1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IOMMU API for Rockchip
4 *
5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
6 *			Daniel Kurtz <djkurtz@chromium.org>
7 */
8
9#include <linux/clk.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/iopoll.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <linux/init.h>
22#include <linux/of.h>
23#include <linux/of_platform.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29/** MMU register offsets */
30#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
31#define RK_MMU_STATUS		0x04
32#define RK_MMU_COMMAND		0x08
33#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
34#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
35#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
36#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
37#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
38#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
39#define RK_MMU_AUTO_GATING	0x24
40
41#define DTE_ADDR_DUMMY		0xCAFEBABE
42
43#define RK_MMU_POLL_PERIOD_US		100
44#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
45#define RK_MMU_POLL_TIMEOUT_US		1000
46
47/* RK_MMU_STATUS fields */
48#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
49#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
50#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
51#define RK_MMU_STATUS_IDLE                 BIT(3)
52#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
53#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
54#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
55
56/* RK_MMU_COMMAND command values */
57#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
58#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
59#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
60#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
61#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
62#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
63#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
64
65/* RK_MMU_INT_* register fields */
66#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
67#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
68#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
69
70#define NUM_DT_ENTRIES 1024
71#define NUM_PT_ENTRIES 1024
72
73#define SPAGE_ORDER 12
74#define SPAGE_SIZE (1 << SPAGE_ORDER)
75
76 /*
77  * Support mapping any size that fits in one page table:
78  *   4 KiB to 4 MiB
79  */
80#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
81
82struct rk_iommu_domain {
83	struct list_head iommus;
84	u32 *dt; /* page directory table */
85	dma_addr_t dt_dma;
86	spinlock_t iommus_lock; /* lock for iommus list */
87	spinlock_t dt_lock; /* lock for modifying page directory table */
88
89	struct iommu_domain domain;
90};
91
92/* list of clocks required by IOMMU */
93static const char * const rk_iommu_clocks[] = {
94	"aclk", "iface",
95};
96
97struct rk_iommu_ops {
98	phys_addr_t (*pt_address)(u32 dte);
99	u32 (*mk_dtentries)(dma_addr_t pt_dma);
100	u32 (*mk_ptentries)(phys_addr_t page, int prot);
101	u64 dma_bit_mask;
102	gfp_t gfp_flags;
103};
104
105struct rk_iommu {
106	struct device *dev;
107	void __iomem **bases;
108	int num_mmu;
109	int num_irq;
110	struct clk_bulk_data *clocks;
111	int num_clocks;
112	bool reset_disabled;
113	struct iommu_device iommu;
114	struct list_head node; /* entry in rk_iommu_domain.iommus */
115	struct iommu_domain *domain; /* domain to which iommu is attached */
116	struct iommu_group *group;
117};
118
119struct rk_iommudata {
120	struct device_link *link; /* runtime PM link from IOMMU to master */
121	struct rk_iommu *iommu;
122};
123
124static struct device *dma_dev;
125static const struct rk_iommu_ops *rk_ops;
126static struct iommu_domain rk_identity_domain;
127
128static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
129				  unsigned int count)
130{
131	size_t size = count * sizeof(u32); /* count of u32 entry */
132
133	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
134}
135
136static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
137{
138	return container_of(dom, struct rk_iommu_domain, domain);
139}
140
141/*
142 * The Rockchip rk3288 iommu uses a 2-level page table.
143 * The first level is the "Directory Table" (DT).
144 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
145 * to a "Page Table".
146 * The second level is the 1024 Page Tables (PT).
147 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
148 * a 4 KB page of physical memory.
149 *
150 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
151 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
152 * address of the start of the DT page.
153 *
154 * The structure of the page table is as follows:
155 *
156 *                   DT
157 * MMU_DTE_ADDR -> +-----+
158 *                 |     |
159 *                 +-----+     PT
160 *                 | DTE | -> +-----+
161 *                 +-----+    |     |     Memory
162 *                 |     |    +-----+     Page
163 *                 |     |    | PTE | -> +-----+
164 *                 +-----+    +-----+    |     |
165 *                            |     |    |     |
166 *                            |     |    |     |
167 *                            +-----+    |     |
168 *                                       |     |
169 *                                       |     |
170 *                                       +-----+
171 */
172
173/*
174 * Each DTE has a PT address and a valid bit:
175 * +---------------------+-----------+-+
176 * | PT address          | Reserved  |V|
177 * +---------------------+-----------+-+
178 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
179 *  11: 1 - Reserved
180 *      0 - 1 if PT @ PT address is valid
181 */
182#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
183#define RK_DTE_PT_VALID           BIT(0)
184
185static inline phys_addr_t rk_dte_pt_address(u32 dte)
186{
187	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
188}
189
190/*
191 * In v2:
192 * 31:12 - PT address bit 31:0
193 * 11: 8 - PT address bit 35:32
194 *  7: 4 - PT address bit 39:36
195 *  3: 1 - Reserved
196 *     0 - 1 if PT @ PT address is valid
197 */
198#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
199#define DTE_HI_MASK1	GENMASK(11, 8)
200#define DTE_HI_MASK2	GENMASK(7, 4)
201#define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
202#define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
203#define PAGE_DESC_HI_MASK1	GENMASK_ULL(35, 32)
204#define PAGE_DESC_HI_MASK2	GENMASK_ULL(39, 36)
205
206static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
207{
208	u64 dte_v2 = dte;
209
210	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
211		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
212		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
213
214	return (phys_addr_t)dte_v2;
215}
216
217static inline bool rk_dte_is_pt_valid(u32 dte)
218{
219	return dte & RK_DTE_PT_VALID;
220}
221
222static inline u32 rk_mk_dte(dma_addr_t pt_dma)
223{
224	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
225}
226
227static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
228{
229	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
230		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
231		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
232
233	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
234}
235
236/*
237 * Each PTE has a Page address, some flags and a valid bit:
238 * +---------------------+---+-------+-+
239 * | Page address        |Rsv| Flags |V|
240 * +---------------------+---+-------+-+
241 *  31:12 - Page address (Pages always start on a 4 KB boundary)
242 *  11: 9 - Reserved
243 *   8: 1 - Flags
244 *      8 - Read allocate - allocate cache space on read misses
245 *      7 - Read cache - enable cache & prefetch of data
246 *      6 - Write buffer - enable delaying writes on their way to memory
247 *      5 - Write allocate - allocate cache space on write misses
248 *      4 - Write cache - different writes can be merged together
249 *      3 - Override cache attributes
250 *          if 1, bits 4-8 control cache attributes
251 *          if 0, the system bus defaults are used
252 *      2 - Writable
253 *      1 - Readable
254 *      0 - 1 if Page @ Page address is valid
255 */
256#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
257#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
258#define RK_PTE_PAGE_WRITABLE      BIT(2)
259#define RK_PTE_PAGE_READABLE      BIT(1)
260#define RK_PTE_PAGE_VALID         BIT(0)
261
262static inline bool rk_pte_is_page_valid(u32 pte)
263{
264	return pte & RK_PTE_PAGE_VALID;
265}
266
267/* TODO: set cache flags per prot IOMMU_CACHE */
268static u32 rk_mk_pte(phys_addr_t page, int prot)
269{
270	u32 flags = 0;
271	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
272	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
273	page &= RK_PTE_PAGE_ADDRESS_MASK;
274	return page | flags | RK_PTE_PAGE_VALID;
275}
276
277/*
278 * In v2:
279 * 31:12 - Page address bit 31:0
280 * 11: 8 - Page address bit 35:32
281 *  7: 4 - Page address bit 39:36
282 *     3 - Security
283 *     2 - Writable
284 *     1 - Readable
285 *     0 - 1 if Page @ Page address is valid
286 */
287
288static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
289{
290	u32 flags = 0;
291
292	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
293	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
294
295	return rk_mk_dte_v2(page) | flags;
296}
297
298static u32 rk_mk_pte_invalid(u32 pte)
299{
300	return pte & ~RK_PTE_PAGE_VALID;
301}
302
303/*
304 * rk3288 iova (IOMMU Virtual Address) format
305 *  31       22.21       12.11          0
306 * +-----------+-----------+-------------+
307 * | DTE index | PTE index | Page offset |
308 * +-----------+-----------+-------------+
309 *  31:22 - DTE index   - index of DTE in DT
310 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
311 *  11: 0 - Page offset - offset into page @ PTE.page_address
312 */
313#define RK_IOVA_DTE_MASK    0xffc00000
314#define RK_IOVA_DTE_SHIFT   22
315#define RK_IOVA_PTE_MASK    0x003ff000
316#define RK_IOVA_PTE_SHIFT   12
317#define RK_IOVA_PAGE_MASK   0x00000fff
318#define RK_IOVA_PAGE_SHIFT  0
319
320static u32 rk_iova_dte_index(dma_addr_t iova)
321{
322	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
323}
324
325static u32 rk_iova_pte_index(dma_addr_t iova)
326{
327	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
328}
329
330static u32 rk_iova_page_offset(dma_addr_t iova)
331{
332	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
333}
334
335static u32 rk_iommu_read(void __iomem *base, u32 offset)
336{
337	return readl(base + offset);
338}
339
340static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
341{
342	writel(value, base + offset);
343}
344
345static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
346{
347	int i;
348
349	for (i = 0; i < iommu->num_mmu; i++)
350		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
351}
352
353static void rk_iommu_base_command(void __iomem *base, u32 command)
354{
355	writel(command, base + RK_MMU_COMMAND);
356}
357static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
358			       size_t size)
359{
360	int i;
361	dma_addr_t iova_end = iova_start + size;
362	/*
363	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
364	 * entire iotlb rather than iterate over individual iovas.
365	 */
366	for (i = 0; i < iommu->num_mmu; i++) {
367		dma_addr_t iova;
368
369		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
370			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
371	}
372}
373
374static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
375{
376	bool active = true;
377	int i;
378
379	for (i = 0; i < iommu->num_mmu; i++)
380		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
381					   RK_MMU_STATUS_STALL_ACTIVE);
382
383	return active;
384}
385
386static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
387{
388	bool enable = true;
389	int i;
390
391	for (i = 0; i < iommu->num_mmu; i++)
392		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
393					   RK_MMU_STATUS_PAGING_ENABLED);
394
395	return enable;
396}
397
398static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
399{
400	bool done = true;
401	int i;
402
403	for (i = 0; i < iommu->num_mmu; i++)
404		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
405
406	return done;
407}
408
409static int rk_iommu_enable_stall(struct rk_iommu *iommu)
410{
411	int ret, i;
412	bool val;
413
414	if (rk_iommu_is_stall_active(iommu))
415		return 0;
416
417	/* Stall can only be enabled if paging is enabled */
418	if (!rk_iommu_is_paging_enabled(iommu))
419		return 0;
420
421	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
422
423	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
424				 val, RK_MMU_POLL_PERIOD_US,
425				 RK_MMU_POLL_TIMEOUT_US);
426	if (ret)
427		for (i = 0; i < iommu->num_mmu; i++)
428			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
429				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
430
431	return ret;
432}
433
434static int rk_iommu_disable_stall(struct rk_iommu *iommu)
435{
436	int ret, i;
437	bool val;
438
439	if (!rk_iommu_is_stall_active(iommu))
440		return 0;
441
442	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
443
444	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
445				 !val, RK_MMU_POLL_PERIOD_US,
446				 RK_MMU_POLL_TIMEOUT_US);
447	if (ret)
448		for (i = 0; i < iommu->num_mmu; i++)
449			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
450				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
451
452	return ret;
453}
454
455static int rk_iommu_enable_paging(struct rk_iommu *iommu)
456{
457	int ret, i;
458	bool val;
459
460	if (rk_iommu_is_paging_enabled(iommu))
461		return 0;
462
463	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
464
465	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
466				 val, RK_MMU_POLL_PERIOD_US,
467				 RK_MMU_POLL_TIMEOUT_US);
468	if (ret)
469		for (i = 0; i < iommu->num_mmu; i++)
470			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
471				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
472
473	return ret;
474}
475
476static int rk_iommu_disable_paging(struct rk_iommu *iommu)
477{
478	int ret, i;
479	bool val;
480
481	if (!rk_iommu_is_paging_enabled(iommu))
482		return 0;
483
484	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
485
486	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
487				 !val, RK_MMU_POLL_PERIOD_US,
488				 RK_MMU_POLL_TIMEOUT_US);
489	if (ret)
490		for (i = 0; i < iommu->num_mmu; i++)
491			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
492				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
493
494	return ret;
495}
496
497static int rk_iommu_force_reset(struct rk_iommu *iommu)
498{
499	int ret, i;
500	u32 dte_addr;
501	bool val;
502
503	if (iommu->reset_disabled)
504		return 0;
505
506	/*
507	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
508	 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
509	 */
510	for (i = 0; i < iommu->num_mmu; i++) {
511		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
512		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
513
514		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
515			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
516			return -EFAULT;
517		}
518	}
519
520	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
521
522	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
523				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
524				 RK_MMU_POLL_TIMEOUT_US);
525	if (ret) {
526		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
527		return ret;
528	}
529
530	return 0;
531}
532
533static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
534{
535	void __iomem *base = iommu->bases[index];
536	u32 dte_index, pte_index, page_offset;
537	u32 mmu_dte_addr;
538	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
539	u32 *dte_addr;
540	u32 dte;
541	phys_addr_t pte_addr_phys = 0;
542	u32 *pte_addr = NULL;
543	u32 pte = 0;
544	phys_addr_t page_addr_phys = 0;
545	u32 page_flags = 0;
546
547	dte_index = rk_iova_dte_index(iova);
548	pte_index = rk_iova_pte_index(iova);
549	page_offset = rk_iova_page_offset(iova);
550
551	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
552	mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
553
554	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
555	dte_addr = phys_to_virt(dte_addr_phys);
556	dte = *dte_addr;
557
558	if (!rk_dte_is_pt_valid(dte))
559		goto print_it;
560
561	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
562	pte_addr = phys_to_virt(pte_addr_phys);
563	pte = *pte_addr;
564
565	if (!rk_pte_is_page_valid(pte))
566		goto print_it;
567
568	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
569	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
570
571print_it:
572	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
573		&iova, dte_index, pte_index, page_offset);
574	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
575		&mmu_dte_addr_phys, &dte_addr_phys, dte,
576		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
577		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
578}
579
580static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
581{
582	struct rk_iommu *iommu = dev_id;
583	u32 status;
584	u32 int_status;
585	dma_addr_t iova;
586	irqreturn_t ret = IRQ_NONE;
587	int i, err;
588
589	err = pm_runtime_get_if_in_use(iommu->dev);
590	if (!err || WARN_ON_ONCE(err < 0))
591		return ret;
592
593	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
594		goto out;
595
596	for (i = 0; i < iommu->num_mmu; i++) {
597		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
598		if (int_status == 0)
599			continue;
600
601		ret = IRQ_HANDLED;
602		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
603
604		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
605			int flags;
606
607			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
608			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
609					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
610
611			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
612				&iova,
613				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
614
615			log_iova(iommu, i, iova);
616
617			/*
618			 * Report page fault to any installed handlers.
619			 * Ignore the return code, though, since we always zap cache
620			 * and clear the page fault anyway.
621			 */
622			if (iommu->domain != &rk_identity_domain)
623				report_iommu_fault(iommu->domain, iommu->dev, iova,
624						   flags);
625			else
626				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
627
628			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
629			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
630		}
631
632		if (int_status & RK_MMU_IRQ_BUS_ERROR)
633			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
634
635		if (int_status & ~RK_MMU_IRQ_MASK)
636			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
637				int_status);
638
639		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
640	}
641
642	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
643
644out:
645	pm_runtime_put(iommu->dev);
646	return ret;
647}
648
649static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
650					 dma_addr_t iova)
651{
652	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
653	unsigned long flags;
654	phys_addr_t pt_phys, phys = 0;
655	u32 dte, pte;
656	u32 *page_table;
657
658	spin_lock_irqsave(&rk_domain->dt_lock, flags);
659
660	dte = rk_domain->dt[rk_iova_dte_index(iova)];
661	if (!rk_dte_is_pt_valid(dte))
662		goto out;
663
664	pt_phys = rk_ops->pt_address(dte);
665	page_table = (u32 *)phys_to_virt(pt_phys);
666	pte = page_table[rk_iova_pte_index(iova)];
667	if (!rk_pte_is_page_valid(pte))
668		goto out;
669
670	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
671out:
672	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
673
674	return phys;
675}
676
677static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
678			      dma_addr_t iova, size_t size)
679{
680	struct list_head *pos;
681	unsigned long flags;
682
683	/* shootdown these iova from all iommus using this domain */
684	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
685	list_for_each(pos, &rk_domain->iommus) {
686		struct rk_iommu *iommu;
687		int ret;
688
689		iommu = list_entry(pos, struct rk_iommu, node);
690
691		/* Only zap TLBs of IOMMUs that are powered on. */
692		ret = pm_runtime_get_if_in_use(iommu->dev);
693		if (WARN_ON_ONCE(ret < 0))
694			continue;
695		if (ret) {
696			WARN_ON(clk_bulk_enable(iommu->num_clocks,
697						iommu->clocks));
698			rk_iommu_zap_lines(iommu, iova, size);
699			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
700			pm_runtime_put(iommu->dev);
701		}
702	}
703	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
704}
705
706static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
707					 dma_addr_t iova, size_t size)
708{
709	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
710	if (size > SPAGE_SIZE)
711		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
712					SPAGE_SIZE);
713}
714
715static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
716				  dma_addr_t iova)
717{
718	u32 *page_table, *dte_addr;
719	u32 dte_index, dte;
720	phys_addr_t pt_phys;
721	dma_addr_t pt_dma;
722
723	assert_spin_locked(&rk_domain->dt_lock);
724
725	dte_index = rk_iova_dte_index(iova);
726	dte_addr = &rk_domain->dt[dte_index];
727	dte = *dte_addr;
728	if (rk_dte_is_pt_valid(dte))
729		goto done;
730
731	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | rk_ops->gfp_flags);
732	if (!page_table)
733		return ERR_PTR(-ENOMEM);
734
735	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
736	if (dma_mapping_error(dma_dev, pt_dma)) {
737		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
738		free_page((unsigned long)page_table);
739		return ERR_PTR(-ENOMEM);
740	}
741
742	dte = rk_ops->mk_dtentries(pt_dma);
743	*dte_addr = dte;
744
745	rk_table_flush(rk_domain,
746		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
747done:
748	pt_phys = rk_ops->pt_address(dte);
749	return (u32 *)phys_to_virt(pt_phys);
750}
751
752static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
753				  u32 *pte_addr, dma_addr_t pte_dma,
754				  size_t size)
755{
756	unsigned int pte_count;
757	unsigned int pte_total = size / SPAGE_SIZE;
758
759	assert_spin_locked(&rk_domain->dt_lock);
760
761	for (pte_count = 0; pte_count < pte_total; pte_count++) {
762		u32 pte = pte_addr[pte_count];
763		if (!rk_pte_is_page_valid(pte))
764			break;
765
766		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
767	}
768
769	rk_table_flush(rk_domain, pte_dma, pte_count);
770
771	return pte_count * SPAGE_SIZE;
772}
773
774static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
775			     dma_addr_t pte_dma, dma_addr_t iova,
776			     phys_addr_t paddr, size_t size, int prot)
777{
778	unsigned int pte_count;
779	unsigned int pte_total = size / SPAGE_SIZE;
780	phys_addr_t page_phys;
781
782	assert_spin_locked(&rk_domain->dt_lock);
783
784	for (pte_count = 0; pte_count < pte_total; pte_count++) {
785		u32 pte = pte_addr[pte_count];
786
787		if (rk_pte_is_page_valid(pte))
788			goto unwind;
789
790		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
791
792		paddr += SPAGE_SIZE;
793	}
794
795	rk_table_flush(rk_domain, pte_dma, pte_total);
796
797	/*
798	 * Zap the first and last iova to evict from iotlb any previously
799	 * mapped cachelines holding stale values for its dte and pte.
800	 * We only zap the first and last iova, since only they could have
801	 * dte or pte shared with an existing mapping.
802	 */
803	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
804
805	return 0;
806unwind:
807	/* Unmap the range of iovas that we just mapped */
808	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
809			    pte_count * SPAGE_SIZE);
810
811	iova += pte_count * SPAGE_SIZE;
812	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
813	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
814	       &iova, &page_phys, &paddr, prot);
815
816	return -EADDRINUSE;
817}
818
819static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
820			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
821{
822	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
823	unsigned long flags;
824	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
825	u32 *page_table, *pte_addr;
826	u32 dte_index, pte_index;
827	int ret;
828
829	spin_lock_irqsave(&rk_domain->dt_lock, flags);
830
831	/*
832	 * pgsize_bitmap specifies iova sizes that fit in one page table
833	 * (1024 4-KiB pages = 4 MiB).
834	 * So, size will always be 4096 <= size <= 4194304.
835	 * Since iommu_map() guarantees that both iova and size will be
836	 * aligned, we will always only be mapping from a single dte here.
837	 */
838	page_table = rk_dte_get_page_table(rk_domain, iova);
839	if (IS_ERR(page_table)) {
840		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
841		return PTR_ERR(page_table);
842	}
843
844	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
845	pte_index = rk_iova_pte_index(iova);
846	pte_addr = &page_table[pte_index];
847
848	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
849	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
850				paddr, size, prot);
851
852	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
853
854	return ret;
855}
856
857static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
858			     size_t size, struct iommu_iotlb_gather *gather)
859{
860	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
861	unsigned long flags;
862	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
863	phys_addr_t pt_phys;
864	u32 dte;
865	u32 *pte_addr;
866	size_t unmap_size;
867
868	spin_lock_irqsave(&rk_domain->dt_lock, flags);
869
870	/*
871	 * pgsize_bitmap specifies iova sizes that fit in one page table
872	 * (1024 4-KiB pages = 4 MiB).
873	 * So, size will always be 4096 <= size <= 4194304.
874	 * Since iommu_unmap() guarantees that both iova and size will be
875	 * aligned, we will always only be unmapping from a single dte here.
876	 */
877	dte = rk_domain->dt[rk_iova_dte_index(iova)];
878	/* Just return 0 if iova is unmapped */
879	if (!rk_dte_is_pt_valid(dte)) {
880		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
881		return 0;
882	}
883
884	pt_phys = rk_ops->pt_address(dte);
885	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
886	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
887	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
888
889	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
890
891	/* Shootdown iotlb entries for iova range that was just unmapped */
892	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
893
894	return unmap_size;
895}
896
897static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
898{
899	struct rk_iommudata *data = dev_iommu_priv_get(dev);
900
901	return data ? data->iommu : NULL;
902}
903
904/* Must be called with iommu powered on and attached */
905static void rk_iommu_disable(struct rk_iommu *iommu)
906{
907	int i;
908
909	/* Ignore error while disabling, just keep going */
910	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
911	rk_iommu_enable_stall(iommu);
912	rk_iommu_disable_paging(iommu);
913	for (i = 0; i < iommu->num_mmu; i++) {
914		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
915		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
916	}
917	rk_iommu_disable_stall(iommu);
918	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
919}
920
921/* Must be called with iommu powered on and attached */
922static int rk_iommu_enable(struct rk_iommu *iommu)
923{
924	struct iommu_domain *domain = iommu->domain;
925	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
926	int ret, i;
927
928	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
929	if (ret)
930		return ret;
931
932	ret = rk_iommu_enable_stall(iommu);
933	if (ret)
934		goto out_disable_clocks;
935
936	ret = rk_iommu_force_reset(iommu);
937	if (ret)
938		goto out_disable_stall;
939
940	for (i = 0; i < iommu->num_mmu; i++) {
941		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
942			       rk_ops->mk_dtentries(rk_domain->dt_dma));
943		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
944		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
945	}
946
947	ret = rk_iommu_enable_paging(iommu);
948
949out_disable_stall:
950	rk_iommu_disable_stall(iommu);
951out_disable_clocks:
952	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
953	return ret;
954}
955
956static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
957				    struct device *dev)
958{
959	struct rk_iommu *iommu;
960	struct rk_iommu_domain *rk_domain;
961	unsigned long flags;
962	int ret;
963
964	/* Allow 'virtual devices' (eg drm) to detach from domain */
965	iommu = rk_iommu_from_dev(dev);
966	if (!iommu)
967		return -ENODEV;
968
969	rk_domain = to_rk_domain(iommu->domain);
970
971	dev_dbg(dev, "Detaching from iommu domain\n");
972
973	if (iommu->domain == identity_domain)
974		return 0;
975
976	iommu->domain = identity_domain;
977
978	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
979	list_del_init(&iommu->node);
980	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
981
982	ret = pm_runtime_get_if_in_use(iommu->dev);
983	WARN_ON_ONCE(ret < 0);
984	if (ret > 0) {
985		rk_iommu_disable(iommu);
986		pm_runtime_put(iommu->dev);
987	}
988
989	return 0;
990}
991
992static void rk_iommu_identity_free(struct iommu_domain *domain)
993{
994}
995
996static struct iommu_domain_ops rk_identity_ops = {
997	.attach_dev = rk_iommu_identity_attach,
998	.free = rk_iommu_identity_free,
999};
1000
1001static struct iommu_domain rk_identity_domain = {
1002	.type = IOMMU_DOMAIN_IDENTITY,
1003	.ops = &rk_identity_ops,
1004};
1005
1006#ifdef CONFIG_ARM
1007static void rk_iommu_set_platform_dma(struct device *dev)
1008{
1009	WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1010}
1011#endif
1012
1013static int rk_iommu_attach_device(struct iommu_domain *domain,
1014		struct device *dev)
1015{
1016	struct rk_iommu *iommu;
1017	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1018	unsigned long flags;
1019	int ret;
1020
1021	/*
1022	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1023	 * Such a device does not belong to an iommu group.
1024	 */
1025	iommu = rk_iommu_from_dev(dev);
1026	if (!iommu)
1027		return 0;
1028
1029	dev_dbg(dev, "Attaching to iommu domain\n");
1030
1031	/* iommu already attached */
1032	if (iommu->domain == domain)
1033		return 0;
1034
1035	ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1036	if (ret)
1037		return ret;
1038
1039	iommu->domain = domain;
1040
1041	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1042	list_add_tail(&iommu->node, &rk_domain->iommus);
1043	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1044
1045	ret = pm_runtime_get_if_in_use(iommu->dev);
1046	if (!ret || WARN_ON_ONCE(ret < 0))
1047		return 0;
1048
1049	ret = rk_iommu_enable(iommu);
1050	if (ret)
1051		WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1052
1053	pm_runtime_put(iommu->dev);
1054
1055	return ret;
1056}
1057
1058static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1059{
1060	struct rk_iommu_domain *rk_domain;
1061
1062	if (type == IOMMU_DOMAIN_IDENTITY)
1063		return &rk_identity_domain;
1064
1065	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1066		return NULL;
1067
1068	if (!dma_dev)
1069		return NULL;
1070
1071	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1072	if (!rk_domain)
1073		return NULL;
1074
1075	/*
1076	 * rk32xx iommus use a 2 level pagetable.
1077	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1078	 * Allocate one 4 KiB page for each table.
1079	 */
1080	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | rk_ops->gfp_flags);
1081	if (!rk_domain->dt)
1082		goto err_free_domain;
1083
1084	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1085					   SPAGE_SIZE, DMA_TO_DEVICE);
1086	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1087		dev_err(dma_dev, "DMA map error for DT\n");
1088		goto err_free_dt;
1089	}
1090
1091	spin_lock_init(&rk_domain->iommus_lock);
1092	spin_lock_init(&rk_domain->dt_lock);
1093	INIT_LIST_HEAD(&rk_domain->iommus);
1094
1095	rk_domain->domain.geometry.aperture_start = 0;
1096	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1097	rk_domain->domain.geometry.force_aperture = true;
1098
1099	return &rk_domain->domain;
1100
1101err_free_dt:
1102	free_page((unsigned long)rk_domain->dt);
1103err_free_domain:
1104	kfree(rk_domain);
1105
1106	return NULL;
1107}
1108
1109static void rk_iommu_domain_free(struct iommu_domain *domain)
1110{
1111	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1112	int i;
1113
1114	WARN_ON(!list_empty(&rk_domain->iommus));
1115
1116	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1117		u32 dte = rk_domain->dt[i];
1118		if (rk_dte_is_pt_valid(dte)) {
1119			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1120			u32 *page_table = phys_to_virt(pt_phys);
1121			dma_unmap_single(dma_dev, pt_phys,
1122					 SPAGE_SIZE, DMA_TO_DEVICE);
1123			free_page((unsigned long)page_table);
1124		}
1125	}
1126
1127	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1128			 SPAGE_SIZE, DMA_TO_DEVICE);
1129	free_page((unsigned long)rk_domain->dt);
1130
1131	kfree(rk_domain);
1132}
1133
1134static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1135{
1136	struct rk_iommudata *data;
1137	struct rk_iommu *iommu;
1138
1139	data = dev_iommu_priv_get(dev);
1140	if (!data)
1141		return ERR_PTR(-ENODEV);
1142
1143	iommu = rk_iommu_from_dev(dev);
1144
1145	data->link = device_link_add(dev, iommu->dev,
1146				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1147
1148	return &iommu->iommu;
1149}
1150
1151static void rk_iommu_release_device(struct device *dev)
1152{
1153	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1154
1155	device_link_del(data->link);
1156}
1157
1158static struct iommu_group *rk_iommu_device_group(struct device *dev)
1159{
1160	struct rk_iommu *iommu;
1161
1162	iommu = rk_iommu_from_dev(dev);
1163
1164	return iommu_group_ref_get(iommu->group);
1165}
1166
1167static int rk_iommu_of_xlate(struct device *dev,
1168			     struct of_phandle_args *args)
1169{
1170	struct platform_device *iommu_dev;
1171	struct rk_iommudata *data;
1172
1173	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1174	if (!data)
1175		return -ENOMEM;
1176
1177	iommu_dev = of_find_device_by_node(args->np);
1178
1179	data->iommu = platform_get_drvdata(iommu_dev);
1180	data->iommu->domain = &rk_identity_domain;
1181	dev_iommu_priv_set(dev, data);
1182
1183	platform_device_put(iommu_dev);
1184
1185	return 0;
1186}
1187
1188static const struct iommu_ops rk_iommu_ops = {
1189	.domain_alloc = rk_iommu_domain_alloc,
1190	.probe_device = rk_iommu_probe_device,
1191	.release_device = rk_iommu_release_device,
1192	.device_group = rk_iommu_device_group,
1193#ifdef CONFIG_ARM
1194	.set_platform_dma_ops = rk_iommu_set_platform_dma,
1195#endif
1196	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1197	.of_xlate = rk_iommu_of_xlate,
1198	.default_domain_ops = &(const struct iommu_domain_ops) {
1199		.attach_dev	= rk_iommu_attach_device,
1200		.map		= rk_iommu_map,
1201		.unmap		= rk_iommu_unmap,
1202		.iova_to_phys	= rk_iommu_iova_to_phys,
1203		.free		= rk_iommu_domain_free,
1204	}
1205};
1206
1207static int rk_iommu_probe(struct platform_device *pdev)
1208{
1209	struct device *dev = &pdev->dev;
1210	struct rk_iommu *iommu;
1211	struct resource *res;
1212	const struct rk_iommu_ops *ops;
1213	int num_res = pdev->num_resources;
1214	int err, i;
1215
1216	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1217	if (!iommu)
1218		return -ENOMEM;
1219
1220	platform_set_drvdata(pdev, iommu);
1221	iommu->dev = dev;
1222	iommu->num_mmu = 0;
1223
1224	ops = of_device_get_match_data(dev);
1225	if (!rk_ops)
1226		rk_ops = ops;
1227
1228	/*
1229	 * That should not happen unless different versions of the
1230	 * hardware block are embedded the same SoC
1231	 */
1232	if (WARN_ON(rk_ops != ops))
1233		return -EINVAL;
1234
1235	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1236				    GFP_KERNEL);
1237	if (!iommu->bases)
1238		return -ENOMEM;
1239
1240	for (i = 0; i < num_res; i++) {
1241		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1242		if (!res)
1243			continue;
1244		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1245		if (IS_ERR(iommu->bases[i]))
1246			continue;
1247		iommu->num_mmu++;
1248	}
1249	if (iommu->num_mmu == 0)
1250		return PTR_ERR(iommu->bases[0]);
1251
1252	iommu->num_irq = platform_irq_count(pdev);
1253	if (iommu->num_irq < 0)
1254		return iommu->num_irq;
1255
1256	iommu->reset_disabled = device_property_read_bool(dev,
1257					"rockchip,disable-mmu-reset");
1258
1259	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1260	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1261				     sizeof(*iommu->clocks), GFP_KERNEL);
1262	if (!iommu->clocks)
1263		return -ENOMEM;
1264
1265	for (i = 0; i < iommu->num_clocks; ++i)
1266		iommu->clocks[i].id = rk_iommu_clocks[i];
1267
1268	/*
1269	 * iommu clocks should be present for all new devices and devicetrees
1270	 * but there are older devicetrees without clocks out in the wild.
1271	 * So clocks as optional for the time being.
1272	 */
1273	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1274	if (err == -ENOENT)
1275		iommu->num_clocks = 0;
1276	else if (err)
1277		return err;
1278
1279	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1280	if (err)
1281		return err;
1282
1283	iommu->group = iommu_group_alloc();
1284	if (IS_ERR(iommu->group)) {
1285		err = PTR_ERR(iommu->group);
1286		goto err_unprepare_clocks;
1287	}
1288
1289	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1290	if (err)
1291		goto err_put_group;
1292
1293	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1294	if (err)
1295		goto err_remove_sysfs;
1296
1297	/*
1298	 * Use the first registered IOMMU device for domain to use with DMA
1299	 * API, since a domain might not physically correspond to a single
1300	 * IOMMU device..
1301	 */
1302	if (!dma_dev)
1303		dma_dev = &pdev->dev;
1304
1305	pm_runtime_enable(dev);
1306
1307	for (i = 0; i < iommu->num_irq; i++) {
1308		int irq = platform_get_irq(pdev, i);
1309
1310		if (irq < 0) {
1311			err = irq;
1312			goto err_pm_disable;
1313		}
1314
1315		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1316				       IRQF_SHARED, dev_name(dev), iommu);
1317		if (err)
1318			goto err_pm_disable;
1319	}
1320
1321	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1322
1323	return 0;
1324err_pm_disable:
1325	pm_runtime_disable(dev);
1326err_remove_sysfs:
1327	iommu_device_sysfs_remove(&iommu->iommu);
1328err_put_group:
1329	iommu_group_put(iommu->group);
1330err_unprepare_clocks:
1331	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1332	return err;
1333}
1334
1335static void rk_iommu_shutdown(struct platform_device *pdev)
1336{
1337	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1338	int i;
1339
1340	for (i = 0; i < iommu->num_irq; i++) {
1341		int irq = platform_get_irq(pdev, i);
1342
1343		devm_free_irq(iommu->dev, irq, iommu);
1344	}
1345
1346	pm_runtime_force_suspend(&pdev->dev);
1347}
1348
1349static int __maybe_unused rk_iommu_suspend(struct device *dev)
1350{
1351	struct rk_iommu *iommu = dev_get_drvdata(dev);
1352
1353	if (iommu->domain == &rk_identity_domain)
1354		return 0;
1355
1356	rk_iommu_disable(iommu);
1357	return 0;
1358}
1359
1360static int __maybe_unused rk_iommu_resume(struct device *dev)
1361{
1362	struct rk_iommu *iommu = dev_get_drvdata(dev);
1363
1364	if (iommu->domain == &rk_identity_domain)
1365		return 0;
1366
1367	return rk_iommu_enable(iommu);
1368}
1369
1370static const struct dev_pm_ops rk_iommu_pm_ops = {
1371	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1372	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1373				pm_runtime_force_resume)
1374};
1375
1376static struct rk_iommu_ops iommu_data_ops_v1 = {
1377	.pt_address = &rk_dte_pt_address,
1378	.mk_dtentries = &rk_mk_dte,
1379	.mk_ptentries = &rk_mk_pte,
1380	.dma_bit_mask = DMA_BIT_MASK(32),
1381	.gfp_flags = GFP_DMA32,
1382};
1383
1384static struct rk_iommu_ops iommu_data_ops_v2 = {
1385	.pt_address = &rk_dte_pt_address_v2,
1386	.mk_dtentries = &rk_mk_dte_v2,
1387	.mk_ptentries = &rk_mk_pte_v2,
1388	.dma_bit_mask = DMA_BIT_MASK(40),
1389	.gfp_flags = 0,
1390};
1391
1392static const struct of_device_id rk_iommu_dt_ids[] = {
1393	{	.compatible = "rockchip,iommu",
1394		.data = &iommu_data_ops_v1,
1395	},
1396	{	.compatible = "rockchip,rk3568-iommu",
1397		.data = &iommu_data_ops_v2,
1398	},
1399	{ /* sentinel */ }
1400};
1401
1402static struct platform_driver rk_iommu_driver = {
1403	.probe = rk_iommu_probe,
1404	.shutdown = rk_iommu_shutdown,
1405	.driver = {
1406		   .name = "rk_iommu",
1407		   .of_match_table = rk_iommu_dt_ids,
1408		   .pm = &rk_iommu_pm_ops,
1409		   .suppress_bind_attrs = true,
1410	},
1411};
1412builtin_platform_driver(rk_iommu_driver);
1413