1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2011-2016 Synaptics Incorporated
4 * Copyright (c) 2011 Unixphere
5 */
6
7#include <linux/kernel.h>
8#include <linux/rmi.h>
9#include <linux/slab.h>
10#include <linux/uaccess.h>
11#include <linux/of.h>
12#include <asm/unaligned.h>
13#include "rmi_driver.h"
14
15#define RMI_PRODUCT_ID_LENGTH    10
16#define RMI_PRODUCT_INFO_LENGTH   2
17
18#define RMI_DATE_CODE_LENGTH      3
19
20#define PRODUCT_ID_OFFSET 0x10
21#define PRODUCT_INFO_OFFSET 0x1E
22
23
24/* Force a firmware reset of the sensor */
25#define RMI_F01_CMD_DEVICE_RESET	1
26
27/* Various F01_RMI_QueryX bits */
28
29#define RMI_F01_QRY1_CUSTOM_MAP		BIT(0)
30#define RMI_F01_QRY1_NON_COMPLIANT	BIT(1)
31#define RMI_F01_QRY1_HAS_LTS		BIT(2)
32#define RMI_F01_QRY1_HAS_SENSOR_ID	BIT(3)
33#define RMI_F01_QRY1_HAS_CHARGER_INP	BIT(4)
34#define RMI_F01_QRY1_HAS_ADJ_DOZE	BIT(5)
35#define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF	BIT(6)
36#define RMI_F01_QRY1_HAS_QUERY42	BIT(7)
37
38#define RMI_F01_QRY5_YEAR_MASK		0x1f
39#define RMI_F01_QRY6_MONTH_MASK		0x0f
40#define RMI_F01_QRY7_DAY_MASK		0x1f
41
42#define RMI_F01_QRY2_PRODINFO_MASK	0x7f
43
44#define RMI_F01_BASIC_QUERY_LEN		21 /* From Query 00 through 20 */
45
46struct f01_basic_properties {
47	u8 manufacturer_id;
48	bool has_lts;
49	bool has_adjustable_doze;
50	bool has_adjustable_doze_holdoff;
51	char dom[11]; /* YYYY/MM/DD + '\0' */
52	u8 product_id[RMI_PRODUCT_ID_LENGTH + 1];
53	u16 productinfo;
54	u32 firmware_id;
55	u32 package_id;
56};
57
58/* F01 device status bits */
59
60/* Most recent device status event */
61#define RMI_F01_STATUS_CODE(status)		((status) & 0x0f)
62/* The device has lost its configuration for some reason. */
63#define RMI_F01_STATUS_UNCONFIGURED(status)	(!!((status) & 0x80))
64/* The device is in bootloader mode */
65#define RMI_F01_STATUS_BOOTLOADER(status)	((status) & 0x40)
66
67/* Control register bits */
68
69/*
70 * Sleep mode controls power management on the device and affects all
71 * functions of the device.
72 */
73#define RMI_F01_CTRL0_SLEEP_MODE_MASK	0x03
74
75#define RMI_SLEEP_MODE_NORMAL		0x00
76#define RMI_SLEEP_MODE_SENSOR_SLEEP	0x01
77#define RMI_SLEEP_MODE_RESERVED0	0x02
78#define RMI_SLEEP_MODE_RESERVED1	0x03
79
80/*
81 * This bit disables whatever sleep mode may be selected by the sleep_mode
82 * field and forces the device to run at full power without sleeping.
83 */
84#define RMI_F01_CTRL0_NOSLEEP_BIT	BIT(2)
85
86/*
87 * When this bit is set, the touch controller employs a noise-filtering
88 * algorithm designed for use with a connected battery charger.
89 */
90#define RMI_F01_CTRL0_CHARGER_BIT	BIT(5)
91
92/*
93 * Sets the report rate for the device. The effect of this setting is
94 * highly product dependent. Check the spec sheet for your particular
95 * touch sensor.
96 */
97#define RMI_F01_CTRL0_REPORTRATE_BIT	BIT(6)
98
99/*
100 * Written by the host as an indicator that the device has been
101 * successfully configured.
102 */
103#define RMI_F01_CTRL0_CONFIGURED_BIT	BIT(7)
104
105/**
106 * struct f01_device_control - controls basic sensor functions
107 *
108 * @ctrl0: see the bit definitions above.
109 * @doze_interval: controls the interval between checks for finger presence
110 *	when the touch sensor is in doze mode, in units of 10ms.
111 * @wakeup_threshold: controls the capacitance threshold at which the touch
112 *	sensor will decide to wake up from that low power state.
113 * @doze_holdoff: controls how long the touch sensor waits after the last
114 *	finger lifts before entering the doze state, in units of 100ms.
115 */
116struct f01_device_control {
117	u8 ctrl0;
118	u8 doze_interval;
119	u8 wakeup_threshold;
120	u8 doze_holdoff;
121};
122
123struct f01_data {
124	struct f01_basic_properties properties;
125	struct f01_device_control device_control;
126
127	u16 doze_interval_addr;
128	u16 wakeup_threshold_addr;
129	u16 doze_holdoff_addr;
130
131	bool suspended;
132	bool old_nosleep;
133
134	unsigned int num_of_irq_regs;
135};
136
137static int rmi_f01_read_properties(struct rmi_device *rmi_dev,
138				   u16 query_base_addr,
139				   struct f01_basic_properties *props)
140{
141	u8 queries[RMI_F01_BASIC_QUERY_LEN];
142	int ret;
143	int query_offset = query_base_addr;
144	bool has_ds4_queries = false;
145	bool has_query42 = false;
146	bool has_sensor_id = false;
147	bool has_package_id_query = false;
148	bool has_build_id_query = false;
149	u16 prod_info_addr;
150	u8 ds4_query_len;
151
152	ret = rmi_read_block(rmi_dev, query_offset,
153			       queries, RMI_F01_BASIC_QUERY_LEN);
154	if (ret) {
155		dev_err(&rmi_dev->dev,
156			"Failed to read device query registers: %d\n", ret);
157		return ret;
158	}
159
160	prod_info_addr = query_offset + 17;
161	query_offset += RMI_F01_BASIC_QUERY_LEN;
162
163	/* Now parse what we got */
164	props->manufacturer_id = queries[0];
165
166	props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS;
167	props->has_adjustable_doze =
168			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE;
169	props->has_adjustable_doze_holdoff =
170			queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF;
171	has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42;
172	has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID;
173
174	snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d",
175		 queries[5] & RMI_F01_QRY5_YEAR_MASK,
176		 queries[6] & RMI_F01_QRY6_MONTH_MASK,
177		 queries[7] & RMI_F01_QRY7_DAY_MASK);
178
179	memcpy(props->product_id, &queries[11],
180		RMI_PRODUCT_ID_LENGTH);
181	props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0';
182
183	props->productinfo =
184			((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) |
185			(queries[3] & RMI_F01_QRY2_PRODINFO_MASK);
186
187	if (has_sensor_id)
188		query_offset++;
189
190	if (has_query42) {
191		ret = rmi_read(rmi_dev, query_offset, queries);
192		if (ret) {
193			dev_err(&rmi_dev->dev,
194				"Failed to read query 42 register: %d\n", ret);
195			return ret;
196		}
197
198		has_ds4_queries = !!(queries[0] & BIT(0));
199		query_offset++;
200	}
201
202	if (has_ds4_queries) {
203		ret = rmi_read(rmi_dev, query_offset, &ds4_query_len);
204		if (ret) {
205			dev_err(&rmi_dev->dev,
206				"Failed to read DS4 queries length: %d\n", ret);
207			return ret;
208		}
209		query_offset++;
210
211		if (ds4_query_len > 0) {
212			ret = rmi_read(rmi_dev, query_offset, queries);
213			if (ret) {
214				dev_err(&rmi_dev->dev,
215					"Failed to read DS4 queries: %d\n",
216					ret);
217				return ret;
218			}
219
220			has_package_id_query = !!(queries[0] & BIT(0));
221			has_build_id_query = !!(queries[0] & BIT(1));
222		}
223
224		if (has_package_id_query) {
225			ret = rmi_read_block(rmi_dev, prod_info_addr,
226					     queries, sizeof(__le64));
227			if (ret) {
228				dev_err(&rmi_dev->dev,
229					"Failed to read package info: %d\n",
230					ret);
231				return ret;
232			}
233
234			props->package_id = get_unaligned_le64(queries);
235			prod_info_addr++;
236		}
237
238		if (has_build_id_query) {
239			ret = rmi_read_block(rmi_dev, prod_info_addr, queries,
240					    3);
241			if (ret) {
242				dev_err(&rmi_dev->dev,
243					"Failed to read product info: %d\n",
244					ret);
245				return ret;
246			}
247
248			props->firmware_id = queries[1] << 8 | queries[0];
249			props->firmware_id += queries[2] * 65536;
250		}
251	}
252
253	return 0;
254}
255
256const char *rmi_f01_get_product_ID(struct rmi_function *fn)
257{
258	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
259
260	return f01->properties.product_id;
261}
262
263static ssize_t rmi_driver_manufacturer_id_show(struct device *dev,
264					       struct device_attribute *dattr,
265					       char *buf)
266{
267	struct rmi_driver_data *data = dev_get_drvdata(dev);
268	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
269
270	return scnprintf(buf, PAGE_SIZE, "%d\n",
271			 f01->properties.manufacturer_id);
272}
273
274static DEVICE_ATTR(manufacturer_id, 0444,
275		   rmi_driver_manufacturer_id_show, NULL);
276
277static ssize_t rmi_driver_dom_show(struct device *dev,
278				   struct device_attribute *dattr, char *buf)
279{
280	struct rmi_driver_data *data = dev_get_drvdata(dev);
281	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
282
283	return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.dom);
284}
285
286static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL);
287
288static ssize_t rmi_driver_product_id_show(struct device *dev,
289					  struct device_attribute *dattr,
290					  char *buf)
291{
292	struct rmi_driver_data *data = dev_get_drvdata(dev);
293	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
294
295	return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.product_id);
296}
297
298static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL);
299
300static ssize_t rmi_driver_firmware_id_show(struct device *dev,
301					   struct device_attribute *dattr,
302					   char *buf)
303{
304	struct rmi_driver_data *data = dev_get_drvdata(dev);
305	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
306
307	return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.firmware_id);
308}
309
310static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL);
311
312static ssize_t rmi_driver_package_id_show(struct device *dev,
313					  struct device_attribute *dattr,
314					  char *buf)
315{
316	struct rmi_driver_data *data = dev_get_drvdata(dev);
317	struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
318
319	u32 package_id = f01->properties.package_id;
320
321	return scnprintf(buf, PAGE_SIZE, "%04x.%04x\n",
322			 package_id & 0xffff, (package_id >> 16) & 0xffff);
323}
324
325static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL);
326
327static struct attribute *rmi_f01_attrs[] = {
328	&dev_attr_manufacturer_id.attr,
329	&dev_attr_date_of_manufacture.attr,
330	&dev_attr_product_id.attr,
331	&dev_attr_firmware_id.attr,
332	&dev_attr_package_id.attr,
333	NULL
334};
335
336static const struct attribute_group rmi_f01_attr_group = {
337	.attrs = rmi_f01_attrs,
338};
339
340#ifdef CONFIG_OF
341static int rmi_f01_of_probe(struct device *dev,
342				struct rmi_device_platform_data *pdata)
343{
344	int retval;
345	u32 val;
346
347	retval = rmi_of_property_read_u32(dev,
348			(u32 *)&pdata->power_management.nosleep,
349			"syna,nosleep-mode", 1);
350	if (retval)
351		return retval;
352
353	retval = rmi_of_property_read_u32(dev, &val,
354			"syna,wakeup-threshold", 1);
355	if (retval)
356		return retval;
357
358	pdata->power_management.wakeup_threshold = val;
359
360	retval = rmi_of_property_read_u32(dev, &val,
361			"syna,doze-holdoff-ms", 1);
362	if (retval)
363		return retval;
364
365	pdata->power_management.doze_holdoff = val * 100;
366
367	retval = rmi_of_property_read_u32(dev, &val,
368			"syna,doze-interval-ms", 1);
369	if (retval)
370		return retval;
371
372	pdata->power_management.doze_interval = val / 10;
373
374	return 0;
375}
376#else
377static inline int rmi_f01_of_probe(struct device *dev,
378					struct rmi_device_platform_data *pdata)
379{
380	return -ENODEV;
381}
382#endif
383
384static int rmi_f01_probe(struct rmi_function *fn)
385{
386	struct rmi_device *rmi_dev = fn->rmi_dev;
387	struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev);
388	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
389	struct f01_data *f01;
390	int error;
391	u16 ctrl_base_addr = fn->fd.control_base_addr;
392	u8 device_status;
393	u8 temp;
394
395	if (fn->dev.of_node) {
396		error = rmi_f01_of_probe(&fn->dev, pdata);
397		if (error)
398			return error;
399	}
400
401	f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL);
402	if (!f01)
403		return -ENOMEM;
404
405	f01->num_of_irq_regs = driver_data->num_of_irq_regs;
406
407	/*
408	 * Set the configured bit and (optionally) other important stuff
409	 * in the device control register.
410	 */
411
412	error = rmi_read(rmi_dev, fn->fd.control_base_addr,
413			 &f01->device_control.ctrl0);
414	if (error) {
415		dev_err(&fn->dev, "Failed to read F01 control: %d\n", error);
416		return error;
417	}
418
419	switch (pdata->power_management.nosleep) {
420	case RMI_REG_STATE_DEFAULT:
421		break;
422	case RMI_REG_STATE_OFF:
423		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
424		break;
425	case RMI_REG_STATE_ON:
426		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
427		break;
428	}
429
430	/*
431	 * Sleep mode might be set as a hangover from a system crash or
432	 * reboot without power cycle.  If so, clear it so the sensor
433	 * is certain to function.
434	 */
435	if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) !=
436			RMI_SLEEP_MODE_NORMAL) {
437		dev_warn(&fn->dev,
438			 "WARNING: Non-zero sleep mode found. Clearing...\n");
439		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
440	}
441
442	f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT;
443
444	error = rmi_write(rmi_dev, fn->fd.control_base_addr,
445			  f01->device_control.ctrl0);
446	if (error) {
447		dev_err(&fn->dev, "Failed to write F01 control: %d\n", error);
448		return error;
449	}
450
451	/* Dummy read in order to clear irqs */
452	error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp);
453	if (error < 0) {
454		dev_err(&fn->dev, "Failed to read Interrupt Status.\n");
455		return error;
456	}
457
458	error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr,
459					&f01->properties);
460	if (error < 0) {
461		dev_err(&fn->dev, "Failed to read F01 properties.\n");
462		return error;
463	}
464
465	dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n",
466		 f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown",
467		 f01->properties.product_id, f01->properties.firmware_id);
468
469	/* Advance to interrupt control registers, then skip over them. */
470	ctrl_base_addr++;
471	ctrl_base_addr += f01->num_of_irq_regs;
472
473	/* read control register */
474	if (f01->properties.has_adjustable_doze) {
475		f01->doze_interval_addr = ctrl_base_addr;
476		ctrl_base_addr++;
477
478		if (pdata->power_management.doze_interval) {
479			f01->device_control.doze_interval =
480				pdata->power_management.doze_interval;
481			error = rmi_write(rmi_dev, f01->doze_interval_addr,
482					  f01->device_control.doze_interval);
483			if (error) {
484				dev_err(&fn->dev,
485					"Failed to configure F01 doze interval register: %d\n",
486					error);
487				return error;
488			}
489		} else {
490			error = rmi_read(rmi_dev, f01->doze_interval_addr,
491					 &f01->device_control.doze_interval);
492			if (error) {
493				dev_err(&fn->dev,
494					"Failed to read F01 doze interval register: %d\n",
495					error);
496				return error;
497			}
498		}
499
500		f01->wakeup_threshold_addr = ctrl_base_addr;
501		ctrl_base_addr++;
502
503		if (pdata->power_management.wakeup_threshold) {
504			f01->device_control.wakeup_threshold =
505				pdata->power_management.wakeup_threshold;
506			error = rmi_write(rmi_dev, f01->wakeup_threshold_addr,
507					  f01->device_control.wakeup_threshold);
508			if (error) {
509				dev_err(&fn->dev,
510					"Failed to configure F01 wakeup threshold register: %d\n",
511					error);
512				return error;
513			}
514		} else {
515			error = rmi_read(rmi_dev, f01->wakeup_threshold_addr,
516					 &f01->device_control.wakeup_threshold);
517			if (error < 0) {
518				dev_err(&fn->dev,
519					"Failed to read F01 wakeup threshold register: %d\n",
520					error);
521				return error;
522			}
523		}
524	}
525
526	if (f01->properties.has_lts)
527		ctrl_base_addr++;
528
529	if (f01->properties.has_adjustable_doze_holdoff) {
530		f01->doze_holdoff_addr = ctrl_base_addr;
531		ctrl_base_addr++;
532
533		if (pdata->power_management.doze_holdoff) {
534			f01->device_control.doze_holdoff =
535				pdata->power_management.doze_holdoff;
536			error = rmi_write(rmi_dev, f01->doze_holdoff_addr,
537					  f01->device_control.doze_holdoff);
538			if (error) {
539				dev_err(&fn->dev,
540					"Failed to configure F01 doze holdoff register: %d\n",
541					error);
542				return error;
543			}
544		} else {
545			error = rmi_read(rmi_dev, f01->doze_holdoff_addr,
546					 &f01->device_control.doze_holdoff);
547			if (error) {
548				dev_err(&fn->dev,
549					"Failed to read F01 doze holdoff register: %d\n",
550					error);
551				return error;
552			}
553		}
554	}
555
556	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
557	if (error < 0) {
558		dev_err(&fn->dev,
559			"Failed to read device status: %d\n", error);
560		return error;
561	}
562
563	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
564		dev_err(&fn->dev,
565			"Device was reset during configuration process, status: %#02x!\n",
566			RMI_F01_STATUS_CODE(device_status));
567		return -EINVAL;
568	}
569
570	dev_set_drvdata(&fn->dev, f01);
571
572	error = sysfs_create_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
573	if (error)
574		dev_warn(&fn->dev, "Failed to create sysfs group: %d\n", error);
575
576	return 0;
577}
578
579static void rmi_f01_remove(struct rmi_function *fn)
580{
581	/* Note that the bus device is used, not the F01 device */
582	sysfs_remove_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
583}
584
585static int rmi_f01_config(struct rmi_function *fn)
586{
587	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
588	int error;
589
590	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
591			  f01->device_control.ctrl0);
592	if (error) {
593		dev_err(&fn->dev,
594			"Failed to write device_control register: %d\n", error);
595		return error;
596	}
597
598	if (f01->properties.has_adjustable_doze) {
599		error = rmi_write(fn->rmi_dev, f01->doze_interval_addr,
600				  f01->device_control.doze_interval);
601		if (error) {
602			dev_err(&fn->dev,
603				"Failed to write doze interval: %d\n", error);
604			return error;
605		}
606
607		error = rmi_write_block(fn->rmi_dev,
608					 f01->wakeup_threshold_addr,
609					 &f01->device_control.wakeup_threshold,
610					 sizeof(u8));
611		if (error) {
612			dev_err(&fn->dev,
613				"Failed to write wakeup threshold: %d\n",
614				error);
615			return error;
616		}
617	}
618
619	if (f01->properties.has_adjustable_doze_holdoff) {
620		error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr,
621				  f01->device_control.doze_holdoff);
622		if (error) {
623			dev_err(&fn->dev,
624				"Failed to write doze holdoff: %d\n", error);
625			return error;
626		}
627	}
628
629	return 0;
630}
631
632static int rmi_f01_suspend(struct rmi_function *fn)
633{
634	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
635	int error;
636
637	f01->old_nosleep =
638		f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT;
639	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
640
641	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
642	if (device_may_wakeup(fn->rmi_dev->xport->dev))
643		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1;
644	else
645		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP;
646
647	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
648			  f01->device_control.ctrl0);
649	if (error) {
650		dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error);
651		if (f01->old_nosleep)
652			f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
653		f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
654		f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
655		return error;
656	}
657
658	return 0;
659}
660
661static int rmi_f01_resume(struct rmi_function *fn)
662{
663	struct f01_data *f01 = dev_get_drvdata(&fn->dev);
664	int error;
665
666	if (f01->old_nosleep)
667		f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
668
669	f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
670	f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
671
672	error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
673			  f01->device_control.ctrl0);
674	if (error) {
675		dev_err(&fn->dev,
676			"Failed to restore normal operation: %d.\n", error);
677		return error;
678	}
679
680	return 0;
681}
682
683static irqreturn_t rmi_f01_attention(int irq, void *ctx)
684{
685	struct rmi_function *fn = ctx;
686	struct rmi_device *rmi_dev = fn->rmi_dev;
687	int error;
688	u8 device_status;
689
690	error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
691	if (error) {
692		dev_err(&fn->dev,
693			"Failed to read device status: %d.\n", error);
694		return IRQ_RETVAL(error);
695	}
696
697	if (RMI_F01_STATUS_BOOTLOADER(device_status))
698		dev_warn(&fn->dev,
699			 "Device in bootloader mode, please update firmware\n");
700
701	if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
702		dev_warn(&fn->dev, "Device reset detected.\n");
703		error = rmi_dev->driver->reset_handler(rmi_dev);
704		if (error) {
705			dev_err(&fn->dev, "Device reset failed: %d\n", error);
706			return IRQ_RETVAL(error);
707		}
708	}
709
710	return IRQ_HANDLED;
711}
712
713struct rmi_function_handler rmi_f01_handler = {
714	.driver = {
715		.name	= "rmi4_f01",
716		/*
717		 * Do not allow user unbinding F01 as it is critical
718		 * function.
719		 */
720		.suppress_bind_attrs = true,
721	},
722	.func		= 0x01,
723	.probe		= rmi_f01_probe,
724	.remove		= rmi_f01_remove,
725	.config		= rmi_f01_config,
726	.attention	= rmi_f01_attention,
727	.suspend	= rmi_f01_suspend,
728	.resume		= rmi_f01_resume,
729};
730