1/*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33#include <rdma/ib_umem_odp.h>
34#include <linux/kernel.h>
35#include <linux/dma-buf.h>
36#include <linux/dma-resv.h>
37
38#include "mlx5_ib.h"
39#include "cmd.h"
40#include "umr.h"
41#include "qp.h"
42
43#include <linux/mlx5/eq.h>
44
45/* Contains the details of a pagefault. */
46struct mlx5_pagefault {
47	u32			bytes_committed;
48	u32			token;
49	u8			event_subtype;
50	u8			type;
51	union {
52		/* Initiator or send message responder pagefault details. */
53		struct {
54			/* Received packet size, only valid for responders. */
55			u32	packet_size;
56			/*
57			 * Number of resource holding WQE, depends on type.
58			 */
59			u32	wq_num;
60			/*
61			 * WQE index. Refers to either the send queue or
62			 * receive queue, according to event_subtype.
63			 */
64			u16	wqe_index;
65		} wqe;
66		/* RDMA responder pagefault details */
67		struct {
68			u32	r_key;
69			/*
70			 * Received packet size, minimal size page fault
71			 * resolution required for forward progress.
72			 */
73			u32	packet_size;
74			u32	rdma_op_len;
75			u64	rdma_va;
76		} rdma;
77	};
78
79	struct mlx5_ib_pf_eq	*eq;
80	struct work_struct	work;
81};
82
83#define MAX_PREFETCH_LEN (4*1024*1024U)
84
85/* Timeout in ms to wait for an active mmu notifier to complete when handling
86 * a pagefault. */
87#define MMU_NOTIFIER_TIMEOUT 1000
88
89#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97static u64 mlx5_imr_ksm_entries;
98
99static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100			struct mlx5_ib_mr *imr, int flags)
101{
102	struct mlx5_klm *end = pklm + nentries;
103
104	if (flags & MLX5_IB_UPD_XLT_ZAP) {
105		for (; pklm != end; pklm++, idx++) {
106			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107			pklm->key = mr_to_mdev(imr)->mkeys.null_mkey;
108			pklm->va = 0;
109		}
110		return;
111	}
112
113	/*
114	 * The locking here is pretty subtle. Ideally the implicit_children
115	 * xarray would be protected by the umem_mutex, however that is not
116	 * possible. Instead this uses a weaker update-then-lock pattern:
117	 *
118	 *    xa_store()
119	 *    mutex_lock(umem_mutex)
120	 *     mlx5r_umr_update_xlt()
121	 *    mutex_unlock(umem_mutex)
122	 *    destroy lkey
123	 *
124	 * ie any change the xarray must be followed by the locked update_xlt
125	 * before destroying.
126	 *
127	 * The umem_mutex provides the acquire/release semantic needed to make
128	 * the xa_store() visible to a racing thread.
129	 */
130	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132	for (; pklm != end; pklm++, idx++) {
133		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136		if (mtt) {
137			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139		} else {
140			pklm->key = mr_to_mdev(imr)->mkeys.null_mkey;
141			pklm->va = 0;
142		}
143	}
144}
145
146static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147{
148	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150	if (umem_dma & ODP_READ_ALLOWED_BIT)
151		mtt_entry |= MLX5_IB_MTT_READ;
152	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153		mtt_entry |= MLX5_IB_MTT_WRITE;
154
155	return mtt_entry;
156}
157
158static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159			 struct mlx5_ib_mr *mr, int flags)
160{
161	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162	dma_addr_t pa;
163	size_t i;
164
165	if (flags & MLX5_IB_UPD_XLT_ZAP)
166		return;
167
168	for (i = 0; i < nentries; i++) {
169		pa = odp->dma_list[idx + i];
170		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171	}
172}
173
174void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175			   struct mlx5_ib_mr *mr, int flags)
176{
177	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178		populate_klm(xlt, idx, nentries, mr, flags);
179	} else {
180		populate_mtt(xlt, idx, nentries, mr, flags);
181	}
182}
183
184/*
185 * This must be called after the mr has been removed from implicit_children.
186 * NOTE: The MR does not necessarily have to be
187 * empty here, parallel page faults could have raced with the free process and
188 * added pages to it.
189 */
190static void free_implicit_child_mr_work(struct work_struct *work)
191{
192	struct mlx5_ib_mr *mr =
193		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194	struct mlx5_ib_mr *imr = mr->parent;
195	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197
198	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199
200	mutex_lock(&odp_imr->umem_mutex);
201	mlx5r_umr_update_xlt(mr->parent,
202			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
203			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204	mutex_unlock(&odp_imr->umem_mutex);
205	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206
207	mlx5r_deref_odp_mkey(&imr->mmkey);
208}
209
210static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211{
212	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214	struct mlx5_ib_mr *imr = mr->parent;
215
216	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217		return;
218
219	xa_erase(&imr->implicit_children, idx);
220
221	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
222	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223	queue_work(system_unbound_wq, &mr->odp_destroy.work);
224}
225
226static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227				     const struct mmu_notifier_range *range,
228				     unsigned long cur_seq)
229{
230	struct ib_umem_odp *umem_odp =
231		container_of(mni, struct ib_umem_odp, notifier);
232	struct mlx5_ib_mr *mr;
233	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
234	u64 idx = 0, blk_start_idx = 0;
235	u64 invalidations = 0;
236	unsigned long start;
237	unsigned long end;
238	int in_block = 0;
239	u64 addr;
240
241	if (!mmu_notifier_range_blockable(range))
242		return false;
243
244	mutex_lock(&umem_odp->umem_mutex);
245	mmu_interval_set_seq(mni, cur_seq);
246	/*
247	 * If npages is zero then umem_odp->private may not be setup yet. This
248	 * does not complete until after the first page is mapped for DMA.
249	 */
250	if (!umem_odp->npages)
251		goto out;
252	mr = umem_odp->private;
253
254	start = max_t(u64, ib_umem_start(umem_odp), range->start);
255	end = min_t(u64, ib_umem_end(umem_odp), range->end);
256
257	/*
258	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
259	 * while we are doing the invalidation, no page fault will attempt to
260	 * overwrite the same MTTs.  Concurent invalidations might race us,
261	 * but they will write 0s as well, so no difference in the end result.
262	 */
263	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
264		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
265		/*
266		 * Strive to write the MTTs in chunks, but avoid overwriting
267		 * non-existing MTTs. The huristic here can be improved to
268		 * estimate the cost of another UMR vs. the cost of bigger
269		 * UMR.
270		 */
271		if (umem_odp->dma_list[idx] &
272		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
273			if (!in_block) {
274				blk_start_idx = idx;
275				in_block = 1;
276			}
277
278			/* Count page invalidations */
279			invalidations += idx - blk_start_idx + 1;
280		} else {
281			u64 umr_offset = idx & umr_block_mask;
282
283			if (in_block && umr_offset == 0) {
284				mlx5r_umr_update_xlt(mr, blk_start_idx,
285						     idx - blk_start_idx, 0,
286						     MLX5_IB_UPD_XLT_ZAP |
287						     MLX5_IB_UPD_XLT_ATOMIC);
288				in_block = 0;
289			}
290		}
291	}
292	if (in_block)
293		mlx5r_umr_update_xlt(mr, blk_start_idx,
294				     idx - blk_start_idx + 1, 0,
295				     MLX5_IB_UPD_XLT_ZAP |
296				     MLX5_IB_UPD_XLT_ATOMIC);
297
298	mlx5_update_odp_stats(mr, invalidations, invalidations);
299
300	/*
301	 * We are now sure that the device will not access the
302	 * memory. We can safely unmap it, and mark it as dirty if
303	 * needed.
304	 */
305
306	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
307
308	if (unlikely(!umem_odp->npages && mr->parent))
309		destroy_unused_implicit_child_mr(mr);
310out:
311	mutex_unlock(&umem_odp->umem_mutex);
312	return true;
313}
314
315const struct mmu_interval_notifier_ops mlx5_mn_ops = {
316	.invalidate = mlx5_ib_invalidate_range,
317};
318
319static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
320{
321	struct ib_odp_caps *caps = &dev->odp_caps;
322
323	memset(caps, 0, sizeof(*caps));
324
325	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
326		return;
327
328	caps->general_caps = IB_ODP_SUPPORT;
329
330	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
331		dev->odp_max_size = U64_MAX;
332	else
333		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
334
335	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
336		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
337
338	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
339		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
340
341	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
342		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
343
344	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
345		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
346
347	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
348		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
349
350	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
351		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
352
353	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
354		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
355
356	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
357		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
358
359	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
360		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
361
362	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
363		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
364
365	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
366		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
367
368	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
369		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
370
371	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
372		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
373
374	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
375		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
376
377	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
378	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
379	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
380	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
381		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
382}
383
384static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
385				      struct mlx5_pagefault *pfault,
386				      int error)
387{
388	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
389		     pfault->wqe.wq_num : pfault->token;
390	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
391	int err;
392
393	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
394	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
395	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
396	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
397	MLX5_SET(page_fault_resume_in, in, error, !!error);
398
399	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
400	if (err)
401		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
402			    wq_num, err);
403}
404
405static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
406						unsigned long idx)
407{
408	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
409	struct ib_umem_odp *odp;
410	struct mlx5_ib_mr *mr;
411	struct mlx5_ib_mr *ret;
412	int err;
413
414	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
415				      idx * MLX5_IMR_MTT_SIZE,
416				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
417	if (IS_ERR(odp))
418		return ERR_CAST(odp);
419
420	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
421				 MLX5_MKC_ACCESS_MODE_MTT,
422				 MLX5_IMR_MTT_ENTRIES);
423	if (IS_ERR(mr)) {
424		ib_umem_odp_release(odp);
425		return mr;
426	}
427
428	mr->access_flags = imr->access_flags;
429	mr->ibmr.pd = imr->ibmr.pd;
430	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
431	mr->umem = &odp->umem;
432	mr->ibmr.lkey = mr->mmkey.key;
433	mr->ibmr.rkey = mr->mmkey.key;
434	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
435	mr->parent = imr;
436	odp->private = mr;
437
438	/*
439	 * First refcount is owned by the xarray and second refconut
440	 * is returned to the caller.
441	 */
442	refcount_set(&mr->mmkey.usecount, 2);
443
444	err = mlx5r_umr_update_xlt(mr, 0,
445				   MLX5_IMR_MTT_ENTRIES,
446				   PAGE_SHIFT,
447				   MLX5_IB_UPD_XLT_ZAP |
448				   MLX5_IB_UPD_XLT_ENABLE);
449	if (err) {
450		ret = ERR_PTR(err);
451		goto out_mr;
452	}
453
454	xa_lock(&imr->implicit_children);
455	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
456			   GFP_KERNEL);
457	if (unlikely(ret)) {
458		if (xa_is_err(ret)) {
459			ret = ERR_PTR(xa_err(ret));
460			goto out_lock;
461		}
462		/*
463		 * Another thread beat us to creating the child mr, use
464		 * theirs.
465		 */
466		refcount_inc(&ret->mmkey.usecount);
467		goto out_lock;
468	}
469	xa_unlock(&imr->implicit_children);
470
471	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
472	return mr;
473
474out_lock:
475	xa_unlock(&imr->implicit_children);
476out_mr:
477	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
478	return ret;
479}
480
481struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
482					     int access_flags)
483{
484	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
485	struct ib_umem_odp *umem_odp;
486	struct mlx5_ib_mr *imr;
487	int err;
488
489	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
490		return ERR_PTR(-EOPNOTSUPP);
491
492	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
493	if (IS_ERR(umem_odp))
494		return ERR_CAST(umem_odp);
495
496	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
497				  mlx5_imr_ksm_entries);
498	if (IS_ERR(imr)) {
499		ib_umem_odp_release(umem_odp);
500		return imr;
501	}
502
503	imr->access_flags = access_flags;
504	imr->ibmr.pd = &pd->ibpd;
505	imr->ibmr.iova = 0;
506	imr->umem = &umem_odp->umem;
507	imr->ibmr.lkey = imr->mmkey.key;
508	imr->ibmr.rkey = imr->mmkey.key;
509	imr->ibmr.device = &dev->ib_dev;
510	imr->is_odp_implicit = true;
511	xa_init(&imr->implicit_children);
512
513	err = mlx5r_umr_update_xlt(imr, 0,
514				   mlx5_imr_ksm_entries,
515				   MLX5_KSM_PAGE_SHIFT,
516				   MLX5_IB_UPD_XLT_INDIRECT |
517				   MLX5_IB_UPD_XLT_ZAP |
518				   MLX5_IB_UPD_XLT_ENABLE);
519	if (err)
520		goto out_mr;
521
522	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
523	if (err)
524		goto out_mr;
525
526	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
527	return imr;
528out_mr:
529	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
530	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
531	return ERR_PTR(err);
532}
533
534void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
535{
536	struct mlx5_ib_mr *mtt;
537	unsigned long idx;
538
539	/*
540	 * If this is an implicit MR it is already invalidated so we can just
541	 * delete the children mkeys.
542	 */
543	xa_for_each(&mr->implicit_children, idx, mtt) {
544		xa_erase(&mr->implicit_children, idx);
545		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
546	}
547}
548
549#define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
550#define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
551#define MLX5_PF_FLAGS_ENABLE BIT(3)
552static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
553			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
554			     u32 flags)
555{
556	int page_shift, ret, np;
557	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
558	u64 access_mask;
559	u64 start_idx;
560	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
561	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
562
563	if (flags & MLX5_PF_FLAGS_ENABLE)
564		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
565
566	page_shift = odp->page_shift;
567	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
568	access_mask = ODP_READ_ALLOWED_BIT;
569
570	if (odp->umem.writable && !downgrade)
571		access_mask |= ODP_WRITE_ALLOWED_BIT;
572
573	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
574	if (np < 0)
575		return np;
576
577	/*
578	 * No need to check whether the MTTs really belong to this MR, since
579	 * ib_umem_odp_map_dma_and_lock already checks this.
580	 */
581	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
582	mutex_unlock(&odp->umem_mutex);
583
584	if (ret < 0) {
585		if (ret != -EAGAIN)
586			mlx5_ib_err(mr_to_mdev(mr),
587				    "Failed to update mkey page tables\n");
588		goto out;
589	}
590
591	if (bytes_mapped) {
592		u32 new_mappings = (np << page_shift) -
593			(user_va - round_down(user_va, 1 << page_shift));
594
595		*bytes_mapped += min_t(u32, new_mappings, bcnt);
596	}
597
598	return np << (page_shift - PAGE_SHIFT);
599
600out:
601	return ret;
602}
603
604static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
605				 struct ib_umem_odp *odp_imr, u64 user_va,
606				 size_t bcnt, u32 *bytes_mapped, u32 flags)
607{
608	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
609	unsigned long upd_start_idx = end_idx + 1;
610	unsigned long upd_len = 0;
611	unsigned long npages = 0;
612	int err;
613	int ret;
614
615	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
616		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
617		return -EFAULT;
618
619	/* Fault each child mr that intersects with our interval. */
620	while (bcnt) {
621		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
622		struct ib_umem_odp *umem_odp;
623		struct mlx5_ib_mr *mtt;
624		u64 len;
625
626		xa_lock(&imr->implicit_children);
627		mtt = xa_load(&imr->implicit_children, idx);
628		if (unlikely(!mtt)) {
629			xa_unlock(&imr->implicit_children);
630			mtt = implicit_get_child_mr(imr, idx);
631			if (IS_ERR(mtt)) {
632				ret = PTR_ERR(mtt);
633				goto out;
634			}
635			upd_start_idx = min(upd_start_idx, idx);
636			upd_len = idx - upd_start_idx + 1;
637		} else {
638			refcount_inc(&mtt->mmkey.usecount);
639			xa_unlock(&imr->implicit_children);
640		}
641
642		umem_odp = to_ib_umem_odp(mtt->umem);
643		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
644		      user_va;
645
646		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
647					bytes_mapped, flags);
648
649		mlx5r_deref_odp_mkey(&mtt->mmkey);
650
651		if (ret < 0)
652			goto out;
653		user_va += len;
654		bcnt -= len;
655		npages += ret;
656	}
657
658	ret = npages;
659
660	/*
661	 * Any time the implicit_children are changed we must perform an
662	 * update of the xlt before exiting to ensure the HW and the
663	 * implicit_children remains synchronized.
664	 */
665out:
666	if (likely(!upd_len))
667		return ret;
668
669	/*
670	 * Notice this is not strictly ordered right, the KSM is updated after
671	 * the implicit_children is updated, so a parallel page fault could
672	 * see a MR that is not yet visible in the KSM.  This is similar to a
673	 * parallel page fault seeing a MR that is being concurrently removed
674	 * from the KSM. Both of these improbable situations are resolved
675	 * safely by resuming the HW and then taking another page fault. The
676	 * next pagefault handler will see the new information.
677	 */
678	mutex_lock(&odp_imr->umem_mutex);
679	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
680				   MLX5_IB_UPD_XLT_INDIRECT |
681					  MLX5_IB_UPD_XLT_ATOMIC);
682	mutex_unlock(&odp_imr->umem_mutex);
683	if (err) {
684		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
685		return err;
686	}
687	return ret;
688}
689
690static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
691			       u32 *bytes_mapped, u32 flags)
692{
693	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
694	u32 xlt_flags = 0;
695	int err;
696	unsigned int page_size;
697
698	if (flags & MLX5_PF_FLAGS_ENABLE)
699		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
700
701	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
702	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
703	if (err) {
704		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
705		return err;
706	}
707
708	page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
709					     log_page_size, 0,
710					     umem_dmabuf->umem.iova);
711	if (unlikely(page_size < PAGE_SIZE)) {
712		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
713		err = -EINVAL;
714	} else {
715		err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
716	}
717	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
718
719	if (err)
720		return err;
721
722	if (bytes_mapped)
723		*bytes_mapped += bcnt;
724
725	return ib_umem_num_pages(mr->umem);
726}
727
728/*
729 * Returns:
730 *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
731 *           not accessible, or the MR is no longer valid.
732 *  -EAGAIN/-ENOMEM: The operation should be retried
733 *
734 *  -EINVAL/others: General internal malfunction
735 *  >0: Number of pages mapped
736 */
737static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
738			u32 *bytes_mapped, u32 flags)
739{
740	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
741
742	if (unlikely(io_virt < mr->ibmr.iova))
743		return -EFAULT;
744
745	if (mr->umem->is_dmabuf)
746		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
747
748	if (!odp->is_implicit_odp) {
749		u64 user_va;
750
751		if (check_add_overflow(io_virt - mr->ibmr.iova,
752				       (u64)odp->umem.address, &user_va))
753			return -EFAULT;
754		if (unlikely(user_va >= ib_umem_end(odp) ||
755			     ib_umem_end(odp) - user_va < bcnt))
756			return -EFAULT;
757		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
758					 flags);
759	}
760	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
761				     flags);
762}
763
764int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
765{
766	int ret;
767
768	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
769				mr->umem->length, NULL,
770				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
771	return ret >= 0 ? 0 : ret;
772}
773
774int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
775{
776	int ret;
777
778	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
779				  MLX5_PF_FLAGS_ENABLE);
780
781	return ret >= 0 ? 0 : ret;
782}
783
784struct pf_frame {
785	struct pf_frame *next;
786	u32 key;
787	u64 io_virt;
788	size_t bcnt;
789	int depth;
790};
791
792static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
793{
794	if (!mmkey)
795		return false;
796	if (mmkey->type == MLX5_MKEY_MW ||
797	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
798		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
799	return mmkey->key == key;
800}
801
802/*
803 * Handle a single data segment in a page-fault WQE or RDMA region.
804 *
805 * Returns number of OS pages retrieved on success. The caller may continue to
806 * the next data segment.
807 * Can return the following error codes:
808 * -EAGAIN to designate a temporary error. The caller will abort handling the
809 *  page fault and resolve it.
810 * -EFAULT when there's an error mapping the requested pages. The caller will
811 *  abort the page fault handling.
812 */
813static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
814					 struct ib_pd *pd, u32 key,
815					 u64 io_virt, size_t bcnt,
816					 u32 *bytes_committed,
817					 u32 *bytes_mapped)
818{
819	int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
820	struct pf_frame *head = NULL, *frame;
821	struct mlx5_ib_mkey *mmkey;
822	struct mlx5_ib_mr *mr;
823	struct mlx5_klm *pklm;
824	u32 *out = NULL;
825	size_t offset;
826
827	io_virt += *bytes_committed;
828	bcnt -= *bytes_committed;
829
830next_mr:
831	xa_lock(&dev->odp_mkeys);
832	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
833	if (!mmkey) {
834		xa_unlock(&dev->odp_mkeys);
835		mlx5_ib_dbg(
836			dev,
837			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
838			key);
839		if (bytes_mapped)
840			*bytes_mapped += bcnt;
841		/*
842		 * The user could specify a SGL with multiple lkeys and only
843		 * some of them are ODP. Treat the non-ODP ones as fully
844		 * faulted.
845		 */
846		ret = 0;
847		goto end;
848	}
849	refcount_inc(&mmkey->usecount);
850	xa_unlock(&dev->odp_mkeys);
851
852	if (!mkey_is_eq(mmkey, key)) {
853		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
854		ret = -EFAULT;
855		goto end;
856	}
857
858	switch (mmkey->type) {
859	case MLX5_MKEY_MR:
860		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
861
862		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
863		if (ret < 0)
864			goto end;
865
866		mlx5_update_odp_stats(mr, faults, ret);
867
868		npages += ret;
869		ret = 0;
870		break;
871
872	case MLX5_MKEY_MW:
873	case MLX5_MKEY_INDIRECT_DEVX:
874		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
875			mlx5_ib_dbg(dev, "indirection level exceeded\n");
876			ret = -EFAULT;
877			goto end;
878		}
879
880		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
881			sizeof(*pklm) * (mmkey->ndescs - 2);
882
883		if (outlen > cur_outlen) {
884			kfree(out);
885			out = kzalloc(outlen, GFP_KERNEL);
886			if (!out) {
887				ret = -ENOMEM;
888				goto end;
889			}
890			cur_outlen = outlen;
891		}
892
893		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
894						       bsf0_klm0_pas_mtt0_1);
895
896		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
897		if (ret)
898			goto end;
899
900		offset = io_virt - MLX5_GET64(query_mkey_out, out,
901					      memory_key_mkey_entry.start_addr);
902
903		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
904			if (offset >= be32_to_cpu(pklm->bcount)) {
905				offset -= be32_to_cpu(pklm->bcount);
906				continue;
907			}
908
909			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
910			if (!frame) {
911				ret = -ENOMEM;
912				goto end;
913			}
914
915			frame->key = be32_to_cpu(pklm->key);
916			frame->io_virt = be64_to_cpu(pklm->va) + offset;
917			frame->bcnt = min_t(size_t, bcnt,
918					    be32_to_cpu(pklm->bcount) - offset);
919			frame->depth = depth + 1;
920			frame->next = head;
921			head = frame;
922
923			bcnt -= frame->bcnt;
924			offset = 0;
925		}
926		break;
927
928	default:
929		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
930		ret = -EFAULT;
931		goto end;
932	}
933
934	if (head) {
935		frame = head;
936		head = frame->next;
937
938		key = frame->key;
939		io_virt = frame->io_virt;
940		bcnt = frame->bcnt;
941		depth = frame->depth;
942		kfree(frame);
943
944		mlx5r_deref_odp_mkey(mmkey);
945		goto next_mr;
946	}
947
948end:
949	if (mmkey)
950		mlx5r_deref_odp_mkey(mmkey);
951	while (head) {
952		frame = head;
953		head = frame->next;
954		kfree(frame);
955	}
956	kfree(out);
957
958	*bytes_committed = 0;
959	return ret ? ret : npages;
960}
961
962/*
963 * Parse a series of data segments for page fault handling.
964 *
965 * @dev:  Pointer to mlx5 IB device
966 * @pfault: contains page fault information.
967 * @wqe: points at the first data segment in the WQE.
968 * @wqe_end: points after the end of the WQE.
969 * @bytes_mapped: receives the number of bytes that the function was able to
970 *                map. This allows the caller to decide intelligently whether
971 *                enough memory was mapped to resolve the page fault
972 *                successfully (e.g. enough for the next MTU, or the entire
973 *                WQE).
974 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
975 *                   the committed bytes).
976 * @receive_queue: receive WQE end of sg list
977 *
978 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
979 * negative error code.
980 */
981static int pagefault_data_segments(struct mlx5_ib_dev *dev,
982				   struct mlx5_pagefault *pfault,
983				   void *wqe,
984				   void *wqe_end, u32 *bytes_mapped,
985				   u32 *total_wqe_bytes, bool receive_queue)
986{
987	int ret = 0, npages = 0;
988	u64 io_virt;
989	__be32 key;
990	u32 byte_count;
991	size_t bcnt;
992	int inline_segment;
993
994	if (bytes_mapped)
995		*bytes_mapped = 0;
996	if (total_wqe_bytes)
997		*total_wqe_bytes = 0;
998
999	while (wqe < wqe_end) {
1000		struct mlx5_wqe_data_seg *dseg = wqe;
1001
1002		io_virt = be64_to_cpu(dseg->addr);
1003		key = dseg->lkey;
1004		byte_count = be32_to_cpu(dseg->byte_count);
1005		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1006		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1007
1008		if (inline_segment) {
1009			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1010			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1011				     16);
1012		} else {
1013			wqe += sizeof(*dseg);
1014		}
1015
1016		/* receive WQE end of sg list. */
1017		if (receive_queue && bcnt == 0 &&
1018		    key == dev->mkeys.terminate_scatter_list_mkey &&
1019		    io_virt == 0)
1020			break;
1021
1022		if (!inline_segment && total_wqe_bytes) {
1023			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1024					pfault->bytes_committed);
1025		}
1026
1027		/* A zero length data segment designates a length of 2GB. */
1028		if (bcnt == 0)
1029			bcnt = 1U << 31;
1030
1031		if (inline_segment || bcnt <= pfault->bytes_committed) {
1032			pfault->bytes_committed -=
1033				min_t(size_t, bcnt,
1034				      pfault->bytes_committed);
1035			continue;
1036		}
1037
1038		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1039						    io_virt, bcnt,
1040						    &pfault->bytes_committed,
1041						    bytes_mapped);
1042		if (ret < 0)
1043			break;
1044		npages += ret;
1045	}
1046
1047	return ret < 0 ? ret : npages;
1048}
1049
1050/*
1051 * Parse initiator WQE. Advances the wqe pointer to point at the
1052 * scatter-gather list, and set wqe_end to the end of the WQE.
1053 */
1054static int mlx5_ib_mr_initiator_pfault_handler(
1055	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1056	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1057{
1058	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1059	u16 wqe_index = pfault->wqe.wqe_index;
1060	struct mlx5_base_av *av;
1061	unsigned ds, opcode;
1062	u32 qpn = qp->trans_qp.base.mqp.qpn;
1063
1064	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1065	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1066		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1067			    ds, wqe_length);
1068		return -EFAULT;
1069	}
1070
1071	if (ds == 0) {
1072		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1073			    wqe_index, qpn);
1074		return -EFAULT;
1075	}
1076
1077	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1078	*wqe += sizeof(*ctrl);
1079
1080	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1081		 MLX5_WQE_CTRL_OPCODE_MASK;
1082
1083	if (qp->type == IB_QPT_XRC_INI)
1084		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1085
1086	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1087		av = *wqe;
1088		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1089			*wqe += sizeof(struct mlx5_av);
1090		else
1091			*wqe += sizeof(struct mlx5_base_av);
1092	}
1093
1094	switch (opcode) {
1095	case MLX5_OPCODE_RDMA_WRITE:
1096	case MLX5_OPCODE_RDMA_WRITE_IMM:
1097	case MLX5_OPCODE_RDMA_READ:
1098		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1099		break;
1100	case MLX5_OPCODE_ATOMIC_CS:
1101	case MLX5_OPCODE_ATOMIC_FA:
1102		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1103		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1104		break;
1105	}
1106
1107	return 0;
1108}
1109
1110/*
1111 * Parse responder WQE and set wqe_end to the end of the WQE.
1112 */
1113static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1114						   struct mlx5_ib_srq *srq,
1115						   void **wqe, void **wqe_end,
1116						   int wqe_length)
1117{
1118	int wqe_size = 1 << srq->msrq.wqe_shift;
1119
1120	if (wqe_size > wqe_length) {
1121		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1122		return -EFAULT;
1123	}
1124
1125	*wqe_end = *wqe + wqe_size;
1126	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1127
1128	return 0;
1129}
1130
1131static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1132						  struct mlx5_ib_qp *qp,
1133						  void *wqe, void **wqe_end,
1134						  int wqe_length)
1135{
1136	struct mlx5_ib_wq *wq = &qp->rq;
1137	int wqe_size = 1 << wq->wqe_shift;
1138
1139	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1140		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1141		return -EFAULT;
1142	}
1143
1144	if (wqe_size > wqe_length) {
1145		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1146		return -EFAULT;
1147	}
1148
1149	*wqe_end = wqe + wqe_size;
1150
1151	return 0;
1152}
1153
1154static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1155						       u32 wq_num, int pf_type)
1156{
1157	struct mlx5_core_rsc_common *common = NULL;
1158	struct mlx5_core_srq *srq;
1159
1160	switch (pf_type) {
1161	case MLX5_WQE_PF_TYPE_RMP:
1162		srq = mlx5_cmd_get_srq(dev, wq_num);
1163		if (srq)
1164			common = &srq->common;
1165		break;
1166	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1167	case MLX5_WQE_PF_TYPE_RESP:
1168	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1169		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1170		break;
1171	default:
1172		break;
1173	}
1174
1175	return common;
1176}
1177
1178static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1179{
1180	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1181
1182	return to_mibqp(mqp);
1183}
1184
1185static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1186{
1187	struct mlx5_core_srq *msrq =
1188		container_of(res, struct mlx5_core_srq, common);
1189
1190	return to_mibsrq(msrq);
1191}
1192
1193static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1194					  struct mlx5_pagefault *pfault)
1195{
1196	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1197	u16 wqe_index = pfault->wqe.wqe_index;
1198	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1199	u32 bytes_mapped, total_wqe_bytes;
1200	struct mlx5_core_rsc_common *res;
1201	int resume_with_error = 1;
1202	struct mlx5_ib_qp *qp;
1203	size_t bytes_copied;
1204	int ret = 0;
1205
1206	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1207	if (!res) {
1208		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1209		return;
1210	}
1211
1212	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1213	    res->res != MLX5_RES_XSRQ) {
1214		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1215			    pfault->type);
1216		goto resolve_page_fault;
1217	}
1218
1219	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1220	if (!wqe_start) {
1221		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1222		goto resolve_page_fault;
1223	}
1224
1225	wqe = wqe_start;
1226	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1227	if (qp && sq) {
1228		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1229					  &bytes_copied);
1230		if (ret)
1231			goto read_user;
1232		ret = mlx5_ib_mr_initiator_pfault_handler(
1233			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1234	} else if (qp && !sq) {
1235		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1236					  &bytes_copied);
1237		if (ret)
1238			goto read_user;
1239		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1240			dev, qp, wqe, &wqe_end, bytes_copied);
1241	} else if (!qp) {
1242		struct mlx5_ib_srq *srq = res_to_srq(res);
1243
1244		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1245					   &bytes_copied);
1246		if (ret)
1247			goto read_user;
1248		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1249			dev, srq, &wqe, &wqe_end, bytes_copied);
1250	}
1251
1252	if (ret < 0 || wqe >= wqe_end)
1253		goto resolve_page_fault;
1254
1255	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1256				      &total_wqe_bytes, !sq);
1257	if (ret == -EAGAIN)
1258		goto out;
1259
1260	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1261		goto resolve_page_fault;
1262
1263out:
1264	ret = 0;
1265	resume_with_error = 0;
1266
1267read_user:
1268	if (ret)
1269		mlx5_ib_err(
1270			dev,
1271			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1272			ret, wqe_index, pfault->token);
1273
1274resolve_page_fault:
1275	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1276	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1277		    pfault->wqe.wq_num, resume_with_error,
1278		    pfault->type);
1279	mlx5_core_res_put(res);
1280	free_page((unsigned long)wqe_start);
1281}
1282
1283static int pages_in_range(u64 address, u32 length)
1284{
1285	return (ALIGN(address + length, PAGE_SIZE) -
1286		(address & PAGE_MASK)) >> PAGE_SHIFT;
1287}
1288
1289static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1290					   struct mlx5_pagefault *pfault)
1291{
1292	u64 address;
1293	u32 length;
1294	u32 prefetch_len = pfault->bytes_committed;
1295	int prefetch_activated = 0;
1296	u32 rkey = pfault->rdma.r_key;
1297	int ret;
1298
1299	/* The RDMA responder handler handles the page fault in two parts.
1300	 * First it brings the necessary pages for the current packet
1301	 * (and uses the pfault context), and then (after resuming the QP)
1302	 * prefetches more pages. The second operation cannot use the pfault
1303	 * context and therefore uses the dummy_pfault context allocated on
1304	 * the stack */
1305	pfault->rdma.rdma_va += pfault->bytes_committed;
1306	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1307					 pfault->rdma.rdma_op_len);
1308	pfault->bytes_committed = 0;
1309
1310	address = pfault->rdma.rdma_va;
1311	length  = pfault->rdma.rdma_op_len;
1312
1313	/* For some operations, the hardware cannot tell the exact message
1314	 * length, and in those cases it reports zero. Use prefetch
1315	 * logic. */
1316	if (length == 0) {
1317		prefetch_activated = 1;
1318		length = pfault->rdma.packet_size;
1319		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1320	}
1321
1322	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1323					    &pfault->bytes_committed, NULL);
1324	if (ret == -EAGAIN) {
1325		/* We're racing with an invalidation, don't prefetch */
1326		prefetch_activated = 0;
1327	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1328		mlx5_ib_page_fault_resume(dev, pfault, 1);
1329		if (ret != -ENOENT)
1330			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1331				    ret, pfault->token, pfault->type);
1332		return;
1333	}
1334
1335	mlx5_ib_page_fault_resume(dev, pfault, 0);
1336	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1337		    pfault->token, pfault->type,
1338		    prefetch_activated);
1339
1340	/* At this point, there might be a new pagefault already arriving in
1341	 * the eq, switch to the dummy pagefault for the rest of the
1342	 * processing. We're still OK with the objects being alive as the
1343	 * work-queue is being fenced. */
1344
1345	if (prefetch_activated) {
1346		u32 bytes_committed = 0;
1347
1348		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1349						    prefetch_len,
1350						    &bytes_committed, NULL);
1351		if (ret < 0 && ret != -EAGAIN) {
1352			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1353				    ret, pfault->token, address, prefetch_len);
1354		}
1355	}
1356}
1357
1358static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1359{
1360	u8 event_subtype = pfault->event_subtype;
1361
1362	switch (event_subtype) {
1363	case MLX5_PFAULT_SUBTYPE_WQE:
1364		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1365		break;
1366	case MLX5_PFAULT_SUBTYPE_RDMA:
1367		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1368		break;
1369	default:
1370		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1371			    event_subtype);
1372		mlx5_ib_page_fault_resume(dev, pfault, 1);
1373	}
1374}
1375
1376static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1377{
1378	struct mlx5_pagefault *pfault = container_of(work,
1379						     struct mlx5_pagefault,
1380						     work);
1381	struct mlx5_ib_pf_eq *eq = pfault->eq;
1382
1383	mlx5_ib_pfault(eq->dev, pfault);
1384	mempool_free(pfault, eq->pool);
1385}
1386
1387static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1388{
1389	struct mlx5_eqe_page_fault *pf_eqe;
1390	struct mlx5_pagefault *pfault;
1391	struct mlx5_eqe *eqe;
1392	int cc = 0;
1393
1394	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1395		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1396		if (!pfault) {
1397			schedule_work(&eq->work);
1398			break;
1399		}
1400
1401		pf_eqe = &eqe->data.page_fault;
1402		pfault->event_subtype = eqe->sub_type;
1403		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1404
1405		mlx5_ib_dbg(eq->dev,
1406			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1407			    eqe->sub_type, pfault->bytes_committed);
1408
1409		switch (eqe->sub_type) {
1410		case MLX5_PFAULT_SUBTYPE_RDMA:
1411			/* RDMA based event */
1412			pfault->type =
1413				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1414			pfault->token =
1415				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1416				MLX5_24BIT_MASK;
1417			pfault->rdma.r_key =
1418				be32_to_cpu(pf_eqe->rdma.r_key);
1419			pfault->rdma.packet_size =
1420				be16_to_cpu(pf_eqe->rdma.packet_length);
1421			pfault->rdma.rdma_op_len =
1422				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1423			pfault->rdma.rdma_va =
1424				be64_to_cpu(pf_eqe->rdma.rdma_va);
1425			mlx5_ib_dbg(eq->dev,
1426				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1427				    pfault->type, pfault->token,
1428				    pfault->rdma.r_key);
1429			mlx5_ib_dbg(eq->dev,
1430				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1431				    pfault->rdma.rdma_op_len,
1432				    pfault->rdma.rdma_va);
1433			break;
1434
1435		case MLX5_PFAULT_SUBTYPE_WQE:
1436			/* WQE based event */
1437			pfault->type =
1438				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1439			pfault->token =
1440				be32_to_cpu(pf_eqe->wqe.token);
1441			pfault->wqe.wq_num =
1442				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1443				MLX5_24BIT_MASK;
1444			pfault->wqe.wqe_index =
1445				be16_to_cpu(pf_eqe->wqe.wqe_index);
1446			pfault->wqe.packet_size =
1447				be16_to_cpu(pf_eqe->wqe.packet_length);
1448			mlx5_ib_dbg(eq->dev,
1449				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1450				    pfault->type, pfault->token,
1451				    pfault->wqe.wq_num,
1452				    pfault->wqe.wqe_index);
1453			break;
1454
1455		default:
1456			mlx5_ib_warn(eq->dev,
1457				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1458				     eqe->sub_type);
1459			/* Unsupported page faults should still be
1460			 * resolved by the page fault handler
1461			 */
1462		}
1463
1464		pfault->eq = eq;
1465		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1466		queue_work(eq->wq, &pfault->work);
1467
1468		cc = mlx5_eq_update_cc(eq->core, ++cc);
1469	}
1470
1471	mlx5_eq_update_ci(eq->core, cc, 1);
1472}
1473
1474static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1475			     void *data)
1476{
1477	struct mlx5_ib_pf_eq *eq =
1478		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1479	unsigned long flags;
1480
1481	if (spin_trylock_irqsave(&eq->lock, flags)) {
1482		mlx5_ib_eq_pf_process(eq);
1483		spin_unlock_irqrestore(&eq->lock, flags);
1484	} else {
1485		schedule_work(&eq->work);
1486	}
1487
1488	return IRQ_HANDLED;
1489}
1490
1491/* mempool_refill() was proposed but unfortunately wasn't accepted
1492 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1493 * Cheap workaround.
1494 */
1495static void mempool_refill(mempool_t *pool)
1496{
1497	while (pool->curr_nr < pool->min_nr)
1498		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1499}
1500
1501static void mlx5_ib_eq_pf_action(struct work_struct *work)
1502{
1503	struct mlx5_ib_pf_eq *eq =
1504		container_of(work, struct mlx5_ib_pf_eq, work);
1505
1506	mempool_refill(eq->pool);
1507
1508	spin_lock_irq(&eq->lock);
1509	mlx5_ib_eq_pf_process(eq);
1510	spin_unlock_irq(&eq->lock);
1511}
1512
1513enum {
1514	MLX5_IB_NUM_PF_EQE	= 0x1000,
1515	MLX5_IB_NUM_PF_DRAIN	= 64,
1516};
1517
1518int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1519{
1520	struct mlx5_eq_param param = {};
1521	int err = 0;
1522
1523	mutex_lock(&dev->odp_eq_mutex);
1524	if (eq->core)
1525		goto unlock;
1526	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1527	spin_lock_init(&eq->lock);
1528	eq->dev = dev;
1529
1530	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1531					       sizeof(struct mlx5_pagefault));
1532	if (!eq->pool) {
1533		err = -ENOMEM;
1534		goto unlock;
1535	}
1536
1537	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1538				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1539				 MLX5_NUM_CMD_EQE);
1540	if (!eq->wq) {
1541		err = -ENOMEM;
1542		goto err_mempool;
1543	}
1544
1545	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1546	param = (struct mlx5_eq_param) {
1547		.nent = MLX5_IB_NUM_PF_EQE,
1548	};
1549	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1550	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1551	if (IS_ERR(eq->core)) {
1552		err = PTR_ERR(eq->core);
1553		goto err_wq;
1554	}
1555	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1556	if (err) {
1557		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1558		goto err_eq;
1559	}
1560
1561	mutex_unlock(&dev->odp_eq_mutex);
1562	return 0;
1563err_eq:
1564	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1565err_wq:
1566	eq->core = NULL;
1567	destroy_workqueue(eq->wq);
1568err_mempool:
1569	mempool_destroy(eq->pool);
1570unlock:
1571	mutex_unlock(&dev->odp_eq_mutex);
1572	return err;
1573}
1574
1575static int
1576mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1577{
1578	int err;
1579
1580	if (!eq->core)
1581		return 0;
1582	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1583	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1584	cancel_work_sync(&eq->work);
1585	destroy_workqueue(eq->wq);
1586	mempool_destroy(eq->pool);
1587
1588	return err;
1589}
1590
1591int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1592{
1593	struct mlx5r_cache_rb_key rb_key = {
1594		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1595		.ndescs = mlx5_imr_ksm_entries,
1596	};
1597	struct mlx5_cache_ent *ent;
1598
1599	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1600		return 0;
1601
1602	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1603	if (IS_ERR(ent))
1604		return PTR_ERR(ent);
1605
1606	return 0;
1607}
1608
1609static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1610	.advise_mr = mlx5_ib_advise_mr,
1611};
1612
1613int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1614{
1615	internal_fill_odp_caps(dev);
1616
1617	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1618		return 0;
1619
1620	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1621
1622	mutex_init(&dev->odp_eq_mutex);
1623	return 0;
1624}
1625
1626void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1627{
1628	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1629		return;
1630
1631	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1632}
1633
1634int mlx5_ib_odp_init(void)
1635{
1636	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1637				       MLX5_IMR_MTT_BITS);
1638
1639	return 0;
1640}
1641
1642struct prefetch_mr_work {
1643	struct work_struct work;
1644	u32 pf_flags;
1645	u32 num_sge;
1646	struct {
1647		u64 io_virt;
1648		struct mlx5_ib_mr *mr;
1649		size_t length;
1650	} frags[];
1651};
1652
1653static void destroy_prefetch_work(struct prefetch_mr_work *work)
1654{
1655	u32 i;
1656
1657	for (i = 0; i < work->num_sge; ++i)
1658		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1659
1660	kvfree(work);
1661}
1662
1663static struct mlx5_ib_mr *
1664get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1665		    u32 lkey)
1666{
1667	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1668	struct mlx5_ib_mr *mr = NULL;
1669	struct mlx5_ib_mkey *mmkey;
1670
1671	xa_lock(&dev->odp_mkeys);
1672	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1673	if (!mmkey || mmkey->key != lkey) {
1674		mr = ERR_PTR(-ENOENT);
1675		goto end;
1676	}
1677	if (mmkey->type != MLX5_MKEY_MR) {
1678		mr = ERR_PTR(-EINVAL);
1679		goto end;
1680	}
1681
1682	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1683
1684	if (mr->ibmr.pd != pd) {
1685		mr = ERR_PTR(-EPERM);
1686		goto end;
1687	}
1688
1689	/* prefetch with write-access must be supported by the MR */
1690	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1691	    !mr->umem->writable) {
1692		mr = ERR_PTR(-EPERM);
1693		goto end;
1694	}
1695
1696	refcount_inc(&mmkey->usecount);
1697end:
1698	xa_unlock(&dev->odp_mkeys);
1699	return mr;
1700}
1701
1702static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1703{
1704	struct prefetch_mr_work *work =
1705		container_of(w, struct prefetch_mr_work, work);
1706	u32 bytes_mapped = 0;
1707	int ret;
1708	u32 i;
1709
1710	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1711	WARN_ON(!work->num_sge);
1712	for (i = 0; i < work->num_sge; ++i) {
1713		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1714				   work->frags[i].length, &bytes_mapped,
1715				   work->pf_flags);
1716		if (ret <= 0)
1717			continue;
1718		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1719	}
1720
1721	destroy_prefetch_work(work);
1722}
1723
1724static int init_prefetch_work(struct ib_pd *pd,
1725			       enum ib_uverbs_advise_mr_advice advice,
1726			       u32 pf_flags, struct prefetch_mr_work *work,
1727			       struct ib_sge *sg_list, u32 num_sge)
1728{
1729	u32 i;
1730
1731	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1732	work->pf_flags = pf_flags;
1733
1734	for (i = 0; i < num_sge; ++i) {
1735		struct mlx5_ib_mr *mr;
1736
1737		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1738		if (IS_ERR(mr)) {
1739			work->num_sge = i;
1740			return PTR_ERR(mr);
1741		}
1742		work->frags[i].io_virt = sg_list[i].addr;
1743		work->frags[i].length = sg_list[i].length;
1744		work->frags[i].mr = mr;
1745	}
1746	work->num_sge = num_sge;
1747	return 0;
1748}
1749
1750static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1751				    enum ib_uverbs_advise_mr_advice advice,
1752				    u32 pf_flags, struct ib_sge *sg_list,
1753				    u32 num_sge)
1754{
1755	u32 bytes_mapped = 0;
1756	int ret = 0;
1757	u32 i;
1758
1759	for (i = 0; i < num_sge; ++i) {
1760		struct mlx5_ib_mr *mr;
1761
1762		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1763		if (IS_ERR(mr))
1764			return PTR_ERR(mr);
1765		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1766				   &bytes_mapped, pf_flags);
1767		if (ret < 0) {
1768			mlx5r_deref_odp_mkey(&mr->mmkey);
1769			return ret;
1770		}
1771		mlx5_update_odp_stats(mr, prefetch, ret);
1772		mlx5r_deref_odp_mkey(&mr->mmkey);
1773	}
1774
1775	return 0;
1776}
1777
1778int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1779			       enum ib_uverbs_advise_mr_advice advice,
1780			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1781{
1782	u32 pf_flags = 0;
1783	struct prefetch_mr_work *work;
1784	int rc;
1785
1786	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1787		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1788
1789	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1790		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1791
1792	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1793		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1794						num_sge);
1795
1796	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1797	if (!work)
1798		return -ENOMEM;
1799
1800	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
1801	if (rc) {
1802		destroy_prefetch_work(work);
1803		return rc;
1804	}
1805	queue_work(system_unbound_wq, &work->work);
1806	return 0;
1807}
1808