1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9#include <linux/debugfs.h>
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/mutex.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/overflow.h>
20
21#include "internal.h"
22
23#define CREATE_TRACE_POINTS
24#include "trace.h"
25
26static DEFINE_IDR(icc_idr);
27static LIST_HEAD(icc_providers);
28static int providers_count;
29static bool synced_state;
30static DEFINE_MUTEX(icc_lock);
31static DEFINE_MUTEX(icc_bw_lock);
32static struct dentry *icc_debugfs_dir;
33
34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35{
36	if (!n)
37		return;
38
39	seq_printf(s, "%-42s %12u %12u\n",
40		   n->name, n->avg_bw, n->peak_bw);
41}
42
43static int icc_summary_show(struct seq_file *s, void *data)
44{
45	struct icc_provider *provider;
46
47	seq_puts(s, " node                                  tag          avg         peak\n");
48	seq_puts(s, "--------------------------------------------------------------------\n");
49
50	mutex_lock(&icc_lock);
51
52	list_for_each_entry(provider, &icc_providers, provider_list) {
53		struct icc_node *n;
54
55		list_for_each_entry(n, &provider->nodes, node_list) {
56			struct icc_req *r;
57
58			icc_summary_show_one(s, n);
59			hlist_for_each_entry(r, &n->req_list, req_node) {
60				u32 avg_bw = 0, peak_bw = 0;
61
62				if (!r->dev)
63					continue;
64
65				if (r->enabled) {
66					avg_bw = r->avg_bw;
67					peak_bw = r->peak_bw;
68				}
69
70				seq_printf(s, "  %-27s %12u %12u %12u\n",
71					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72			}
73		}
74	}
75
76	mutex_unlock(&icc_lock);
77
78	return 0;
79}
80DEFINE_SHOW_ATTRIBUTE(icc_summary);
81
82static void icc_graph_show_link(struct seq_file *s, int level,
83				struct icc_node *n, struct icc_node *m)
84{
85	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86		   level == 2 ? "\t\t" : "\t",
87		   n->id, n->name, m->id, m->name);
88}
89
90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91{
92	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93		   n->id, n->name, n->id, n->name);
94	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96	seq_puts(s, "\"]\n");
97}
98
99static int icc_graph_show(struct seq_file *s, void *data)
100{
101	struct icc_provider *provider;
102	struct icc_node *n;
103	int cluster_index = 0;
104	int i;
105
106	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107	mutex_lock(&icc_lock);
108
109	/* draw providers as cluster subgraphs */
110	cluster_index = 0;
111	list_for_each_entry(provider, &icc_providers, provider_list) {
112		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113		if (provider->dev)
114			seq_printf(s, "\t\tlabel = \"%s\"\n",
115				   dev_name(provider->dev));
116
117		/* draw nodes */
118		list_for_each_entry(n, &provider->nodes, node_list)
119			icc_graph_show_node(s, n);
120
121		/* draw internal links */
122		list_for_each_entry(n, &provider->nodes, node_list)
123			for (i = 0; i < n->num_links; ++i)
124				if (n->provider == n->links[i]->provider)
125					icc_graph_show_link(s, 2, n,
126							    n->links[i]);
127
128		seq_puts(s, "\t}\n");
129	}
130
131	/* draw external links */
132	list_for_each_entry(provider, &icc_providers, provider_list)
133		list_for_each_entry(n, &provider->nodes, node_list)
134			for (i = 0; i < n->num_links; ++i)
135				if (n->provider != n->links[i]->provider)
136					icc_graph_show_link(s, 1, n,
137							    n->links[i]);
138
139	mutex_unlock(&icc_lock);
140	seq_puts(s, "}");
141
142	return 0;
143}
144DEFINE_SHOW_ATTRIBUTE(icc_graph);
145
146static struct icc_node *node_find(const int id)
147{
148	return idr_find(&icc_idr, id);
149}
150
151static struct icc_node *node_find_by_name(const char *name)
152{
153	struct icc_provider *provider;
154	struct icc_node *n;
155
156	list_for_each_entry(provider, &icc_providers, provider_list) {
157		list_for_each_entry(n, &provider->nodes, node_list) {
158			if (!strcmp(n->name, name))
159				return n;
160		}
161	}
162
163	return NULL;
164}
165
166static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
167				  ssize_t num_nodes)
168{
169	struct icc_node *node = dst;
170	struct icc_path *path;
171	int i;
172
173	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
174	if (!path)
175		return ERR_PTR(-ENOMEM);
176
177	path->num_nodes = num_nodes;
178
179	for (i = num_nodes - 1; i >= 0; i--) {
180		node->provider->users++;
181		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
182		path->reqs[i].node = node;
183		path->reqs[i].dev = dev;
184		path->reqs[i].enabled = true;
185		/* reference to previous node was saved during path traversal */
186		node = node->reverse;
187	}
188
189	return path;
190}
191
192static struct icc_path *path_find(struct device *dev, struct icc_node *src,
193				  struct icc_node *dst)
194{
195	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
196	struct icc_node *n, *node = NULL;
197	struct list_head traverse_list;
198	struct list_head edge_list;
199	struct list_head visited_list;
200	size_t i, depth = 1;
201	bool found = false;
202
203	INIT_LIST_HEAD(&traverse_list);
204	INIT_LIST_HEAD(&edge_list);
205	INIT_LIST_HEAD(&visited_list);
206
207	list_add(&src->search_list, &traverse_list);
208	src->reverse = NULL;
209
210	do {
211		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
212			if (node == dst) {
213				found = true;
214				list_splice_init(&edge_list, &visited_list);
215				list_splice_init(&traverse_list, &visited_list);
216				break;
217			}
218			for (i = 0; i < node->num_links; i++) {
219				struct icc_node *tmp = node->links[i];
220
221				if (!tmp) {
222					path = ERR_PTR(-ENOENT);
223					goto out;
224				}
225
226				if (tmp->is_traversed)
227					continue;
228
229				tmp->is_traversed = true;
230				tmp->reverse = node;
231				list_add_tail(&tmp->search_list, &edge_list);
232			}
233		}
234
235		if (found)
236			break;
237
238		list_splice_init(&traverse_list, &visited_list);
239		list_splice_init(&edge_list, &traverse_list);
240
241		/* count the hops including the source */
242		depth++;
243
244	} while (!list_empty(&traverse_list));
245
246out:
247
248	/* reset the traversed state */
249	list_for_each_entry_reverse(n, &visited_list, search_list)
250		n->is_traversed = false;
251
252	if (found)
253		path = path_init(dev, dst, depth);
254
255	return path;
256}
257
258/*
259 * We want the path to honor all bandwidth requests, so the average and peak
260 * bandwidth requirements from each consumer are aggregated at each node.
261 * The aggregation is platform specific, so each platform can customize it by
262 * implementing its own aggregate() function.
263 */
264
265static int aggregate_requests(struct icc_node *node)
266{
267	struct icc_provider *p = node->provider;
268	struct icc_req *r;
269	u32 avg_bw, peak_bw;
270
271	node->avg_bw = 0;
272	node->peak_bw = 0;
273
274	if (p->pre_aggregate)
275		p->pre_aggregate(node);
276
277	hlist_for_each_entry(r, &node->req_list, req_node) {
278		if (r->enabled) {
279			avg_bw = r->avg_bw;
280			peak_bw = r->peak_bw;
281		} else {
282			avg_bw = 0;
283			peak_bw = 0;
284		}
285		p->aggregate(node, r->tag, avg_bw, peak_bw,
286			     &node->avg_bw, &node->peak_bw);
287
288		/* during boot use the initial bandwidth as a floor value */
289		if (!synced_state) {
290			node->avg_bw = max(node->avg_bw, node->init_avg);
291			node->peak_bw = max(node->peak_bw, node->init_peak);
292		}
293	}
294
295	return 0;
296}
297
298static int apply_constraints(struct icc_path *path)
299{
300	struct icc_node *next, *prev = NULL;
301	struct icc_provider *p;
302	int ret = -EINVAL;
303	int i;
304
305	for (i = 0; i < path->num_nodes; i++) {
306		next = path->reqs[i].node;
307		p = next->provider;
308
309		/* both endpoints should be valid master-slave pairs */
310		if (!prev || (p != prev->provider && !p->inter_set)) {
311			prev = next;
312			continue;
313		}
314
315		/* set the constraints */
316		ret = p->set(prev, next);
317		if (ret)
318			goto out;
319
320		prev = next;
321	}
322out:
323	return ret;
324}
325
326int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
327		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
328{
329	*agg_avg += avg_bw;
330	*agg_peak = max(*agg_peak, peak_bw);
331
332	return 0;
333}
334EXPORT_SYMBOL_GPL(icc_std_aggregate);
335
336/* of_icc_xlate_onecell() - Translate function using a single index.
337 * @spec: OF phandle args to map into an interconnect node.
338 * @data: private data (pointer to struct icc_onecell_data)
339 *
340 * This is a generic translate function that can be used to model simple
341 * interconnect providers that have one device tree node and provide
342 * multiple interconnect nodes. A single cell is used as an index into
343 * an array of icc nodes specified in the icc_onecell_data struct when
344 * registering the provider.
345 */
346struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
347				      void *data)
348{
349	struct icc_onecell_data *icc_data = data;
350	unsigned int idx = spec->args[0];
351
352	if (idx >= icc_data->num_nodes) {
353		pr_err("%s: invalid index %u\n", __func__, idx);
354		return ERR_PTR(-EINVAL);
355	}
356
357	return icc_data->nodes[idx];
358}
359EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
360
361/**
362 * of_icc_get_from_provider() - Look-up interconnect node
363 * @spec: OF phandle args to use for look-up
364 *
365 * Looks for interconnect provider under the node specified by @spec and if
366 * found, uses xlate function of the provider to map phandle args to node.
367 *
368 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
369 * on failure.
370 */
371struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
372{
373	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
374	struct icc_node_data *data = NULL;
375	struct icc_provider *provider;
376
377	if (!spec)
378		return ERR_PTR(-EINVAL);
379
380	mutex_lock(&icc_lock);
381	list_for_each_entry(provider, &icc_providers, provider_list) {
382		if (provider->dev->of_node == spec->np) {
383			if (provider->xlate_extended) {
384				data = provider->xlate_extended(spec, provider->data);
385				if (!IS_ERR(data)) {
386					node = data->node;
387					break;
388				}
389			} else {
390				node = provider->xlate(spec, provider->data);
391				if (!IS_ERR(node))
392					break;
393			}
394		}
395	}
396	mutex_unlock(&icc_lock);
397
398	if (!node)
399		return ERR_PTR(-EINVAL);
400
401	if (IS_ERR(node))
402		return ERR_CAST(node);
403
404	if (!data) {
405		data = kzalloc(sizeof(*data), GFP_KERNEL);
406		if (!data)
407			return ERR_PTR(-ENOMEM);
408		data->node = node;
409	}
410
411	return data;
412}
413EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
414
415static void devm_icc_release(struct device *dev, void *res)
416{
417	icc_put(*(struct icc_path **)res);
418}
419
420struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
421{
422	struct icc_path **ptr, *path;
423
424	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
425	if (!ptr)
426		return ERR_PTR(-ENOMEM);
427
428	path = of_icc_get(dev, name);
429	if (!IS_ERR(path)) {
430		*ptr = path;
431		devres_add(dev, ptr);
432	} else {
433		devres_free(ptr);
434	}
435
436	return path;
437}
438EXPORT_SYMBOL_GPL(devm_of_icc_get);
439
440/**
441 * of_icc_get_by_index() - get a path handle from a DT node based on index
442 * @dev: device pointer for the consumer device
443 * @idx: interconnect path index
444 *
445 * This function will search for a path between two endpoints and return an
446 * icc_path handle on success. Use icc_put() to release constraints when they
447 * are not needed anymore.
448 * If the interconnect API is disabled, NULL is returned and the consumer
449 * drivers will still build. Drivers are free to handle this specifically,
450 * but they don't have to.
451 *
452 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
453 * when the API is disabled or the "interconnects" DT property is missing.
454 */
455struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
456{
457	struct icc_path *path;
458	struct icc_node_data *src_data, *dst_data;
459	struct device_node *np;
460	struct of_phandle_args src_args, dst_args;
461	int ret;
462
463	if (!dev || !dev->of_node)
464		return ERR_PTR(-ENODEV);
465
466	np = dev->of_node;
467
468	/*
469	 * When the consumer DT node do not have "interconnects" property
470	 * return a NULL path to skip setting constraints.
471	 */
472	if (!of_property_present(np, "interconnects"))
473		return NULL;
474
475	/*
476	 * We use a combination of phandle and specifier for endpoint. For now
477	 * lets support only global ids and extend this in the future if needed
478	 * without breaking DT compatibility.
479	 */
480	ret = of_parse_phandle_with_args(np, "interconnects",
481					 "#interconnect-cells", idx * 2,
482					 &src_args);
483	if (ret)
484		return ERR_PTR(ret);
485
486	of_node_put(src_args.np);
487
488	ret = of_parse_phandle_with_args(np, "interconnects",
489					 "#interconnect-cells", idx * 2 + 1,
490					 &dst_args);
491	if (ret)
492		return ERR_PTR(ret);
493
494	of_node_put(dst_args.np);
495
496	src_data = of_icc_get_from_provider(&src_args);
497
498	if (IS_ERR(src_data)) {
499		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
500		return ERR_CAST(src_data);
501	}
502
503	dst_data = of_icc_get_from_provider(&dst_args);
504
505	if (IS_ERR(dst_data)) {
506		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
507		kfree(src_data);
508		return ERR_CAST(dst_data);
509	}
510
511	mutex_lock(&icc_lock);
512	path = path_find(dev, src_data->node, dst_data->node);
513	mutex_unlock(&icc_lock);
514	if (IS_ERR(path)) {
515		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
516		goto free_icc_data;
517	}
518
519	if (src_data->tag && src_data->tag == dst_data->tag)
520		icc_set_tag(path, src_data->tag);
521
522	path->name = kasprintf(GFP_KERNEL, "%s-%s",
523			       src_data->node->name, dst_data->node->name);
524	if (!path->name) {
525		kfree(path);
526		path = ERR_PTR(-ENOMEM);
527	}
528
529free_icc_data:
530	kfree(src_data);
531	kfree(dst_data);
532	return path;
533}
534EXPORT_SYMBOL_GPL(of_icc_get_by_index);
535
536/**
537 * of_icc_get() - get a path handle from a DT node based on name
538 * @dev: device pointer for the consumer device
539 * @name: interconnect path name
540 *
541 * This function will search for a path between two endpoints and return an
542 * icc_path handle on success. Use icc_put() to release constraints when they
543 * are not needed anymore.
544 * If the interconnect API is disabled, NULL is returned and the consumer
545 * drivers will still build. Drivers are free to handle this specifically,
546 * but they don't have to.
547 *
548 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
549 * when the API is disabled or the "interconnects" DT property is missing.
550 */
551struct icc_path *of_icc_get(struct device *dev, const char *name)
552{
553	struct device_node *np;
554	int idx = 0;
555
556	if (!dev || !dev->of_node)
557		return ERR_PTR(-ENODEV);
558
559	np = dev->of_node;
560
561	/*
562	 * When the consumer DT node do not have "interconnects" property
563	 * return a NULL path to skip setting constraints.
564	 */
565	if (!of_property_present(np, "interconnects"))
566		return NULL;
567
568	/*
569	 * We use a combination of phandle and specifier for endpoint. For now
570	 * lets support only global ids and extend this in the future if needed
571	 * without breaking DT compatibility.
572	 */
573	if (name) {
574		idx = of_property_match_string(np, "interconnect-names", name);
575		if (idx < 0)
576			return ERR_PTR(idx);
577	}
578
579	return of_icc_get_by_index(dev, idx);
580}
581EXPORT_SYMBOL_GPL(of_icc_get);
582
583/**
584 * icc_get() - get a path handle between two endpoints
585 * @dev: device pointer for the consumer device
586 * @src: source node name
587 * @dst: destination node name
588 *
589 * This function will search for a path between two endpoints and return an
590 * icc_path handle on success. Use icc_put() to release constraints when they
591 * are not needed anymore.
592 *
593 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
594 * when the API is disabled.
595 */
596struct icc_path *icc_get(struct device *dev, const char *src, const char *dst)
597{
598	struct icc_node *src_node, *dst_node;
599	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
600
601	mutex_lock(&icc_lock);
602
603	src_node = node_find_by_name(src);
604	if (!src_node) {
605		dev_err(dev, "%s: invalid src=%s\n", __func__, src);
606		goto out;
607	}
608
609	dst_node = node_find_by_name(dst);
610	if (!dst_node) {
611		dev_err(dev, "%s: invalid dst=%s\n", __func__, dst);
612		goto out;
613	}
614
615	path = path_find(dev, src_node, dst_node);
616	if (IS_ERR(path)) {
617		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
618		goto out;
619	}
620
621	path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name);
622	if (!path->name) {
623		kfree(path);
624		path = ERR_PTR(-ENOMEM);
625	}
626out:
627	mutex_unlock(&icc_lock);
628	return path;
629}
630
631/**
632 * icc_set_tag() - set an optional tag on a path
633 * @path: the path we want to tag
634 * @tag: the tag value
635 *
636 * This function allows consumers to append a tag to the requests associated
637 * with a path, so that a different aggregation could be done based on this tag.
638 */
639void icc_set_tag(struct icc_path *path, u32 tag)
640{
641	int i;
642
643	if (!path)
644		return;
645
646	mutex_lock(&icc_lock);
647
648	for (i = 0; i < path->num_nodes; i++)
649		path->reqs[i].tag = tag;
650
651	mutex_unlock(&icc_lock);
652}
653EXPORT_SYMBOL_GPL(icc_set_tag);
654
655/**
656 * icc_get_name() - Get name of the icc path
657 * @path: interconnect path
658 *
659 * This function is used by an interconnect consumer to get the name of the icc
660 * path.
661 *
662 * Returns a valid pointer on success, or NULL otherwise.
663 */
664const char *icc_get_name(struct icc_path *path)
665{
666	if (!path)
667		return NULL;
668
669	return path->name;
670}
671EXPORT_SYMBOL_GPL(icc_get_name);
672
673/**
674 * icc_set_bw() - set bandwidth constraints on an interconnect path
675 * @path: interconnect path
676 * @avg_bw: average bandwidth in kilobytes per second
677 * @peak_bw: peak bandwidth in kilobytes per second
678 *
679 * This function is used by an interconnect consumer to express its own needs
680 * in terms of bandwidth for a previously requested path between two endpoints.
681 * The requests are aggregated and each node is updated accordingly. The entire
682 * path is locked by a mutex to ensure that the set() is completed.
683 * The @path can be NULL when the "interconnects" DT properties is missing,
684 * which will mean that no constraints will be set.
685 *
686 * Returns 0 on success, or an appropriate error code otherwise.
687 */
688int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
689{
690	struct icc_node *node;
691	u32 old_avg, old_peak;
692	size_t i;
693	int ret;
694
695	if (!path)
696		return 0;
697
698	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
699		return -EINVAL;
700
701	mutex_lock(&icc_bw_lock);
702
703	old_avg = path->reqs[0].avg_bw;
704	old_peak = path->reqs[0].peak_bw;
705
706	for (i = 0; i < path->num_nodes; i++) {
707		node = path->reqs[i].node;
708
709		/* update the consumer request for this path */
710		path->reqs[i].avg_bw = avg_bw;
711		path->reqs[i].peak_bw = peak_bw;
712
713		/* aggregate requests for this node */
714		aggregate_requests(node);
715
716		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
717	}
718
719	ret = apply_constraints(path);
720	if (ret) {
721		pr_debug("interconnect: error applying constraints (%d)\n",
722			 ret);
723
724		for (i = 0; i < path->num_nodes; i++) {
725			node = path->reqs[i].node;
726			path->reqs[i].avg_bw = old_avg;
727			path->reqs[i].peak_bw = old_peak;
728			aggregate_requests(node);
729		}
730		apply_constraints(path);
731	}
732
733	mutex_unlock(&icc_bw_lock);
734
735	trace_icc_set_bw_end(path, ret);
736
737	return ret;
738}
739EXPORT_SYMBOL_GPL(icc_set_bw);
740
741static int __icc_enable(struct icc_path *path, bool enable)
742{
743	int i;
744
745	if (!path)
746		return 0;
747
748	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
749		return -EINVAL;
750
751	mutex_lock(&icc_lock);
752
753	for (i = 0; i < path->num_nodes; i++)
754		path->reqs[i].enabled = enable;
755
756	mutex_unlock(&icc_lock);
757
758	return icc_set_bw(path, path->reqs[0].avg_bw,
759			  path->reqs[0].peak_bw);
760}
761
762int icc_enable(struct icc_path *path)
763{
764	return __icc_enable(path, true);
765}
766EXPORT_SYMBOL_GPL(icc_enable);
767
768int icc_disable(struct icc_path *path)
769{
770	return __icc_enable(path, false);
771}
772EXPORT_SYMBOL_GPL(icc_disable);
773
774/**
775 * icc_put() - release the reference to the icc_path
776 * @path: interconnect path
777 *
778 * Use this function to release the constraints on a path when the path is
779 * no longer needed. The constraints will be re-aggregated.
780 */
781void icc_put(struct icc_path *path)
782{
783	struct icc_node *node;
784	size_t i;
785	int ret;
786
787	if (!path || WARN_ON(IS_ERR(path)))
788		return;
789
790	ret = icc_set_bw(path, 0, 0);
791	if (ret)
792		pr_err("%s: error (%d)\n", __func__, ret);
793
794	mutex_lock(&icc_lock);
795	for (i = 0; i < path->num_nodes; i++) {
796		node = path->reqs[i].node;
797		hlist_del(&path->reqs[i].req_node);
798		if (!WARN_ON(!node->provider->users))
799			node->provider->users--;
800	}
801	mutex_unlock(&icc_lock);
802
803	kfree_const(path->name);
804	kfree(path);
805}
806EXPORT_SYMBOL_GPL(icc_put);
807
808static struct icc_node *icc_node_create_nolock(int id)
809{
810	struct icc_node *node;
811
812	/* check if node already exists */
813	node = node_find(id);
814	if (node)
815		return node;
816
817	node = kzalloc(sizeof(*node), GFP_KERNEL);
818	if (!node)
819		return ERR_PTR(-ENOMEM);
820
821	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
822	if (id < 0) {
823		WARN(1, "%s: couldn't get idr\n", __func__);
824		kfree(node);
825		return ERR_PTR(id);
826	}
827
828	node->id = id;
829
830	return node;
831}
832
833/**
834 * icc_node_create() - create a node
835 * @id: node id
836 *
837 * Return: icc_node pointer on success, or ERR_PTR() on error
838 */
839struct icc_node *icc_node_create(int id)
840{
841	struct icc_node *node;
842
843	mutex_lock(&icc_lock);
844
845	node = icc_node_create_nolock(id);
846
847	mutex_unlock(&icc_lock);
848
849	return node;
850}
851EXPORT_SYMBOL_GPL(icc_node_create);
852
853/**
854 * icc_node_destroy() - destroy a node
855 * @id: node id
856 */
857void icc_node_destroy(int id)
858{
859	struct icc_node *node;
860
861	mutex_lock(&icc_lock);
862
863	node = node_find(id);
864	if (node) {
865		idr_remove(&icc_idr, node->id);
866		WARN_ON(!hlist_empty(&node->req_list));
867	}
868
869	mutex_unlock(&icc_lock);
870
871	if (!node)
872		return;
873
874	kfree(node->links);
875	kfree(node);
876}
877EXPORT_SYMBOL_GPL(icc_node_destroy);
878
879/**
880 * icc_link_create() - create a link between two nodes
881 * @node: source node id
882 * @dst_id: destination node id
883 *
884 * Create a link between two nodes. The nodes might belong to different
885 * interconnect providers and the @dst_id node might not exist (if the
886 * provider driver has not probed yet). So just create the @dst_id node
887 * and when the actual provider driver is probed, the rest of the node
888 * data is filled.
889 *
890 * Return: 0 on success, or an error code otherwise
891 */
892int icc_link_create(struct icc_node *node, const int dst_id)
893{
894	struct icc_node *dst;
895	struct icc_node **new;
896	int ret = 0;
897
898	if (!node->provider)
899		return -EINVAL;
900
901	mutex_lock(&icc_lock);
902
903	dst = node_find(dst_id);
904	if (!dst) {
905		dst = icc_node_create_nolock(dst_id);
906
907		if (IS_ERR(dst)) {
908			ret = PTR_ERR(dst);
909			goto out;
910		}
911	}
912
913	new = krealloc(node->links,
914		       (node->num_links + 1) * sizeof(*node->links),
915		       GFP_KERNEL);
916	if (!new) {
917		ret = -ENOMEM;
918		goto out;
919	}
920
921	node->links = new;
922	node->links[node->num_links++] = dst;
923
924out:
925	mutex_unlock(&icc_lock);
926
927	return ret;
928}
929EXPORT_SYMBOL_GPL(icc_link_create);
930
931/**
932 * icc_node_add() - add interconnect node to interconnect provider
933 * @node: pointer to the interconnect node
934 * @provider: pointer to the interconnect provider
935 */
936void icc_node_add(struct icc_node *node, struct icc_provider *provider)
937{
938	if (WARN_ON(node->provider))
939		return;
940
941	mutex_lock(&icc_lock);
942	mutex_lock(&icc_bw_lock);
943
944	node->provider = provider;
945	list_add_tail(&node->node_list, &provider->nodes);
946
947	/* get the initial bandwidth values and sync them with hardware */
948	if (provider->get_bw) {
949		provider->get_bw(node, &node->init_avg, &node->init_peak);
950	} else {
951		node->init_avg = INT_MAX;
952		node->init_peak = INT_MAX;
953	}
954	node->avg_bw = node->init_avg;
955	node->peak_bw = node->init_peak;
956
957	if (node->avg_bw || node->peak_bw) {
958		if (provider->pre_aggregate)
959			provider->pre_aggregate(node);
960
961		if (provider->aggregate)
962			provider->aggregate(node, 0, node->init_avg, node->init_peak,
963					    &node->avg_bw, &node->peak_bw);
964		if (provider->set)
965			provider->set(node, node);
966	}
967
968	node->avg_bw = 0;
969	node->peak_bw = 0;
970
971	mutex_unlock(&icc_bw_lock);
972	mutex_unlock(&icc_lock);
973}
974EXPORT_SYMBOL_GPL(icc_node_add);
975
976/**
977 * icc_node_del() - delete interconnect node from interconnect provider
978 * @node: pointer to the interconnect node
979 */
980void icc_node_del(struct icc_node *node)
981{
982	mutex_lock(&icc_lock);
983
984	list_del(&node->node_list);
985
986	mutex_unlock(&icc_lock);
987}
988EXPORT_SYMBOL_GPL(icc_node_del);
989
990/**
991 * icc_nodes_remove() - remove all previously added nodes from provider
992 * @provider: the interconnect provider we are removing nodes from
993 *
994 * Return: 0 on success, or an error code otherwise
995 */
996int icc_nodes_remove(struct icc_provider *provider)
997{
998	struct icc_node *n, *tmp;
999
1000	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1001		return -EINVAL;
1002
1003	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1004		icc_node_del(n);
1005		icc_node_destroy(n->id);
1006	}
1007
1008	return 0;
1009}
1010EXPORT_SYMBOL_GPL(icc_nodes_remove);
1011
1012/**
1013 * icc_provider_init() - initialize a new interconnect provider
1014 * @provider: the interconnect provider to initialize
1015 *
1016 * Must be called before adding nodes to the provider.
1017 */
1018void icc_provider_init(struct icc_provider *provider)
1019{
1020	WARN_ON(!provider->set);
1021
1022	INIT_LIST_HEAD(&provider->nodes);
1023}
1024EXPORT_SYMBOL_GPL(icc_provider_init);
1025
1026/**
1027 * icc_provider_register() - register a new interconnect provider
1028 * @provider: the interconnect provider to register
1029 *
1030 * Return: 0 on success, or an error code otherwise
1031 */
1032int icc_provider_register(struct icc_provider *provider)
1033{
1034	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1035		return -EINVAL;
1036
1037	mutex_lock(&icc_lock);
1038	list_add_tail(&provider->provider_list, &icc_providers);
1039	mutex_unlock(&icc_lock);
1040
1041	dev_dbg(provider->dev, "interconnect provider registered\n");
1042
1043	return 0;
1044}
1045EXPORT_SYMBOL_GPL(icc_provider_register);
1046
1047/**
1048 * icc_provider_deregister() - deregister an interconnect provider
1049 * @provider: the interconnect provider to deregister
1050 */
1051void icc_provider_deregister(struct icc_provider *provider)
1052{
1053	mutex_lock(&icc_lock);
1054	WARN_ON(provider->users);
1055
1056	list_del(&provider->provider_list);
1057	mutex_unlock(&icc_lock);
1058}
1059EXPORT_SYMBOL_GPL(icc_provider_deregister);
1060
1061static const struct of_device_id __maybe_unused ignore_list[] = {
1062	{ .compatible = "qcom,sc7180-ipa-virt" },
1063	{ .compatible = "qcom,sc8180x-ipa-virt" },
1064	{ .compatible = "qcom,sdx55-ipa-virt" },
1065	{ .compatible = "qcom,sm8150-ipa-virt" },
1066	{ .compatible = "qcom,sm8250-ipa-virt" },
1067	{}
1068};
1069
1070static int of_count_icc_providers(struct device_node *np)
1071{
1072	struct device_node *child;
1073	int count = 0;
1074
1075	for_each_available_child_of_node(np, child) {
1076		if (of_property_read_bool(child, "#interconnect-cells") &&
1077		    likely(!of_match_node(ignore_list, child)))
1078			count++;
1079		count += of_count_icc_providers(child);
1080	}
1081
1082	return count;
1083}
1084
1085void icc_sync_state(struct device *dev)
1086{
1087	struct icc_provider *p;
1088	struct icc_node *n;
1089	static int count;
1090
1091	count++;
1092
1093	if (count < providers_count)
1094		return;
1095
1096	mutex_lock(&icc_lock);
1097	mutex_lock(&icc_bw_lock);
1098	synced_state = true;
1099	list_for_each_entry(p, &icc_providers, provider_list) {
1100		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1101		list_for_each_entry(n, &p->nodes, node_list) {
1102			if (n->init_avg || n->init_peak) {
1103				n->init_avg = 0;
1104				n->init_peak = 0;
1105				aggregate_requests(n);
1106				p->set(n, n);
1107			}
1108		}
1109	}
1110	mutex_unlock(&icc_bw_lock);
1111	mutex_unlock(&icc_lock);
1112}
1113EXPORT_SYMBOL_GPL(icc_sync_state);
1114
1115static int __init icc_init(void)
1116{
1117	struct device_node *root;
1118
1119	/* Teach lockdep about lock ordering wrt. shrinker: */
1120	fs_reclaim_acquire(GFP_KERNEL);
1121	might_lock(&icc_bw_lock);
1122	fs_reclaim_release(GFP_KERNEL);
1123
1124	root = of_find_node_by_path("/");
1125
1126	providers_count = of_count_icc_providers(root);
1127	of_node_put(root);
1128
1129	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1130	debugfs_create_file("interconnect_summary", 0444,
1131			    icc_debugfs_dir, NULL, &icc_summary_fops);
1132	debugfs_create_file("interconnect_graph", 0444,
1133			    icc_debugfs_dir, NULL, &icc_graph_fops);
1134
1135	icc_debugfs_client_init(icc_debugfs_dir);
1136
1137	return 0;
1138}
1139
1140device_initcall(icc_init);
1141