1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11#include <linux/acpi_iort.h>
12#include <linux/atomic.h>
13#include <linux/crash_dump.h>
14#include <linux/device.h>
15#include <linux/dma-direct.h>
16#include <linux/dma-map-ops.h>
17#include <linux/gfp.h>
18#include <linux/huge_mm.h>
19#include <linux/iommu.h>
20#include <linux/iova.h>
21#include <linux/irq.h>
22#include <linux/list_sort.h>
23#include <linux/memremap.h>
24#include <linux/mm.h>
25#include <linux/mutex.h>
26#include <linux/of_iommu.h>
27#include <linux/pci.h>
28#include <linux/scatterlist.h>
29#include <linux/spinlock.h>
30#include <linux/swiotlb.h>
31#include <linux/vmalloc.h>
32#include <trace/events/swiotlb.h>
33
34#include "dma-iommu.h"
35
36struct iommu_dma_msi_page {
37	struct list_head	list;
38	dma_addr_t		iova;
39	phys_addr_t		phys;
40};
41
42enum iommu_dma_cookie_type {
43	IOMMU_DMA_IOVA_COOKIE,
44	IOMMU_DMA_MSI_COOKIE,
45};
46
47struct iommu_dma_cookie {
48	enum iommu_dma_cookie_type	type;
49	union {
50		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51		struct {
52			struct iova_domain	iovad;
53
54			struct iova_fq __percpu *fq;	/* Flush queue */
55			/* Number of TLB flushes that have been started */
56			atomic64_t		fq_flush_start_cnt;
57			/* Number of TLB flushes that have been finished */
58			atomic64_t		fq_flush_finish_cnt;
59			/* Timer to regularily empty the flush queues */
60			struct timer_list	fq_timer;
61			/* 1 when timer is active, 0 when not */
62			atomic_t		fq_timer_on;
63		};
64		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
65		dma_addr_t		msi_iova;
66	};
67	struct list_head		msi_page_list;
68
69	/* Domain for flush queue callback; NULL if flush queue not in use */
70	struct iommu_domain		*fq_domain;
71	struct mutex			mutex;
72};
73
74static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
75bool iommu_dma_forcedac __read_mostly;
76
77static int __init iommu_dma_forcedac_setup(char *str)
78{
79	int ret = kstrtobool(str, &iommu_dma_forcedac);
80
81	if (!ret && iommu_dma_forcedac)
82		pr_info("Forcing DAC for PCI devices\n");
83	return ret;
84}
85early_param("iommu.forcedac", iommu_dma_forcedac_setup);
86
87/* Number of entries per flush queue */
88#define IOVA_FQ_SIZE	256
89
90/* Timeout (in ms) after which entries are flushed from the queue */
91#define IOVA_FQ_TIMEOUT	10
92
93/* Flush queue entry for deferred flushing */
94struct iova_fq_entry {
95	unsigned long iova_pfn;
96	unsigned long pages;
97	struct list_head freelist;
98	u64 counter; /* Flush counter when this entry was added */
99};
100
101/* Per-CPU flush queue structure */
102struct iova_fq {
103	struct iova_fq_entry entries[IOVA_FQ_SIZE];
104	unsigned int head, tail;
105	spinlock_t lock;
106};
107
108#define fq_ring_for_each(i, fq) \
109	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
110
111static inline bool fq_full(struct iova_fq *fq)
112{
113	assert_spin_locked(&fq->lock);
114	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
115}
116
117static inline unsigned int fq_ring_add(struct iova_fq *fq)
118{
119	unsigned int idx = fq->tail;
120
121	assert_spin_locked(&fq->lock);
122
123	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
124
125	return idx;
126}
127
128static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
129{
130	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
131	unsigned int idx;
132
133	assert_spin_locked(&fq->lock);
134
135	fq_ring_for_each(idx, fq) {
136
137		if (fq->entries[idx].counter >= counter)
138			break;
139
140		put_pages_list(&fq->entries[idx].freelist);
141		free_iova_fast(&cookie->iovad,
142			       fq->entries[idx].iova_pfn,
143			       fq->entries[idx].pages);
144
145		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
146	}
147}
148
149static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
150{
151	atomic64_inc(&cookie->fq_flush_start_cnt);
152	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
153	atomic64_inc(&cookie->fq_flush_finish_cnt);
154}
155
156static void fq_flush_timeout(struct timer_list *t)
157{
158	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
159	int cpu;
160
161	atomic_set(&cookie->fq_timer_on, 0);
162	fq_flush_iotlb(cookie);
163
164	for_each_possible_cpu(cpu) {
165		unsigned long flags;
166		struct iova_fq *fq;
167
168		fq = per_cpu_ptr(cookie->fq, cpu);
169		spin_lock_irqsave(&fq->lock, flags);
170		fq_ring_free(cookie, fq);
171		spin_unlock_irqrestore(&fq->lock, flags);
172	}
173}
174
175static void queue_iova(struct iommu_dma_cookie *cookie,
176		unsigned long pfn, unsigned long pages,
177		struct list_head *freelist)
178{
179	struct iova_fq *fq;
180	unsigned long flags;
181	unsigned int idx;
182
183	/*
184	 * Order against the IOMMU driver's pagetable update from unmapping
185	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
186	 * from a different CPU before we release the lock below. Full barrier
187	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
188	 * written fq state here.
189	 */
190	smp_mb();
191
192	fq = raw_cpu_ptr(cookie->fq);
193	spin_lock_irqsave(&fq->lock, flags);
194
195	/*
196	 * First remove all entries from the flush queue that have already been
197	 * flushed out on another CPU. This makes the fq_full() check below less
198	 * likely to be true.
199	 */
200	fq_ring_free(cookie, fq);
201
202	if (fq_full(fq)) {
203		fq_flush_iotlb(cookie);
204		fq_ring_free(cookie, fq);
205	}
206
207	idx = fq_ring_add(fq);
208
209	fq->entries[idx].iova_pfn = pfn;
210	fq->entries[idx].pages    = pages;
211	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
212	list_splice(freelist, &fq->entries[idx].freelist);
213
214	spin_unlock_irqrestore(&fq->lock, flags);
215
216	/* Avoid false sharing as much as possible. */
217	if (!atomic_read(&cookie->fq_timer_on) &&
218	    !atomic_xchg(&cookie->fq_timer_on, 1))
219		mod_timer(&cookie->fq_timer,
220			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
221}
222
223static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
224{
225	int cpu, idx;
226
227	if (!cookie->fq)
228		return;
229
230	del_timer_sync(&cookie->fq_timer);
231	/* The IOVAs will be torn down separately, so just free our queued pages */
232	for_each_possible_cpu(cpu) {
233		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
234
235		fq_ring_for_each(idx, fq)
236			put_pages_list(&fq->entries[idx].freelist);
237	}
238
239	free_percpu(cookie->fq);
240}
241
242/* sysfs updates are serialised by the mutex of the group owning @domain */
243int iommu_dma_init_fq(struct iommu_domain *domain)
244{
245	struct iommu_dma_cookie *cookie = domain->iova_cookie;
246	struct iova_fq __percpu *queue;
247	int i, cpu;
248
249	if (cookie->fq_domain)
250		return 0;
251
252	atomic64_set(&cookie->fq_flush_start_cnt,  0);
253	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
254
255	queue = alloc_percpu(struct iova_fq);
256	if (!queue) {
257		pr_warn("iova flush queue initialization failed\n");
258		return -ENOMEM;
259	}
260
261	for_each_possible_cpu(cpu) {
262		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
263
264		fq->head = 0;
265		fq->tail = 0;
266
267		spin_lock_init(&fq->lock);
268
269		for (i = 0; i < IOVA_FQ_SIZE; i++)
270			INIT_LIST_HEAD(&fq->entries[i].freelist);
271	}
272
273	cookie->fq = queue;
274
275	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
276	atomic_set(&cookie->fq_timer_on, 0);
277	/*
278	 * Prevent incomplete fq state being observable. Pairs with path from
279	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
280	 */
281	smp_wmb();
282	WRITE_ONCE(cookie->fq_domain, domain);
283	return 0;
284}
285
286static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
287{
288	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
289		return cookie->iovad.granule;
290	return PAGE_SIZE;
291}
292
293static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
294{
295	struct iommu_dma_cookie *cookie;
296
297	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
298	if (cookie) {
299		INIT_LIST_HEAD(&cookie->msi_page_list);
300		cookie->type = type;
301	}
302	return cookie;
303}
304
305/**
306 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
307 * @domain: IOMMU domain to prepare for DMA-API usage
308 */
309int iommu_get_dma_cookie(struct iommu_domain *domain)
310{
311	if (domain->iova_cookie)
312		return -EEXIST;
313
314	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
315	if (!domain->iova_cookie)
316		return -ENOMEM;
317
318	mutex_init(&domain->iova_cookie->mutex);
319	return 0;
320}
321
322/**
323 * iommu_get_msi_cookie - Acquire just MSI remapping resources
324 * @domain: IOMMU domain to prepare
325 * @base: Start address of IOVA region for MSI mappings
326 *
327 * Users who manage their own IOVA allocation and do not want DMA API support,
328 * but would still like to take advantage of automatic MSI remapping, can use
329 * this to initialise their own domain appropriately. Users should reserve a
330 * contiguous IOVA region, starting at @base, large enough to accommodate the
331 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
332 * used by the devices attached to @domain.
333 */
334int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
335{
336	struct iommu_dma_cookie *cookie;
337
338	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
339		return -EINVAL;
340
341	if (domain->iova_cookie)
342		return -EEXIST;
343
344	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
345	if (!cookie)
346		return -ENOMEM;
347
348	cookie->msi_iova = base;
349	domain->iova_cookie = cookie;
350	return 0;
351}
352EXPORT_SYMBOL(iommu_get_msi_cookie);
353
354/**
355 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
356 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
357 *          iommu_get_msi_cookie()
358 */
359void iommu_put_dma_cookie(struct iommu_domain *domain)
360{
361	struct iommu_dma_cookie *cookie = domain->iova_cookie;
362	struct iommu_dma_msi_page *msi, *tmp;
363
364	if (!cookie)
365		return;
366
367	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
368		iommu_dma_free_fq(cookie);
369		put_iova_domain(&cookie->iovad);
370	}
371
372	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
373		list_del(&msi->list);
374		kfree(msi);
375	}
376	kfree(cookie);
377	domain->iova_cookie = NULL;
378}
379
380/**
381 * iommu_dma_get_resv_regions - Reserved region driver helper
382 * @dev: Device from iommu_get_resv_regions()
383 * @list: Reserved region list from iommu_get_resv_regions()
384 *
385 * IOMMU drivers can use this to implement their .get_resv_regions callback
386 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
387 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
388 * reservation.
389 */
390void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
391{
392
393	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
394		iort_iommu_get_resv_regions(dev, list);
395
396	if (dev->of_node)
397		of_iommu_get_resv_regions(dev, list);
398}
399EXPORT_SYMBOL(iommu_dma_get_resv_regions);
400
401static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
402		phys_addr_t start, phys_addr_t end)
403{
404	struct iova_domain *iovad = &cookie->iovad;
405	struct iommu_dma_msi_page *msi_page;
406	int i, num_pages;
407
408	start -= iova_offset(iovad, start);
409	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
410
411	for (i = 0; i < num_pages; i++) {
412		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
413		if (!msi_page)
414			return -ENOMEM;
415
416		msi_page->phys = start;
417		msi_page->iova = start;
418		INIT_LIST_HEAD(&msi_page->list);
419		list_add(&msi_page->list, &cookie->msi_page_list);
420		start += iovad->granule;
421	}
422
423	return 0;
424}
425
426static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
427		const struct list_head *b)
428{
429	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
430	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
431
432	return res_a->res->start > res_b->res->start;
433}
434
435static int iova_reserve_pci_windows(struct pci_dev *dev,
436		struct iova_domain *iovad)
437{
438	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
439	struct resource_entry *window;
440	unsigned long lo, hi;
441	phys_addr_t start = 0, end;
442
443	resource_list_for_each_entry(window, &bridge->windows) {
444		if (resource_type(window->res) != IORESOURCE_MEM)
445			continue;
446
447		lo = iova_pfn(iovad, window->res->start - window->offset);
448		hi = iova_pfn(iovad, window->res->end - window->offset);
449		reserve_iova(iovad, lo, hi);
450	}
451
452	/* Get reserved DMA windows from host bridge */
453	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
454	resource_list_for_each_entry(window, &bridge->dma_ranges) {
455		end = window->res->start - window->offset;
456resv_iova:
457		if (end > start) {
458			lo = iova_pfn(iovad, start);
459			hi = iova_pfn(iovad, end);
460			reserve_iova(iovad, lo, hi);
461		} else if (end < start) {
462			/* DMA ranges should be non-overlapping */
463			dev_err(&dev->dev,
464				"Failed to reserve IOVA [%pa-%pa]\n",
465				&start, &end);
466			return -EINVAL;
467		}
468
469		start = window->res->end - window->offset + 1;
470		/* If window is last entry */
471		if (window->node.next == &bridge->dma_ranges &&
472		    end != ~(phys_addr_t)0) {
473			end = ~(phys_addr_t)0;
474			goto resv_iova;
475		}
476	}
477
478	return 0;
479}
480
481static int iova_reserve_iommu_regions(struct device *dev,
482		struct iommu_domain *domain)
483{
484	struct iommu_dma_cookie *cookie = domain->iova_cookie;
485	struct iova_domain *iovad = &cookie->iovad;
486	struct iommu_resv_region *region;
487	LIST_HEAD(resv_regions);
488	int ret = 0;
489
490	if (dev_is_pci(dev)) {
491		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
492		if (ret)
493			return ret;
494	}
495
496	iommu_get_resv_regions(dev, &resv_regions);
497	list_for_each_entry(region, &resv_regions, list) {
498		unsigned long lo, hi;
499
500		/* We ARE the software that manages these! */
501		if (region->type == IOMMU_RESV_SW_MSI)
502			continue;
503
504		lo = iova_pfn(iovad, region->start);
505		hi = iova_pfn(iovad, region->start + region->length - 1);
506		reserve_iova(iovad, lo, hi);
507
508		if (region->type == IOMMU_RESV_MSI)
509			ret = cookie_init_hw_msi_region(cookie, region->start,
510					region->start + region->length);
511		if (ret)
512			break;
513	}
514	iommu_put_resv_regions(dev, &resv_regions);
515
516	return ret;
517}
518
519static bool dev_is_untrusted(struct device *dev)
520{
521	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
522}
523
524static bool dev_use_swiotlb(struct device *dev, size_t size,
525			    enum dma_data_direction dir)
526{
527	return IS_ENABLED(CONFIG_SWIOTLB) &&
528		(dev_is_untrusted(dev) ||
529		 dma_kmalloc_needs_bounce(dev, size, dir));
530}
531
532static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
533			       int nents, enum dma_data_direction dir)
534{
535	struct scatterlist *s;
536	int i;
537
538	if (!IS_ENABLED(CONFIG_SWIOTLB))
539		return false;
540
541	if (dev_is_untrusted(dev))
542		return true;
543
544	/*
545	 * If kmalloc() buffers are not DMA-safe for this device and
546	 * direction, check the individual lengths in the sg list. If any
547	 * element is deemed unsafe, use the swiotlb for bouncing.
548	 */
549	if (!dma_kmalloc_safe(dev, dir)) {
550		for_each_sg(sg, s, nents, i)
551			if (!dma_kmalloc_size_aligned(s->length))
552				return true;
553	}
554
555	return false;
556}
557
558/**
559 * iommu_dma_init_domain - Initialise a DMA mapping domain
560 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
561 * @base: IOVA at which the mappable address space starts
562 * @limit: Last address of the IOVA space
563 * @dev: Device the domain is being initialised for
564 *
565 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
566 * avoid rounding surprises. If necessary, we reserve the page at address 0
567 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
568 * any change which could make prior IOVAs invalid will fail.
569 */
570static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
571				 dma_addr_t limit, struct device *dev)
572{
573	struct iommu_dma_cookie *cookie = domain->iova_cookie;
574	unsigned long order, base_pfn;
575	struct iova_domain *iovad;
576	int ret;
577
578	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
579		return -EINVAL;
580
581	iovad = &cookie->iovad;
582
583	/* Use the smallest supported page size for IOVA granularity */
584	order = __ffs(domain->pgsize_bitmap);
585	base_pfn = max_t(unsigned long, 1, base >> order);
586
587	/* Check the domain allows at least some access to the device... */
588	if (domain->geometry.force_aperture) {
589		if (base > domain->geometry.aperture_end ||
590		    limit < domain->geometry.aperture_start) {
591			pr_warn("specified DMA range outside IOMMU capability\n");
592			return -EFAULT;
593		}
594		/* ...then finally give it a kicking to make sure it fits */
595		base_pfn = max_t(unsigned long, base_pfn,
596				domain->geometry.aperture_start >> order);
597	}
598
599	/* start_pfn is always nonzero for an already-initialised domain */
600	mutex_lock(&cookie->mutex);
601	if (iovad->start_pfn) {
602		if (1UL << order != iovad->granule ||
603		    base_pfn != iovad->start_pfn) {
604			pr_warn("Incompatible range for DMA domain\n");
605			ret = -EFAULT;
606			goto done_unlock;
607		}
608
609		ret = 0;
610		goto done_unlock;
611	}
612
613	init_iova_domain(iovad, 1UL << order, base_pfn);
614	ret = iova_domain_init_rcaches(iovad);
615	if (ret)
616		goto done_unlock;
617
618	/* If the FQ fails we can simply fall back to strict mode */
619	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
620	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
621		domain->type = IOMMU_DOMAIN_DMA;
622
623	ret = iova_reserve_iommu_regions(dev, domain);
624
625done_unlock:
626	mutex_unlock(&cookie->mutex);
627	return ret;
628}
629
630/**
631 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
632 *                    page flags.
633 * @dir: Direction of DMA transfer
634 * @coherent: Is the DMA master cache-coherent?
635 * @attrs: DMA attributes for the mapping
636 *
637 * Return: corresponding IOMMU API page protection flags
638 */
639static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
640		     unsigned long attrs)
641{
642	int prot = coherent ? IOMMU_CACHE : 0;
643
644	if (attrs & DMA_ATTR_PRIVILEGED)
645		prot |= IOMMU_PRIV;
646
647	switch (dir) {
648	case DMA_BIDIRECTIONAL:
649		return prot | IOMMU_READ | IOMMU_WRITE;
650	case DMA_TO_DEVICE:
651		return prot | IOMMU_READ;
652	case DMA_FROM_DEVICE:
653		return prot | IOMMU_WRITE;
654	default:
655		return 0;
656	}
657}
658
659static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
660		size_t size, u64 dma_limit, struct device *dev)
661{
662	struct iommu_dma_cookie *cookie = domain->iova_cookie;
663	struct iova_domain *iovad = &cookie->iovad;
664	unsigned long shift, iova_len, iova;
665
666	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
667		cookie->msi_iova += size;
668		return cookie->msi_iova - size;
669	}
670
671	shift = iova_shift(iovad);
672	iova_len = size >> shift;
673
674	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
675
676	if (domain->geometry.force_aperture)
677		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
678
679	/*
680	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
681	 * DAC reasoning loses relevance with PCIe, but enough hardware and
682	 * firmware bugs are still lurking out there that it's safest not to
683	 * venture into the 64-bit space until necessary.
684	 *
685	 * If your device goes wrong after seeing the notice then likely either
686	 * its driver is not setting DMA masks accurately, the hardware has
687	 * some inherent bug in handling >32-bit addresses, or not all the
688	 * expected address bits are wired up between the device and the IOMMU.
689	 */
690	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
691		iova = alloc_iova_fast(iovad, iova_len,
692				       DMA_BIT_MASK(32) >> shift, false);
693		if (iova)
694			goto done;
695
696		dev->iommu->pci_32bit_workaround = false;
697		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
698	}
699
700	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
701done:
702	return (dma_addr_t)iova << shift;
703}
704
705static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
706		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
707{
708	struct iova_domain *iovad = &cookie->iovad;
709
710	/* The MSI case is only ever cleaning up its most recent allocation */
711	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
712		cookie->msi_iova -= size;
713	else if (gather && gather->queued)
714		queue_iova(cookie, iova_pfn(iovad, iova),
715				size >> iova_shift(iovad),
716				&gather->freelist);
717	else
718		free_iova_fast(iovad, iova_pfn(iovad, iova),
719				size >> iova_shift(iovad));
720}
721
722static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
723		size_t size)
724{
725	struct iommu_domain *domain = iommu_get_dma_domain(dev);
726	struct iommu_dma_cookie *cookie = domain->iova_cookie;
727	struct iova_domain *iovad = &cookie->iovad;
728	size_t iova_off = iova_offset(iovad, dma_addr);
729	struct iommu_iotlb_gather iotlb_gather;
730	size_t unmapped;
731
732	dma_addr -= iova_off;
733	size = iova_align(iovad, size + iova_off);
734	iommu_iotlb_gather_init(&iotlb_gather);
735	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
736
737	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
738	WARN_ON(unmapped != size);
739
740	if (!iotlb_gather.queued)
741		iommu_iotlb_sync(domain, &iotlb_gather);
742	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
743}
744
745static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
746		size_t size, int prot, u64 dma_mask)
747{
748	struct iommu_domain *domain = iommu_get_dma_domain(dev);
749	struct iommu_dma_cookie *cookie = domain->iova_cookie;
750	struct iova_domain *iovad = &cookie->iovad;
751	size_t iova_off = iova_offset(iovad, phys);
752	dma_addr_t iova;
753
754	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
755	    iommu_deferred_attach(dev, domain))
756		return DMA_MAPPING_ERROR;
757
758	size = iova_align(iovad, size + iova_off);
759
760	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
761	if (!iova)
762		return DMA_MAPPING_ERROR;
763
764	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
765		iommu_dma_free_iova(cookie, iova, size, NULL);
766		return DMA_MAPPING_ERROR;
767	}
768	return iova + iova_off;
769}
770
771static void __iommu_dma_free_pages(struct page **pages, int count)
772{
773	while (count--)
774		__free_page(pages[count]);
775	kvfree(pages);
776}
777
778static struct page **__iommu_dma_alloc_pages(struct device *dev,
779		unsigned int count, unsigned long order_mask, gfp_t gfp)
780{
781	struct page **pages;
782	unsigned int i = 0, nid = dev_to_node(dev);
783
784	order_mask &= GENMASK(MAX_ORDER, 0);
785	if (!order_mask)
786		return NULL;
787
788	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
789	if (!pages)
790		return NULL;
791
792	/* IOMMU can map any pages, so himem can also be used here */
793	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
794
795	while (count) {
796		struct page *page = NULL;
797		unsigned int order_size;
798
799		/*
800		 * Higher-order allocations are a convenience rather
801		 * than a necessity, hence using __GFP_NORETRY until
802		 * falling back to minimum-order allocations.
803		 */
804		for (order_mask &= GENMASK(__fls(count), 0);
805		     order_mask; order_mask &= ~order_size) {
806			unsigned int order = __fls(order_mask);
807			gfp_t alloc_flags = gfp;
808
809			order_size = 1U << order;
810			if (order_mask > order_size)
811				alloc_flags |= __GFP_NORETRY;
812			page = alloc_pages_node(nid, alloc_flags, order);
813			if (!page)
814				continue;
815			if (order)
816				split_page(page, order);
817			break;
818		}
819		if (!page) {
820			__iommu_dma_free_pages(pages, i);
821			return NULL;
822		}
823		count -= order_size;
824		while (order_size--)
825			pages[i++] = page++;
826	}
827	return pages;
828}
829
830/*
831 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
832 * but an IOMMU which supports smaller pages might not map the whole thing.
833 */
834static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
835		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
836		unsigned long attrs)
837{
838	struct iommu_domain *domain = iommu_get_dma_domain(dev);
839	struct iommu_dma_cookie *cookie = domain->iova_cookie;
840	struct iova_domain *iovad = &cookie->iovad;
841	bool coherent = dev_is_dma_coherent(dev);
842	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
843	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
844	struct page **pages;
845	dma_addr_t iova;
846	ssize_t ret;
847
848	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
849	    iommu_deferred_attach(dev, domain))
850		return NULL;
851
852	min_size = alloc_sizes & -alloc_sizes;
853	if (min_size < PAGE_SIZE) {
854		min_size = PAGE_SIZE;
855		alloc_sizes |= PAGE_SIZE;
856	} else {
857		size = ALIGN(size, min_size);
858	}
859	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
860		alloc_sizes = min_size;
861
862	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
863	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
864					gfp);
865	if (!pages)
866		return NULL;
867
868	size = iova_align(iovad, size);
869	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
870	if (!iova)
871		goto out_free_pages;
872
873	/*
874	 * Remove the zone/policy flags from the GFP - these are applied to the
875	 * __iommu_dma_alloc_pages() but are not used for the supporting
876	 * internal allocations that follow.
877	 */
878	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
879
880	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
881		goto out_free_iova;
882
883	if (!(ioprot & IOMMU_CACHE)) {
884		struct scatterlist *sg;
885		int i;
886
887		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
888			arch_dma_prep_coherent(sg_page(sg), sg->length);
889	}
890
891	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
892			   gfp);
893	if (ret < 0 || ret < size)
894		goto out_free_sg;
895
896	sgt->sgl->dma_address = iova;
897	sgt->sgl->dma_length = size;
898	return pages;
899
900out_free_sg:
901	sg_free_table(sgt);
902out_free_iova:
903	iommu_dma_free_iova(cookie, iova, size, NULL);
904out_free_pages:
905	__iommu_dma_free_pages(pages, count);
906	return NULL;
907}
908
909static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
910		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
911		unsigned long attrs)
912{
913	struct page **pages;
914	struct sg_table sgt;
915	void *vaddr;
916
917	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
918						attrs);
919	if (!pages)
920		return NULL;
921	*dma_handle = sgt.sgl->dma_address;
922	sg_free_table(&sgt);
923	vaddr = dma_common_pages_remap(pages, size, prot,
924			__builtin_return_address(0));
925	if (!vaddr)
926		goto out_unmap;
927	return vaddr;
928
929out_unmap:
930	__iommu_dma_unmap(dev, *dma_handle, size);
931	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
932	return NULL;
933}
934
935static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
936		size_t size, enum dma_data_direction dir, gfp_t gfp,
937		unsigned long attrs)
938{
939	struct dma_sgt_handle *sh;
940
941	sh = kmalloc(sizeof(*sh), gfp);
942	if (!sh)
943		return NULL;
944
945	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
946						    PAGE_KERNEL, attrs);
947	if (!sh->pages) {
948		kfree(sh);
949		return NULL;
950	}
951	return &sh->sgt;
952}
953
954static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
955		struct sg_table *sgt, enum dma_data_direction dir)
956{
957	struct dma_sgt_handle *sh = sgt_handle(sgt);
958
959	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
960	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
961	sg_free_table(&sh->sgt);
962	kfree(sh);
963}
964
965static void iommu_dma_sync_single_for_cpu(struct device *dev,
966		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
967{
968	phys_addr_t phys;
969
970	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
971		return;
972
973	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
974	if (!dev_is_dma_coherent(dev))
975		arch_sync_dma_for_cpu(phys, size, dir);
976
977	if (is_swiotlb_buffer(dev, phys))
978		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
979}
980
981static void iommu_dma_sync_single_for_device(struct device *dev,
982		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
983{
984	phys_addr_t phys;
985
986	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
987		return;
988
989	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
990	if (is_swiotlb_buffer(dev, phys))
991		swiotlb_sync_single_for_device(dev, phys, size, dir);
992
993	if (!dev_is_dma_coherent(dev))
994		arch_sync_dma_for_device(phys, size, dir);
995}
996
997static void iommu_dma_sync_sg_for_cpu(struct device *dev,
998		struct scatterlist *sgl, int nelems,
999		enum dma_data_direction dir)
1000{
1001	struct scatterlist *sg;
1002	int i;
1003
1004	if (sg_dma_is_swiotlb(sgl))
1005		for_each_sg(sgl, sg, nelems, i)
1006			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1007						      sg->length, dir);
1008	else if (!dev_is_dma_coherent(dev))
1009		for_each_sg(sgl, sg, nelems, i)
1010			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1011}
1012
1013static void iommu_dma_sync_sg_for_device(struct device *dev,
1014		struct scatterlist *sgl, int nelems,
1015		enum dma_data_direction dir)
1016{
1017	struct scatterlist *sg;
1018	int i;
1019
1020	if (sg_dma_is_swiotlb(sgl))
1021		for_each_sg(sgl, sg, nelems, i)
1022			iommu_dma_sync_single_for_device(dev,
1023							 sg_dma_address(sg),
1024							 sg->length, dir);
1025	else if (!dev_is_dma_coherent(dev))
1026		for_each_sg(sgl, sg, nelems, i)
1027			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1028}
1029
1030static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1031		unsigned long offset, size_t size, enum dma_data_direction dir,
1032		unsigned long attrs)
1033{
1034	phys_addr_t phys = page_to_phys(page) + offset;
1035	bool coherent = dev_is_dma_coherent(dev);
1036	int prot = dma_info_to_prot(dir, coherent, attrs);
1037	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1038	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1039	struct iova_domain *iovad = &cookie->iovad;
1040	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1041
1042	/*
1043	 * If both the physical buffer start address and size are
1044	 * page aligned, we don't need to use a bounce page.
1045	 */
1046	if (dev_use_swiotlb(dev, size, dir) &&
1047	    iova_offset(iovad, phys | size)) {
1048		void *padding_start;
1049		size_t padding_size, aligned_size;
1050
1051		if (!is_swiotlb_active(dev)) {
1052			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1053			return DMA_MAPPING_ERROR;
1054		}
1055
1056		trace_swiotlb_bounced(dev, phys, size);
1057
1058		aligned_size = iova_align(iovad, size);
1059		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1060					      iova_mask(iovad), dir, attrs);
1061
1062		if (phys == DMA_MAPPING_ERROR)
1063			return DMA_MAPPING_ERROR;
1064
1065		/* Cleanup the padding area. */
1066		padding_start = phys_to_virt(phys);
1067		padding_size = aligned_size;
1068
1069		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1070		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1071			padding_start += size;
1072			padding_size -= size;
1073		}
1074
1075		memset(padding_start, 0, padding_size);
1076	}
1077
1078	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1079		arch_sync_dma_for_device(phys, size, dir);
1080
1081	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1082	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1083		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1084	return iova;
1085}
1086
1087static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1088		size_t size, enum dma_data_direction dir, unsigned long attrs)
1089{
1090	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1091	phys_addr_t phys;
1092
1093	phys = iommu_iova_to_phys(domain, dma_handle);
1094	if (WARN_ON(!phys))
1095		return;
1096
1097	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1098		arch_sync_dma_for_cpu(phys, size, dir);
1099
1100	__iommu_dma_unmap(dev, dma_handle, size);
1101
1102	if (unlikely(is_swiotlb_buffer(dev, phys)))
1103		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1104}
1105
1106/*
1107 * Prepare a successfully-mapped scatterlist to give back to the caller.
1108 *
1109 * At this point the segments are already laid out by iommu_dma_map_sg() to
1110 * avoid individually crossing any boundaries, so we merely need to check a
1111 * segment's start address to avoid concatenating across one.
1112 */
1113static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1114		dma_addr_t dma_addr)
1115{
1116	struct scatterlist *s, *cur = sg;
1117	unsigned long seg_mask = dma_get_seg_boundary(dev);
1118	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1119	int i, count = 0;
1120
1121	for_each_sg(sg, s, nents, i) {
1122		/* Restore this segment's original unaligned fields first */
1123		dma_addr_t s_dma_addr = sg_dma_address(s);
1124		unsigned int s_iova_off = sg_dma_address(s);
1125		unsigned int s_length = sg_dma_len(s);
1126		unsigned int s_iova_len = s->length;
1127
1128		sg_dma_address(s) = DMA_MAPPING_ERROR;
1129		sg_dma_len(s) = 0;
1130
1131		if (sg_dma_is_bus_address(s)) {
1132			if (i > 0)
1133				cur = sg_next(cur);
1134
1135			sg_dma_unmark_bus_address(s);
1136			sg_dma_address(cur) = s_dma_addr;
1137			sg_dma_len(cur) = s_length;
1138			sg_dma_mark_bus_address(cur);
1139			count++;
1140			cur_len = 0;
1141			continue;
1142		}
1143
1144		s->offset += s_iova_off;
1145		s->length = s_length;
1146
1147		/*
1148		 * Now fill in the real DMA data. If...
1149		 * - there is a valid output segment to append to
1150		 * - and this segment starts on an IOVA page boundary
1151		 * - but doesn't fall at a segment boundary
1152		 * - and wouldn't make the resulting output segment too long
1153		 */
1154		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1155		    (max_len - cur_len >= s_length)) {
1156			/* ...then concatenate it with the previous one */
1157			cur_len += s_length;
1158		} else {
1159			/* Otherwise start the next output segment */
1160			if (i > 0)
1161				cur = sg_next(cur);
1162			cur_len = s_length;
1163			count++;
1164
1165			sg_dma_address(cur) = dma_addr + s_iova_off;
1166		}
1167
1168		sg_dma_len(cur) = cur_len;
1169		dma_addr += s_iova_len;
1170
1171		if (s_length + s_iova_off < s_iova_len)
1172			cur_len = 0;
1173	}
1174	return count;
1175}
1176
1177/*
1178 * If mapping failed, then just restore the original list,
1179 * but making sure the DMA fields are invalidated.
1180 */
1181static void __invalidate_sg(struct scatterlist *sg, int nents)
1182{
1183	struct scatterlist *s;
1184	int i;
1185
1186	for_each_sg(sg, s, nents, i) {
1187		if (sg_dma_is_bus_address(s)) {
1188			sg_dma_unmark_bus_address(s);
1189		} else {
1190			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1191				s->offset += sg_dma_address(s);
1192			if (sg_dma_len(s))
1193				s->length = sg_dma_len(s);
1194		}
1195		sg_dma_address(s) = DMA_MAPPING_ERROR;
1196		sg_dma_len(s) = 0;
1197	}
1198}
1199
1200static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1201		int nents, enum dma_data_direction dir, unsigned long attrs)
1202{
1203	struct scatterlist *s;
1204	int i;
1205
1206	for_each_sg(sg, s, nents, i)
1207		iommu_dma_unmap_page(dev, sg_dma_address(s),
1208				sg_dma_len(s), dir, attrs);
1209}
1210
1211static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1212		int nents, enum dma_data_direction dir, unsigned long attrs)
1213{
1214	struct scatterlist *s;
1215	int i;
1216
1217	sg_dma_mark_swiotlb(sg);
1218
1219	for_each_sg(sg, s, nents, i) {
1220		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1221				s->offset, s->length, dir, attrs);
1222		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1223			goto out_unmap;
1224		sg_dma_len(s) = s->length;
1225	}
1226
1227	return nents;
1228
1229out_unmap:
1230	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1231	return -EIO;
1232}
1233
1234/*
1235 * The DMA API client is passing in a scatterlist which could describe
1236 * any old buffer layout, but the IOMMU API requires everything to be
1237 * aligned to IOMMU pages. Hence the need for this complicated bit of
1238 * impedance-matching, to be able to hand off a suitably-aligned list,
1239 * but still preserve the original offsets and sizes for the caller.
1240 */
1241static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1242		int nents, enum dma_data_direction dir, unsigned long attrs)
1243{
1244	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1245	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1246	struct iova_domain *iovad = &cookie->iovad;
1247	struct scatterlist *s, *prev = NULL;
1248	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1249	struct pci_p2pdma_map_state p2pdma_state = {};
1250	enum pci_p2pdma_map_type map;
1251	dma_addr_t iova;
1252	size_t iova_len = 0;
1253	unsigned long mask = dma_get_seg_boundary(dev);
1254	ssize_t ret;
1255	int i;
1256
1257	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1258		ret = iommu_deferred_attach(dev, domain);
1259		if (ret)
1260			goto out;
1261	}
1262
1263	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1264		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1265
1266	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1267		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1268
1269	/*
1270	 * Work out how much IOVA space we need, and align the segments to
1271	 * IOVA granules for the IOMMU driver to handle. With some clever
1272	 * trickery we can modify the list in-place, but reversibly, by
1273	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1274	 */
1275	for_each_sg(sg, s, nents, i) {
1276		size_t s_iova_off = iova_offset(iovad, s->offset);
1277		size_t s_length = s->length;
1278		size_t pad_len = (mask - iova_len + 1) & mask;
1279
1280		if (is_pci_p2pdma_page(sg_page(s))) {
1281			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1282			switch (map) {
1283			case PCI_P2PDMA_MAP_BUS_ADDR:
1284				/*
1285				 * iommu_map_sg() will skip this segment as
1286				 * it is marked as a bus address,
1287				 * __finalise_sg() will copy the dma address
1288				 * into the output segment.
1289				 */
1290				continue;
1291			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1292				/*
1293				 * Mapping through host bridge should be
1294				 * mapped with regular IOVAs, thus we
1295				 * do nothing here and continue below.
1296				 */
1297				break;
1298			default:
1299				ret = -EREMOTEIO;
1300				goto out_restore_sg;
1301			}
1302		}
1303
1304		sg_dma_address(s) = s_iova_off;
1305		sg_dma_len(s) = s_length;
1306		s->offset -= s_iova_off;
1307		s_length = iova_align(iovad, s_length + s_iova_off);
1308		s->length = s_length;
1309
1310		/*
1311		 * Due to the alignment of our single IOVA allocation, we can
1312		 * depend on these assumptions about the segment boundary mask:
1313		 * - If mask size >= IOVA size, then the IOVA range cannot
1314		 *   possibly fall across a boundary, so we don't care.
1315		 * - If mask size < IOVA size, then the IOVA range must start
1316		 *   exactly on a boundary, therefore we can lay things out
1317		 *   based purely on segment lengths without needing to know
1318		 *   the actual addresses beforehand.
1319		 * - The mask must be a power of 2, so pad_len == 0 if
1320		 *   iova_len == 0, thus we cannot dereference prev the first
1321		 *   time through here (i.e. before it has a meaningful value).
1322		 */
1323		if (pad_len && pad_len < s_length - 1) {
1324			prev->length += pad_len;
1325			iova_len += pad_len;
1326		}
1327
1328		iova_len += s_length;
1329		prev = s;
1330	}
1331
1332	if (!iova_len)
1333		return __finalise_sg(dev, sg, nents, 0);
1334
1335	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1336	if (!iova) {
1337		ret = -ENOMEM;
1338		goto out_restore_sg;
1339	}
1340
1341	/*
1342	 * We'll leave any physical concatenation to the IOMMU driver's
1343	 * implementation - it knows better than we do.
1344	 */
1345	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1346	if (ret < 0 || ret < iova_len)
1347		goto out_free_iova;
1348
1349	return __finalise_sg(dev, sg, nents, iova);
1350
1351out_free_iova:
1352	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1353out_restore_sg:
1354	__invalidate_sg(sg, nents);
1355out:
1356	if (ret != -ENOMEM && ret != -EREMOTEIO)
1357		return -EINVAL;
1358	return ret;
1359}
1360
1361static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1362		int nents, enum dma_data_direction dir, unsigned long attrs)
1363{
1364	dma_addr_t end = 0, start;
1365	struct scatterlist *tmp;
1366	int i;
1367
1368	if (sg_dma_is_swiotlb(sg)) {
1369		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1370		return;
1371	}
1372
1373	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1375
1376	/*
1377	 * The scatterlist segments are mapped into a single
1378	 * contiguous IOVA allocation, the start and end points
1379	 * just have to be determined.
1380	 */
1381	for_each_sg(sg, tmp, nents, i) {
1382		if (sg_dma_is_bus_address(tmp)) {
1383			sg_dma_unmark_bus_address(tmp);
1384			continue;
1385		}
1386
1387		if (sg_dma_len(tmp) == 0)
1388			break;
1389
1390		start = sg_dma_address(tmp);
1391		break;
1392	}
1393
1394	nents -= i;
1395	for_each_sg(tmp, tmp, nents, i) {
1396		if (sg_dma_is_bus_address(tmp)) {
1397			sg_dma_unmark_bus_address(tmp);
1398			continue;
1399		}
1400
1401		if (sg_dma_len(tmp) == 0)
1402			break;
1403
1404		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1405	}
1406
1407	if (end)
1408		__iommu_dma_unmap(dev, start, end - start);
1409}
1410
1411static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1412		size_t size, enum dma_data_direction dir, unsigned long attrs)
1413{
1414	return __iommu_dma_map(dev, phys, size,
1415			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1416			dma_get_mask(dev));
1417}
1418
1419static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1420		size_t size, enum dma_data_direction dir, unsigned long attrs)
1421{
1422	__iommu_dma_unmap(dev, handle, size);
1423}
1424
1425static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1426{
1427	size_t alloc_size = PAGE_ALIGN(size);
1428	int count = alloc_size >> PAGE_SHIFT;
1429	struct page *page = NULL, **pages = NULL;
1430
1431	/* Non-coherent atomic allocation? Easy */
1432	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1433	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1434		return;
1435
1436	if (is_vmalloc_addr(cpu_addr)) {
1437		/*
1438		 * If it the address is remapped, then it's either non-coherent
1439		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1440		 */
1441		pages = dma_common_find_pages(cpu_addr);
1442		if (!pages)
1443			page = vmalloc_to_page(cpu_addr);
1444		dma_common_free_remap(cpu_addr, alloc_size);
1445	} else {
1446		/* Lowmem means a coherent atomic or CMA allocation */
1447		page = virt_to_page(cpu_addr);
1448	}
1449
1450	if (pages)
1451		__iommu_dma_free_pages(pages, count);
1452	if (page)
1453		dma_free_contiguous(dev, page, alloc_size);
1454}
1455
1456static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1457		dma_addr_t handle, unsigned long attrs)
1458{
1459	__iommu_dma_unmap(dev, handle, size);
1460	__iommu_dma_free(dev, size, cpu_addr);
1461}
1462
1463static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1464		struct page **pagep, gfp_t gfp, unsigned long attrs)
1465{
1466	bool coherent = dev_is_dma_coherent(dev);
1467	size_t alloc_size = PAGE_ALIGN(size);
1468	int node = dev_to_node(dev);
1469	struct page *page = NULL;
1470	void *cpu_addr;
1471
1472	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1473	if (!page)
1474		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1475	if (!page)
1476		return NULL;
1477
1478	if (!coherent || PageHighMem(page)) {
1479		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1480
1481		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1482				prot, __builtin_return_address(0));
1483		if (!cpu_addr)
1484			goto out_free_pages;
1485
1486		if (!coherent)
1487			arch_dma_prep_coherent(page, size);
1488	} else {
1489		cpu_addr = page_address(page);
1490	}
1491
1492	*pagep = page;
1493	memset(cpu_addr, 0, alloc_size);
1494	return cpu_addr;
1495out_free_pages:
1496	dma_free_contiguous(dev, page, alloc_size);
1497	return NULL;
1498}
1499
1500static void *iommu_dma_alloc(struct device *dev, size_t size,
1501		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1502{
1503	bool coherent = dev_is_dma_coherent(dev);
1504	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1505	struct page *page = NULL;
1506	void *cpu_addr;
1507
1508	gfp |= __GFP_ZERO;
1509
1510	if (gfpflags_allow_blocking(gfp) &&
1511	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1512		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1513				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1514	}
1515
1516	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1517	    !gfpflags_allow_blocking(gfp) && !coherent)
1518		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1519					       gfp, NULL);
1520	else
1521		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1522	if (!cpu_addr)
1523		return NULL;
1524
1525	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1526			dev->coherent_dma_mask);
1527	if (*handle == DMA_MAPPING_ERROR) {
1528		__iommu_dma_free(dev, size, cpu_addr);
1529		return NULL;
1530	}
1531
1532	return cpu_addr;
1533}
1534
1535static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1536		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1537		unsigned long attrs)
1538{
1539	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1540	unsigned long pfn, off = vma->vm_pgoff;
1541	int ret;
1542
1543	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1544
1545	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1546		return ret;
1547
1548	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1549		return -ENXIO;
1550
1551	if (is_vmalloc_addr(cpu_addr)) {
1552		struct page **pages = dma_common_find_pages(cpu_addr);
1553
1554		if (pages)
1555			return vm_map_pages(vma, pages, nr_pages);
1556		pfn = vmalloc_to_pfn(cpu_addr);
1557	} else {
1558		pfn = page_to_pfn(virt_to_page(cpu_addr));
1559	}
1560
1561	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1562			       vma->vm_end - vma->vm_start,
1563			       vma->vm_page_prot);
1564}
1565
1566static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1567		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1568		unsigned long attrs)
1569{
1570	struct page *page;
1571	int ret;
1572
1573	if (is_vmalloc_addr(cpu_addr)) {
1574		struct page **pages = dma_common_find_pages(cpu_addr);
1575
1576		if (pages) {
1577			return sg_alloc_table_from_pages(sgt, pages,
1578					PAGE_ALIGN(size) >> PAGE_SHIFT,
1579					0, size, GFP_KERNEL);
1580		}
1581
1582		page = vmalloc_to_page(cpu_addr);
1583	} else {
1584		page = virt_to_page(cpu_addr);
1585	}
1586
1587	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1588	if (!ret)
1589		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1590	return ret;
1591}
1592
1593static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1594{
1595	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1596
1597	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1598}
1599
1600static size_t iommu_dma_opt_mapping_size(void)
1601{
1602	return iova_rcache_range();
1603}
1604
1605static const struct dma_map_ops iommu_dma_ops = {
1606	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1607	.alloc			= iommu_dma_alloc,
1608	.free			= iommu_dma_free,
1609	.alloc_pages		= dma_common_alloc_pages,
1610	.free_pages		= dma_common_free_pages,
1611	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1612	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1613	.mmap			= iommu_dma_mmap,
1614	.get_sgtable		= iommu_dma_get_sgtable,
1615	.map_page		= iommu_dma_map_page,
1616	.unmap_page		= iommu_dma_unmap_page,
1617	.map_sg			= iommu_dma_map_sg,
1618	.unmap_sg		= iommu_dma_unmap_sg,
1619	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1620	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1621	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1622	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1623	.map_resource		= iommu_dma_map_resource,
1624	.unmap_resource		= iommu_dma_unmap_resource,
1625	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1626	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1627};
1628
1629/*
1630 * The IOMMU core code allocates the default DMA domain, which the underlying
1631 * IOMMU driver needs to support via the dma-iommu layer.
1632 */
1633void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1634{
1635	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1636
1637	if (!domain)
1638		goto out_err;
1639
1640	/*
1641	 * The IOMMU core code allocates the default DMA domain, which the
1642	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1643	 */
1644	if (iommu_is_dma_domain(domain)) {
1645		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1646			goto out_err;
1647		dev->dma_ops = &iommu_dma_ops;
1648	}
1649
1650	return;
1651out_err:
1652	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1653		 dev_name(dev));
1654}
1655EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1656
1657static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1658		phys_addr_t msi_addr, struct iommu_domain *domain)
1659{
1660	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1661	struct iommu_dma_msi_page *msi_page;
1662	dma_addr_t iova;
1663	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1664	size_t size = cookie_msi_granule(cookie);
1665
1666	msi_addr &= ~(phys_addr_t)(size - 1);
1667	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1668		if (msi_page->phys == msi_addr)
1669			return msi_page;
1670
1671	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1672	if (!msi_page)
1673		return NULL;
1674
1675	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1676	if (!iova)
1677		goto out_free_page;
1678
1679	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1680		goto out_free_iova;
1681
1682	INIT_LIST_HEAD(&msi_page->list);
1683	msi_page->phys = msi_addr;
1684	msi_page->iova = iova;
1685	list_add(&msi_page->list, &cookie->msi_page_list);
1686	return msi_page;
1687
1688out_free_iova:
1689	iommu_dma_free_iova(cookie, iova, size, NULL);
1690out_free_page:
1691	kfree(msi_page);
1692	return NULL;
1693}
1694
1695/**
1696 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1697 * @desc: MSI descriptor, will store the MSI page
1698 * @msi_addr: MSI target address to be mapped
1699 *
1700 * Return: 0 on success or negative error code if the mapping failed.
1701 */
1702int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1703{
1704	struct device *dev = msi_desc_to_dev(desc);
1705	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1706	struct iommu_dma_msi_page *msi_page;
1707	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1708
1709	if (!domain || !domain->iova_cookie) {
1710		desc->iommu_cookie = NULL;
1711		return 0;
1712	}
1713
1714	/*
1715	 * In fact the whole prepare operation should already be serialised by
1716	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1717	 * on its own, so consider this locking as failsafe documentation...
1718	 */
1719	mutex_lock(&msi_prepare_lock);
1720	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1721	mutex_unlock(&msi_prepare_lock);
1722
1723	msi_desc_set_iommu_cookie(desc, msi_page);
1724
1725	if (!msi_page)
1726		return -ENOMEM;
1727	return 0;
1728}
1729
1730/**
1731 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1732 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1733 * @msg: MSI message containing target physical address
1734 */
1735void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1736{
1737	struct device *dev = msi_desc_to_dev(desc);
1738	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1739	const struct iommu_dma_msi_page *msi_page;
1740
1741	msi_page = msi_desc_get_iommu_cookie(desc);
1742
1743	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1744		return;
1745
1746	msg->address_hi = upper_32_bits(msi_page->iova);
1747	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1748	msg->address_lo += lower_32_bits(msi_page->iova);
1749}
1750
1751static int iommu_dma_init(void)
1752{
1753	if (is_kdump_kernel())
1754		static_branch_enable(&iommu_deferred_attach_enabled);
1755
1756	return iova_cache_get();
1757}
1758arch_initcall(iommu_dma_init);
1759