#include <linux/kstrtox.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/of_irq.h>
19#include <linux/percpu.h>
20#include <linux/refcount.h>
21#include <linux/slab.h>
22
23#include <linux/irqchip.h>
24#include <linux/irqchip/arm-gic-common.h>
25#include <linux/irqchip/arm-gic-v3.h>
26#include <linux/irqchip/irq-partition-percpu.h>
27#include <linux/bitfield.h>
28#include <linux/bits.h>
29#include <linux/arm-smccc.h>
30
31#include <asm/cputype.h>
32#include <asm/exception.h>
33#include <asm/smp_plat.h>
34#include <asm/virt.h>
35
36#include "irq-gic-common.h"
37
38#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39
40#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42#define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
43#define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 3)
44
45#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
46
47struct redist_region {
48	void __iomem		*redist_base;
49	phys_addr_t		phys_base;
50	bool			single_redist;
51};
52
53struct gic_chip_data {
54	struct fwnode_handle	*fwnode;
55	phys_addr_t		dist_phys_base;
56	void __iomem		*dist_base;
57	struct redist_region	*redist_regions;
58	struct rdists		rdists;
59	struct irq_domain	*domain;
60	u64			redist_stride;
61	u32			nr_redist_regions;
62	u64			flags;
63	bool			has_rss;
64	unsigned int		ppi_nr;
65	struct partition_desc	**ppi_descs;
66};
67
68#define T241_CHIPS_MAX		4
69static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71
72static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73
74static struct gic_chip_data gic_data __read_mostly;
75static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76
77#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78#define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80
81/*
82 * The behaviours of RPR and PMR registers differ depending on the value of
83 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
84 * distributor and redistributors depends on whether security is enabled in the
85 * GIC.
86 *
87 * When security is enabled, non-secure priority values from the (re)distributor
88 * are presented to the GIC CPUIF as follow:
89 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
90 *
91 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
92 * EL1 are subject to a similar operation thus matching the priorities presented
93 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
94 * these values are unchanged by the GIC.
95 *
96 * see GICv3/GICv4 Architecture Specification (IHI0069D):
97 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
98 *   priorities.
99 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
100 *   interrupt.
101 */
102static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
103
104DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
105EXPORT_SYMBOL(gic_nonsecure_priorities);
106
107/*
108 * When the Non-secure world has access to group 0 interrupts (as a
109 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
110 * return the Distributor's view of the interrupt priority.
111 *
112 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
113 * written by software is moved to the Non-secure range by the Distributor.
114 *
115 * If both are true (which is when gic_nonsecure_priorities gets enabled),
116 * we need to shift down the priority programmed by software to match it
117 * against the value returned by ICC_RPR_EL1.
118 */
119#define GICD_INT_RPR_PRI(priority)					\
120	({								\
121		u32 __priority = (priority);				\
122		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
123			__priority = 0x80 | (__priority >> 1);		\
124									\
125		__priority;						\
126	})
127
128/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
129static refcount_t *ppi_nmi_refs;
130
131static struct gic_kvm_info gic_v3_kvm_info __initdata;
132static DEFINE_PER_CPU(bool, has_rss);
133
134#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
135#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
136#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
137#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
138
139/* Our default, arbitrary priority value. Linux only uses one anyway. */
140#define DEFAULT_PMR_VALUE	0xf0
141
142enum gic_intid_range {
143	SGI_RANGE,
144	PPI_RANGE,
145	SPI_RANGE,
146	EPPI_RANGE,
147	ESPI_RANGE,
148	LPI_RANGE,
149	__INVALID_RANGE__
150};
151
152static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
153{
154	switch (hwirq) {
155	case 0 ... 15:
156		return SGI_RANGE;
157	case 16 ... 31:
158		return PPI_RANGE;
159	case 32 ... 1019:
160		return SPI_RANGE;
161	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
162		return EPPI_RANGE;
163	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
164		return ESPI_RANGE;
165	case 8192 ... GENMASK(23, 0):
166		return LPI_RANGE;
167	default:
168		return __INVALID_RANGE__;
169	}
170}
171
172static enum gic_intid_range get_intid_range(struct irq_data *d)
173{
174	return __get_intid_range(d->hwirq);
175}
176
177static inline unsigned int gic_irq(struct irq_data *d)
178{
179	return d->hwirq;
180}
181
182static inline bool gic_irq_in_rdist(struct irq_data *d)
183{
184	switch (get_intid_range(d)) {
185	case SGI_RANGE:
186	case PPI_RANGE:
187	case EPPI_RANGE:
188		return true;
189	default:
190		return false;
191	}
192}
193
194static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
195{
196	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
197		irq_hw_number_t hwirq = irqd_to_hwirq(d);
198		u32 chip;
199
200		/*
201		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
202		 * registers are directed to the chip that owns the SPI. The
203		 * the alias region can also be used for writes to the
204		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
205		 * for 320 {E}SPIs. Mappings for all 4 chips:
206		 *    Chip0 = 32-351
207		 *    Chip1 = 352-671
208		 *    Chip2 = 672-991
209		 *    Chip3 = 4096-4415
210		 */
211		switch (__get_intid_range(hwirq)) {
212		case SPI_RANGE:
213			chip = (hwirq - 32) / 320;
214			break;
215		case ESPI_RANGE:
216			chip = 3;
217			break;
218		default:
219			unreachable();
220		}
221		return t241_dist_base_alias[chip];
222	}
223
224	return gic_data.dist_base;
225}
226
227static inline void __iomem *gic_dist_base(struct irq_data *d)
228{
229	switch (get_intid_range(d)) {
230	case SGI_RANGE:
231	case PPI_RANGE:
232	case EPPI_RANGE:
233		/* SGI+PPI -> SGI_base for this CPU */
234		return gic_data_rdist_sgi_base();
235
236	case SPI_RANGE:
237	case ESPI_RANGE:
238		/* SPI -> dist_base */
239		return gic_data.dist_base;
240
241	default:
242		return NULL;
243	}
244}
245
246static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
247{
248	u32 count = 1000000;	/* 1s! */
249
250	while (readl_relaxed(base + GICD_CTLR) & bit) {
251		count--;
252		if (!count) {
253			pr_err_ratelimited("RWP timeout, gone fishing\n");
254			return;
255		}
256		cpu_relax();
257		udelay(1);
258	}
259}
260
261/* Wait for completion of a distributor change */
262static void gic_dist_wait_for_rwp(void)
263{
264	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
265}
266
267/* Wait for completion of a redistributor change */
268static void gic_redist_wait_for_rwp(void)
269{
270	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
271}
272
273#ifdef CONFIG_ARM64
274
275static u64 __maybe_unused gic_read_iar(void)
276{
277	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
278		return gic_read_iar_cavium_thunderx();
279	else
280		return gic_read_iar_common();
281}
282#endif
283
284static void gic_enable_redist(bool enable)
285{
286	void __iomem *rbase;
287	u32 count = 1000000;	/* 1s! */
288	u32 val;
289
290	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
291		return;
292
293	rbase = gic_data_rdist_rd_base();
294
295	val = readl_relaxed(rbase + GICR_WAKER);
296	if (enable)
297		/* Wake up this CPU redistributor */
298		val &= ~GICR_WAKER_ProcessorSleep;
299	else
300		val |= GICR_WAKER_ProcessorSleep;
301	writel_relaxed(val, rbase + GICR_WAKER);
302
303	if (!enable) {		/* Check that GICR_WAKER is writeable */
304		val = readl_relaxed(rbase + GICR_WAKER);
305		if (!(val & GICR_WAKER_ProcessorSleep))
306			return;	/* No PM support in this redistributor */
307	}
308
309	while (--count) {
310		val = readl_relaxed(rbase + GICR_WAKER);
311		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
312			break;
313		cpu_relax();
314		udelay(1);
315	}
316	if (!count)
317		pr_err_ratelimited("redistributor failed to %s...\n",
318				   enable ? "wakeup" : "sleep");
319}
320
321/*
322 * Routines to disable, enable, EOI and route interrupts
323 */
324static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
325{
326	switch (get_intid_range(d)) {
327	case SGI_RANGE:
328	case PPI_RANGE:
329	case SPI_RANGE:
330		*index = d->hwirq;
331		return offset;
332	case EPPI_RANGE:
333		/*
334		 * Contrary to the ESPI range, the EPPI range is contiguous
335		 * to the PPI range in the registers, so let's adjust the
336		 * displacement accordingly. Consistency is overrated.
337		 */
338		*index = d->hwirq - EPPI_BASE_INTID + 32;
339		return offset;
340	case ESPI_RANGE:
341		*index = d->hwirq - ESPI_BASE_INTID;
342		switch (offset) {
343		case GICD_ISENABLER:
344			return GICD_ISENABLERnE;
345		case GICD_ICENABLER:
346			return GICD_ICENABLERnE;
347		case GICD_ISPENDR:
348			return GICD_ISPENDRnE;
349		case GICD_ICPENDR:
350			return GICD_ICPENDRnE;
351		case GICD_ISACTIVER:
352			return GICD_ISACTIVERnE;
353		case GICD_ICACTIVER:
354			return GICD_ICACTIVERnE;
355		case GICD_IPRIORITYR:
356			return GICD_IPRIORITYRnE;
357		case GICD_ICFGR:
358			return GICD_ICFGRnE;
359		case GICD_IROUTER:
360			return GICD_IROUTERnE;
361		default:
362			break;
363		}
364		break;
365	default:
366		break;
367	}
368
369	WARN_ON(1);
370	*index = d->hwirq;
371	return offset;
372}
373
374static int gic_peek_irq(struct irq_data *d, u32 offset)
375{
376	void __iomem *base;
377	u32 index, mask;
378
379	offset = convert_offset_index(d, offset, &index);
380	mask = 1 << (index % 32);
381
382	if (gic_irq_in_rdist(d))
383		base = gic_data_rdist_sgi_base();
384	else
385		base = gic_dist_base_alias(d);
386
387	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
388}
389
390static void gic_poke_irq(struct irq_data *d, u32 offset)
391{
392	void __iomem *base;
393	u32 index, mask;
394
395	offset = convert_offset_index(d, offset, &index);
396	mask = 1 << (index % 32);
397
398	if (gic_irq_in_rdist(d))
399		base = gic_data_rdist_sgi_base();
400	else
401		base = gic_data.dist_base;
402
403	writel_relaxed(mask, base + offset + (index / 32) * 4);
404}
405
406static void gic_mask_irq(struct irq_data *d)
407{
408	gic_poke_irq(d, GICD_ICENABLER);
409	if (gic_irq_in_rdist(d))
410		gic_redist_wait_for_rwp();
411	else
412		gic_dist_wait_for_rwp();
413}
414
415static void gic_eoimode1_mask_irq(struct irq_data *d)
416{
417	gic_mask_irq(d);
418	/*
419	 * When masking a forwarded interrupt, make sure it is
420	 * deactivated as well.
421	 *
422	 * This ensures that an interrupt that is getting
423	 * disabled/masked will not get "stuck", because there is
424	 * noone to deactivate it (guest is being terminated).
425	 */
426	if (irqd_is_forwarded_to_vcpu(d))
427		gic_poke_irq(d, GICD_ICACTIVER);
428}
429
430static void gic_unmask_irq(struct irq_data *d)
431{
432	gic_poke_irq(d, GICD_ISENABLER);
433}
434
435static inline bool gic_supports_nmi(void)
436{
437	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
438	       static_branch_likely(&supports_pseudo_nmis);
439}
440
441static int gic_irq_set_irqchip_state(struct irq_data *d,
442				     enum irqchip_irq_state which, bool val)
443{
444	u32 reg;
445
446	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
447		return -EINVAL;
448
449	switch (which) {
450	case IRQCHIP_STATE_PENDING:
451		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
452		break;
453
454	case IRQCHIP_STATE_ACTIVE:
455		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
456		break;
457
458	case IRQCHIP_STATE_MASKED:
459		if (val) {
460			gic_mask_irq(d);
461			return 0;
462		}
463		reg = GICD_ISENABLER;
464		break;
465
466	default:
467		return -EINVAL;
468	}
469
470	gic_poke_irq(d, reg);
471	return 0;
472}
473
474static int gic_irq_get_irqchip_state(struct irq_data *d,
475				     enum irqchip_irq_state which, bool *val)
476{
477	if (d->hwirq >= 8192) /* PPI/SPI only */
478		return -EINVAL;
479
480	switch (which) {
481	case IRQCHIP_STATE_PENDING:
482		*val = gic_peek_irq(d, GICD_ISPENDR);
483		break;
484
485	case IRQCHIP_STATE_ACTIVE:
486		*val = gic_peek_irq(d, GICD_ISACTIVER);
487		break;
488
489	case IRQCHIP_STATE_MASKED:
490		*val = !gic_peek_irq(d, GICD_ISENABLER);
491		break;
492
493	default:
494		return -EINVAL;
495	}
496
497	return 0;
498}
499
500static void gic_irq_set_prio(struct irq_data *d, u8 prio)
501{
502	void __iomem *base = gic_dist_base(d);
503	u32 offset, index;
504
505	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
506
507	writeb_relaxed(prio, base + offset + index);
508}
509
510static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
511{
512	switch (__get_intid_range(hwirq)) {
513	case PPI_RANGE:
514		return hwirq - 16;
515	case EPPI_RANGE:
516		return hwirq - EPPI_BASE_INTID + 16;
517	default:
518		unreachable();
519	}
520}
521
522static u32 gic_get_ppi_index(struct irq_data *d)
523{
524	return __gic_get_ppi_index(d->hwirq);
525}
526
527static int gic_irq_nmi_setup(struct irq_data *d)
528{
529	struct irq_desc *desc = irq_to_desc(d->irq);
530
531	if (!gic_supports_nmi())
532		return -EINVAL;
533
534	if (gic_peek_irq(d, GICD_ISENABLER)) {
535		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
536		return -EINVAL;
537	}
538
539	/*
540	 * A secondary irq_chip should be in charge of LPI request,
541	 * it should not be possible to get there
542	 */
543	if (WARN_ON(gic_irq(d) >= 8192))
544		return -EINVAL;
545
546	/* desc lock should already be held */
547	if (gic_irq_in_rdist(d)) {
548		u32 idx = gic_get_ppi_index(d);
549
550		/* Setting up PPI as NMI, only switch handler for first NMI */
551		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
552			refcount_set(&ppi_nmi_refs[idx], 1);
553			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
554		}
555	} else {
556		desc->handle_irq = handle_fasteoi_nmi;
557	}
558
559	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
560
561	return 0;
562}
563
564static void gic_irq_nmi_teardown(struct irq_data *d)
565{
566	struct irq_desc *desc = irq_to_desc(d->irq);
567
568	if (WARN_ON(!gic_supports_nmi()))
569		return;
570
571	if (gic_peek_irq(d, GICD_ISENABLER)) {
572		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
573		return;
574	}
575
576	/*
577	 * A secondary irq_chip should be in charge of LPI request,
578	 * it should not be possible to get there
579	 */
580	if (WARN_ON(gic_irq(d) >= 8192))
581		return;
582
583	/* desc lock should already be held */
584	if (gic_irq_in_rdist(d)) {
585		u32 idx = gic_get_ppi_index(d);
586
587		/* Tearing down NMI, only switch handler for last NMI */
588		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
589			desc->handle_irq = handle_percpu_devid_irq;
590	} else {
591		desc->handle_irq = handle_fasteoi_irq;
592	}
593
594	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
595}
596
597static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
598{
599	enum gic_intid_range range;
600
601	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
602		return false;
603
604	range = get_intid_range(d);
605
606	/*
607	 * The workaround is needed if the IRQ is an SPI and
608	 * the target cpu is different from the one we are
609	 * executing on.
610	 */
611	return (range == SPI_RANGE || range == ESPI_RANGE) &&
612		!cpumask_test_cpu(raw_smp_processor_id(),
613				  irq_data_get_effective_affinity_mask(d));
614}
615
616static void gic_eoi_irq(struct irq_data *d)
617{
618	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
619	isb();
620
621	if (gic_arm64_erratum_2941627_needed(d)) {
622		/*
623		 * Make sure the GIC stream deactivate packet
624		 * issued by ICC_EOIR1_EL1 has completed before
625		 * deactivating through GICD_IACTIVER.
626		 */
627		dsb(sy);
628		gic_poke_irq(d, GICD_ICACTIVER);
629	}
630}
631
632static void gic_eoimode1_eoi_irq(struct irq_data *d)
633{
634	/*
635	 * No need to deactivate an LPI, or an interrupt that
636	 * is is getting forwarded to a vcpu.
637	 */
638	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
639		return;
640
641	if (!gic_arm64_erratum_2941627_needed(d))
642		gic_write_dir(gic_irq(d));
643	else
644		gic_poke_irq(d, GICD_ICACTIVER);
645}
646
647static int gic_set_type(struct irq_data *d, unsigned int type)
648{
649	enum gic_intid_range range;
650	unsigned int irq = gic_irq(d);
651	void __iomem *base;
652	u32 offset, index;
653	int ret;
654
655	range = get_intid_range(d);
656
657	/* Interrupt configuration for SGIs can't be changed */
658	if (range == SGI_RANGE)
659		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
660
661	/* SPIs have restrictions on the supported types */
662	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
663	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
664		return -EINVAL;
665
666	if (gic_irq_in_rdist(d))
667		base = gic_data_rdist_sgi_base();
668	else
669		base = gic_dist_base_alias(d);
670
671	offset = convert_offset_index(d, GICD_ICFGR, &index);
672
673	ret = gic_configure_irq(index, type, base + offset, NULL);
674	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
675		/* Misconfigured PPIs are usually not fatal */
676		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
677		ret = 0;
678	}
679
680	return ret;
681}
682
683static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
684{
685	if (get_intid_range(d) == SGI_RANGE)
686		return -EINVAL;
687
688	if (vcpu)
689		irqd_set_forwarded_to_vcpu(d);
690	else
691		irqd_clr_forwarded_to_vcpu(d);
692	return 0;
693}
694
695static u64 gic_cpu_to_affinity(int cpu)
696{
697	u64 mpidr = cpu_logical_map(cpu);
698	u64 aff;
699
700	/* ASR8601 needs to have its affinities shifted down... */
701	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
702		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
703			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
704
705	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
706	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
707	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
708	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
709
710	return aff;
711}
712
713static void gic_deactivate_unhandled(u32 irqnr)
714{
715	if (static_branch_likely(&supports_deactivate_key)) {
716		if (irqnr < 8192)
717			gic_write_dir(irqnr);
718	} else {
719		write_gicreg(irqnr, ICC_EOIR1_EL1);
720		isb();
721	}
722}
723
724/*
725 * Follow a read of the IAR with any HW maintenance that needs to happen prior
726 * to invoking the relevant IRQ handler. We must do two things:
727 *
728 * (1) Ensure instruction ordering between a read of IAR and subsequent
729 *     instructions in the IRQ handler using an ISB.
730 *
731 *     It is possible for the IAR to report an IRQ which was signalled *after*
732 *     the CPU took an IRQ exception as multiple interrupts can race to be
733 *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
734 *     later interrupts could be prioritized by the GIC.
735 *
736 *     For devices which are tightly coupled to the CPU, such as PMUs, a
737 *     context synchronization event is necessary to ensure that system
738 *     register state is not stale, as these may have been indirectly written
739 *     *after* exception entry.
740 *
741 * (2) Deactivate the interrupt when EOI mode 1 is in use.
742 */
743static inline void gic_complete_ack(u32 irqnr)
744{
745	if (static_branch_likely(&supports_deactivate_key))
746		write_gicreg(irqnr, ICC_EOIR1_EL1);
747
748	isb();
749}
750
751static bool gic_rpr_is_nmi_prio(void)
752{
753	if (!gic_supports_nmi())
754		return false;
755
756	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
757}
758
759static bool gic_irqnr_is_special(u32 irqnr)
760{
761	return irqnr >= 1020 && irqnr <= 1023;
762}
763
764static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
765{
766	if (gic_irqnr_is_special(irqnr))
767		return;
768
769	gic_complete_ack(irqnr);
770
771	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
772		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
773		gic_deactivate_unhandled(irqnr);
774	}
775}
776
777static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
778{
779	if (gic_irqnr_is_special(irqnr))
780		return;
781
782	gic_complete_ack(irqnr);
783
784	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
785		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
786		gic_deactivate_unhandled(irqnr);
787	}
788}
789
790/*
791 * An exception has been taken from a context with IRQs enabled, and this could
792 * be an IRQ or an NMI.
793 *
794 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
795 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
796 * after handling any NMI but before handling any IRQ.
797 *
798 * The entry code has performed IRQ entry, and if an NMI is detected we must
799 * perform NMI entry/exit around invoking the handler.
800 */
801static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
802{
803	bool is_nmi;
804	u32 irqnr;
805
806	irqnr = gic_read_iar();
807
808	is_nmi = gic_rpr_is_nmi_prio();
809
810	if (is_nmi) {
811		nmi_enter();
812		__gic_handle_nmi(irqnr, regs);
813		nmi_exit();
814	}
815
816	if (gic_prio_masking_enabled()) {
817		gic_pmr_mask_irqs();
818		gic_arch_enable_irqs();
819	}
820
821	if (!is_nmi)
822		__gic_handle_irq(irqnr, regs);
823}
824
825/*
826 * An exception has been taken from a context with IRQs disabled, which can only
827 * be an NMI.
828 *
829 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
830 * DAIF.IF (and ICC_PMR_EL1) unchanged.
831 *
832 * The entry code has performed NMI entry.
833 */
834static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
835{
836	u64 pmr;
837	u32 irqnr;
838
839	/*
840	 * We were in a context with IRQs disabled. However, the
841	 * entry code has set PMR to a value that allows any
842	 * interrupt to be acknowledged, and not just NMIs. This can
843	 * lead to surprising effects if the NMI has been retired in
844	 * the meantime, and that there is an IRQ pending. The IRQ
845	 * would then be taken in NMI context, something that nobody
846	 * wants to debug twice.
847	 *
848	 * Until we sort this, drop PMR again to a level that will
849	 * actually only allow NMIs before reading IAR, and then
850	 * restore it to what it was.
851	 */
852	pmr = gic_read_pmr();
853	gic_pmr_mask_irqs();
854	isb();
855	irqnr = gic_read_iar();
856	gic_write_pmr(pmr);
857
858	__gic_handle_nmi(irqnr, regs);
859}
860
861static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
862{
863	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
864		__gic_handle_irq_from_irqsoff(regs);
865	else
866		__gic_handle_irq_from_irqson(regs);
867}
868
869static u32 gic_get_pribits(void)
870{
871	u32 pribits;
872
873	pribits = gic_read_ctlr();
874	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
875	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
876	pribits++;
877
878	return pribits;
879}
880
881static bool gic_has_group0(void)
882{
883	u32 val;
884	u32 old_pmr;
885
886	old_pmr = gic_read_pmr();
887
888	/*
889	 * Let's find out if Group0 is under control of EL3 or not by
890	 * setting the highest possible, non-zero priority in PMR.
891	 *
892	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
893	 * order for the CPU interface to set bit 7, and keep the
894	 * actual priority in the non-secure range. In the process, it
895	 * looses the least significant bit and the actual priority
896	 * becomes 0x80. Reading it back returns 0, indicating that
897	 * we're don't have access to Group0.
898	 */
899	gic_write_pmr(BIT(8 - gic_get_pribits()));
900	val = gic_read_pmr();
901
902	gic_write_pmr(old_pmr);
903
904	return val != 0;
905}
906
907static void __init gic_dist_init(void)
908{
909	unsigned int i;
910	u64 affinity;
911	void __iomem *base = gic_data.dist_base;
912	u32 val;
913
914	/* Disable the distributor */
915	writel_relaxed(0, base + GICD_CTLR);
916	gic_dist_wait_for_rwp();
917
918	/*
919	 * Configure SPIs as non-secure Group-1. This will only matter
920	 * if the GIC only has a single security state. This will not
921	 * do the right thing if the kernel is running in secure mode,
922	 * but that's not the intended use case anyway.
923	 */
924	for (i = 32; i < GIC_LINE_NR; i += 32)
925		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
926
927	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
928	for (i = 0; i < GIC_ESPI_NR; i += 32) {
929		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
930		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
931	}
932
933	for (i = 0; i < GIC_ESPI_NR; i += 32)
934		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
935
936	for (i = 0; i < GIC_ESPI_NR; i += 16)
937		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
938
939	for (i = 0; i < GIC_ESPI_NR; i += 4)
940		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
941
942	/* Now do the common stuff */
943	gic_dist_config(base, GIC_LINE_NR, NULL);
944
945	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
946	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
947		pr_info("Enabling SGIs without active state\n");
948		val |= GICD_CTLR_nASSGIreq;
949	}
950
951	/* Enable distributor with ARE, Group1, and wait for it to drain */
952	writel_relaxed(val, base + GICD_CTLR);
953	gic_dist_wait_for_rwp();
954
955	/*
956	 * Set all global interrupts to the boot CPU only. ARE must be
957	 * enabled.
958	 */
959	affinity = gic_cpu_to_affinity(smp_processor_id());
960	for (i = 32; i < GIC_LINE_NR; i++)
961		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
962
963	for (i = 0; i < GIC_ESPI_NR; i++)
964		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
965}
966
967static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
968{
969	int ret = -ENODEV;
970	int i;
971
972	for (i = 0; i < gic_data.nr_redist_regions; i++) {
973		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
974		u64 typer;
975		u32 reg;
976
977		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
978		if (reg != GIC_PIDR2_ARCH_GICv3 &&
979		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
980			pr_warn("No redistributor present @%p\n", ptr);
981			break;
982		}
983
984		do {
985			typer = gic_read_typer(ptr + GICR_TYPER);
986			ret = fn(gic_data.redist_regions + i, ptr);
987			if (!ret)
988				return 0;
989
990			if (gic_data.redist_regions[i].single_redist)
991				break;
992
993			if (gic_data.redist_stride) {
994				ptr += gic_data.redist_stride;
995			} else {
996				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
997				if (typer & GICR_TYPER_VLPIS)
998					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
999			}
1000		} while (!(typer & GICR_TYPER_LAST));
1001	}
1002
1003	return ret ? -ENODEV : 0;
1004}
1005
1006static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1007{
1008	unsigned long mpidr;
1009	u64 typer;
1010	u32 aff;
1011
1012	/*
1013	 * Convert affinity to a 32bit value that can be matched to
1014	 * GICR_TYPER bits [63:32].
1015	 */
1016	mpidr = gic_cpu_to_affinity(smp_processor_id());
1017
1018	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1019	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1020	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1021	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1022
1023	typer = gic_read_typer(ptr + GICR_TYPER);
1024	if ((typer >> 32) == aff) {
1025		u64 offset = ptr - region->redist_base;
1026		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1027		gic_data_rdist_rd_base() = ptr;
1028		gic_data_rdist()->phys_base = region->phys_base + offset;
1029
1030		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1031			smp_processor_id(), mpidr,
1032			(int)(region - gic_data.redist_regions),
1033			&gic_data_rdist()->phys_base);
1034		return 0;
1035	}
1036
1037	/* Try next one */
1038	return 1;
1039}
1040
1041static int gic_populate_rdist(void)
1042{
1043	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1044		return 0;
1045
1046	/* We couldn't even deal with ourselves... */
1047	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1048	     smp_processor_id(),
1049	     (unsigned long)cpu_logical_map(smp_processor_id()));
1050	return -ENODEV;
1051}
1052
1053static int __gic_update_rdist_properties(struct redist_region *region,
1054					 void __iomem *ptr)
1055{
1056	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1057	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1058
1059	/* Boot-time cleanup */
1060	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1061		u64 val;
1062
1063		/* Deactivate any present vPE */
1064		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1065		if (val & GICR_VPENDBASER_Valid)
1066			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1067					      ptr + SZ_128K + GICR_VPENDBASER);
1068
1069		/* Mark the VPE table as invalid */
1070		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1071		val &= ~GICR_VPROPBASER_4_1_VALID;
1072		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1073	}
1074
1075	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1076
1077	/*
1078	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1079	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1080	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1081	 *
1082	 * These are 3 different ways to express the same thing, depending
1083	 * on the revision of the architecture and its relaxations over
1084	 * time. Just group them under the 'direct_lpi' banner.
1085	 */
1086	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1087	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1088					   !!(ctlr & GICR_CTLR_IR) |
1089					   gic_data.rdists.has_rvpeid);
1090	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1091
1092	/* Detect non-sensical configurations */
1093	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1094		gic_data.rdists.has_direct_lpi = false;
1095		gic_data.rdists.has_vlpis = false;
1096		gic_data.rdists.has_rvpeid = false;
1097	}
1098
1099	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1100
1101	return 1;
1102}
1103
1104static void gic_update_rdist_properties(void)
1105{
1106	gic_data.ppi_nr = UINT_MAX;
1107	gic_iterate_rdists(__gic_update_rdist_properties);
1108	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1109		gic_data.ppi_nr = 0;
1110	pr_info("GICv3 features: %d PPIs%s%s\n",
1111		gic_data.ppi_nr,
1112		gic_data.has_rss ? ", RSS" : "",
1113		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1114
1115	if (gic_data.rdists.has_vlpis)
1116		pr_info("GICv4 features: %s%s%s\n",
1117			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1118			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1119			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1120}
1121
1122/* Check whether it's single security state view */
1123static inline bool gic_dist_security_disabled(void)
1124{
1125	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1126}
1127
1128static void gic_cpu_sys_reg_init(void)
1129{
1130	int i, cpu = smp_processor_id();
1131	u64 mpidr = gic_cpu_to_affinity(cpu);
1132	u64 need_rss = MPIDR_RS(mpidr);
1133	bool group0;
1134	u32 pribits;
1135
1136	/*
1137	 * Need to check that the SRE bit has actually been set. If
1138	 * not, it means that SRE is disabled at EL2. We're going to
1139	 * die painfully, and there is nothing we can do about it.
1140	 *
1141	 * Kindly inform the luser.
1142	 */
1143	if (!gic_enable_sre())
1144		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1145
1146	pribits = gic_get_pribits();
1147
1148	group0 = gic_has_group0();
1149
1150	/* Set priority mask register */
1151	if (!gic_prio_masking_enabled()) {
1152		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1153	} else if (gic_supports_nmi()) {
1154		/*
1155		 * Mismatch configuration with boot CPU, the system is likely
1156		 * to die as interrupt masking will not work properly on all
1157		 * CPUs
1158		 *
1159		 * The boot CPU calls this function before enabling NMI support,
1160		 * and as a result we'll never see this warning in the boot path
1161		 * for that CPU.
1162		 */
1163		if (static_branch_unlikely(&gic_nonsecure_priorities))
1164			WARN_ON(!group0 || gic_dist_security_disabled());
1165		else
1166			WARN_ON(group0 && !gic_dist_security_disabled());
1167	}
1168
1169	/*
1170	 * Some firmwares hand over to the kernel with the BPR changed from
1171	 * its reset value (and with a value large enough to prevent
1172	 * any pre-emptive interrupts from working at all). Writing a zero
1173	 * to BPR restores is reset value.
1174	 */
1175	gic_write_bpr1(0);
1176
1177	if (static_branch_likely(&supports_deactivate_key)) {
1178		/* EOI drops priority only (mode 1) */
1179		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1180	} else {
1181		/* EOI deactivates interrupt too (mode 0) */
1182		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1183	}
1184
1185	/* Always whack Group0 before Group1 */
1186	if (group0) {
1187		switch(pribits) {
1188		case 8:
1189		case 7:
1190			write_gicreg(0, ICC_AP0R3_EL1);
1191			write_gicreg(0, ICC_AP0R2_EL1);
1192			fallthrough;
1193		case 6:
1194			write_gicreg(0, ICC_AP0R1_EL1);
1195			fallthrough;
1196		case 5:
1197		case 4:
1198			write_gicreg(0, ICC_AP0R0_EL1);
1199		}
1200
1201		isb();
1202	}
1203
1204	switch(pribits) {
1205	case 8:
1206	case 7:
1207		write_gicreg(0, ICC_AP1R3_EL1);
1208		write_gicreg(0, ICC_AP1R2_EL1);
1209		fallthrough;
1210	case 6:
1211		write_gicreg(0, ICC_AP1R1_EL1);
1212		fallthrough;
1213	case 5:
1214	case 4:
1215		write_gicreg(0, ICC_AP1R0_EL1);
1216	}
1217
1218	isb();
1219
1220	/* ... and let's hit the road... */
1221	gic_write_grpen1(1);
1222
1223	/* Keep the RSS capability status in per_cpu variable */
1224	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1225
1226	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1227	for_each_online_cpu(i) {
1228		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1229
1230		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1231		if (need_rss && (!have_rss))
1232			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1233				cpu, (unsigned long)mpidr,
1234				i, (unsigned long)gic_cpu_to_affinity(i));
1235	}
1236
1237	/**
1238	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1239	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1240	 * UNPREDICTABLE choice of :
1241	 *   - The write is ignored.
1242	 *   - The RS field is treated as 0.
1243	 */
1244	if (need_rss && (!gic_data.has_rss))
1245		pr_crit_once("RSS is required but GICD doesn't support it\n");
1246}
1247
1248static bool gicv3_nolpi;
1249
1250static int __init gicv3_nolpi_cfg(char *buf)
1251{
1252	return kstrtobool(buf, &gicv3_nolpi);
1253}
1254early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1255
1256static int gic_dist_supports_lpis(void)
1257{
1258	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1259		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1260		!gicv3_nolpi);
1261}
1262
1263static void gic_cpu_init(void)
1264{
1265	void __iomem *rbase;
1266	int i;
1267
1268	/* Register ourselves with the rest of the world */
1269	if (gic_populate_rdist())
1270		return;
1271
1272	gic_enable_redist(true);
1273
1274	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1275	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1276	     "Distributor has extended ranges, but CPU%d doesn't\n",
1277	     smp_processor_id());
1278
1279	rbase = gic_data_rdist_sgi_base();
1280
1281	/* Configure SGIs/PPIs as non-secure Group-1 */
1282	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1283		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1284
1285	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1286
1287	/* initialise system registers */
1288	gic_cpu_sys_reg_init();
1289}
1290
1291#ifdef CONFIG_SMP
1292
1293#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1294#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1295
1296static int gic_starting_cpu(unsigned int cpu)
1297{
1298	gic_cpu_init();
1299
1300	if (gic_dist_supports_lpis())
1301		its_cpu_init();
1302
1303	return 0;
1304}
1305
1306static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1307				   unsigned long cluster_id)
1308{
1309	int next_cpu, cpu = *base_cpu;
1310	unsigned long mpidr;
1311	u16 tlist = 0;
1312
1313	mpidr = gic_cpu_to_affinity(cpu);
1314
1315	while (cpu < nr_cpu_ids) {
1316		tlist |= 1 << (mpidr & 0xf);
1317
1318		next_cpu = cpumask_next(cpu, mask);
1319		if (next_cpu >= nr_cpu_ids)
1320			goto out;
1321		cpu = next_cpu;
1322
1323		mpidr = gic_cpu_to_affinity(cpu);
1324
1325		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1326			cpu--;
1327			goto out;
1328		}
1329	}
1330out:
1331	*base_cpu = cpu;
1332	return tlist;
1333}
1334
1335#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1336	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1337		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1338
1339static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1340{
1341	u64 val;
1342
1343	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1344	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1345	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1346	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1347	       MPIDR_TO_SGI_RS(cluster_id)		|
1348	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1349
1350	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1351	gic_write_sgi1r(val);
1352}
1353
1354static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1355{
1356	int cpu;
1357
1358	if (WARN_ON(d->hwirq >= 16))
1359		return;
1360
1361	/*
1362	 * Ensure that stores to Normal memory are visible to the
1363	 * other CPUs before issuing the IPI.
1364	 */
1365	dsb(ishst);
1366
1367	for_each_cpu(cpu, mask) {
1368		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1369		u16 tlist;
1370
1371		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1372		gic_send_sgi(cluster_id, tlist, d->hwirq);
1373	}
1374
1375	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1376	isb();
1377}
1378
1379static void __init gic_smp_init(void)
1380{
1381	struct irq_fwspec sgi_fwspec = {
1382		.fwnode		= gic_data.fwnode,
1383		.param_count	= 1,
1384	};
1385	int base_sgi;
1386
1387	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1388				  "irqchip/arm/gicv3:starting",
1389				  gic_starting_cpu, NULL);
1390
1391	/* Register all 8 non-secure SGIs */
1392	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1393	if (WARN_ON(base_sgi <= 0))
1394		return;
1395
1396	set_smp_ipi_range(base_sgi, 8);
1397}
1398
1399static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1400			    bool force)
1401{
1402	unsigned int cpu;
1403	u32 offset, index;
1404	void __iomem *reg;
1405	int enabled;
1406	u64 val;
1407
1408	if (force)
1409		cpu = cpumask_first(mask_val);
1410	else
1411		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1412
1413	if (cpu >= nr_cpu_ids)
1414		return -EINVAL;
1415
1416	if (gic_irq_in_rdist(d))
1417		return -EINVAL;
1418
1419	/* If interrupt was enabled, disable it first */
1420	enabled = gic_peek_irq(d, GICD_ISENABLER);
1421	if (enabled)
1422		gic_mask_irq(d);
1423
1424	offset = convert_offset_index(d, GICD_IROUTER, &index);
1425	reg = gic_dist_base(d) + offset + (index * 8);
1426	val = gic_cpu_to_affinity(cpu);
1427
1428	gic_write_irouter(val, reg);
1429
1430	/*
1431	 * If the interrupt was enabled, enabled it again. Otherwise,
1432	 * just wait for the distributor to have digested our changes.
1433	 */
1434	if (enabled)
1435		gic_unmask_irq(d);
1436
1437	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1438
1439	return IRQ_SET_MASK_OK_DONE;
1440}
1441#else
1442#define gic_set_affinity	NULL
1443#define gic_ipi_send_mask	NULL
1444#define gic_smp_init()		do { } while(0)
1445#endif
1446
1447static int gic_retrigger(struct irq_data *data)
1448{
1449	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1450}
1451
1452#ifdef CONFIG_CPU_PM
1453static int gic_cpu_pm_notifier(struct notifier_block *self,
1454			       unsigned long cmd, void *v)
1455{
1456	if (cmd == CPU_PM_EXIT) {
1457		if (gic_dist_security_disabled())
1458			gic_enable_redist(true);
1459		gic_cpu_sys_reg_init();
1460	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1461		gic_write_grpen1(0);
1462		gic_enable_redist(false);
1463	}
1464	return NOTIFY_OK;
1465}
1466
1467static struct notifier_block gic_cpu_pm_notifier_block = {
1468	.notifier_call = gic_cpu_pm_notifier,
1469};
1470
1471static void gic_cpu_pm_init(void)
1472{
1473	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1474}
1475
1476#else
1477static inline void gic_cpu_pm_init(void) { }
1478#endif /* CONFIG_CPU_PM */
1479
1480static struct irq_chip gic_chip = {
1481	.name			= "GICv3",
1482	.irq_mask		= gic_mask_irq,
1483	.irq_unmask		= gic_unmask_irq,
1484	.irq_eoi		= gic_eoi_irq,
1485	.irq_set_type		= gic_set_type,
1486	.irq_set_affinity	= gic_set_affinity,
1487	.irq_retrigger          = gic_retrigger,
1488	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1489	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1490	.irq_nmi_setup		= gic_irq_nmi_setup,
1491	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1492	.ipi_send_mask		= gic_ipi_send_mask,
1493	.flags			= IRQCHIP_SET_TYPE_MASKED |
1494				  IRQCHIP_SKIP_SET_WAKE |
1495				  IRQCHIP_MASK_ON_SUSPEND,
1496};
1497
1498static struct irq_chip gic_eoimode1_chip = {
1499	.name			= "GICv3",
1500	.irq_mask		= gic_eoimode1_mask_irq,
1501	.irq_unmask		= gic_unmask_irq,
1502	.irq_eoi		= gic_eoimode1_eoi_irq,
1503	.irq_set_type		= gic_set_type,
1504	.irq_set_affinity	= gic_set_affinity,
1505	.irq_retrigger          = gic_retrigger,
1506	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1507	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1508	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1509	.irq_nmi_setup		= gic_irq_nmi_setup,
1510	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1511	.ipi_send_mask		= gic_ipi_send_mask,
1512	.flags			= IRQCHIP_SET_TYPE_MASKED |
1513				  IRQCHIP_SKIP_SET_WAKE |
1514				  IRQCHIP_MASK_ON_SUSPEND,
1515};
1516
1517static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1518			      irq_hw_number_t hw)
1519{
1520	struct irq_chip *chip = &gic_chip;
1521	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1522
1523	if (static_branch_likely(&supports_deactivate_key))
1524		chip = &gic_eoimode1_chip;
1525
1526	switch (__get_intid_range(hw)) {
1527	case SGI_RANGE:
1528	case PPI_RANGE:
1529	case EPPI_RANGE:
1530		irq_set_percpu_devid(irq);
1531		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1532				    handle_percpu_devid_irq, NULL, NULL);
1533		break;
1534
1535	case SPI_RANGE:
1536	case ESPI_RANGE:
1537		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1538				    handle_fasteoi_irq, NULL, NULL);
1539		irq_set_probe(irq);
1540		irqd_set_single_target(irqd);
1541		break;
1542
1543	case LPI_RANGE:
1544		if (!gic_dist_supports_lpis())
1545			return -EPERM;
1546		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1547				    handle_fasteoi_irq, NULL, NULL);
1548		break;
1549
1550	default:
1551		return -EPERM;
1552	}
1553
1554	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1555	irqd_set_handle_enforce_irqctx(irqd);
1556	return 0;
1557}
1558
1559static int gic_irq_domain_translate(struct irq_domain *d,
1560				    struct irq_fwspec *fwspec,
1561				    unsigned long *hwirq,
1562				    unsigned int *type)
1563{
1564	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1565		*hwirq = fwspec->param[0];
1566		*type = IRQ_TYPE_EDGE_RISING;
1567		return 0;
1568	}
1569
1570	if (is_of_node(fwspec->fwnode)) {
1571		if (fwspec->param_count < 3)
1572			return -EINVAL;
1573
1574		switch (fwspec->param[0]) {
1575		case 0:			/* SPI */
1576			*hwirq = fwspec->param[1] + 32;
1577			break;
1578		case 1:			/* PPI */
1579			*hwirq = fwspec->param[1] + 16;
1580			break;
1581		case 2:			/* ESPI */
1582			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1583			break;
1584		case 3:			/* EPPI */
1585			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1586			break;
1587		case GIC_IRQ_TYPE_LPI:	/* LPI */
1588			*hwirq = fwspec->param[1];
1589			break;
1590		case GIC_IRQ_TYPE_PARTITION:
1591			*hwirq = fwspec->param[1];
1592			if (fwspec->param[1] >= 16)
1593				*hwirq += EPPI_BASE_INTID - 16;
1594			else
1595				*hwirq += 16;
1596			break;
1597		default:
1598			return -EINVAL;
1599		}
1600
1601		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1602
1603		/*
1604		 * Make it clear that broken DTs are... broken.
1605		 * Partitioned PPIs are an unfortunate exception.
1606		 */
1607		WARN_ON(*type == IRQ_TYPE_NONE &&
1608			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1609		return 0;
1610	}
1611
1612	if (is_fwnode_irqchip(fwspec->fwnode)) {
1613		if(fwspec->param_count != 2)
1614			return -EINVAL;
1615
1616		if (fwspec->param[0] < 16) {
1617			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1618			       fwspec->param[0]);
1619			return -EINVAL;
1620		}
1621
1622		*hwirq = fwspec->param[0];
1623		*type = fwspec->param[1];
1624
1625		WARN_ON(*type == IRQ_TYPE_NONE);
1626		return 0;
1627	}
1628
1629	return -EINVAL;
1630}
1631
1632static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1633				unsigned int nr_irqs, void *arg)
1634{
1635	int i, ret;
1636	irq_hw_number_t hwirq;
1637	unsigned int type = IRQ_TYPE_NONE;
1638	struct irq_fwspec *fwspec = arg;
1639
1640	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1641	if (ret)
1642		return ret;
1643
1644	for (i = 0; i < nr_irqs; i++) {
1645		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1646		if (ret)
1647			return ret;
1648	}
1649
1650	return 0;
1651}
1652
1653static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1654				unsigned int nr_irqs)
1655{
1656	int i;
1657
1658	for (i = 0; i < nr_irqs; i++) {
1659		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1660		irq_set_handler(virq + i, NULL);
1661		irq_domain_reset_irq_data(d);
1662	}
1663}
1664
1665static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1666				      irq_hw_number_t hwirq)
1667{
1668	enum gic_intid_range range;
1669
1670	if (!gic_data.ppi_descs)
1671		return false;
1672
1673	if (!is_of_node(fwspec->fwnode))
1674		return false;
1675
1676	if (fwspec->param_count < 4 || !fwspec->param[3])
1677		return false;
1678
1679	range = __get_intid_range(hwirq);
1680	if (range != PPI_RANGE && range != EPPI_RANGE)
1681		return false;
1682
1683	return true;
1684}
1685
1686static int gic_irq_domain_select(struct irq_domain *d,
1687				 struct irq_fwspec *fwspec,
1688				 enum irq_domain_bus_token bus_token)
1689{
1690	unsigned int type, ret, ppi_idx;
1691	irq_hw_number_t hwirq;
1692
1693	/* Not for us */
1694        if (fwspec->fwnode != d->fwnode)
1695		return 0;
1696
1697	/* If this is not DT, then we have a single domain */
1698	if (!is_of_node(fwspec->fwnode))
1699		return 1;
1700
1701	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1702	if (WARN_ON_ONCE(ret))
1703		return 0;
1704
1705	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1706		return d == gic_data.domain;
1707
1708	/*
1709	 * If this is a PPI and we have a 4th (non-null) parameter,
1710	 * then we need to match the partition domain.
1711	 */
1712	ppi_idx = __gic_get_ppi_index(hwirq);
1713	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1714}
1715
1716static const struct irq_domain_ops gic_irq_domain_ops = {
1717	.translate = gic_irq_domain_translate,
1718	.alloc = gic_irq_domain_alloc,
1719	.free = gic_irq_domain_free,
1720	.select = gic_irq_domain_select,
1721};
1722
1723static int partition_domain_translate(struct irq_domain *d,
1724				      struct irq_fwspec *fwspec,
1725				      unsigned long *hwirq,
1726				      unsigned int *type)
1727{
1728	unsigned long ppi_intid;
1729	struct device_node *np;
1730	unsigned int ppi_idx;
1731	int ret;
1732
1733	if (!gic_data.ppi_descs)
1734		return -ENOMEM;
1735
1736	np = of_find_node_by_phandle(fwspec->param[3]);
1737	if (WARN_ON(!np))
1738		return -EINVAL;
1739
1740	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1741	if (WARN_ON_ONCE(ret))
1742		return 0;
1743
1744	ppi_idx = __gic_get_ppi_index(ppi_intid);
1745	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1746				     of_node_to_fwnode(np));
1747	if (ret < 0)
1748		return ret;
1749
1750	*hwirq = ret;
1751	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1752
1753	return 0;
1754}
1755
1756static const struct irq_domain_ops partition_domain_ops = {
1757	.translate = partition_domain_translate,
1758	.select = gic_irq_domain_select,
1759};
1760
1761static bool gic_enable_quirk_msm8996(void *data)
1762{
1763	struct gic_chip_data *d = data;
1764
1765	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1766
1767	return true;
1768}
1769
1770static bool gic_enable_quirk_mtk_gicr(void *data)
1771{
1772	struct gic_chip_data *d = data;
1773
1774	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;
1775
1776	return true;
1777}
1778
1779static bool gic_enable_quirk_cavium_38539(void *data)
1780{
1781	struct gic_chip_data *d = data;
1782
1783	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1784
1785	return true;
1786}
1787
1788static bool gic_enable_quirk_hip06_07(void *data)
1789{
1790	struct gic_chip_data *d = data;
1791
1792	/*
1793	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1794	 * not being an actual ARM implementation). The saving grace is
1795	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1796	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1797	 * have ESPI. In both cases, put them right.
1798	 */
1799	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1800		/* Zero both ESPI and the RES0 field next to it... */
1801		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1802		return true;
1803	}
1804
1805	return false;
1806}
1807
1808#define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1809#define T241_CHIP_GICDA_OFFSET	0x1580000
1810#define SMCCC_SOC_ID_T241	0x036b0241
1811
1812static bool gic_enable_quirk_nvidia_t241(void *data)
1813{
1814	s32 soc_id = arm_smccc_get_soc_id_version();
1815	unsigned long chip_bmask = 0;
1816	phys_addr_t phys;
1817	u32 i;
1818
1819	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1820	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1821		return false;
1822
1823	/* Find the chips based on GICR regions PHYS addr */
1824	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1825		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1826				  (u64)gic_data.redist_regions[i].phys_base));
1827	}
1828
1829	if (hweight32(chip_bmask) < 3)
1830		return false;
1831
1832	/* Setup GICD alias regions */
1833	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1834		if (chip_bmask & BIT(i)) {
1835			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1836			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1837			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1838			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1839		}
1840	}
1841	static_branch_enable(&gic_nvidia_t241_erratum);
1842	return true;
1843}
1844
1845static bool gic_enable_quirk_asr8601(void *data)
1846{
1847	struct gic_chip_data *d = data;
1848
1849	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1850
1851	return true;
1852}
1853
1854static bool gic_enable_quirk_arm64_2941627(void *data)
1855{
1856	static_branch_enable(&gic_arm64_2941627_erratum);
1857	return true;
1858}
1859
1860static bool rd_set_non_coherent(void *data)
1861{
1862	struct gic_chip_data *d = data;
1863
1864	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1865	return true;
1866}
1867
1868static const struct gic_quirk gic_quirks[] = {
1869	{
1870		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1871		.compatible = "qcom,msm8996-gic-v3",
1872		.init	= gic_enable_quirk_msm8996,
1873	},
1874	{
1875		.desc	= "GICv3: ASR erratum 8601001",
1876		.compatible = "asr,asr8601-gic-v3",
1877		.init	= gic_enable_quirk_asr8601,
1878	},
1879	{
1880		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
1881		.property = "mediatek,broken-save-restore-fw",
1882		.init	= gic_enable_quirk_mtk_gicr,
1883	},
1884	{
1885		.desc	= "GICv3: HIP06 erratum 161010803",
1886		.iidr	= 0x0204043b,
1887		.mask	= 0xffffffff,
1888		.init	= gic_enable_quirk_hip06_07,
1889	},
1890	{
1891		.desc	= "GICv3: HIP07 erratum 161010803",
1892		.iidr	= 0x00000000,
1893		.mask	= 0xffffffff,
1894		.init	= gic_enable_quirk_hip06_07,
1895	},
1896	{
1897		/*
1898		 * Reserved register accesses generate a Synchronous
1899		 * External Abort. This erratum applies to:
1900		 * - ThunderX: CN88xx
1901		 * - OCTEON TX: CN83xx, CN81xx
1902		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1903		 */
1904		.desc	= "GICv3: Cavium erratum 38539",
1905		.iidr	= 0xa000034c,
1906		.mask	= 0xe8f00fff,
1907		.init	= gic_enable_quirk_cavium_38539,
1908	},
1909	{
1910		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1911		.iidr	= 0x0402043b,
1912		.mask	= 0xffffffff,
1913		.init	= gic_enable_quirk_nvidia_t241,
1914	},
1915	{
1916		/*
1917		 * GIC-700: 2941627 workaround - IP variant [0,1]
1918		 *
1919		 */
1920		.desc	= "GICv3: ARM64 erratum 2941627",
1921		.iidr	= 0x0400043b,
1922		.mask	= 0xff0e0fff,
1923		.init	= gic_enable_quirk_arm64_2941627,
1924	},
1925	{
1926		/*
1927		 * GIC-700: 2941627 workaround - IP variant [2]
1928		 */
1929		.desc	= "GICv3: ARM64 erratum 2941627",
1930		.iidr	= 0x0402043b,
1931		.mask	= 0xff0f0fff,
1932		.init	= gic_enable_quirk_arm64_2941627,
1933	},
1934	{
1935		.desc   = "GICv3: non-coherent attribute",
1936		.property = "dma-noncoherent",
1937		.init   = rd_set_non_coherent,
1938	},
1939	{
1940	}
1941};
1942
1943static void gic_enable_nmi_support(void)
1944{
1945	int i;
1946
1947	if (!gic_prio_masking_enabled())
1948		return;
1949
1950	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
1951		pr_warn("Skipping NMI enable due to firmware issues\n");
1952		return;
1953	}
1954
1955	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1956	if (!ppi_nmi_refs)
1957		return;
1958
1959	for (i = 0; i < gic_data.ppi_nr; i++)
1960		refcount_set(&ppi_nmi_refs[i], 0);
1961
1962	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1963		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1964
1965	/*
1966	 * How priority values are used by the GIC depends on two things:
1967	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1968	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1969	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1970	 * ICC_PMR_EL1 register and the priority that software assigns to
1971	 * interrupts:
1972	 *
1973	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1974	 * -----------------------------------------------------------
1975	 *      1       |      -      |  unchanged  |    unchanged
1976	 * -----------------------------------------------------------
1977	 *      0       |      1      |  non-secure |    non-secure
1978	 * -----------------------------------------------------------
1979	 *      0       |      0      |  unchanged  |    non-secure
1980	 *
1981	 * where non-secure means that the value is right-shifted by one and the
1982	 * MSB bit set, to make it fit in the non-secure priority range.
1983	 *
1984	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1985	 * are both either modified or unchanged, we can use the same set of
1986	 * priorities.
1987	 *
1988	 * In the last case, where only the interrupt priorities are modified to
1989	 * be in the non-secure range, we use a different PMR value to mask IRQs
1990	 * and the rest of the values that we use remain unchanged.
1991	 */
1992	if (gic_has_group0() && !gic_dist_security_disabled())
1993		static_branch_enable(&gic_nonsecure_priorities);
1994
1995	static_branch_enable(&supports_pseudo_nmis);
1996
1997	if (static_branch_likely(&supports_deactivate_key))
1998		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1999	else
2000		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2001}
2002
2003static int __init gic_init_bases(phys_addr_t dist_phys_base,
2004				 void __iomem *dist_base,
2005				 struct redist_region *rdist_regs,
2006				 u32 nr_redist_regions,
2007				 u64 redist_stride,
2008				 struct fwnode_handle *handle)
2009{
2010	u32 typer;
2011	int err;
2012
2013	if (!is_hyp_mode_available())
2014		static_branch_disable(&supports_deactivate_key);
2015
2016	if (static_branch_likely(&supports_deactivate_key))
2017		pr_info("GIC: Using split EOI/Deactivate mode\n");
2018
2019	gic_data.fwnode = handle;
2020	gic_data.dist_phys_base = dist_phys_base;
2021	gic_data.dist_base = dist_base;
2022	gic_data.redist_regions = rdist_regs;
2023	gic_data.nr_redist_regions = nr_redist_regions;
2024	gic_data.redist_stride = redist_stride;
2025
2026	/*
2027	 * Find out how many interrupts are supported.
2028	 */
2029	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2030	gic_data.rdists.gicd_typer = typer;
2031
2032	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2033			  gic_quirks, &gic_data);
2034
2035	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2036	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2037
2038	/*
2039	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2040	 * architecture spec (which says that reserved registers are RES0).
2041	 */
2042	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2043		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2044
2045	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2046						 &gic_data);
2047	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2048	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2049		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2050		gic_data.rdists.has_rvpeid = true;
2051		gic_data.rdists.has_vlpis = true;
2052		gic_data.rdists.has_direct_lpi = true;
2053		gic_data.rdists.has_vpend_valid_dirty = true;
2054	}
2055
2056	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2057		err = -ENOMEM;
2058		goto out_free;
2059	}
2060
2061	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2062
2063	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2064
2065	if (typer & GICD_TYPER_MBIS) {
2066		err = mbi_init(handle, gic_data.domain);
2067		if (err)
2068			pr_err("Failed to initialize MBIs\n");
2069	}
2070
2071	set_handle_irq(gic_handle_irq);
2072
2073	gic_update_rdist_properties();
2074
2075	gic_dist_init();
2076	gic_cpu_init();
2077	gic_smp_init();
2078	gic_cpu_pm_init();
2079
2080	if (gic_dist_supports_lpis()) {
2081		its_init(handle, &gic_data.rdists, gic_data.domain);
2082		its_cpu_init();
2083		its_lpi_memreserve_init();
2084	} else {
2085		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2086			gicv2m_init(handle, gic_data.domain);
2087	}
2088
2089	gic_enable_nmi_support();
2090
2091	return 0;
2092
2093out_free:
2094	if (gic_data.domain)
2095		irq_domain_remove(gic_data.domain);
2096	free_percpu(gic_data.rdists.rdist);
2097	return err;
2098}
2099
2100static int __init gic_validate_dist_version(void __iomem *dist_base)
2101{
2102	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2103
2104	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2105		return -ENODEV;
2106
2107	return 0;
2108}
2109
2110/* Create all possible partitions at boot time */
2111static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2112{
2113	struct device_node *parts_node, *child_part;
2114	int part_idx = 0, i;
2115	int nr_parts;
2116	struct partition_affinity *parts;
2117
2118	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2119	if (!parts_node)
2120		return;
2121
2122	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2123	if (!gic_data.ppi_descs)
2124		goto out_put_node;
2125
2126	nr_parts = of_get_child_count(parts_node);
2127
2128	if (!nr_parts)
2129		goto out_put_node;
2130
2131	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2132	if (WARN_ON(!parts))
2133		goto out_put_node;
2134
2135	for_each_child_of_node(parts_node, child_part) {
2136		struct partition_affinity *part;
2137		int n;
2138
2139		part = &parts[part_idx];
2140
2141		part->partition_id = of_node_to_fwnode(child_part);
2142
2143		pr_info("GIC: PPI partition %pOFn[%d] { ",
2144			child_part, part_idx);
2145
2146		n = of_property_count_elems_of_size(child_part, "affinity",
2147						    sizeof(u32));
2148		WARN_ON(n <= 0);
2149
2150		for (i = 0; i < n; i++) {
2151			int err, cpu;
2152			u32 cpu_phandle;
2153			struct device_node *cpu_node;
2154
2155			err = of_property_read_u32_index(child_part, "affinity",
2156							 i, &cpu_phandle);
2157			if (WARN_ON(err))
2158				continue;
2159
2160			cpu_node = of_find_node_by_phandle(cpu_phandle);
2161			if (WARN_ON(!cpu_node))
2162				continue;
2163
2164			cpu = of_cpu_node_to_id(cpu_node);
2165			if (WARN_ON(cpu < 0)) {
2166				of_node_put(cpu_node);
2167				continue;
2168			}
2169
2170			pr_cont("%pOF[%d] ", cpu_node, cpu);
2171
2172			cpumask_set_cpu(cpu, &part->mask);
2173			of_node_put(cpu_node);
2174		}
2175
2176		pr_cont("}\n");
2177		part_idx++;
2178	}
2179
2180	for (i = 0; i < gic_data.ppi_nr; i++) {
2181		unsigned int irq;
2182		struct partition_desc *desc;
2183		struct irq_fwspec ppi_fwspec = {
2184			.fwnode		= gic_data.fwnode,
2185			.param_count	= 3,
2186			.param		= {
2187				[0]	= GIC_IRQ_TYPE_PARTITION,
2188				[1]	= i,
2189				[2]	= IRQ_TYPE_NONE,
2190			},
2191		};
2192
2193		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2194		if (WARN_ON(!irq))
2195			continue;
2196		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2197					     irq, &partition_domain_ops);
2198		if (WARN_ON(!desc))
2199			continue;
2200
2201		gic_data.ppi_descs[i] = desc;
2202	}
2203
2204out_put_node:
2205	of_node_put(parts_node);
2206}
2207
2208static void __init gic_of_setup_kvm_info(struct device_node *node)
2209{
2210	int ret;
2211	struct resource r;
2212	u32 gicv_idx;
2213
2214	gic_v3_kvm_info.type = GIC_V3;
2215
2216	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2217	if (!gic_v3_kvm_info.maint_irq)
2218		return;
2219
2220	if (of_property_read_u32(node, "#redistributor-regions",
2221				 &gicv_idx))
2222		gicv_idx = 1;
2223
2224	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2225	ret = of_address_to_resource(node, gicv_idx, &r);
2226	if (!ret)
2227		gic_v3_kvm_info.vcpu = r;
2228
2229	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2230	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2231	vgic_set_kvm_info(&gic_v3_kvm_info);
2232}
2233
2234static void gic_request_region(resource_size_t base, resource_size_t size,
2235			       const char *name)
2236{
2237	if (!request_mem_region(base, size, name))
2238		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2239			     name, &base);
2240}
2241
2242static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2243				  const char *name, struct resource *res)
2244{
2245	void __iomem *base;
2246	int ret;
2247
2248	ret = of_address_to_resource(node, idx, res);
2249	if (ret)
2250		return IOMEM_ERR_PTR(ret);
2251
2252	gic_request_region(res->start, resource_size(res), name);
2253	base = of_iomap(node, idx);
2254
2255	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2256}
2257
2258static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2259{
2260	phys_addr_t dist_phys_base;
2261	void __iomem *dist_base;
2262	struct redist_region *rdist_regs;
2263	struct resource res;
2264	u64 redist_stride;
2265	u32 nr_redist_regions;
2266	int err, i;
2267
2268	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2269	if (IS_ERR(dist_base)) {
2270		pr_err("%pOF: unable to map gic dist registers\n", node);
2271		return PTR_ERR(dist_base);
2272	}
2273
2274	dist_phys_base = res.start;
2275
2276	err = gic_validate_dist_version(dist_base);
2277	if (err) {
2278		pr_err("%pOF: no distributor detected, giving up\n", node);
2279		goto out_unmap_dist;
2280	}
2281
2282	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2283		nr_redist_regions = 1;
2284
2285	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2286			     GFP_KERNEL);
2287	if (!rdist_regs) {
2288		err = -ENOMEM;
2289		goto out_unmap_dist;
2290	}
2291
2292	for (i = 0; i < nr_redist_regions; i++) {
2293		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2294		if (IS_ERR(rdist_regs[i].redist_base)) {
2295			pr_err("%pOF: couldn't map region %d\n", node, i);
2296			err = -ENODEV;
2297			goto out_unmap_rdist;
2298		}
2299		rdist_regs[i].phys_base = res.start;
2300	}
2301
2302	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2303		redist_stride = 0;
2304
2305	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2306
2307	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2308			     nr_redist_regions, redist_stride, &node->fwnode);
2309	if (err)
2310		goto out_unmap_rdist;
2311
2312	gic_populate_ppi_partitions(node);
2313
2314	if (static_branch_likely(&supports_deactivate_key))
2315		gic_of_setup_kvm_info(node);
2316	return 0;
2317
2318out_unmap_rdist:
2319	for (i = 0; i < nr_redist_regions; i++)
2320		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2321			iounmap(rdist_regs[i].redist_base);
2322	kfree(rdist_regs);
2323out_unmap_dist:
2324	iounmap(dist_base);
2325	return err;
2326}
2327
2328IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2329
2330#ifdef CONFIG_ACPI
2331static struct
2332{
2333	void __iomem *dist_base;
2334	struct redist_region *redist_regs;
2335	u32 nr_redist_regions;
2336	bool single_redist;
2337	int enabled_rdists;
2338	u32 maint_irq;
2339	int maint_irq_mode;
2340	phys_addr_t vcpu_base;
2341} acpi_data __initdata;
2342
2343static void __init
2344gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2345{
2346	static int count = 0;
2347
2348	acpi_data.redist_regs[count].phys_base = phys_base;
2349	acpi_data.redist_regs[count].redist_base = redist_base;
2350	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2351	count++;
2352}
2353
2354static int __init
2355gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2356			   const unsigned long end)
2357{
2358	struct acpi_madt_generic_redistributor *redist =
2359			(struct acpi_madt_generic_redistributor *)header;
2360	void __iomem *redist_base;
2361
2362	redist_base = ioremap(redist->base_address, redist->length);
2363	if (!redist_base) {
2364		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2365		return -ENOMEM;
2366	}
2367	gic_request_region(redist->base_address, redist->length, "GICR");
2368
2369	gic_acpi_register_redist(redist->base_address, redist_base);
2370	return 0;
2371}
2372
2373static int __init
2374gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2375			 const unsigned long end)
2376{
2377	struct acpi_madt_generic_interrupt *gicc =
2378				(struct acpi_madt_generic_interrupt *)header;
2379	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2380	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2381	void __iomem *redist_base;
2382
2383	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2384	if (!(gicc->flags & ACPI_MADT_ENABLED))
2385		return 0;
2386
2387	redist_base = ioremap(gicc->gicr_base_address, size);
2388	if (!redist_base)
2389		return -ENOMEM;
2390	gic_request_region(gicc->gicr_base_address, size, "GICR");
2391
2392	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2393	return 0;
2394}
2395
2396static int __init gic_acpi_collect_gicr_base(void)
2397{
2398	acpi_tbl_entry_handler redist_parser;
2399	enum acpi_madt_type type;
2400
2401	if (acpi_data.single_redist) {
2402		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2403		redist_parser = gic_acpi_parse_madt_gicc;
2404	} else {
2405		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2406		redist_parser = gic_acpi_parse_madt_redist;
2407	}
2408
2409	/* Collect redistributor base addresses in GICR entries */
2410	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2411		return 0;
2412
2413	pr_info("No valid GICR entries exist\n");
2414	return -ENODEV;
2415}
2416
2417static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2418				  const unsigned long end)
2419{
2420	/* Subtable presence means that redist exists, that's it */
2421	return 0;
2422}
2423
2424static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2425				      const unsigned long end)
2426{
2427	struct acpi_madt_generic_interrupt *gicc =
2428				(struct acpi_madt_generic_interrupt *)header;
2429
2430	/*
2431	 * If GICC is enabled and has valid gicr base address, then it means
2432	 * GICR base is presented via GICC
2433	 */
2434	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2435		acpi_data.enabled_rdists++;
2436		return 0;
2437	}
2438
2439	/*
2440	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2441	 * should not treat as errors, skip the entry instead of probe fail.
2442	 */
2443	if (!(gicc->flags & ACPI_MADT_ENABLED))
2444		return 0;
2445
2446	return -ENODEV;
2447}
2448
2449static int __init gic_acpi_count_gicr_regions(void)
2450{
2451	int count;
2452
2453	/*
2454	 * Count how many redistributor regions we have. It is not allowed
2455	 * to mix redistributor description, GICR and GICC subtables have to be
2456	 * mutually exclusive.
2457	 */
2458	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2459				      gic_acpi_match_gicr, 0);
2460	if (count > 0) {
2461		acpi_data.single_redist = false;
2462		return count;
2463	}
2464
2465	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2466				      gic_acpi_match_gicc, 0);
2467	if (count > 0) {
2468		acpi_data.single_redist = true;
2469		count = acpi_data.enabled_rdists;
2470	}
2471
2472	return count;
2473}
2474
2475static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2476					   struct acpi_probe_entry *ape)
2477{
2478	struct acpi_madt_generic_distributor *dist;
2479	int count;
2480
2481	dist = (struct acpi_madt_generic_distributor *)header;
2482	if (dist->version != ape->driver_data)
2483		return false;
2484
2485	/* We need to do that exercise anyway, the sooner the better */
2486	count = gic_acpi_count_gicr_regions();
2487	if (count <= 0)
2488		return false;
2489
2490	acpi_data.nr_redist_regions = count;
2491	return true;
2492}
2493
2494static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2495						const unsigned long end)
2496{
2497	struct acpi_madt_generic_interrupt *gicc =
2498		(struct acpi_madt_generic_interrupt *)header;
2499	int maint_irq_mode;
2500	static int first_madt = true;
2501
2502	/* Skip unusable CPUs */
2503	if (!(gicc->flags & ACPI_MADT_ENABLED))
2504		return 0;
2505
2506	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2507		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2508
2509	if (first_madt) {
2510		first_madt = false;
2511
2512		acpi_data.maint_irq = gicc->vgic_interrupt;
2513		acpi_data.maint_irq_mode = maint_irq_mode;
2514		acpi_data.vcpu_base = gicc->gicv_base_address;
2515
2516		return 0;
2517	}
2518
2519	/*
2520	 * The maintenance interrupt and GICV should be the same for every CPU
2521	 */
2522	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2523	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2524	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2525		return -EINVAL;
2526
2527	return 0;
2528}
2529
2530static bool __init gic_acpi_collect_virt_info(void)
2531{
2532	int count;
2533
2534	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2535				      gic_acpi_parse_virt_madt_gicc, 0);
2536
2537	return (count > 0);
2538}
2539
2540#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2541#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2542#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2543
2544static void __init gic_acpi_setup_kvm_info(void)
2545{
2546	int irq;
2547
2548	if (!gic_acpi_collect_virt_info()) {
2549		pr_warn("Unable to get hardware information used for virtualization\n");
2550		return;
2551	}
2552
2553	gic_v3_kvm_info.type = GIC_V3;
2554
2555	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2556				acpi_data.maint_irq_mode,
2557				ACPI_ACTIVE_HIGH);
2558	if (irq <= 0)
2559		return;
2560
2561	gic_v3_kvm_info.maint_irq = irq;
2562
2563	if (acpi_data.vcpu_base) {
2564		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2565
2566		vcpu->flags = IORESOURCE_MEM;
2567		vcpu->start = acpi_data.vcpu_base;
2568		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2569	}
2570
2571	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2572	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2573	vgic_set_kvm_info(&gic_v3_kvm_info);
2574}
2575
2576static struct fwnode_handle *gsi_domain_handle;
2577
2578static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2579{
2580	return gsi_domain_handle;
2581}
2582
2583static int __init
2584gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2585{
2586	struct acpi_madt_generic_distributor *dist;
2587	size_t size;
2588	int i, err;
2589
2590	/* Get distributor base address */
2591	dist = (struct acpi_madt_generic_distributor *)header;
2592	acpi_data.dist_base = ioremap(dist->base_address,
2593				      ACPI_GICV3_DIST_MEM_SIZE);
2594	if (!acpi_data.dist_base) {
2595		pr_err("Unable to map GICD registers\n");
2596		return -ENOMEM;
2597	}
2598	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2599
2600	err = gic_validate_dist_version(acpi_data.dist_base);
2601	if (err) {
2602		pr_err("No distributor detected at @%p, giving up\n",
2603		       acpi_data.dist_base);
2604		goto out_dist_unmap;
2605	}
2606
2607	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2608	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2609	if (!acpi_data.redist_regs) {
2610		err = -ENOMEM;
2611		goto out_dist_unmap;
2612	}
2613
2614	err = gic_acpi_collect_gicr_base();
2615	if (err)
2616		goto out_redist_unmap;
2617
2618	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2619	if (!gsi_domain_handle) {
2620		err = -ENOMEM;
2621		goto out_redist_unmap;
2622	}
2623
2624	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2625			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2626			     0, gsi_domain_handle);
2627	if (err)
2628		goto out_fwhandle_free;
2629
2630	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2631
2632	if (static_branch_likely(&supports_deactivate_key))
2633		gic_acpi_setup_kvm_info();
2634
2635	return 0;
2636
2637out_fwhandle_free:
2638	irq_domain_free_fwnode(gsi_domain_handle);
2639out_redist_unmap:
2640	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2641		if (acpi_data.redist_regs[i].redist_base)
2642			iounmap(acpi_data.redist_regs[i].redist_base);
2643	kfree(acpi_data.redist_regs);
2644out_dist_unmap:
2645	iounmap(acpi_data.dist_base);
2646	return err;
2647}
2648IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2649		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2650		     gic_acpi_init);
2651IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2652		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2653		     gic_acpi_init);
2654IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2655		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2656		     gic_acpi_init);
2657#endif
2658