xref: /kernel/linux/linux-6.6/drivers/iommu/iommu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7#define pr_fmt(fmt)    "iommu: " fmt
8
9#include <linux/amba/bus.h>
10#include <linux/device.h>
11#include <linux/kernel.h>
12#include <linux/bits.h>
13#include <linux/bug.h>
14#include <linux/types.h>
15#include <linux/init.h>
16#include <linux/export.h>
17#include <linux/slab.h>
18#include <linux/errno.h>
19#include <linux/host1x_context_bus.h>
20#include <linux/iommu.h>
21#include <linux/idr.h>
22#include <linux/err.h>
23#include <linux/pci.h>
24#include <linux/pci-ats.h>
25#include <linux/bitops.h>
26#include <linux/platform_device.h>
27#include <linux/property.h>
28#include <linux/fsl/mc.h>
29#include <linux/module.h>
30#include <linux/cc_platform.h>
31#include <linux/cdx/cdx_bus.h>
32#include <trace/events/iommu.h>
33#include <linux/sched/mm.h>
34#include <linux/msi.h>
35
36#include "dma-iommu.h"
37#include "iommu-priv.h"
38
39#include "iommu-sva.h"
40#include "iommu-priv.h"
41
42static struct kset *iommu_group_kset;
43static DEFINE_IDA(iommu_group_ida);
44static DEFINE_IDA(iommu_global_pasid_ida);
45
46static unsigned int iommu_def_domain_type __read_mostly;
47static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
48static u32 iommu_cmd_line __read_mostly;
49
50struct iommu_group {
51	struct kobject kobj;
52	struct kobject *devices_kobj;
53	struct list_head devices;
54	struct xarray pasid_array;
55	struct mutex mutex;
56	void *iommu_data;
57	void (*iommu_data_release)(void *iommu_data);
58	char *name;
59	int id;
60	struct iommu_domain *default_domain;
61	struct iommu_domain *blocking_domain;
62	struct iommu_domain *domain;
63	struct list_head entry;
64	unsigned int owner_cnt;
65	void *owner;
66};
67
68struct group_device {
69	struct list_head list;
70	struct device *dev;
71	char *name;
72};
73
74/* Iterate over each struct group_device in a struct iommu_group */
75#define for_each_group_device(group, pos) \
76	list_for_each_entry(pos, &(group)->devices, list)
77
78struct iommu_group_attribute {
79	struct attribute attr;
80	ssize_t (*show)(struct iommu_group *group, char *buf);
81	ssize_t (*store)(struct iommu_group *group,
82			 const char *buf, size_t count);
83};
84
85static const char * const iommu_group_resv_type_string[] = {
86	[IOMMU_RESV_DIRECT]			= "direct",
87	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
88	[IOMMU_RESV_RESERVED]			= "reserved",
89	[IOMMU_RESV_MSI]			= "msi",
90	[IOMMU_RESV_SW_MSI]			= "msi",
91};
92
93#define IOMMU_CMD_LINE_DMA_API		BIT(0)
94#define IOMMU_CMD_LINE_STRICT		BIT(1)
95
96static int iommu_bus_notifier(struct notifier_block *nb,
97			      unsigned long action, void *data);
98static void iommu_release_device(struct device *dev);
99static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
100						 unsigned type);
101static int __iommu_attach_device(struct iommu_domain *domain,
102				 struct device *dev);
103static int __iommu_attach_group(struct iommu_domain *domain,
104				struct iommu_group *group);
105
106enum {
107	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
108};
109
110static int __iommu_device_set_domain(struct iommu_group *group,
111				     struct device *dev,
112				     struct iommu_domain *new_domain,
113				     unsigned int flags);
114static int __iommu_group_set_domain_internal(struct iommu_group *group,
115					     struct iommu_domain *new_domain,
116					     unsigned int flags);
117static int __iommu_group_set_domain(struct iommu_group *group,
118				    struct iommu_domain *new_domain)
119{
120	return __iommu_group_set_domain_internal(group, new_domain, 0);
121}
122static void __iommu_group_set_domain_nofail(struct iommu_group *group,
123					    struct iommu_domain *new_domain)
124{
125	WARN_ON(__iommu_group_set_domain_internal(
126		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
127}
128
129static int iommu_setup_default_domain(struct iommu_group *group,
130				      int target_type);
131static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
132					       struct device *dev);
133static ssize_t iommu_group_store_type(struct iommu_group *group,
134				      const char *buf, size_t count);
135static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
136						     struct device *dev);
137static void __iommu_group_free_device(struct iommu_group *group,
138				      struct group_device *grp_dev);
139
140#define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
141struct iommu_group_attribute iommu_group_attr_##_name =		\
142	__ATTR(_name, _mode, _show, _store)
143
144#define to_iommu_group_attr(_attr)	\
145	container_of(_attr, struct iommu_group_attribute, attr)
146#define to_iommu_group(_kobj)		\
147	container_of(_kobj, struct iommu_group, kobj)
148
149static LIST_HEAD(iommu_device_list);
150static DEFINE_SPINLOCK(iommu_device_lock);
151
152static struct bus_type * const iommu_buses[] = {
153	&platform_bus_type,
154#ifdef CONFIG_PCI
155	&pci_bus_type,
156#endif
157#ifdef CONFIG_ARM_AMBA
158	&amba_bustype,
159#endif
160#ifdef CONFIG_FSL_MC_BUS
161	&fsl_mc_bus_type,
162#endif
163#ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
164	&host1x_context_device_bus_type,
165#endif
166#ifdef CONFIG_CDX_BUS
167	&cdx_bus_type,
168#endif
169};
170
171/*
172 * Use a function instead of an array here because the domain-type is a
173 * bit-field, so an array would waste memory.
174 */
175static const char *iommu_domain_type_str(unsigned int t)
176{
177	switch (t) {
178	case IOMMU_DOMAIN_BLOCKED:
179		return "Blocked";
180	case IOMMU_DOMAIN_IDENTITY:
181		return "Passthrough";
182	case IOMMU_DOMAIN_UNMANAGED:
183		return "Unmanaged";
184	case IOMMU_DOMAIN_DMA:
185	case IOMMU_DOMAIN_DMA_FQ:
186		return "Translated";
187	default:
188		return "Unknown";
189	}
190}
191
192static int __init iommu_subsys_init(void)
193{
194	struct notifier_block *nb;
195
196	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
197		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
198			iommu_set_default_passthrough(false);
199		else
200			iommu_set_default_translated(false);
201
202		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
203			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
204			iommu_set_default_translated(false);
205		}
206	}
207
208	if (!iommu_default_passthrough() && !iommu_dma_strict)
209		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
210
211	pr_info("Default domain type: %s%s\n",
212		iommu_domain_type_str(iommu_def_domain_type),
213		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
214			" (set via kernel command line)" : "");
215
216	if (!iommu_default_passthrough())
217		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
218			iommu_dma_strict ? "strict" : "lazy",
219			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
220				" (set via kernel command line)" : "");
221
222	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
223	if (!nb)
224		return -ENOMEM;
225
226	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
227		nb[i].notifier_call = iommu_bus_notifier;
228		bus_register_notifier(iommu_buses[i], &nb[i]);
229	}
230
231	return 0;
232}
233subsys_initcall(iommu_subsys_init);
234
235static int remove_iommu_group(struct device *dev, void *data)
236{
237	if (dev->iommu && dev->iommu->iommu_dev == data)
238		iommu_release_device(dev);
239
240	return 0;
241}
242
243/**
244 * iommu_device_register() - Register an IOMMU hardware instance
245 * @iommu: IOMMU handle for the instance
246 * @ops:   IOMMU ops to associate with the instance
247 * @hwdev: (optional) actual instance device, used for fwnode lookup
248 *
249 * Return: 0 on success, or an error.
250 */
251int iommu_device_register(struct iommu_device *iommu,
252			  const struct iommu_ops *ops, struct device *hwdev)
253{
254	int err = 0;
255
256	/* We need to be able to take module references appropriately */
257	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
258		return -EINVAL;
259	/*
260	 * Temporarily enforce global restriction to a single driver. This was
261	 * already the de-facto behaviour, since any possible combination of
262	 * existing drivers would compete for at least the PCI or platform bus.
263	 */
264	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
265		return -EBUSY;
266
267	iommu->ops = ops;
268	if (hwdev)
269		iommu->fwnode = dev_fwnode(hwdev);
270
271	spin_lock(&iommu_device_lock);
272	list_add_tail(&iommu->list, &iommu_device_list);
273	spin_unlock(&iommu_device_lock);
274
275	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
276		iommu_buses[i]->iommu_ops = ops;
277		err = bus_iommu_probe(iommu_buses[i]);
278	}
279	if (err)
280		iommu_device_unregister(iommu);
281	return err;
282}
283EXPORT_SYMBOL_GPL(iommu_device_register);
284
285void iommu_device_unregister(struct iommu_device *iommu)
286{
287	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
288		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
289
290	spin_lock(&iommu_device_lock);
291	list_del(&iommu->list);
292	spin_unlock(&iommu_device_lock);
293}
294EXPORT_SYMBOL_GPL(iommu_device_unregister);
295
296#if IS_ENABLED(CONFIG_IOMMUFD_TEST)
297void iommu_device_unregister_bus(struct iommu_device *iommu,
298				 struct bus_type *bus,
299				 struct notifier_block *nb)
300{
301	bus_unregister_notifier(bus, nb);
302	iommu_device_unregister(iommu);
303}
304EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
305
306/*
307 * Register an iommu driver against a single bus. This is only used by iommufd
308 * selftest to create a mock iommu driver. The caller must provide
309 * some memory to hold a notifier_block.
310 */
311int iommu_device_register_bus(struct iommu_device *iommu,
312			      const struct iommu_ops *ops, struct bus_type *bus,
313			      struct notifier_block *nb)
314{
315	int err;
316
317	iommu->ops = ops;
318	nb->notifier_call = iommu_bus_notifier;
319	err = bus_register_notifier(bus, nb);
320	if (err)
321		return err;
322
323	spin_lock(&iommu_device_lock);
324	list_add_tail(&iommu->list, &iommu_device_list);
325	spin_unlock(&iommu_device_lock);
326
327	bus->iommu_ops = ops;
328	err = bus_iommu_probe(bus);
329	if (err) {
330		iommu_device_unregister_bus(iommu, bus, nb);
331		return err;
332	}
333	return 0;
334}
335EXPORT_SYMBOL_GPL(iommu_device_register_bus);
336#endif
337
338static struct dev_iommu *dev_iommu_get(struct device *dev)
339{
340	struct dev_iommu *param = dev->iommu;
341
342	if (param)
343		return param;
344
345	param = kzalloc(sizeof(*param), GFP_KERNEL);
346	if (!param)
347		return NULL;
348
349	mutex_init(&param->lock);
350	dev->iommu = param;
351	return param;
352}
353
354static void dev_iommu_free(struct device *dev)
355{
356	struct dev_iommu *param = dev->iommu;
357
358	dev->iommu = NULL;
359	if (param->fwspec) {
360		fwnode_handle_put(param->fwspec->iommu_fwnode);
361		kfree(param->fwspec);
362	}
363	kfree(param);
364}
365
366static u32 dev_iommu_get_max_pasids(struct device *dev)
367{
368	u32 max_pasids = 0, bits = 0;
369	int ret;
370
371	if (dev_is_pci(dev)) {
372		ret = pci_max_pasids(to_pci_dev(dev));
373		if (ret > 0)
374			max_pasids = ret;
375	} else {
376		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
377		if (!ret)
378			max_pasids = 1UL << bits;
379	}
380
381	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
382}
383
384/*
385 * Init the dev->iommu and dev->iommu_group in the struct device and get the
386 * driver probed
387 */
388static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
389{
390	struct iommu_device *iommu_dev;
391	struct iommu_group *group;
392	int ret;
393
394	if (!dev_iommu_get(dev))
395		return -ENOMEM;
396
397	if (!try_module_get(ops->owner)) {
398		ret = -EINVAL;
399		goto err_free;
400	}
401
402	iommu_dev = ops->probe_device(dev);
403	if (IS_ERR(iommu_dev)) {
404		ret = PTR_ERR(iommu_dev);
405		goto err_module_put;
406	}
407
408	ret = iommu_device_link(iommu_dev, dev);
409	if (ret)
410		goto err_release;
411
412	group = ops->device_group(dev);
413	if (WARN_ON_ONCE(group == NULL))
414		group = ERR_PTR(-EINVAL);
415	if (IS_ERR(group)) {
416		ret = PTR_ERR(group);
417		goto err_unlink;
418	}
419	dev->iommu_group = group;
420
421	dev->iommu->iommu_dev = iommu_dev;
422	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
423	if (ops->is_attach_deferred)
424		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
425	return 0;
426
427err_unlink:
428	iommu_device_unlink(iommu_dev, dev);
429err_release:
430	if (ops->release_device)
431		ops->release_device(dev);
432err_module_put:
433	module_put(ops->owner);
434err_free:
435	dev_iommu_free(dev);
436	return ret;
437}
438
439static void iommu_deinit_device(struct device *dev)
440{
441	struct iommu_group *group = dev->iommu_group;
442	const struct iommu_ops *ops = dev_iommu_ops(dev);
443
444	lockdep_assert_held(&group->mutex);
445
446	iommu_device_unlink(dev->iommu->iommu_dev, dev);
447
448	/*
449	 * release_device() must stop using any attached domain on the device.
450	 * If there are still other devices in the group they are not effected
451	 * by this callback.
452	 *
453	 * The IOMMU driver must set the device to either an identity or
454	 * blocking translation and stop using any domain pointer, as it is
455	 * going to be freed.
456	 */
457	if (ops->release_device)
458		ops->release_device(dev);
459
460	/*
461	 * If this is the last driver to use the group then we must free the
462	 * domains before we do the module_put().
463	 */
464	if (list_empty(&group->devices)) {
465		if (group->default_domain) {
466			iommu_domain_free(group->default_domain);
467			group->default_domain = NULL;
468		}
469		if (group->blocking_domain) {
470			iommu_domain_free(group->blocking_domain);
471			group->blocking_domain = NULL;
472		}
473		group->domain = NULL;
474	}
475
476	/* Caller must put iommu_group */
477	dev->iommu_group = NULL;
478	module_put(ops->owner);
479	dev_iommu_free(dev);
480}
481
482DEFINE_MUTEX(iommu_probe_device_lock);
483
484static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
485{
486	const struct iommu_ops *ops = dev->bus->iommu_ops;
487	struct iommu_group *group;
488	struct group_device *gdev;
489	int ret;
490
491	if (!ops)
492		return -ENODEV;
493	/*
494	 * Serialise to avoid races between IOMMU drivers registering in
495	 * parallel and/or the "replay" calls from ACPI/OF code via client
496	 * driver probe. Once the latter have been cleaned up we should
497	 * probably be able to use device_lock() here to minimise the scope,
498	 * but for now enforcing a simple global ordering is fine.
499	 */
500	lockdep_assert_held(&iommu_probe_device_lock);
501
502	/* Device is probed already if in a group */
503	if (dev->iommu_group)
504		return 0;
505
506	ret = iommu_init_device(dev, ops);
507	if (ret)
508		return ret;
509
510	group = dev->iommu_group;
511	gdev = iommu_group_alloc_device(group, dev);
512	mutex_lock(&group->mutex);
513	if (IS_ERR(gdev)) {
514		ret = PTR_ERR(gdev);
515		goto err_put_group;
516	}
517
518	/*
519	 * The gdev must be in the list before calling
520	 * iommu_setup_default_domain()
521	 */
522	list_add_tail(&gdev->list, &group->devices);
523	WARN_ON(group->default_domain && !group->domain);
524	if (group->default_domain)
525		iommu_create_device_direct_mappings(group->default_domain, dev);
526	if (group->domain) {
527		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
528		if (ret)
529			goto err_remove_gdev;
530	} else if (!group->default_domain && !group_list) {
531		ret = iommu_setup_default_domain(group, 0);
532		if (ret)
533			goto err_remove_gdev;
534	} else if (!group->default_domain) {
535		/*
536		 * With a group_list argument we defer the default_domain setup
537		 * to the caller by providing a de-duplicated list of groups
538		 * that need further setup.
539		 */
540		if (list_empty(&group->entry))
541			list_add_tail(&group->entry, group_list);
542	}
543	mutex_unlock(&group->mutex);
544
545	if (dev_is_pci(dev))
546		iommu_dma_set_pci_32bit_workaround(dev);
547
548	return 0;
549
550err_remove_gdev:
551	list_del(&gdev->list);
552	__iommu_group_free_device(group, gdev);
553err_put_group:
554	iommu_deinit_device(dev);
555	mutex_unlock(&group->mutex);
556	iommu_group_put(group);
557
558	return ret;
559}
560
561int iommu_probe_device(struct device *dev)
562{
563	const struct iommu_ops *ops;
564	int ret;
565
566	mutex_lock(&iommu_probe_device_lock);
567	ret = __iommu_probe_device(dev, NULL);
568	mutex_unlock(&iommu_probe_device_lock);
569	if (ret)
570		return ret;
571
572	ops = dev_iommu_ops(dev);
573	if (ops->probe_finalize)
574		ops->probe_finalize(dev);
575
576	return 0;
577}
578
579static void __iommu_group_free_device(struct iommu_group *group,
580				      struct group_device *grp_dev)
581{
582	struct device *dev = grp_dev->dev;
583
584	sysfs_remove_link(group->devices_kobj, grp_dev->name);
585	sysfs_remove_link(&dev->kobj, "iommu_group");
586
587	trace_remove_device_from_group(group->id, dev);
588
589	/*
590	 * If the group has become empty then ownership must have been
591	 * released, and the current domain must be set back to NULL or
592	 * the default domain.
593	 */
594	if (list_empty(&group->devices))
595		WARN_ON(group->owner_cnt ||
596			group->domain != group->default_domain);
597
598	kfree(grp_dev->name);
599	kfree(grp_dev);
600}
601
602/* Remove the iommu_group from the struct device. */
603static void __iommu_group_remove_device(struct device *dev)
604{
605	struct iommu_group *group = dev->iommu_group;
606	struct group_device *device;
607
608	mutex_lock(&group->mutex);
609	for_each_group_device(group, device) {
610		if (device->dev != dev)
611			continue;
612
613		list_del(&device->list);
614		__iommu_group_free_device(group, device);
615		if (dev->iommu && dev->iommu->iommu_dev)
616			iommu_deinit_device(dev);
617		else
618			dev->iommu_group = NULL;
619		break;
620	}
621	mutex_unlock(&group->mutex);
622
623	/*
624	 * Pairs with the get in iommu_init_device() or
625	 * iommu_group_add_device()
626	 */
627	iommu_group_put(group);
628}
629
630static void iommu_release_device(struct device *dev)
631{
632	struct iommu_group *group = dev->iommu_group;
633
634	if (group)
635		__iommu_group_remove_device(dev);
636
637	/* Free any fwspec if no iommu_driver was ever attached */
638	if (dev->iommu)
639		dev_iommu_free(dev);
640}
641
642static int __init iommu_set_def_domain_type(char *str)
643{
644	bool pt;
645	int ret;
646
647	ret = kstrtobool(str, &pt);
648	if (ret)
649		return ret;
650
651	if (pt)
652		iommu_set_default_passthrough(true);
653	else
654		iommu_set_default_translated(true);
655
656	return 0;
657}
658early_param("iommu.passthrough", iommu_set_def_domain_type);
659
660static int __init iommu_dma_setup(char *str)
661{
662	int ret = kstrtobool(str, &iommu_dma_strict);
663
664	if (!ret)
665		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
666	return ret;
667}
668early_param("iommu.strict", iommu_dma_setup);
669
670void iommu_set_dma_strict(void)
671{
672	iommu_dma_strict = true;
673	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
674		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
675}
676
677static ssize_t iommu_group_attr_show(struct kobject *kobj,
678				     struct attribute *__attr, char *buf)
679{
680	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
681	struct iommu_group *group = to_iommu_group(kobj);
682	ssize_t ret = -EIO;
683
684	if (attr->show)
685		ret = attr->show(group, buf);
686	return ret;
687}
688
689static ssize_t iommu_group_attr_store(struct kobject *kobj,
690				      struct attribute *__attr,
691				      const char *buf, size_t count)
692{
693	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
694	struct iommu_group *group = to_iommu_group(kobj);
695	ssize_t ret = -EIO;
696
697	if (attr->store)
698		ret = attr->store(group, buf, count);
699	return ret;
700}
701
702static const struct sysfs_ops iommu_group_sysfs_ops = {
703	.show = iommu_group_attr_show,
704	.store = iommu_group_attr_store,
705};
706
707static int iommu_group_create_file(struct iommu_group *group,
708				   struct iommu_group_attribute *attr)
709{
710	return sysfs_create_file(&group->kobj, &attr->attr);
711}
712
713static void iommu_group_remove_file(struct iommu_group *group,
714				    struct iommu_group_attribute *attr)
715{
716	sysfs_remove_file(&group->kobj, &attr->attr);
717}
718
719static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
720{
721	return sysfs_emit(buf, "%s\n", group->name);
722}
723
724/**
725 * iommu_insert_resv_region - Insert a new region in the
726 * list of reserved regions.
727 * @new: new region to insert
728 * @regions: list of regions
729 *
730 * Elements are sorted by start address and overlapping segments
731 * of the same type are merged.
732 */
733static int iommu_insert_resv_region(struct iommu_resv_region *new,
734				    struct list_head *regions)
735{
736	struct iommu_resv_region *iter, *tmp, *nr, *top;
737	LIST_HEAD(stack);
738
739	nr = iommu_alloc_resv_region(new->start, new->length,
740				     new->prot, new->type, GFP_KERNEL);
741	if (!nr)
742		return -ENOMEM;
743
744	/* First add the new element based on start address sorting */
745	list_for_each_entry(iter, regions, list) {
746		if (nr->start < iter->start ||
747		    (nr->start == iter->start && nr->type <= iter->type))
748			break;
749	}
750	list_add_tail(&nr->list, &iter->list);
751
752	/* Merge overlapping segments of type nr->type in @regions, if any */
753	list_for_each_entry_safe(iter, tmp, regions, list) {
754		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
755
756		/* no merge needed on elements of different types than @new */
757		if (iter->type != new->type) {
758			list_move_tail(&iter->list, &stack);
759			continue;
760		}
761
762		/* look for the last stack element of same type as @iter */
763		list_for_each_entry_reverse(top, &stack, list)
764			if (top->type == iter->type)
765				goto check_overlap;
766
767		list_move_tail(&iter->list, &stack);
768		continue;
769
770check_overlap:
771		top_end = top->start + top->length - 1;
772
773		if (iter->start > top_end + 1) {
774			list_move_tail(&iter->list, &stack);
775		} else {
776			top->length = max(top_end, iter_end) - top->start + 1;
777			list_del(&iter->list);
778			kfree(iter);
779		}
780	}
781	list_splice(&stack, regions);
782	return 0;
783}
784
785static int
786iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
787				 struct list_head *group_resv_regions)
788{
789	struct iommu_resv_region *entry;
790	int ret = 0;
791
792	list_for_each_entry(entry, dev_resv_regions, list) {
793		ret = iommu_insert_resv_region(entry, group_resv_regions);
794		if (ret)
795			break;
796	}
797	return ret;
798}
799
800int iommu_get_group_resv_regions(struct iommu_group *group,
801				 struct list_head *head)
802{
803	struct group_device *device;
804	int ret = 0;
805
806	mutex_lock(&group->mutex);
807	for_each_group_device(group, device) {
808		struct list_head dev_resv_regions;
809
810		/*
811		 * Non-API groups still expose reserved_regions in sysfs,
812		 * so filter out calls that get here that way.
813		 */
814		if (!device->dev->iommu)
815			break;
816
817		INIT_LIST_HEAD(&dev_resv_regions);
818		iommu_get_resv_regions(device->dev, &dev_resv_regions);
819		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
820		iommu_put_resv_regions(device->dev, &dev_resv_regions);
821		if (ret)
822			break;
823	}
824	mutex_unlock(&group->mutex);
825	return ret;
826}
827EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
828
829static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
830					     char *buf)
831{
832	struct iommu_resv_region *region, *next;
833	struct list_head group_resv_regions;
834	int offset = 0;
835
836	INIT_LIST_HEAD(&group_resv_regions);
837	iommu_get_group_resv_regions(group, &group_resv_regions);
838
839	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
840		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
841					(long long)region->start,
842					(long long)(region->start +
843						    region->length - 1),
844					iommu_group_resv_type_string[region->type]);
845		kfree(region);
846	}
847
848	return offset;
849}
850
851static ssize_t iommu_group_show_type(struct iommu_group *group,
852				     char *buf)
853{
854	char *type = "unknown";
855
856	mutex_lock(&group->mutex);
857	if (group->default_domain) {
858		switch (group->default_domain->type) {
859		case IOMMU_DOMAIN_BLOCKED:
860			type = "blocked";
861			break;
862		case IOMMU_DOMAIN_IDENTITY:
863			type = "identity";
864			break;
865		case IOMMU_DOMAIN_UNMANAGED:
866			type = "unmanaged";
867			break;
868		case IOMMU_DOMAIN_DMA:
869			type = "DMA";
870			break;
871		case IOMMU_DOMAIN_DMA_FQ:
872			type = "DMA-FQ";
873			break;
874		}
875	}
876	mutex_unlock(&group->mutex);
877
878	return sysfs_emit(buf, "%s\n", type);
879}
880
881static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
882
883static IOMMU_GROUP_ATTR(reserved_regions, 0444,
884			iommu_group_show_resv_regions, NULL);
885
886static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
887			iommu_group_store_type);
888
889static void iommu_group_release(struct kobject *kobj)
890{
891	struct iommu_group *group = to_iommu_group(kobj);
892
893	pr_debug("Releasing group %d\n", group->id);
894
895	if (group->iommu_data_release)
896		group->iommu_data_release(group->iommu_data);
897
898	ida_free(&iommu_group_ida, group->id);
899
900	/* Domains are free'd by iommu_deinit_device() */
901	WARN_ON(group->default_domain);
902	WARN_ON(group->blocking_domain);
903
904	kfree(group->name);
905	kfree(group);
906}
907
908static const struct kobj_type iommu_group_ktype = {
909	.sysfs_ops = &iommu_group_sysfs_ops,
910	.release = iommu_group_release,
911};
912
913/**
914 * iommu_group_alloc - Allocate a new group
915 *
916 * This function is called by an iommu driver to allocate a new iommu
917 * group.  The iommu group represents the minimum granularity of the iommu.
918 * Upon successful return, the caller holds a reference to the supplied
919 * group in order to hold the group until devices are added.  Use
920 * iommu_group_put() to release this extra reference count, allowing the
921 * group to be automatically reclaimed once it has no devices or external
922 * references.
923 */
924struct iommu_group *iommu_group_alloc(void)
925{
926	struct iommu_group *group;
927	int ret;
928
929	group = kzalloc(sizeof(*group), GFP_KERNEL);
930	if (!group)
931		return ERR_PTR(-ENOMEM);
932
933	group->kobj.kset = iommu_group_kset;
934	mutex_init(&group->mutex);
935	INIT_LIST_HEAD(&group->devices);
936	INIT_LIST_HEAD(&group->entry);
937	xa_init(&group->pasid_array);
938
939	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
940	if (ret < 0) {
941		kfree(group);
942		return ERR_PTR(ret);
943	}
944	group->id = ret;
945
946	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
947				   NULL, "%d", group->id);
948	if (ret) {
949		kobject_put(&group->kobj);
950		return ERR_PTR(ret);
951	}
952
953	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
954	if (!group->devices_kobj) {
955		kobject_put(&group->kobj); /* triggers .release & free */
956		return ERR_PTR(-ENOMEM);
957	}
958
959	/*
960	 * The devices_kobj holds a reference on the group kobject, so
961	 * as long as that exists so will the group.  We can therefore
962	 * use the devices_kobj for reference counting.
963	 */
964	kobject_put(&group->kobj);
965
966	ret = iommu_group_create_file(group,
967				      &iommu_group_attr_reserved_regions);
968	if (ret) {
969		kobject_put(group->devices_kobj);
970		return ERR_PTR(ret);
971	}
972
973	ret = iommu_group_create_file(group, &iommu_group_attr_type);
974	if (ret) {
975		kobject_put(group->devices_kobj);
976		return ERR_PTR(ret);
977	}
978
979	pr_debug("Allocated group %d\n", group->id);
980
981	return group;
982}
983EXPORT_SYMBOL_GPL(iommu_group_alloc);
984
985/**
986 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
987 * @group: the group
988 *
989 * iommu drivers can store data in the group for use when doing iommu
990 * operations.  This function provides a way to retrieve it.  Caller
991 * should hold a group reference.
992 */
993void *iommu_group_get_iommudata(struct iommu_group *group)
994{
995	return group->iommu_data;
996}
997EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
998
999/**
1000 * iommu_group_set_iommudata - set iommu_data for a group
1001 * @group: the group
1002 * @iommu_data: new data
1003 * @release: release function for iommu_data
1004 *
1005 * iommu drivers can store data in the group for use when doing iommu
1006 * operations.  This function provides a way to set the data after
1007 * the group has been allocated.  Caller should hold a group reference.
1008 */
1009void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1010			       void (*release)(void *iommu_data))
1011{
1012	group->iommu_data = iommu_data;
1013	group->iommu_data_release = release;
1014}
1015EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1016
1017/**
1018 * iommu_group_set_name - set name for a group
1019 * @group: the group
1020 * @name: name
1021 *
1022 * Allow iommu driver to set a name for a group.  When set it will
1023 * appear in a name attribute file under the group in sysfs.
1024 */
1025int iommu_group_set_name(struct iommu_group *group, const char *name)
1026{
1027	int ret;
1028
1029	if (group->name) {
1030		iommu_group_remove_file(group, &iommu_group_attr_name);
1031		kfree(group->name);
1032		group->name = NULL;
1033		if (!name)
1034			return 0;
1035	}
1036
1037	group->name = kstrdup(name, GFP_KERNEL);
1038	if (!group->name)
1039		return -ENOMEM;
1040
1041	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1042	if (ret) {
1043		kfree(group->name);
1044		group->name = NULL;
1045		return ret;
1046	}
1047
1048	return 0;
1049}
1050EXPORT_SYMBOL_GPL(iommu_group_set_name);
1051
1052static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1053					       struct device *dev)
1054{
1055	struct iommu_resv_region *entry;
1056	struct list_head mappings;
1057	unsigned long pg_size;
1058	int ret = 0;
1059
1060	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1061	INIT_LIST_HEAD(&mappings);
1062
1063	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1064		return -EINVAL;
1065
1066	iommu_get_resv_regions(dev, &mappings);
1067
1068	/* We need to consider overlapping regions for different devices */
1069	list_for_each_entry(entry, &mappings, list) {
1070		dma_addr_t start, end, addr;
1071		size_t map_size = 0;
1072
1073		if (entry->type == IOMMU_RESV_DIRECT)
1074			dev->iommu->require_direct = 1;
1075
1076		if ((entry->type != IOMMU_RESV_DIRECT &&
1077		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1078		    !iommu_is_dma_domain(domain))
1079			continue;
1080
1081		start = ALIGN(entry->start, pg_size);
1082		end   = ALIGN(entry->start + entry->length, pg_size);
1083
1084		for (addr = start; addr <= end; addr += pg_size) {
1085			phys_addr_t phys_addr;
1086
1087			if (addr == end)
1088				goto map_end;
1089
1090			phys_addr = iommu_iova_to_phys(domain, addr);
1091			if (!phys_addr) {
1092				map_size += pg_size;
1093				continue;
1094			}
1095
1096map_end:
1097			if (map_size) {
1098				ret = iommu_map(domain, addr - map_size,
1099						addr - map_size, map_size,
1100						entry->prot, GFP_KERNEL);
1101				if (ret)
1102					goto out;
1103				map_size = 0;
1104			}
1105		}
1106
1107	}
1108
1109	if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1110		iommu_flush_iotlb_all(domain);
1111
1112out:
1113	iommu_put_resv_regions(dev, &mappings);
1114
1115	return ret;
1116}
1117
1118/* This is undone by __iommu_group_free_device() */
1119static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1120						     struct device *dev)
1121{
1122	int ret, i = 0;
1123	struct group_device *device;
1124
1125	device = kzalloc(sizeof(*device), GFP_KERNEL);
1126	if (!device)
1127		return ERR_PTR(-ENOMEM);
1128
1129	device->dev = dev;
1130
1131	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1132	if (ret)
1133		goto err_free_device;
1134
1135	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1136rename:
1137	if (!device->name) {
1138		ret = -ENOMEM;
1139		goto err_remove_link;
1140	}
1141
1142	ret = sysfs_create_link_nowarn(group->devices_kobj,
1143				       &dev->kobj, device->name);
1144	if (ret) {
1145		if (ret == -EEXIST && i >= 0) {
1146			/*
1147			 * Account for the slim chance of collision
1148			 * and append an instance to the name.
1149			 */
1150			kfree(device->name);
1151			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1152						 kobject_name(&dev->kobj), i++);
1153			goto rename;
1154		}
1155		goto err_free_name;
1156	}
1157
1158	trace_add_device_to_group(group->id, dev);
1159
1160	dev_info(dev, "Adding to iommu group %d\n", group->id);
1161
1162	return device;
1163
1164err_free_name:
1165	kfree(device->name);
1166err_remove_link:
1167	sysfs_remove_link(&dev->kobj, "iommu_group");
1168err_free_device:
1169	kfree(device);
1170	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1171	return ERR_PTR(ret);
1172}
1173
1174/**
1175 * iommu_group_add_device - add a device to an iommu group
1176 * @group: the group into which to add the device (reference should be held)
1177 * @dev: the device
1178 *
1179 * This function is called by an iommu driver to add a device into a
1180 * group.  Adding a device increments the group reference count.
1181 */
1182int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1183{
1184	struct group_device *gdev;
1185
1186	gdev = iommu_group_alloc_device(group, dev);
1187	if (IS_ERR(gdev))
1188		return PTR_ERR(gdev);
1189
1190	iommu_group_ref_get(group);
1191	dev->iommu_group = group;
1192
1193	mutex_lock(&group->mutex);
1194	list_add_tail(&gdev->list, &group->devices);
1195	mutex_unlock(&group->mutex);
1196	return 0;
1197}
1198EXPORT_SYMBOL_GPL(iommu_group_add_device);
1199
1200/**
1201 * iommu_group_remove_device - remove a device from it's current group
1202 * @dev: device to be removed
1203 *
1204 * This function is called by an iommu driver to remove the device from
1205 * it's current group.  This decrements the iommu group reference count.
1206 */
1207void iommu_group_remove_device(struct device *dev)
1208{
1209	struct iommu_group *group = dev->iommu_group;
1210
1211	if (!group)
1212		return;
1213
1214	dev_info(dev, "Removing from iommu group %d\n", group->id);
1215
1216	__iommu_group_remove_device(dev);
1217}
1218EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1219
1220/**
1221 * iommu_group_for_each_dev - iterate over each device in the group
1222 * @group: the group
1223 * @data: caller opaque data to be passed to callback function
1224 * @fn: caller supplied callback function
1225 *
1226 * This function is called by group users to iterate over group devices.
1227 * Callers should hold a reference count to the group during callback.
1228 * The group->mutex is held across callbacks, which will block calls to
1229 * iommu_group_add/remove_device.
1230 */
1231int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1232			     int (*fn)(struct device *, void *))
1233{
1234	struct group_device *device;
1235	int ret = 0;
1236
1237	mutex_lock(&group->mutex);
1238	for_each_group_device(group, device) {
1239		ret = fn(device->dev, data);
1240		if (ret)
1241			break;
1242	}
1243	mutex_unlock(&group->mutex);
1244
1245	return ret;
1246}
1247EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1248
1249/**
1250 * iommu_group_get - Return the group for a device and increment reference
1251 * @dev: get the group that this device belongs to
1252 *
1253 * This function is called by iommu drivers and users to get the group
1254 * for the specified device.  If found, the group is returned and the group
1255 * reference in incremented, else NULL.
1256 */
1257struct iommu_group *iommu_group_get(struct device *dev)
1258{
1259	struct iommu_group *group = dev->iommu_group;
1260
1261	if (group)
1262		kobject_get(group->devices_kobj);
1263
1264	return group;
1265}
1266EXPORT_SYMBOL_GPL(iommu_group_get);
1267
1268/**
1269 * iommu_group_ref_get - Increment reference on a group
1270 * @group: the group to use, must not be NULL
1271 *
1272 * This function is called by iommu drivers to take additional references on an
1273 * existing group.  Returns the given group for convenience.
1274 */
1275struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1276{
1277	kobject_get(group->devices_kobj);
1278	return group;
1279}
1280EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1281
1282/**
1283 * iommu_group_put - Decrement group reference
1284 * @group: the group to use
1285 *
1286 * This function is called by iommu drivers and users to release the
1287 * iommu group.  Once the reference count is zero, the group is released.
1288 */
1289void iommu_group_put(struct iommu_group *group)
1290{
1291	if (group)
1292		kobject_put(group->devices_kobj);
1293}
1294EXPORT_SYMBOL_GPL(iommu_group_put);
1295
1296/**
1297 * iommu_register_device_fault_handler() - Register a device fault handler
1298 * @dev: the device
1299 * @handler: the fault handler
1300 * @data: private data passed as argument to the handler
1301 *
1302 * When an IOMMU fault event is received, this handler gets called with the
1303 * fault event and data as argument. The handler should return 0 on success. If
1304 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1305 * complete the fault by calling iommu_page_response() with one of the following
1306 * response code:
1307 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1308 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1309 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1310 *   page faults if possible.
1311 *
1312 * Return 0 if the fault handler was installed successfully, or an error.
1313 */
1314int iommu_register_device_fault_handler(struct device *dev,
1315					iommu_dev_fault_handler_t handler,
1316					void *data)
1317{
1318	struct dev_iommu *param = dev->iommu;
1319	int ret = 0;
1320
1321	if (!param)
1322		return -EINVAL;
1323
1324	mutex_lock(&param->lock);
1325	/* Only allow one fault handler registered for each device */
1326	if (param->fault_param) {
1327		ret = -EBUSY;
1328		goto done_unlock;
1329	}
1330
1331	get_device(dev);
1332	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1333	if (!param->fault_param) {
1334		put_device(dev);
1335		ret = -ENOMEM;
1336		goto done_unlock;
1337	}
1338	param->fault_param->handler = handler;
1339	param->fault_param->data = data;
1340	mutex_init(&param->fault_param->lock);
1341	INIT_LIST_HEAD(&param->fault_param->faults);
1342
1343done_unlock:
1344	mutex_unlock(&param->lock);
1345
1346	return ret;
1347}
1348EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1349
1350/**
1351 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1352 * @dev: the device
1353 *
1354 * Remove the device fault handler installed with
1355 * iommu_register_device_fault_handler().
1356 *
1357 * Return 0 on success, or an error.
1358 */
1359int iommu_unregister_device_fault_handler(struct device *dev)
1360{
1361	struct dev_iommu *param = dev->iommu;
1362	int ret = 0;
1363
1364	if (!param)
1365		return -EINVAL;
1366
1367	mutex_lock(&param->lock);
1368
1369	if (!param->fault_param)
1370		goto unlock;
1371
1372	/* we cannot unregister handler if there are pending faults */
1373	if (!list_empty(&param->fault_param->faults)) {
1374		ret = -EBUSY;
1375		goto unlock;
1376	}
1377
1378	kfree(param->fault_param);
1379	param->fault_param = NULL;
1380	put_device(dev);
1381unlock:
1382	mutex_unlock(&param->lock);
1383
1384	return ret;
1385}
1386EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1387
1388/**
1389 * iommu_report_device_fault() - Report fault event to device driver
1390 * @dev: the device
1391 * @evt: fault event data
1392 *
1393 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1394 * handler. When this function fails and the fault is recoverable, it is the
1395 * caller's responsibility to complete the fault.
1396 *
1397 * Return 0 on success, or an error.
1398 */
1399int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1400{
1401	struct dev_iommu *param = dev->iommu;
1402	struct iommu_fault_event *evt_pending = NULL;
1403	struct iommu_fault_param *fparam;
1404	int ret = 0;
1405
1406	if (!param || !evt)
1407		return -EINVAL;
1408
1409	/* we only report device fault if there is a handler registered */
1410	mutex_lock(&param->lock);
1411	fparam = param->fault_param;
1412	if (!fparam || !fparam->handler) {
1413		ret = -EINVAL;
1414		goto done_unlock;
1415	}
1416
1417	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1418	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1419		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1420				      GFP_KERNEL);
1421		if (!evt_pending) {
1422			ret = -ENOMEM;
1423			goto done_unlock;
1424		}
1425		mutex_lock(&fparam->lock);
1426		list_add_tail(&evt_pending->list, &fparam->faults);
1427		mutex_unlock(&fparam->lock);
1428	}
1429
1430	ret = fparam->handler(&evt->fault, fparam->data);
1431	if (ret && evt_pending) {
1432		mutex_lock(&fparam->lock);
1433		list_del(&evt_pending->list);
1434		mutex_unlock(&fparam->lock);
1435		kfree(evt_pending);
1436	}
1437done_unlock:
1438	mutex_unlock(&param->lock);
1439	return ret;
1440}
1441EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1442
1443int iommu_page_response(struct device *dev,
1444			struct iommu_page_response *msg)
1445{
1446	bool needs_pasid;
1447	int ret = -EINVAL;
1448	struct iommu_fault_event *evt;
1449	struct iommu_fault_page_request *prm;
1450	struct dev_iommu *param = dev->iommu;
1451	const struct iommu_ops *ops = dev_iommu_ops(dev);
1452	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1453
1454	if (!ops->page_response)
1455		return -ENODEV;
1456
1457	if (!param || !param->fault_param)
1458		return -EINVAL;
1459
1460	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1461	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1462		return -EINVAL;
1463
1464	/* Only send response if there is a fault report pending */
1465	mutex_lock(&param->fault_param->lock);
1466	if (list_empty(&param->fault_param->faults)) {
1467		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1468		goto done_unlock;
1469	}
1470	/*
1471	 * Check if we have a matching page request pending to respond,
1472	 * otherwise return -EINVAL
1473	 */
1474	list_for_each_entry(evt, &param->fault_param->faults, list) {
1475		prm = &evt->fault.prm;
1476		if (prm->grpid != msg->grpid)
1477			continue;
1478
1479		/*
1480		 * If the PASID is required, the corresponding request is
1481		 * matched using the group ID, the PASID valid bit and the PASID
1482		 * value. Otherwise only the group ID matches request and
1483		 * response.
1484		 */
1485		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1486		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1487			continue;
1488
1489		if (!needs_pasid && has_pasid) {
1490			/* No big deal, just clear it. */
1491			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1492			msg->pasid = 0;
1493		}
1494
1495		ret = ops->page_response(dev, evt, msg);
1496		list_del(&evt->list);
1497		kfree(evt);
1498		break;
1499	}
1500
1501done_unlock:
1502	mutex_unlock(&param->fault_param->lock);
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(iommu_page_response);
1506
1507/**
1508 * iommu_group_id - Return ID for a group
1509 * @group: the group to ID
1510 *
1511 * Return the unique ID for the group matching the sysfs group number.
1512 */
1513int iommu_group_id(struct iommu_group *group)
1514{
1515	return group->id;
1516}
1517EXPORT_SYMBOL_GPL(iommu_group_id);
1518
1519static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1520					       unsigned long *devfns);
1521
1522/*
1523 * To consider a PCI device isolated, we require ACS to support Source
1524 * Validation, Request Redirection, Completer Redirection, and Upstream
1525 * Forwarding.  This effectively means that devices cannot spoof their
1526 * requester ID, requests and completions cannot be redirected, and all
1527 * transactions are forwarded upstream, even as it passes through a
1528 * bridge where the target device is downstream.
1529 */
1530#define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1531
1532/*
1533 * For multifunction devices which are not isolated from each other, find
1534 * all the other non-isolated functions and look for existing groups.  For
1535 * each function, we also need to look for aliases to or from other devices
1536 * that may already have a group.
1537 */
1538static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1539							unsigned long *devfns)
1540{
1541	struct pci_dev *tmp = NULL;
1542	struct iommu_group *group;
1543
1544	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1545		return NULL;
1546
1547	for_each_pci_dev(tmp) {
1548		if (tmp == pdev || tmp->bus != pdev->bus ||
1549		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1550		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1551			continue;
1552
1553		group = get_pci_alias_group(tmp, devfns);
1554		if (group) {
1555			pci_dev_put(tmp);
1556			return group;
1557		}
1558	}
1559
1560	return NULL;
1561}
1562
1563/*
1564 * Look for aliases to or from the given device for existing groups. DMA
1565 * aliases are only supported on the same bus, therefore the search
1566 * space is quite small (especially since we're really only looking at pcie
1567 * device, and therefore only expect multiple slots on the root complex or
1568 * downstream switch ports).  It's conceivable though that a pair of
1569 * multifunction devices could have aliases between them that would cause a
1570 * loop.  To prevent this, we use a bitmap to track where we've been.
1571 */
1572static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1573					       unsigned long *devfns)
1574{
1575	struct pci_dev *tmp = NULL;
1576	struct iommu_group *group;
1577
1578	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1579		return NULL;
1580
1581	group = iommu_group_get(&pdev->dev);
1582	if (group)
1583		return group;
1584
1585	for_each_pci_dev(tmp) {
1586		if (tmp == pdev || tmp->bus != pdev->bus)
1587			continue;
1588
1589		/* We alias them or they alias us */
1590		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1591			group = get_pci_alias_group(tmp, devfns);
1592			if (group) {
1593				pci_dev_put(tmp);
1594				return group;
1595			}
1596
1597			group = get_pci_function_alias_group(tmp, devfns);
1598			if (group) {
1599				pci_dev_put(tmp);
1600				return group;
1601			}
1602		}
1603	}
1604
1605	return NULL;
1606}
1607
1608struct group_for_pci_data {
1609	struct pci_dev *pdev;
1610	struct iommu_group *group;
1611};
1612
1613/*
1614 * DMA alias iterator callback, return the last seen device.  Stop and return
1615 * the IOMMU group if we find one along the way.
1616 */
1617static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1618{
1619	struct group_for_pci_data *data = opaque;
1620
1621	data->pdev = pdev;
1622	data->group = iommu_group_get(&pdev->dev);
1623
1624	return data->group != NULL;
1625}
1626
1627/*
1628 * Generic device_group call-back function. It just allocates one
1629 * iommu-group per device.
1630 */
1631struct iommu_group *generic_device_group(struct device *dev)
1632{
1633	return iommu_group_alloc();
1634}
1635EXPORT_SYMBOL_GPL(generic_device_group);
1636
1637/*
1638 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1639 * to find or create an IOMMU group for a device.
1640 */
1641struct iommu_group *pci_device_group(struct device *dev)
1642{
1643	struct pci_dev *pdev = to_pci_dev(dev);
1644	struct group_for_pci_data data;
1645	struct pci_bus *bus;
1646	struct iommu_group *group = NULL;
1647	u64 devfns[4] = { 0 };
1648
1649	if (WARN_ON(!dev_is_pci(dev)))
1650		return ERR_PTR(-EINVAL);
1651
1652	/*
1653	 * Find the upstream DMA alias for the device.  A device must not
1654	 * be aliased due to topology in order to have its own IOMMU group.
1655	 * If we find an alias along the way that already belongs to a
1656	 * group, use it.
1657	 */
1658	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1659		return data.group;
1660
1661	pdev = data.pdev;
1662
1663	/*
1664	 * Continue upstream from the point of minimum IOMMU granularity
1665	 * due to aliases to the point where devices are protected from
1666	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1667	 * group, use it.
1668	 */
1669	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1670		if (!bus->self)
1671			continue;
1672
1673		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1674			break;
1675
1676		pdev = bus->self;
1677
1678		group = iommu_group_get(&pdev->dev);
1679		if (group)
1680			return group;
1681	}
1682
1683	/*
1684	 * Look for existing groups on device aliases.  If we alias another
1685	 * device or another device aliases us, use the same group.
1686	 */
1687	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1688	if (group)
1689		return group;
1690
1691	/*
1692	 * Look for existing groups on non-isolated functions on the same
1693	 * slot and aliases of those funcions, if any.  No need to clear
1694	 * the search bitmap, the tested devfns are still valid.
1695	 */
1696	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1697	if (group)
1698		return group;
1699
1700	/* No shared group found, allocate new */
1701	return iommu_group_alloc();
1702}
1703EXPORT_SYMBOL_GPL(pci_device_group);
1704
1705/* Get the IOMMU group for device on fsl-mc bus */
1706struct iommu_group *fsl_mc_device_group(struct device *dev)
1707{
1708	struct device *cont_dev = fsl_mc_cont_dev(dev);
1709	struct iommu_group *group;
1710
1711	group = iommu_group_get(cont_dev);
1712	if (!group)
1713		group = iommu_group_alloc();
1714	return group;
1715}
1716EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1717
1718static int iommu_get_def_domain_type(struct device *dev)
1719{
1720	const struct iommu_ops *ops = dev_iommu_ops(dev);
1721
1722	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1723		return IOMMU_DOMAIN_DMA;
1724
1725	if (ops->def_domain_type)
1726		return ops->def_domain_type(dev);
1727
1728	return 0;
1729}
1730
1731static struct iommu_domain *
1732__iommu_group_alloc_default_domain(const struct bus_type *bus,
1733				   struct iommu_group *group, int req_type)
1734{
1735	if (group->default_domain && group->default_domain->type == req_type)
1736		return group->default_domain;
1737	return __iommu_domain_alloc(bus, req_type);
1738}
1739
1740/*
1741 * req_type of 0 means "auto" which means to select a domain based on
1742 * iommu_def_domain_type or what the driver actually supports.
1743 */
1744static struct iommu_domain *
1745iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1746{
1747	const struct bus_type *bus =
1748		list_first_entry(&group->devices, struct group_device, list)
1749			->dev->bus;
1750	struct iommu_domain *dom;
1751
1752	lockdep_assert_held(&group->mutex);
1753
1754	if (req_type)
1755		return __iommu_group_alloc_default_domain(bus, group, req_type);
1756
1757	/* The driver gave no guidance on what type to use, try the default */
1758	dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type);
1759	if (dom)
1760		return dom;
1761
1762	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1763	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1764		return NULL;
1765	dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA);
1766	if (!dom)
1767		return NULL;
1768
1769	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1770		iommu_def_domain_type, group->name);
1771	return dom;
1772}
1773
1774struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1775{
1776	return group->default_domain;
1777}
1778
1779static int probe_iommu_group(struct device *dev, void *data)
1780{
1781	struct list_head *group_list = data;
1782	int ret;
1783
1784	mutex_lock(&iommu_probe_device_lock);
1785	ret = __iommu_probe_device(dev, group_list);
1786	mutex_unlock(&iommu_probe_device_lock);
1787	if (ret == -ENODEV)
1788		ret = 0;
1789
1790	return ret;
1791}
1792
1793static int iommu_bus_notifier(struct notifier_block *nb,
1794			      unsigned long action, void *data)
1795{
1796	struct device *dev = data;
1797
1798	if (action == BUS_NOTIFY_ADD_DEVICE) {
1799		int ret;
1800
1801		ret = iommu_probe_device(dev);
1802		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1803	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1804		iommu_release_device(dev);
1805		return NOTIFY_OK;
1806	}
1807
1808	return 0;
1809}
1810
1811/* A target_type of 0 will select the best domain type and cannot fail */
1812static int iommu_get_default_domain_type(struct iommu_group *group,
1813					 int target_type)
1814{
1815	int best_type = target_type;
1816	struct group_device *gdev;
1817	struct device *last_dev;
1818
1819	lockdep_assert_held(&group->mutex);
1820
1821	for_each_group_device(group, gdev) {
1822		unsigned int type = iommu_get_def_domain_type(gdev->dev);
1823
1824		if (best_type && type && best_type != type) {
1825			if (target_type) {
1826				dev_err_ratelimited(
1827					gdev->dev,
1828					"Device cannot be in %s domain\n",
1829					iommu_domain_type_str(target_type));
1830				return -1;
1831			}
1832
1833			dev_warn(
1834				gdev->dev,
1835				"Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1836				iommu_domain_type_str(type), dev_name(last_dev),
1837				iommu_domain_type_str(best_type));
1838			return 0;
1839		}
1840		if (!best_type)
1841			best_type = type;
1842		last_dev = gdev->dev;
1843	}
1844	return best_type;
1845}
1846
1847static void iommu_group_do_probe_finalize(struct device *dev)
1848{
1849	const struct iommu_ops *ops = dev_iommu_ops(dev);
1850
1851	if (ops->probe_finalize)
1852		ops->probe_finalize(dev);
1853}
1854
1855int bus_iommu_probe(const struct bus_type *bus)
1856{
1857	struct iommu_group *group, *next;
1858	LIST_HEAD(group_list);
1859	int ret;
1860
1861	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1862	if (ret)
1863		return ret;
1864
1865	list_for_each_entry_safe(group, next, &group_list, entry) {
1866		struct group_device *gdev;
1867
1868		mutex_lock(&group->mutex);
1869
1870		/* Remove item from the list */
1871		list_del_init(&group->entry);
1872
1873		/*
1874		 * We go to the trouble of deferred default domain creation so
1875		 * that the cross-group default domain type and the setup of the
1876		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1877		 */
1878		ret = iommu_setup_default_domain(group, 0);
1879		if (ret) {
1880			mutex_unlock(&group->mutex);
1881			return ret;
1882		}
1883		mutex_unlock(&group->mutex);
1884
1885		/*
1886		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1887		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1888		 * in-turn might call back into IOMMU core code, where it tries
1889		 * to take group->mutex, resulting in a deadlock.
1890		 */
1891		for_each_group_device(group, gdev)
1892			iommu_group_do_probe_finalize(gdev->dev);
1893	}
1894
1895	return 0;
1896}
1897
1898bool iommu_present(const struct bus_type *bus)
1899{
1900	return bus->iommu_ops != NULL;
1901}
1902EXPORT_SYMBOL_GPL(iommu_present);
1903
1904/**
1905 * device_iommu_capable() - check for a general IOMMU capability
1906 * @dev: device to which the capability would be relevant, if available
1907 * @cap: IOMMU capability
1908 *
1909 * Return: true if an IOMMU is present and supports the given capability
1910 * for the given device, otherwise false.
1911 */
1912bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1913{
1914	const struct iommu_ops *ops;
1915
1916	if (!dev->iommu || !dev->iommu->iommu_dev)
1917		return false;
1918
1919	ops = dev_iommu_ops(dev);
1920	if (!ops->capable)
1921		return false;
1922
1923	return ops->capable(dev, cap);
1924}
1925EXPORT_SYMBOL_GPL(device_iommu_capable);
1926
1927/**
1928 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1929 *       for a group
1930 * @group: Group to query
1931 *
1932 * IOMMU groups should not have differing values of
1933 * msi_device_has_isolated_msi() for devices in a group. However nothing
1934 * directly prevents this, so ensure mistakes don't result in isolation failures
1935 * by checking that all the devices are the same.
1936 */
1937bool iommu_group_has_isolated_msi(struct iommu_group *group)
1938{
1939	struct group_device *group_dev;
1940	bool ret = true;
1941
1942	mutex_lock(&group->mutex);
1943	for_each_group_device(group, group_dev)
1944		ret &= msi_device_has_isolated_msi(group_dev->dev);
1945	mutex_unlock(&group->mutex);
1946	return ret;
1947}
1948EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1949
1950/**
1951 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1952 * @domain: iommu domain
1953 * @handler: fault handler
1954 * @token: user data, will be passed back to the fault handler
1955 *
1956 * This function should be used by IOMMU users which want to be notified
1957 * whenever an IOMMU fault happens.
1958 *
1959 * The fault handler itself should return 0 on success, and an appropriate
1960 * error code otherwise.
1961 */
1962void iommu_set_fault_handler(struct iommu_domain *domain,
1963					iommu_fault_handler_t handler,
1964					void *token)
1965{
1966	BUG_ON(!domain);
1967
1968	domain->handler = handler;
1969	domain->handler_token = token;
1970}
1971EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1972
1973static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1974						 unsigned type)
1975{
1976	struct iommu_domain *domain;
1977	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1978
1979	if (bus == NULL || bus->iommu_ops == NULL)
1980		return NULL;
1981
1982	domain = bus->iommu_ops->domain_alloc(alloc_type);
1983	if (!domain)
1984		return NULL;
1985
1986	domain->type = type;
1987	/*
1988	 * If not already set, assume all sizes by default; the driver
1989	 * may override this later
1990	 */
1991	if (!domain->pgsize_bitmap)
1992		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1993
1994	if (!domain->ops)
1995		domain->ops = bus->iommu_ops->default_domain_ops;
1996
1997	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1998		iommu_domain_free(domain);
1999		domain = NULL;
2000	}
2001	return domain;
2002}
2003
2004struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2005{
2006	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2007}
2008EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2009
2010void iommu_domain_free(struct iommu_domain *domain)
2011{
2012	if (domain->type == IOMMU_DOMAIN_SVA)
2013		mmdrop(domain->mm);
2014	iommu_put_dma_cookie(domain);
2015	domain->ops->free(domain);
2016}
2017EXPORT_SYMBOL_GPL(iommu_domain_free);
2018
2019/*
2020 * Put the group's domain back to the appropriate core-owned domain - either the
2021 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2022 */
2023static void __iommu_group_set_core_domain(struct iommu_group *group)
2024{
2025	struct iommu_domain *new_domain;
2026
2027	if (group->owner)
2028		new_domain = group->blocking_domain;
2029	else
2030		new_domain = group->default_domain;
2031
2032	__iommu_group_set_domain_nofail(group, new_domain);
2033}
2034
2035static int __iommu_attach_device(struct iommu_domain *domain,
2036				 struct device *dev)
2037{
2038	int ret;
2039
2040	if (unlikely(domain->ops->attach_dev == NULL))
2041		return -ENODEV;
2042
2043	ret = domain->ops->attach_dev(domain, dev);
2044	if (ret)
2045		return ret;
2046	dev->iommu->attach_deferred = 0;
2047	trace_attach_device_to_domain(dev);
2048	return 0;
2049}
2050
2051/**
2052 * iommu_attach_device - Attach an IOMMU domain to a device
2053 * @domain: IOMMU domain to attach
2054 * @dev: Device that will be attached
2055 *
2056 * Returns 0 on success and error code on failure
2057 *
2058 * Note that EINVAL can be treated as a soft failure, indicating
2059 * that certain configuration of the domain is incompatible with
2060 * the device. In this case attaching a different domain to the
2061 * device may succeed.
2062 */
2063int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2064{
2065	struct iommu_group *group;
2066	int ret;
2067
2068	group = iommu_group_get(dev);
2069	if (!group)
2070		return -ENODEV;
2071
2072	/*
2073	 * Lock the group to make sure the device-count doesn't
2074	 * change while we are attaching
2075	 */
2076	mutex_lock(&group->mutex);
2077	ret = -EINVAL;
2078	if (list_count_nodes(&group->devices) != 1)
2079		goto out_unlock;
2080
2081	ret = __iommu_attach_group(domain, group);
2082
2083out_unlock:
2084	mutex_unlock(&group->mutex);
2085	iommu_group_put(group);
2086
2087	return ret;
2088}
2089EXPORT_SYMBOL_GPL(iommu_attach_device);
2090
2091int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2092{
2093	if (dev->iommu && dev->iommu->attach_deferred)
2094		return __iommu_attach_device(domain, dev);
2095
2096	return 0;
2097}
2098
2099void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2100{
2101	struct iommu_group *group;
2102
2103	group = iommu_group_get(dev);
2104	if (!group)
2105		return;
2106
2107	mutex_lock(&group->mutex);
2108	if (WARN_ON(domain != group->domain) ||
2109	    WARN_ON(list_count_nodes(&group->devices) != 1))
2110		goto out_unlock;
2111	__iommu_group_set_core_domain(group);
2112
2113out_unlock:
2114	mutex_unlock(&group->mutex);
2115	iommu_group_put(group);
2116}
2117EXPORT_SYMBOL_GPL(iommu_detach_device);
2118
2119struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2120{
2121	struct iommu_domain *domain;
2122	struct iommu_group *group;
2123
2124	group = iommu_group_get(dev);
2125	if (!group)
2126		return NULL;
2127
2128	domain = group->domain;
2129
2130	iommu_group_put(group);
2131
2132	return domain;
2133}
2134EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2135
2136/*
2137 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2138 * guarantees that the group and its default domain are valid and correct.
2139 */
2140struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2141{
2142	return dev->iommu_group->default_domain;
2143}
2144
2145static int __iommu_attach_group(struct iommu_domain *domain,
2146				struct iommu_group *group)
2147{
2148	if (group->domain && group->domain != group->default_domain &&
2149	    group->domain != group->blocking_domain)
2150		return -EBUSY;
2151
2152	return __iommu_group_set_domain(group, domain);
2153}
2154
2155/**
2156 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2157 * @domain: IOMMU domain to attach
2158 * @group: IOMMU group that will be attached
2159 *
2160 * Returns 0 on success and error code on failure
2161 *
2162 * Note that EINVAL can be treated as a soft failure, indicating
2163 * that certain configuration of the domain is incompatible with
2164 * the group. In this case attaching a different domain to the
2165 * group may succeed.
2166 */
2167int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2168{
2169	int ret;
2170
2171	mutex_lock(&group->mutex);
2172	ret = __iommu_attach_group(domain, group);
2173	mutex_unlock(&group->mutex);
2174
2175	return ret;
2176}
2177EXPORT_SYMBOL_GPL(iommu_attach_group);
2178
2179/**
2180 * iommu_group_replace_domain - replace the domain that a group is attached to
2181 * @new_domain: new IOMMU domain to replace with
2182 * @group: IOMMU group that will be attached to the new domain
2183 *
2184 * This API allows the group to switch domains without being forced to go to
2185 * the blocking domain in-between.
2186 *
2187 * If the currently attached domain is a core domain (e.g. a default_domain),
2188 * it will act just like the iommu_attach_group().
2189 */
2190int iommu_group_replace_domain(struct iommu_group *group,
2191			       struct iommu_domain *new_domain)
2192{
2193	int ret;
2194
2195	if (!new_domain)
2196		return -EINVAL;
2197
2198	mutex_lock(&group->mutex);
2199	ret = __iommu_group_set_domain(group, new_domain);
2200	mutex_unlock(&group->mutex);
2201	return ret;
2202}
2203EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2204
2205static int __iommu_device_set_domain(struct iommu_group *group,
2206				     struct device *dev,
2207				     struct iommu_domain *new_domain,
2208				     unsigned int flags)
2209{
2210	int ret;
2211
2212	/*
2213	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2214	 * the blocking domain to be attached as it does not contain the
2215	 * required 1:1 mapping. This test effectively excludes the device
2216	 * being used with iommu_group_claim_dma_owner() which will block
2217	 * vfio and iommufd as well.
2218	 */
2219	if (dev->iommu->require_direct &&
2220	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2221	     new_domain == group->blocking_domain)) {
2222		dev_warn(dev,
2223			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2224		return -EINVAL;
2225	}
2226
2227	if (dev->iommu->attach_deferred) {
2228		if (new_domain == group->default_domain)
2229			return 0;
2230		dev->iommu->attach_deferred = 0;
2231	}
2232
2233	ret = __iommu_attach_device(new_domain, dev);
2234	if (ret) {
2235		/*
2236		 * If we have a blocking domain then try to attach that in hopes
2237		 * of avoiding a UAF. Modern drivers should implement blocking
2238		 * domains as global statics that cannot fail.
2239		 */
2240		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2241		    group->blocking_domain &&
2242		    group->blocking_domain != new_domain)
2243			__iommu_attach_device(group->blocking_domain, dev);
2244		return ret;
2245	}
2246	return 0;
2247}
2248
2249/*
2250 * If 0 is returned the group's domain is new_domain. If an error is returned
2251 * then the group's domain will be set back to the existing domain unless
2252 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2253 * domains is left inconsistent. This is a driver bug to fail attach with a
2254 * previously good domain. We try to avoid a kernel UAF because of this.
2255 *
2256 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2257 * API works on domains and devices.  Bridge that gap by iterating over the
2258 * devices in a group.  Ideally we'd have a single device which represents the
2259 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2260 * defined minimum sets, where the physical hardware may be able to distiguish
2261 * members, but we wish to group them at a higher level (ex. untrusted
2262 * multi-function PCI devices).  Thus we attach each device.
2263 */
2264static int __iommu_group_set_domain_internal(struct iommu_group *group,
2265					     struct iommu_domain *new_domain,
2266					     unsigned int flags)
2267{
2268	struct group_device *last_gdev;
2269	struct group_device *gdev;
2270	int result;
2271	int ret;
2272
2273	lockdep_assert_held(&group->mutex);
2274
2275	if (group->domain == new_domain)
2276		return 0;
2277
2278	/*
2279	 * New drivers should support default domains, so set_platform_dma()
2280	 * op will never be called. Otherwise the NULL domain represents some
2281	 * platform specific behavior.
2282	 */
2283	if (!new_domain) {
2284		for_each_group_device(group, gdev) {
2285			const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2286
2287			if (!WARN_ON(!ops->set_platform_dma_ops))
2288				ops->set_platform_dma_ops(gdev->dev);
2289		}
2290		group->domain = NULL;
2291		return 0;
2292	}
2293
2294	/*
2295	 * Changing the domain is done by calling attach_dev() on the new
2296	 * domain. This switch does not have to be atomic and DMA can be
2297	 * discarded during the transition. DMA must only be able to access
2298	 * either new_domain or group->domain, never something else.
2299	 */
2300	result = 0;
2301	for_each_group_device(group, gdev) {
2302		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2303						flags);
2304		if (ret) {
2305			result = ret;
2306			/*
2307			 * Keep trying the other devices in the group. If a
2308			 * driver fails attach to an otherwise good domain, and
2309			 * does not support blocking domains, it should at least
2310			 * drop its reference on the current domain so we don't
2311			 * UAF.
2312			 */
2313			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2314				continue;
2315			goto err_revert;
2316		}
2317	}
2318	group->domain = new_domain;
2319	return result;
2320
2321err_revert:
2322	/*
2323	 * This is called in error unwind paths. A well behaved driver should
2324	 * always allow us to attach to a domain that was already attached.
2325	 */
2326	last_gdev = gdev;
2327	for_each_group_device(group, gdev) {
2328		const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2329
2330		/*
2331		 * If set_platform_dma_ops is not present a NULL domain can
2332		 * happen only for first probe, in which case we leave
2333		 * group->domain as NULL and let release clean everything up.
2334		 */
2335		if (group->domain)
2336			WARN_ON(__iommu_device_set_domain(
2337				group, gdev->dev, group->domain,
2338				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2339		else if (ops->set_platform_dma_ops)
2340			ops->set_platform_dma_ops(gdev->dev);
2341		if (gdev == last_gdev)
2342			break;
2343	}
2344	return ret;
2345}
2346
2347void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2348{
2349	mutex_lock(&group->mutex);
2350	__iommu_group_set_core_domain(group);
2351	mutex_unlock(&group->mutex);
2352}
2353EXPORT_SYMBOL_GPL(iommu_detach_group);
2354
2355phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2356{
2357	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2358		return iova;
2359
2360	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2361		return 0;
2362
2363	return domain->ops->iova_to_phys(domain, iova);
2364}
2365EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2366
2367static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2368			   phys_addr_t paddr, size_t size, size_t *count)
2369{
2370	unsigned int pgsize_idx, pgsize_idx_next;
2371	unsigned long pgsizes;
2372	size_t offset, pgsize, pgsize_next;
2373	unsigned long addr_merge = paddr | iova;
2374
2375	/* Page sizes supported by the hardware and small enough for @size */
2376	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2377
2378	/* Constrain the page sizes further based on the maximum alignment */
2379	if (likely(addr_merge))
2380		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2381
2382	/* Make sure we have at least one suitable page size */
2383	BUG_ON(!pgsizes);
2384
2385	/* Pick the biggest page size remaining */
2386	pgsize_idx = __fls(pgsizes);
2387	pgsize = BIT(pgsize_idx);
2388	if (!count)
2389		return pgsize;
2390
2391	/* Find the next biggest support page size, if it exists */
2392	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2393	if (!pgsizes)
2394		goto out_set_count;
2395
2396	pgsize_idx_next = __ffs(pgsizes);
2397	pgsize_next = BIT(pgsize_idx_next);
2398
2399	/*
2400	 * There's no point trying a bigger page size unless the virtual
2401	 * and physical addresses are similarly offset within the larger page.
2402	 */
2403	if ((iova ^ paddr) & (pgsize_next - 1))
2404		goto out_set_count;
2405
2406	/* Calculate the offset to the next page size alignment boundary */
2407	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2408
2409	/*
2410	 * If size is big enough to accommodate the larger page, reduce
2411	 * the number of smaller pages.
2412	 */
2413	if (offset + pgsize_next <= size)
2414		size = offset;
2415
2416out_set_count:
2417	*count = size >> pgsize_idx;
2418	return pgsize;
2419}
2420
2421static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2422			     phys_addr_t paddr, size_t size, int prot,
2423			     gfp_t gfp, size_t *mapped)
2424{
2425	const struct iommu_domain_ops *ops = domain->ops;
2426	size_t pgsize, count;
2427	int ret;
2428
2429	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2430
2431	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2432		 iova, &paddr, pgsize, count);
2433
2434	if (ops->map_pages) {
2435		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2436				     gfp, mapped);
2437	} else {
2438		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2439		*mapped = ret ? 0 : pgsize;
2440	}
2441
2442	return ret;
2443}
2444
2445static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2446		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2447{
2448	const struct iommu_domain_ops *ops = domain->ops;
2449	unsigned long orig_iova = iova;
2450	unsigned int min_pagesz;
2451	size_t orig_size = size;
2452	phys_addr_t orig_paddr = paddr;
2453	int ret = 0;
2454
2455	if (unlikely(!(ops->map || ops->map_pages) ||
2456		     domain->pgsize_bitmap == 0UL))
2457		return -ENODEV;
2458
2459	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2460		return -EINVAL;
2461
2462	/* find out the minimum page size supported */
2463	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2464
2465	/*
2466	 * both the virtual address and the physical one, as well as
2467	 * the size of the mapping, must be aligned (at least) to the
2468	 * size of the smallest page supported by the hardware
2469	 */
2470	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2471		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2472		       iova, &paddr, size, min_pagesz);
2473		return -EINVAL;
2474	}
2475
2476	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2477
2478	while (size) {
2479		size_t mapped = 0;
2480
2481		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2482					&mapped);
2483		/*
2484		 * Some pages may have been mapped, even if an error occurred,
2485		 * so we should account for those so they can be unmapped.
2486		 */
2487		size -= mapped;
2488
2489		if (ret)
2490			break;
2491
2492		iova += mapped;
2493		paddr += mapped;
2494	}
2495
2496	/* unroll mapping in case something went wrong */
2497	if (ret)
2498		iommu_unmap(domain, orig_iova, orig_size - size);
2499	else
2500		trace_map(orig_iova, orig_paddr, orig_size);
2501
2502	return ret;
2503}
2504
2505int iommu_map(struct iommu_domain *domain, unsigned long iova,
2506	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2507{
2508	const struct iommu_domain_ops *ops = domain->ops;
2509	int ret;
2510
2511	might_sleep_if(gfpflags_allow_blocking(gfp));
2512
2513	/* Discourage passing strange GFP flags */
2514	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2515				__GFP_HIGHMEM)))
2516		return -EINVAL;
2517
2518	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2519	if (ret == 0 && ops->iotlb_sync_map)
2520		ops->iotlb_sync_map(domain, iova, size);
2521
2522	return ret;
2523}
2524EXPORT_SYMBOL_GPL(iommu_map);
2525
2526static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2527				  unsigned long iova, size_t size,
2528				  struct iommu_iotlb_gather *iotlb_gather)
2529{
2530	const struct iommu_domain_ops *ops = domain->ops;
2531	size_t pgsize, count;
2532
2533	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2534	return ops->unmap_pages ?
2535	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2536	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2537}
2538
2539static size_t __iommu_unmap(struct iommu_domain *domain,
2540			    unsigned long iova, size_t size,
2541			    struct iommu_iotlb_gather *iotlb_gather)
2542{
2543	const struct iommu_domain_ops *ops = domain->ops;
2544	size_t unmapped_page, unmapped = 0;
2545	unsigned long orig_iova = iova;
2546	unsigned int min_pagesz;
2547
2548	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2549		     domain->pgsize_bitmap == 0UL))
2550		return 0;
2551
2552	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2553		return 0;
2554
2555	/* find out the minimum page size supported */
2556	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2557
2558	/*
2559	 * The virtual address, as well as the size of the mapping, must be
2560	 * aligned (at least) to the size of the smallest page supported
2561	 * by the hardware
2562	 */
2563	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2564		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2565		       iova, size, min_pagesz);
2566		return 0;
2567	}
2568
2569	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2570
2571	/*
2572	 * Keep iterating until we either unmap 'size' bytes (or more)
2573	 * or we hit an area that isn't mapped.
2574	 */
2575	while (unmapped < size) {
2576		unmapped_page = __iommu_unmap_pages(domain, iova,
2577						    size - unmapped,
2578						    iotlb_gather);
2579		if (!unmapped_page)
2580			break;
2581
2582		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2583			 iova, unmapped_page);
2584
2585		iova += unmapped_page;
2586		unmapped += unmapped_page;
2587	}
2588
2589	trace_unmap(orig_iova, size, unmapped);
2590	return unmapped;
2591}
2592
2593size_t iommu_unmap(struct iommu_domain *domain,
2594		   unsigned long iova, size_t size)
2595{
2596	struct iommu_iotlb_gather iotlb_gather;
2597	size_t ret;
2598
2599	iommu_iotlb_gather_init(&iotlb_gather);
2600	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2601	iommu_iotlb_sync(domain, &iotlb_gather);
2602
2603	return ret;
2604}
2605EXPORT_SYMBOL_GPL(iommu_unmap);
2606
2607size_t iommu_unmap_fast(struct iommu_domain *domain,
2608			unsigned long iova, size_t size,
2609			struct iommu_iotlb_gather *iotlb_gather)
2610{
2611	return __iommu_unmap(domain, iova, size, iotlb_gather);
2612}
2613EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2614
2615ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2616		     struct scatterlist *sg, unsigned int nents, int prot,
2617		     gfp_t gfp)
2618{
2619	const struct iommu_domain_ops *ops = domain->ops;
2620	size_t len = 0, mapped = 0;
2621	phys_addr_t start;
2622	unsigned int i = 0;
2623	int ret;
2624
2625	might_sleep_if(gfpflags_allow_blocking(gfp));
2626
2627	/* Discourage passing strange GFP flags */
2628	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2629				__GFP_HIGHMEM)))
2630		return -EINVAL;
2631
2632	while (i <= nents) {
2633		phys_addr_t s_phys = sg_phys(sg);
2634
2635		if (len && s_phys != start + len) {
2636			ret = __iommu_map(domain, iova + mapped, start,
2637					len, prot, gfp);
2638
2639			if (ret)
2640				goto out_err;
2641
2642			mapped += len;
2643			len = 0;
2644		}
2645
2646		if (sg_dma_is_bus_address(sg))
2647			goto next;
2648
2649		if (len) {
2650			len += sg->length;
2651		} else {
2652			len = sg->length;
2653			start = s_phys;
2654		}
2655
2656next:
2657		if (++i < nents)
2658			sg = sg_next(sg);
2659	}
2660
2661	if (ops->iotlb_sync_map)
2662		ops->iotlb_sync_map(domain, iova, mapped);
2663	return mapped;
2664
2665out_err:
2666	/* undo mappings already done */
2667	iommu_unmap(domain, iova, mapped);
2668
2669	return ret;
2670}
2671EXPORT_SYMBOL_GPL(iommu_map_sg);
2672
2673/**
2674 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2675 * @domain: the iommu domain where the fault has happened
2676 * @dev: the device where the fault has happened
2677 * @iova: the faulting address
2678 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2679 *
2680 * This function should be called by the low-level IOMMU implementations
2681 * whenever IOMMU faults happen, to allow high-level users, that are
2682 * interested in such events, to know about them.
2683 *
2684 * This event may be useful for several possible use cases:
2685 * - mere logging of the event
2686 * - dynamic TLB/PTE loading
2687 * - if restarting of the faulting device is required
2688 *
2689 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2690 * PTE/TLB loading will one day be supported, implementations will be able
2691 * to tell whether it succeeded or not according to this return value).
2692 *
2693 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2694 * (though fault handlers can also return -ENOSYS, in case they want to
2695 * elicit the default behavior of the IOMMU drivers).
2696 */
2697int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2698		       unsigned long iova, int flags)
2699{
2700	int ret = -ENOSYS;
2701
2702	/*
2703	 * if upper layers showed interest and installed a fault handler,
2704	 * invoke it.
2705	 */
2706	if (domain->handler)
2707		ret = domain->handler(domain, dev, iova, flags,
2708						domain->handler_token);
2709
2710	trace_io_page_fault(dev, iova, flags);
2711	return ret;
2712}
2713EXPORT_SYMBOL_GPL(report_iommu_fault);
2714
2715static int __init iommu_init(void)
2716{
2717	iommu_group_kset = kset_create_and_add("iommu_groups",
2718					       NULL, kernel_kobj);
2719	BUG_ON(!iommu_group_kset);
2720
2721	iommu_debugfs_setup();
2722
2723	return 0;
2724}
2725core_initcall(iommu_init);
2726
2727int iommu_enable_nesting(struct iommu_domain *domain)
2728{
2729	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2730		return -EINVAL;
2731	if (!domain->ops->enable_nesting)
2732		return -EINVAL;
2733	return domain->ops->enable_nesting(domain);
2734}
2735EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2736
2737int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2738		unsigned long quirk)
2739{
2740	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2741		return -EINVAL;
2742	if (!domain->ops->set_pgtable_quirks)
2743		return -EINVAL;
2744	return domain->ops->set_pgtable_quirks(domain, quirk);
2745}
2746EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2747
2748/**
2749 * iommu_get_resv_regions - get reserved regions
2750 * @dev: device for which to get reserved regions
2751 * @list: reserved region list for device
2752 *
2753 * This returns a list of reserved IOVA regions specific to this device.
2754 * A domain user should not map IOVA in these ranges.
2755 */
2756void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2757{
2758	const struct iommu_ops *ops = dev_iommu_ops(dev);
2759
2760	if (ops->get_resv_regions)
2761		ops->get_resv_regions(dev, list);
2762}
2763EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2764
2765/**
2766 * iommu_put_resv_regions - release reserved regions
2767 * @dev: device for which to free reserved regions
2768 * @list: reserved region list for device
2769 *
2770 * This releases a reserved region list acquired by iommu_get_resv_regions().
2771 */
2772void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2773{
2774	struct iommu_resv_region *entry, *next;
2775
2776	list_for_each_entry_safe(entry, next, list, list) {
2777		if (entry->free)
2778			entry->free(dev, entry);
2779		else
2780			kfree(entry);
2781	}
2782}
2783EXPORT_SYMBOL(iommu_put_resv_regions);
2784
2785struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2786						  size_t length, int prot,
2787						  enum iommu_resv_type type,
2788						  gfp_t gfp)
2789{
2790	struct iommu_resv_region *region;
2791
2792	region = kzalloc(sizeof(*region), gfp);
2793	if (!region)
2794		return NULL;
2795
2796	INIT_LIST_HEAD(&region->list);
2797	region->start = start;
2798	region->length = length;
2799	region->prot = prot;
2800	region->type = type;
2801	return region;
2802}
2803EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2804
2805void iommu_set_default_passthrough(bool cmd_line)
2806{
2807	if (cmd_line)
2808		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2809	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2810}
2811
2812void iommu_set_default_translated(bool cmd_line)
2813{
2814	if (cmd_line)
2815		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2816	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2817}
2818
2819bool iommu_default_passthrough(void)
2820{
2821	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2822}
2823EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2824
2825const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2826{
2827	const struct iommu_ops *ops = NULL;
2828	struct iommu_device *iommu;
2829
2830	spin_lock(&iommu_device_lock);
2831	list_for_each_entry(iommu, &iommu_device_list, list)
2832		if (iommu->fwnode == fwnode) {
2833			ops = iommu->ops;
2834			break;
2835		}
2836	spin_unlock(&iommu_device_lock);
2837	return ops;
2838}
2839
2840int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2841		      const struct iommu_ops *ops)
2842{
2843	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2844
2845	if (fwspec)
2846		return ops == fwspec->ops ? 0 : -EINVAL;
2847
2848	if (!dev_iommu_get(dev))
2849		return -ENOMEM;
2850
2851	/* Preallocate for the overwhelmingly common case of 1 ID */
2852	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2853	if (!fwspec)
2854		return -ENOMEM;
2855
2856	of_node_get(to_of_node(iommu_fwnode));
2857	fwspec->iommu_fwnode = iommu_fwnode;
2858	fwspec->ops = ops;
2859	dev_iommu_fwspec_set(dev, fwspec);
2860	return 0;
2861}
2862EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2863
2864void iommu_fwspec_free(struct device *dev)
2865{
2866	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2867
2868	if (fwspec) {
2869		fwnode_handle_put(fwspec->iommu_fwnode);
2870		kfree(fwspec);
2871		dev_iommu_fwspec_set(dev, NULL);
2872	}
2873}
2874EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2875
2876int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2877{
2878	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2879	int i, new_num;
2880
2881	if (!fwspec)
2882		return -EINVAL;
2883
2884	new_num = fwspec->num_ids + num_ids;
2885	if (new_num > 1) {
2886		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2887				  GFP_KERNEL);
2888		if (!fwspec)
2889			return -ENOMEM;
2890
2891		dev_iommu_fwspec_set(dev, fwspec);
2892	}
2893
2894	for (i = 0; i < num_ids; i++)
2895		fwspec->ids[fwspec->num_ids + i] = ids[i];
2896
2897	fwspec->num_ids = new_num;
2898	return 0;
2899}
2900EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2901
2902/*
2903 * Per device IOMMU features.
2904 */
2905int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2906{
2907	if (dev->iommu && dev->iommu->iommu_dev) {
2908		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2909
2910		if (ops->dev_enable_feat)
2911			return ops->dev_enable_feat(dev, feat);
2912	}
2913
2914	return -ENODEV;
2915}
2916EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2917
2918/*
2919 * The device drivers should do the necessary cleanups before calling this.
2920 */
2921int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2922{
2923	if (dev->iommu && dev->iommu->iommu_dev) {
2924		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2925
2926		if (ops->dev_disable_feat)
2927			return ops->dev_disable_feat(dev, feat);
2928	}
2929
2930	return -EBUSY;
2931}
2932EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2933
2934/**
2935 * iommu_setup_default_domain - Set the default_domain for the group
2936 * @group: Group to change
2937 * @target_type: Domain type to set as the default_domain
2938 *
2939 * Allocate a default domain and set it as the current domain on the group. If
2940 * the group already has a default domain it will be changed to the target_type.
2941 * When target_type is 0 the default domain is selected based on driver and
2942 * system preferences.
2943 */
2944static int iommu_setup_default_domain(struct iommu_group *group,
2945				      int target_type)
2946{
2947	struct iommu_domain *old_dom = group->default_domain;
2948	struct group_device *gdev;
2949	struct iommu_domain *dom;
2950	bool direct_failed;
2951	int req_type;
2952	int ret;
2953
2954	lockdep_assert_held(&group->mutex);
2955
2956	req_type = iommu_get_default_domain_type(group, target_type);
2957	if (req_type < 0)
2958		return -EINVAL;
2959
2960	/*
2961	 * There are still some drivers which don't support default domains, so
2962	 * we ignore the failure and leave group->default_domain NULL.
2963	 *
2964	 * We assume that the iommu driver starts up the device in
2965	 * 'set_platform_dma_ops' mode if it does not support default domains.
2966	 */
2967	dom = iommu_group_alloc_default_domain(group, req_type);
2968	if (!dom) {
2969		/* Once in default_domain mode we never leave */
2970		if (group->default_domain)
2971			return -ENODEV;
2972		group->default_domain = NULL;
2973		return 0;
2974	}
2975
2976	if (group->default_domain == dom)
2977		return 0;
2978
2979	/*
2980	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2981	 * mapped before their device is attached, in order to guarantee
2982	 * continuity with any FW activity
2983	 */
2984	direct_failed = false;
2985	for_each_group_device(group, gdev) {
2986		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2987			direct_failed = true;
2988			dev_warn_once(
2989				gdev->dev->iommu->iommu_dev->dev,
2990				"IOMMU driver was not able to establish FW requested direct mapping.");
2991		}
2992	}
2993
2994	/* We must set default_domain early for __iommu_device_set_domain */
2995	group->default_domain = dom;
2996	if (!group->domain) {
2997		/*
2998		 * Drivers are not allowed to fail the first domain attach.
2999		 * The only way to recover from this is to fail attaching the
3000		 * iommu driver and call ops->release_device. Put the domain
3001		 * in group->default_domain so it is freed after.
3002		 */
3003		ret = __iommu_group_set_domain_internal(
3004			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3005		if (WARN_ON(ret))
3006			goto out_free_old;
3007	} else {
3008		ret = __iommu_group_set_domain(group, dom);
3009		if (ret)
3010			goto err_restore_def_domain;
3011	}
3012
3013	/*
3014	 * Drivers are supposed to allow mappings to be installed in a domain
3015	 * before device attachment, but some don't. Hack around this defect by
3016	 * trying again after attaching. If this happens it means the device
3017	 * will not continuously have the IOMMU_RESV_DIRECT map.
3018	 */
3019	if (direct_failed) {
3020		for_each_group_device(group, gdev) {
3021			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3022			if (ret)
3023				goto err_restore_domain;
3024		}
3025	}
3026
3027out_free_old:
3028	if (old_dom)
3029		iommu_domain_free(old_dom);
3030	return ret;
3031
3032err_restore_domain:
3033	if (old_dom)
3034		__iommu_group_set_domain_internal(
3035			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3036err_restore_def_domain:
3037	if (old_dom) {
3038		iommu_domain_free(dom);
3039		group->default_domain = old_dom;
3040	}
3041	return ret;
3042}
3043
3044/*
3045 * Changing the default domain through sysfs requires the users to unbind the
3046 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3047 * transition. Return failure if this isn't met.
3048 *
3049 * We need to consider the race between this and the device release path.
3050 * group->mutex is used here to guarantee that the device release path
3051 * will not be entered at the same time.
3052 */
3053static ssize_t iommu_group_store_type(struct iommu_group *group,
3054				      const char *buf, size_t count)
3055{
3056	struct group_device *gdev;
3057	int ret, req_type;
3058
3059	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3060		return -EACCES;
3061
3062	if (WARN_ON(!group) || !group->default_domain)
3063		return -EINVAL;
3064
3065	if (sysfs_streq(buf, "identity"))
3066		req_type = IOMMU_DOMAIN_IDENTITY;
3067	else if (sysfs_streq(buf, "DMA"))
3068		req_type = IOMMU_DOMAIN_DMA;
3069	else if (sysfs_streq(buf, "DMA-FQ"))
3070		req_type = IOMMU_DOMAIN_DMA_FQ;
3071	else if (sysfs_streq(buf, "auto"))
3072		req_type = 0;
3073	else
3074		return -EINVAL;
3075
3076	mutex_lock(&group->mutex);
3077	/* We can bring up a flush queue without tearing down the domain. */
3078	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3079	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3080		ret = iommu_dma_init_fq(group->default_domain);
3081		if (ret)
3082			goto out_unlock;
3083
3084		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3085		ret = count;
3086		goto out_unlock;
3087	}
3088
3089	/* Otherwise, ensure that device exists and no driver is bound. */
3090	if (list_empty(&group->devices) || group->owner_cnt) {
3091		ret = -EPERM;
3092		goto out_unlock;
3093	}
3094
3095	ret = iommu_setup_default_domain(group, req_type);
3096	if (ret)
3097		goto out_unlock;
3098
3099	/*
3100	 * Release the mutex here because ops->probe_finalize() call-back of
3101	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3102	 * in-turn might call back into IOMMU core code, where it tries to take
3103	 * group->mutex, resulting in a deadlock.
3104	 */
3105	mutex_unlock(&group->mutex);
3106
3107	/* Make sure dma_ops is appropriatley set */
3108	for_each_group_device(group, gdev)
3109		iommu_group_do_probe_finalize(gdev->dev);
3110	return count;
3111
3112out_unlock:
3113	mutex_unlock(&group->mutex);
3114	return ret ?: count;
3115}
3116
3117static bool iommu_is_default_domain(struct iommu_group *group)
3118{
3119	if (group->domain == group->default_domain)
3120		return true;
3121
3122	/*
3123	 * If the default domain was set to identity and it is still an identity
3124	 * domain then we consider this a pass. This happens because of
3125	 * amd_iommu_init_device() replacing the default idenytity domain with an
3126	 * identity domain that has a different configuration for AMDGPU.
3127	 */
3128	if (group->default_domain &&
3129	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3130	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3131		return true;
3132	return false;
3133}
3134
3135/**
3136 * iommu_device_use_default_domain() - Device driver wants to handle device
3137 *                                     DMA through the kernel DMA API.
3138 * @dev: The device.
3139 *
3140 * The device driver about to bind @dev wants to do DMA through the kernel
3141 * DMA API. Return 0 if it is allowed, otherwise an error.
3142 */
3143int iommu_device_use_default_domain(struct device *dev)
3144{
3145	struct iommu_group *group = iommu_group_get(dev);
3146	int ret = 0;
3147
3148	if (!group)
3149		return 0;
3150
3151	mutex_lock(&group->mutex);
3152	if (group->owner_cnt) {
3153		if (group->owner || !iommu_is_default_domain(group) ||
3154		    !xa_empty(&group->pasid_array)) {
3155			ret = -EBUSY;
3156			goto unlock_out;
3157		}
3158	}
3159
3160	group->owner_cnt++;
3161
3162unlock_out:
3163	mutex_unlock(&group->mutex);
3164	iommu_group_put(group);
3165
3166	return ret;
3167}
3168
3169/**
3170 * iommu_device_unuse_default_domain() - Device driver stops handling device
3171 *                                       DMA through the kernel DMA API.
3172 * @dev: The device.
3173 *
3174 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3175 * It must be called after iommu_device_use_default_domain().
3176 */
3177void iommu_device_unuse_default_domain(struct device *dev)
3178{
3179	struct iommu_group *group = iommu_group_get(dev);
3180
3181	if (!group)
3182		return;
3183
3184	mutex_lock(&group->mutex);
3185	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3186		group->owner_cnt--;
3187
3188	mutex_unlock(&group->mutex);
3189	iommu_group_put(group);
3190}
3191
3192static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3193{
3194	struct group_device *dev =
3195		list_first_entry(&group->devices, struct group_device, list);
3196
3197	if (group->blocking_domain)
3198		return 0;
3199
3200	group->blocking_domain =
3201		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3202	if (!group->blocking_domain) {
3203		/*
3204		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3205		 * create an empty domain instead.
3206		 */
3207		group->blocking_domain = __iommu_domain_alloc(
3208			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3209		if (!group->blocking_domain)
3210			return -EINVAL;
3211	}
3212	return 0;
3213}
3214
3215static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3216{
3217	int ret;
3218
3219	if ((group->domain && group->domain != group->default_domain) ||
3220	    !xa_empty(&group->pasid_array))
3221		return -EBUSY;
3222
3223	ret = __iommu_group_alloc_blocking_domain(group);
3224	if (ret)
3225		return ret;
3226	ret = __iommu_group_set_domain(group, group->blocking_domain);
3227	if (ret)
3228		return ret;
3229
3230	group->owner = owner;
3231	group->owner_cnt++;
3232	return 0;
3233}
3234
3235/**
3236 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3237 * @group: The group.
3238 * @owner: Caller specified pointer. Used for exclusive ownership.
3239 *
3240 * This is to support backward compatibility for vfio which manages the dma
3241 * ownership in iommu_group level. New invocations on this interface should be
3242 * prohibited. Only a single owner may exist for a group.
3243 */
3244int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3245{
3246	int ret = 0;
3247
3248	if (WARN_ON(!owner))
3249		return -EINVAL;
3250
3251	mutex_lock(&group->mutex);
3252	if (group->owner_cnt) {
3253		ret = -EPERM;
3254		goto unlock_out;
3255	}
3256
3257	ret = __iommu_take_dma_ownership(group, owner);
3258unlock_out:
3259	mutex_unlock(&group->mutex);
3260
3261	return ret;
3262}
3263EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3264
3265/**
3266 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3267 * @dev: The device.
3268 * @owner: Caller specified pointer. Used for exclusive ownership.
3269 *
3270 * Claim the DMA ownership of a device. Multiple devices in the same group may
3271 * concurrently claim ownership if they present the same owner value. Returns 0
3272 * on success and error code on failure
3273 */
3274int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3275{
3276	struct iommu_group *group;
3277	int ret = 0;
3278
3279	if (WARN_ON(!owner))
3280		return -EINVAL;
3281
3282	group = iommu_group_get(dev);
3283	if (!group)
3284		return -ENODEV;
3285
3286	mutex_lock(&group->mutex);
3287	if (group->owner_cnt) {
3288		if (group->owner != owner) {
3289			ret = -EPERM;
3290			goto unlock_out;
3291		}
3292		group->owner_cnt++;
3293		goto unlock_out;
3294	}
3295
3296	ret = __iommu_take_dma_ownership(group, owner);
3297unlock_out:
3298	mutex_unlock(&group->mutex);
3299	iommu_group_put(group);
3300
3301	return ret;
3302}
3303EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3304
3305static void __iommu_release_dma_ownership(struct iommu_group *group)
3306{
3307	if (WARN_ON(!group->owner_cnt || !group->owner ||
3308		    !xa_empty(&group->pasid_array)))
3309		return;
3310
3311	group->owner_cnt = 0;
3312	group->owner = NULL;
3313	__iommu_group_set_domain_nofail(group, group->default_domain);
3314}
3315
3316/**
3317 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3318 * @group: The group
3319 *
3320 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3321 */
3322void iommu_group_release_dma_owner(struct iommu_group *group)
3323{
3324	mutex_lock(&group->mutex);
3325	__iommu_release_dma_ownership(group);
3326	mutex_unlock(&group->mutex);
3327}
3328EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3329
3330/**
3331 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3332 * @dev: The device.
3333 *
3334 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3335 */
3336void iommu_device_release_dma_owner(struct device *dev)
3337{
3338	struct iommu_group *group = iommu_group_get(dev);
3339
3340	mutex_lock(&group->mutex);
3341	if (group->owner_cnt > 1)
3342		group->owner_cnt--;
3343	else
3344		__iommu_release_dma_ownership(group);
3345	mutex_unlock(&group->mutex);
3346	iommu_group_put(group);
3347}
3348EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3349
3350/**
3351 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3352 * @group: The group.
3353 *
3354 * This provides status query on a given group. It is racy and only for
3355 * non-binding status reporting.
3356 */
3357bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3358{
3359	unsigned int user;
3360
3361	mutex_lock(&group->mutex);
3362	user = group->owner_cnt;
3363	mutex_unlock(&group->mutex);
3364
3365	return user;
3366}
3367EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3368
3369static int __iommu_set_group_pasid(struct iommu_domain *domain,
3370				   struct iommu_group *group, ioasid_t pasid)
3371{
3372	struct group_device *device;
3373	int ret = 0;
3374
3375	for_each_group_device(group, device) {
3376		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3377		if (ret)
3378			break;
3379	}
3380
3381	return ret;
3382}
3383
3384static void __iommu_remove_group_pasid(struct iommu_group *group,
3385				       ioasid_t pasid)
3386{
3387	struct group_device *device;
3388	const struct iommu_ops *ops;
3389
3390	for_each_group_device(group, device) {
3391		ops = dev_iommu_ops(device->dev);
3392		ops->remove_dev_pasid(device->dev, pasid);
3393	}
3394}
3395
3396/*
3397 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3398 * @domain: the iommu domain.
3399 * @dev: the attached device.
3400 * @pasid: the pasid of the device.
3401 *
3402 * Return: 0 on success, or an error.
3403 */
3404int iommu_attach_device_pasid(struct iommu_domain *domain,
3405			      struct device *dev, ioasid_t pasid)
3406{
3407	struct iommu_group *group;
3408	void *curr;
3409	int ret;
3410
3411	if (!domain->ops->set_dev_pasid)
3412		return -EOPNOTSUPP;
3413
3414	group = iommu_group_get(dev);
3415	if (!group)
3416		return -ENODEV;
3417
3418	mutex_lock(&group->mutex);
3419	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3420	if (curr) {
3421		ret = xa_err(curr) ? : -EBUSY;
3422		goto out_unlock;
3423	}
3424
3425	ret = __iommu_set_group_pasid(domain, group, pasid);
3426	if (ret) {
3427		__iommu_remove_group_pasid(group, pasid);
3428		xa_erase(&group->pasid_array, pasid);
3429	}
3430out_unlock:
3431	mutex_unlock(&group->mutex);
3432	iommu_group_put(group);
3433
3434	return ret;
3435}
3436EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3437
3438/*
3439 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3440 * @domain: the iommu domain.
3441 * @dev: the attached device.
3442 * @pasid: the pasid of the device.
3443 *
3444 * The @domain must have been attached to @pasid of the @dev with
3445 * iommu_attach_device_pasid().
3446 */
3447void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3448			       ioasid_t pasid)
3449{
3450	struct iommu_group *group = iommu_group_get(dev);
3451
3452	mutex_lock(&group->mutex);
3453	__iommu_remove_group_pasid(group, pasid);
3454	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3455	mutex_unlock(&group->mutex);
3456
3457	iommu_group_put(group);
3458}
3459EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3460
3461/*
3462 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3463 * @dev: the queried device
3464 * @pasid: the pasid of the device
3465 * @type: matched domain type, 0 for any match
3466 *
3467 * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3468 * domain attached to pasid of a device. Callers must hold a lock around this
3469 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3470 * type is being manipulated. This API does not internally resolve races with
3471 * attach/detach.
3472 *
3473 * Return: attached domain on success, NULL otherwise.
3474 */
3475struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3476						    ioasid_t pasid,
3477						    unsigned int type)
3478{
3479	struct iommu_domain *domain;
3480	struct iommu_group *group;
3481
3482	group = iommu_group_get(dev);
3483	if (!group)
3484		return NULL;
3485
3486	xa_lock(&group->pasid_array);
3487	domain = xa_load(&group->pasid_array, pasid);
3488	if (type && domain && domain->type != type)
3489		domain = ERR_PTR(-EBUSY);
3490	xa_unlock(&group->pasid_array);
3491	iommu_group_put(group);
3492
3493	return domain;
3494}
3495EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3496
3497struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3498					    struct mm_struct *mm)
3499{
3500	const struct iommu_ops *ops = dev_iommu_ops(dev);
3501	struct iommu_domain *domain;
3502
3503	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3504	if (!domain)
3505		return NULL;
3506
3507	domain->type = IOMMU_DOMAIN_SVA;
3508	mmgrab(mm);
3509	domain->mm = mm;
3510	domain->iopf_handler = iommu_sva_handle_iopf;
3511	domain->fault_data = mm;
3512
3513	return domain;
3514}
3515
3516ioasid_t iommu_alloc_global_pasid(struct device *dev)
3517{
3518	int ret;
3519
3520	/* max_pasids == 0 means that the device does not support PASID */
3521	if (!dev->iommu->max_pasids)
3522		return IOMMU_PASID_INVALID;
3523
3524	/*
3525	 * max_pasids is set up by vendor driver based on number of PASID bits
3526	 * supported but the IDA allocation is inclusive.
3527	 */
3528	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3529			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3530	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3531}
3532EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3533
3534void iommu_free_global_pasid(ioasid_t pasid)
3535{
3536	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3537		return;
3538
3539	ida_free(&iommu_global_pasid_ida, pasid);
3540}
3541EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3542