1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7#include <linux/pci.h>
8#include <linux/netdevice.h>
9#include <linux/vmalloc.h>
10#include <linux/delay.h>
11#include <linux/xarray.h>
12#include <linux/module.h>
13#include <linux/printk.h>
14#include <linux/hrtimer.h>
15#include <linux/bitmap.h>
16#include <linux/numa.h>
17#include <rdma/rdma_vt.h>
18
19#include "hfi.h"
20#include "device.h"
21#include "common.h"
22#include "trace.h"
23#include "mad.h"
24#include "sdma.h"
25#include "debugfs.h"
26#include "verbs.h"
27#include "aspm.h"
28#include "affinity.h"
29#include "vnic.h"
30#include "exp_rcv.h"
31#include "netdev.h"
32
33#undef pr_fmt
34#define pr_fmt(fmt) DRIVER_NAME ": " fmt
35
36/*
37 * min buffers we want to have per context, after driver
38 */
39#define HFI1_MIN_USER_CTXT_BUFCNT 7
40
41#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43
44#define NUM_IB_PORTS 1
45
46/*
47 * Number of user receive contexts we are configured to use (to allow for more
48 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49 */
50int num_user_contexts = -1;
51module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52MODULE_PARM_DESC(
53	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54
55uint krcvqs[RXE_NUM_DATA_VL];
56int krcvqsset;
57module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59
60/* computed based on above array */
61unsigned long n_krcvqs;
62
63static unsigned hfi1_rcvarr_split = 25;
64module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66
67static uint eager_buffer_size = (8 << 20); /* 8MB */
68module_param(eager_buffer_size, uint, S_IRUGO);
69MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70
71static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74
75static uint hfi1_hdrq_entsize = 32;
76module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78
79unsigned int user_credit_return_threshold = 33;	/* default is 33% */
80module_param(user_credit_return_threshold, uint, S_IRUGO);
81MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82
83DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84
85static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86			     struct hfi1_pportdata *ppd)
87{
88	struct hfi1_ctxtdata *rcd;
89	int ret;
90
91	/* Control context has to be always 0 */
92	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93
94	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95	if (ret < 0) {
96		dd_dev_err(dd, "Kernel receive context allocation failed\n");
97		return ret;
98	}
99
100	/*
101	 * Set up the kernel context flags here and now because they use
102	 * default values for all receive side memories.  User contexts will
103	 * be handled as they are created.
104	 */
105	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107		HFI1_CAP_KGET(NODROP_EGR_FULL) |
108		HFI1_CAP_KGET(DMA_RTAIL);
109
110	/* Control context must use DMA_RTAIL */
111	if (rcd->ctxt == HFI1_CTRL_CTXT)
112		rcd->flags |= HFI1_CAP_DMA_RTAIL;
113	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114				handle_receive_interrupt_dma_rtail :
115				handle_receive_interrupt_nodma_rtail;
116
117	hfi1_set_seq_cnt(rcd, 1);
118
119	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120	if (!rcd->sc) {
121		dd_dev_err(dd, "Kernel send context allocation failed\n");
122		return -ENOMEM;
123	}
124	hfi1_init_ctxt(rcd->sc);
125
126	return 0;
127}
128
129/*
130 * Create the receive context array and one or more kernel contexts
131 */
132int hfi1_create_kctxts(struct hfi1_devdata *dd)
133{
134	u16 i;
135	int ret;
136
137	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138			       GFP_KERNEL, dd->node);
139	if (!dd->rcd)
140		return -ENOMEM;
141
142	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143		ret = hfi1_create_kctxt(dd, dd->pport);
144		if (ret)
145			goto bail;
146	}
147
148	return 0;
149bail:
150	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151		hfi1_free_ctxt(dd->rcd[i]);
152
153	/* All the contexts should be freed, free the array */
154	kfree(dd->rcd);
155	dd->rcd = NULL;
156	return ret;
157}
158
159/*
160 * Helper routines for the receive context reference count (rcd and uctxt).
161 */
162static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163{
164	kref_init(&rcd->kref);
165}
166
167/**
168 * hfi1_rcd_free - When reference is zero clean up.
169 * @kref: pointer to an initialized rcd data structure
170 *
171 */
172static void hfi1_rcd_free(struct kref *kref)
173{
174	unsigned long flags;
175	struct hfi1_ctxtdata *rcd =
176		container_of(kref, struct hfi1_ctxtdata, kref);
177
178	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179	rcd->dd->rcd[rcd->ctxt] = NULL;
180	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181
182	hfi1_free_ctxtdata(rcd->dd, rcd);
183
184	kfree(rcd);
185}
186
187/**
188 * hfi1_rcd_put - decrement reference for rcd
189 * @rcd: pointer to an initialized rcd data structure
190 *
191 * Use this to put a reference after the init.
192 */
193int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194{
195	if (rcd)
196		return kref_put(&rcd->kref, hfi1_rcd_free);
197
198	return 0;
199}
200
201/**
202 * hfi1_rcd_get - increment reference for rcd
203 * @rcd: pointer to an initialized rcd data structure
204 *
205 * Use this to get a reference after the init.
206 *
207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
208 * increment, otherwise 0.
209 */
210int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211{
212	return kref_get_unless_zero(&rcd->kref);
213}
214
215/**
216 * allocate_rcd_index - allocate an rcd index from the rcd array
217 * @dd: pointer to a valid devdata structure
218 * @rcd: rcd data structure to assign
219 * @index: pointer to index that is allocated
220 *
221 * Find an empty index in the rcd array, and assign the given rcd to it.
222 * If the array is full, we are EBUSY.
223 *
224 */
225static int allocate_rcd_index(struct hfi1_devdata *dd,
226			      struct hfi1_ctxtdata *rcd, u16 *index)
227{
228	unsigned long flags;
229	u16 ctxt;
230
231	spin_lock_irqsave(&dd->uctxt_lock, flags);
232	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233		if (!dd->rcd[ctxt])
234			break;
235
236	if (ctxt < dd->num_rcv_contexts) {
237		rcd->ctxt = ctxt;
238		dd->rcd[ctxt] = rcd;
239		hfi1_rcd_init(rcd);
240	}
241	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242
243	if (ctxt >= dd->num_rcv_contexts)
244		return -EBUSY;
245
246	*index = ctxt;
247
248	return 0;
249}
250
251/**
252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253 * array
254 * @dd: pointer to a valid devdata structure
255 * @ctxt: the index of an possilbe rcd
256 *
257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258 * ctxt index is valid.
259 *
260 * The caller is responsible for making the _put().
261 *
262 */
263struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264						 u16 ctxt)
265{
266	if (ctxt < dd->num_rcv_contexts)
267		return hfi1_rcd_get_by_index(dd, ctxt);
268
269	return NULL;
270}
271
272/**
273 * hfi1_rcd_get_by_index - get by index
274 * @dd: pointer to a valid devdata structure
275 * @ctxt: the index of an possilbe rcd
276 *
277 * We need to protect access to the rcd array.  If access is needed to
278 * one or more index, get the protecting spinlock and then increment the
279 * kref.
280 *
281 * The caller is responsible for making the _put().
282 *
283 */
284struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285{
286	unsigned long flags;
287	struct hfi1_ctxtdata *rcd = NULL;
288
289	spin_lock_irqsave(&dd->uctxt_lock, flags);
290	if (dd->rcd[ctxt]) {
291		rcd = dd->rcd[ctxt];
292		if (!hfi1_rcd_get(rcd))
293			rcd = NULL;
294	}
295	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296
297	return rcd;
298}
299
300/*
301 * Common code for user and kernel context create and setup.
302 * NOTE: the initial kref is done here (hf1_rcd_init()).
303 */
304int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305			 struct hfi1_ctxtdata **context)
306{
307	struct hfi1_devdata *dd = ppd->dd;
308	struct hfi1_ctxtdata *rcd;
309	unsigned kctxt_ngroups = 0;
310	u32 base;
311
312	if (dd->rcv_entries.nctxt_extra >
313	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317	if (rcd) {
318		u32 rcvtids, max_entries;
319		u16 ctxt;
320		int ret;
321
322		ret = allocate_rcd_index(dd, rcd, &ctxt);
323		if (ret) {
324			*context = NULL;
325			kfree(rcd);
326			return ret;
327		}
328
329		INIT_LIST_HEAD(&rcd->qp_wait_list);
330		hfi1_exp_tid_group_init(rcd);
331		rcd->ppd = ppd;
332		rcd->dd = dd;
333		rcd->numa_id = numa;
334		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336		rcd->slow_handler = handle_receive_interrupt;
337		rcd->do_interrupt = rcd->slow_handler;
338		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339
340		mutex_init(&rcd->exp_mutex);
341		spin_lock_init(&rcd->exp_lock);
342		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344
345		hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt);
346
347		/*
348		 * Calculate the context's RcvArray entry starting point.
349		 * We do this here because we have to take into account all
350		 * the RcvArray entries that previous context would have
351		 * taken and we have to account for any extra groups assigned
352		 * to the static (kernel) or dynamic (vnic/user) contexts.
353		 */
354		if (ctxt < dd->first_dyn_alloc_ctxt) {
355			if (ctxt < kctxt_ngroups) {
356				base = ctxt * (dd->rcv_entries.ngroups + 1);
357				rcd->rcv_array_groups++;
358			} else {
359				base = kctxt_ngroups +
360					(ctxt * dd->rcv_entries.ngroups);
361			}
362		} else {
363			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364
365			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366				kctxt_ngroups);
367			if (ct < dd->rcv_entries.nctxt_extra) {
368				base += ct * (dd->rcv_entries.ngroups + 1);
369				rcd->rcv_array_groups++;
370			} else {
371				base += dd->rcv_entries.nctxt_extra +
372					(ct * dd->rcv_entries.ngroups);
373			}
374		}
375		rcd->eager_base = base * dd->rcv_entries.group_size;
376
377		rcd->rcvhdrq_cnt = rcvhdrcnt;
378		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379		rcd->rhf_offset =
380			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381		/*
382		 * Simple Eager buffer allocation: we have already pre-allocated
383		 * the number of RcvArray entry groups. Each ctxtdata structure
384		 * holds the number of groups for that context.
385		 *
386		 * To follow CSR requirements and maintain cacheline alignment,
387		 * make sure all sizes and bases are multiples of group_size.
388		 *
389		 * The expected entry count is what is left after assigning
390		 * eager.
391		 */
392		max_entries = rcd->rcv_array_groups *
393			dd->rcv_entries.group_size;
394		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395		rcd->egrbufs.count = round_down(rcvtids,
396						dd->rcv_entries.group_size);
397		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399				   rcd->ctxt);
400			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401		}
402		hfi1_cdbg(PROC,
403			  "ctxt%u: max Eager buffer RcvArray entries: %u",
404			  rcd->ctxt, rcd->egrbufs.count);
405
406		/*
407		 * Allocate array that will hold the eager buffer accounting
408		 * data.
409		 * This will allocate the maximum possible buffer count based
410		 * on the value of the RcvArray split parameter.
411		 * The resulting value will be rounded down to the closest
412		 * multiple of dd->rcv_entries.group_size.
413		 */
414		rcd->egrbufs.buffers =
415			kcalloc_node(rcd->egrbufs.count,
416				     sizeof(*rcd->egrbufs.buffers),
417				     GFP_KERNEL, numa);
418		if (!rcd->egrbufs.buffers)
419			goto bail;
420		rcd->egrbufs.rcvtids =
421			kcalloc_node(rcd->egrbufs.count,
422				     sizeof(*rcd->egrbufs.rcvtids),
423				     GFP_KERNEL, numa);
424		if (!rcd->egrbufs.rcvtids)
425			goto bail;
426		rcd->egrbufs.size = eager_buffer_size;
427		/*
428		 * The size of the buffers programmed into the RcvArray
429		 * entries needs to be big enough to handle the highest
430		 * MTU supported.
431		 */
432		if (rcd->egrbufs.size < hfi1_max_mtu) {
433			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434			hfi1_cdbg(PROC,
435				  "ctxt%u: eager bufs size too small. Adjusting to %u",
436				    rcd->ctxt, rcd->egrbufs.size);
437		}
438		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439
440		/* Applicable only for statically created kernel contexts */
441		if (ctxt < dd->first_dyn_alloc_ctxt) {
442			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443						    GFP_KERNEL, numa);
444			if (!rcd->opstats)
445				goto bail;
446
447			/* Initialize TID flow generations for the context */
448			hfi1_kern_init_ctxt_generations(rcd);
449		}
450
451		*context = rcd;
452		return 0;
453	}
454
455bail:
456	*context = NULL;
457	hfi1_free_ctxt(rcd);
458	return -ENOMEM;
459}
460
461/**
462 * hfi1_free_ctxt - free context
463 * @rcd: pointer to an initialized rcd data structure
464 *
465 * This wrapper is the free function that matches hfi1_create_ctxtdata().
466 * When a context is done being used (kernel or user), this function is called
467 * for the "final" put to match the kref init from hfi1_create_ctxtdata().
468 * Other users of the context do a get/put sequence to make sure that the
469 * structure isn't removed while in use.
470 */
471void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472{
473	hfi1_rcd_put(rcd);
474}
475
476/*
477 * Select the largest ccti value over all SLs to determine the intra-
478 * packet gap for the link.
479 *
480 * called with cca_timer_lock held (to protect access to cca_timer
481 * array), and rcu_read_lock() (to protect access to cc_state).
482 */
483void set_link_ipg(struct hfi1_pportdata *ppd)
484{
485	struct hfi1_devdata *dd = ppd->dd;
486	struct cc_state *cc_state;
487	int i;
488	u16 cce, ccti_limit, max_ccti = 0;
489	u16 shift, mult;
490	u64 src;
491	u32 current_egress_rate; /* Mbits /sec */
492	u64 max_pkt_time;
493	/*
494	 * max_pkt_time is the maximum packet egress time in units
495	 * of the fabric clock period 1/(805 MHz).
496	 */
497
498	cc_state = get_cc_state(ppd);
499
500	if (!cc_state)
501		/*
502		 * This should _never_ happen - rcu_read_lock() is held,
503		 * and set_link_ipg() should not be called if cc_state
504		 * is NULL.
505		 */
506		return;
507
508	for (i = 0; i < OPA_MAX_SLS; i++) {
509		u16 ccti = ppd->cca_timer[i].ccti;
510
511		if (ccti > max_ccti)
512			max_ccti = ccti;
513	}
514
515	ccti_limit = cc_state->cct.ccti_limit;
516	if (max_ccti > ccti_limit)
517		max_ccti = ccti_limit;
518
519	cce = cc_state->cct.entries[max_ccti].entry;
520	shift = (cce & 0xc000) >> 14;
521	mult = (cce & 0x3fff);
522
523	current_egress_rate = active_egress_rate(ppd);
524
525	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526
527	src = (max_pkt_time >> shift) * mult;
528
529	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531
532	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533}
534
535static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536{
537	struct cca_timer *cca_timer;
538	struct hfi1_pportdata *ppd;
539	int sl;
540	u16 ccti_timer, ccti_min;
541	struct cc_state *cc_state;
542	unsigned long flags;
543	enum hrtimer_restart ret = HRTIMER_NORESTART;
544
545	cca_timer = container_of(t, struct cca_timer, hrtimer);
546	ppd = cca_timer->ppd;
547	sl = cca_timer->sl;
548
549	rcu_read_lock();
550
551	cc_state = get_cc_state(ppd);
552
553	if (!cc_state) {
554		rcu_read_unlock();
555		return HRTIMER_NORESTART;
556	}
557
558	/*
559	 * 1) decrement ccti for SL
560	 * 2) calculate IPG for link (set_link_ipg())
561	 * 3) restart timer, unless ccti is at min value
562	 */
563
564	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566
567	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568
569	if (cca_timer->ccti > ccti_min) {
570		cca_timer->ccti--;
571		set_link_ipg(ppd);
572	}
573
574	if (cca_timer->ccti > ccti_min) {
575		unsigned long nsec = 1024 * ccti_timer;
576		/* ccti_timer is in units of 1.024 usec */
577		hrtimer_forward_now(t, ns_to_ktime(nsec));
578		ret = HRTIMER_RESTART;
579	}
580
581	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582	rcu_read_unlock();
583	return ret;
584}
585
586/*
587 * Common code for initializing the physical port structure.
588 */
589void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591{
592	int i;
593	uint default_pkey_idx;
594	struct cc_state *cc_state;
595
596	ppd->dd = dd;
597	ppd->hw_pidx = hw_pidx;
598	ppd->port = port; /* IB port number, not index */
599	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600	/*
601	 * There are C_VL_COUNT number of PortVLXmitWait counters.
602	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603	 */
604	for (i = 0; i < C_VL_COUNT + 1; i++) {
605		ppd->port_vl_xmit_wait_last[i] = 0;
606		ppd->vl_xmit_flit_cnt[i] = 0;
607	}
608
609	default_pkey_idx = 1;
610
611	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613	ppd->pkeys[0] = 0x8001;
614
615	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616	INIT_WORK(&ppd->link_up_work, handle_link_up);
617	INIT_WORK(&ppd->link_down_work, handle_link_down);
618	INIT_WORK(&ppd->freeze_work, handle_freeze);
619	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625
626	mutex_init(&ppd->hls_lock);
627	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628
629	ppd->qsfp_info.ppd = ppd;
630	ppd->sm_trap_qp = 0x0;
631	ppd->sa_qp = 0x1;
632
633	ppd->hfi1_wq = NULL;
634
635	spin_lock_init(&ppd->cca_timer_lock);
636
637	for (i = 0; i < OPA_MAX_SLS; i++) {
638		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639			     HRTIMER_MODE_REL);
640		ppd->cca_timer[i].ppd = ppd;
641		ppd->cca_timer[i].sl = i;
642		ppd->cca_timer[i].ccti = 0;
643		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644	}
645
646	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647
648	spin_lock_init(&ppd->cc_state_lock);
649	spin_lock_init(&ppd->cc_log_lock);
650	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651	RCU_INIT_POINTER(ppd->cc_state, cc_state);
652	if (!cc_state)
653		goto bail;
654	return;
655
656bail:
657	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658}
659
660/*
661 * Do initialization for device that is only needed on
662 * first detect, not on resets.
663 */
664static int loadtime_init(struct hfi1_devdata *dd)
665{
666	return 0;
667}
668
669/**
670 * init_after_reset - re-initialize after a reset
671 * @dd: the hfi1_ib device
672 *
673 * sanity check at least some of the values after reset, and
674 * ensure no receive or transmit (explicitly, in case reset
675 * failed
676 */
677static int init_after_reset(struct hfi1_devdata *dd)
678{
679	int i;
680	struct hfi1_ctxtdata *rcd;
681	/*
682	 * Ensure chip does no sends or receives, tail updates, or
683	 * pioavail updates while we re-initialize.  This is mostly
684	 * for the driver data structures, not chip registers.
685	 */
686	for (i = 0; i < dd->num_rcv_contexts; i++) {
687		rcd = hfi1_rcd_get_by_index(dd, i);
688		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689			     HFI1_RCVCTRL_INTRAVAIL_DIS |
690			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691		hfi1_rcd_put(rcd);
692	}
693	pio_send_control(dd, PSC_GLOBAL_DISABLE);
694	for (i = 0; i < dd->num_send_contexts; i++)
695		sc_disable(dd->send_contexts[i].sc);
696
697	return 0;
698}
699
700static void enable_chip(struct hfi1_devdata *dd)
701{
702	struct hfi1_ctxtdata *rcd;
703	u32 rcvmask;
704	u16 i;
705
706	/* enable PIO send */
707	pio_send_control(dd, PSC_GLOBAL_ENABLE);
708
709	/*
710	 * Enable kernel ctxts' receive and receive interrupt.
711	 * Other ctxts done as user opens and initializes them.
712	 */
713	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714		rcd = hfi1_rcd_get_by_index(dd, i);
715		if (!rcd)
716			continue;
717		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726		if (HFI1_CAP_IS_KSET(TID_RDMA))
727			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728		hfi1_rcvctrl(dd, rcvmask, rcd);
729		sc_enable(rcd->sc);
730		hfi1_rcd_put(rcd);
731	}
732}
733
734/**
735 * create_workqueues - create per port workqueues
736 * @dd: the hfi1_ib device
737 */
738static int create_workqueues(struct hfi1_devdata *dd)
739{
740	int pidx;
741	struct hfi1_pportdata *ppd;
742
743	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744		ppd = dd->pport + pidx;
745		if (!ppd->hfi1_wq) {
746			ppd->hfi1_wq =
747				alloc_workqueue(
748				    "hfi%d_%d",
749				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750				    WQ_MEM_RECLAIM,
751				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752				    dd->unit, pidx);
753			if (!ppd->hfi1_wq)
754				goto wq_error;
755		}
756		if (!ppd->link_wq) {
757			/*
758			 * Make the link workqueue single-threaded to enforce
759			 * serialization.
760			 */
761			ppd->link_wq =
762				alloc_workqueue(
763				    "hfi_link_%d_%d",
764				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765				    1, /* max_active */
766				    dd->unit, pidx);
767			if (!ppd->link_wq)
768				goto wq_error;
769		}
770	}
771	return 0;
772wq_error:
773	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775		ppd = dd->pport + pidx;
776		if (ppd->hfi1_wq) {
777			destroy_workqueue(ppd->hfi1_wq);
778			ppd->hfi1_wq = NULL;
779		}
780		if (ppd->link_wq) {
781			destroy_workqueue(ppd->link_wq);
782			ppd->link_wq = NULL;
783		}
784	}
785	return -ENOMEM;
786}
787
788/**
789 * destroy_workqueues - destroy per port workqueues
790 * @dd: the hfi1_ib device
791 */
792static void destroy_workqueues(struct hfi1_devdata *dd)
793{
794	int pidx;
795	struct hfi1_pportdata *ppd;
796
797	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798		ppd = dd->pport + pidx;
799
800		if (ppd->hfi1_wq) {
801			destroy_workqueue(ppd->hfi1_wq);
802			ppd->hfi1_wq = NULL;
803		}
804		if (ppd->link_wq) {
805			destroy_workqueue(ppd->link_wq);
806			ppd->link_wq = NULL;
807		}
808	}
809}
810
811/**
812 * enable_general_intr() - Enable the IRQs that will be handled by the
813 * general interrupt handler.
814 * @dd: valid devdata
815 *
816 */
817static void enable_general_intr(struct hfi1_devdata *dd)
818{
819	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826}
827
828/**
829 * hfi1_init - do the actual initialization sequence on the chip
830 * @dd: the hfi1_ib device
831 * @reinit: re-initializing, so don't allocate new memory
832 *
833 * Do the actual initialization sequence on the chip.  This is done
834 * both from the init routine called from the PCI infrastructure, and
835 * when we reset the chip, or detect that it was reset internally,
836 * or it's administratively re-enabled.
837 *
838 * Memory allocation here and in called routines is only done in
839 * the first case (reinit == 0).  We have to be careful, because even
840 * without memory allocation, we need to re-write all the chip registers
841 * TIDs, etc. after the reset or enable has completed.
842 */
843int hfi1_init(struct hfi1_devdata *dd, int reinit)
844{
845	int ret = 0, pidx, lastfail = 0;
846	unsigned long len;
847	u16 i;
848	struct hfi1_ctxtdata *rcd;
849	struct hfi1_pportdata *ppd;
850
851	/* Set up send low level handlers */
852	dd->process_pio_send = hfi1_verbs_send_pio;
853	dd->process_dma_send = hfi1_verbs_send_dma;
854	dd->pio_inline_send = pio_copy;
855	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856
857	if (is_ax(dd)) {
858		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859		dd->do_drop = true;
860	} else {
861		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862		dd->do_drop = false;
863	}
864
865	/* make sure the link is not "up" */
866	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867		ppd = dd->pport + pidx;
868		ppd->linkup = 0;
869	}
870
871	if (reinit)
872		ret = init_after_reset(dd);
873	else
874		ret = loadtime_init(dd);
875	if (ret)
876		goto done;
877
878	/* dd->rcd can be NULL if early initialization failed */
879	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880		/*
881		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
882		 * re-init, the simplest way to handle this is to free
883		 * existing, and re-allocate.
884		 * Need to re-create rest of ctxt 0 ctxtdata as well.
885		 */
886		rcd = hfi1_rcd_get_by_index(dd, i);
887		if (!rcd)
888			continue;
889
890		lastfail = hfi1_create_rcvhdrq(dd, rcd);
891		if (!lastfail)
892			lastfail = hfi1_setup_eagerbufs(rcd);
893		if (!lastfail)
894			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895		if (lastfail) {
896			dd_dev_err(dd,
897				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898			ret = lastfail;
899		}
900		/* enable IRQ */
901		hfi1_rcd_put(rcd);
902	}
903
904	/* Allocate enough memory for user event notification. */
905	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906			 sizeof(*dd->events));
907	dd->events = vmalloc_user(len);
908	if (!dd->events)
909		dd_dev_err(dd, "Failed to allocate user events page\n");
910	/*
911	 * Allocate a page for device and port status.
912	 * Page will be shared amongst all user processes.
913	 */
914	dd->status = vmalloc_user(PAGE_SIZE);
915	if (!dd->status)
916		dd_dev_err(dd, "Failed to allocate dev status page\n");
917	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918		ppd = dd->pport + pidx;
919		if (dd->status)
920			/* Currently, we only have one port */
921			ppd->statusp = &dd->status->port;
922
923		set_mtu(ppd);
924	}
925
926	/* enable chip even if we have an error, so we can debug cause */
927	enable_chip(dd);
928
929done:
930	/*
931	 * Set status even if port serdes is not initialized
932	 * so that diags will work.
933	 */
934	if (dd->status)
935		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936			HFI1_STATUS_INITTED;
937	if (!ret) {
938		/* enable all interrupts from the chip */
939		enable_general_intr(dd);
940		init_qsfp_int(dd);
941
942		/* chip is OK for user apps; mark it as initialized */
943		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944			ppd = dd->pport + pidx;
945
946			/*
947			 * start the serdes - must be after interrupts are
948			 * enabled so we are notified when the link goes up
949			 */
950			lastfail = bringup_serdes(ppd);
951			if (lastfail)
952				dd_dev_info(dd,
953					    "Failed to bring up port %u\n",
954					    ppd->port);
955
956			/*
957			 * Set status even if port serdes is not initialized
958			 * so that diags will work.
959			 */
960			if (ppd->statusp)
961				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962							HFI1_STATUS_INITTED;
963			if (!ppd->link_speed_enabled)
964				continue;
965		}
966	}
967
968	/* if ret is non-zero, we probably should do some cleanup here... */
969	return ret;
970}
971
972struct hfi1_devdata *hfi1_lookup(int unit)
973{
974	return xa_load(&hfi1_dev_table, unit);
975}
976
977/*
978 * Stop the timers during unit shutdown, or after an error late
979 * in initialization.
980 */
981static void stop_timers(struct hfi1_devdata *dd)
982{
983	struct hfi1_pportdata *ppd;
984	int pidx;
985
986	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987		ppd = dd->pport + pidx;
988		if (ppd->led_override_timer.function) {
989			del_timer_sync(&ppd->led_override_timer);
990			atomic_set(&ppd->led_override_timer_active, 0);
991		}
992	}
993}
994
995/**
996 * shutdown_device - shut down a device
997 * @dd: the hfi1_ib device
998 *
999 * This is called to make the device quiet when we are about to
1000 * unload the driver, and also when the device is administratively
1001 * disabled.   It does not free any data structures.
1002 * Everything it does has to be setup again by hfi1_init(dd, 1)
1003 */
1004static void shutdown_device(struct hfi1_devdata *dd)
1005{
1006	struct hfi1_pportdata *ppd;
1007	struct hfi1_ctxtdata *rcd;
1008	unsigned pidx;
1009	int i;
1010
1011	if (dd->flags & HFI1_SHUTDOWN)
1012		return;
1013	dd->flags |= HFI1_SHUTDOWN;
1014
1015	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016		ppd = dd->pport + pidx;
1017
1018		ppd->linkup = 0;
1019		if (ppd->statusp)
1020			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021					   HFI1_STATUS_IB_READY);
1022	}
1023	dd->flags &= ~HFI1_INITTED;
1024
1025	/* mask and clean up interrupts */
1026	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027	msix_clean_up_interrupts(dd);
1028
1029	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030		ppd = dd->pport + pidx;
1031		for (i = 0; i < dd->num_rcv_contexts; i++) {
1032			rcd = hfi1_rcd_get_by_index(dd, i);
1033			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1034				     HFI1_RCVCTRL_CTXT_DIS |
1035				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1036				     HFI1_RCVCTRL_PKEY_DIS |
1037				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1038			hfi1_rcd_put(rcd);
1039		}
1040		/*
1041		 * Gracefully stop all sends allowing any in progress to
1042		 * trickle out first.
1043		 */
1044		for (i = 0; i < dd->num_send_contexts; i++)
1045			sc_flush(dd->send_contexts[i].sc);
1046	}
1047
1048	/*
1049	 * Enough for anything that's going to trickle out to have actually
1050	 * done so.
1051	 */
1052	udelay(20);
1053
1054	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1055		ppd = dd->pport + pidx;
1056
1057		/* disable all contexts */
1058		for (i = 0; i < dd->num_send_contexts; i++)
1059			sc_disable(dd->send_contexts[i].sc);
1060		/* disable the send device */
1061		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1062
1063		shutdown_led_override(ppd);
1064
1065		/*
1066		 * Clear SerdesEnable.
1067		 * We can't count on interrupts since we are stopping.
1068		 */
1069		hfi1_quiet_serdes(ppd);
1070		if (ppd->hfi1_wq)
1071			flush_workqueue(ppd->hfi1_wq);
1072		if (ppd->link_wq)
1073			flush_workqueue(ppd->link_wq);
1074	}
1075	sdma_exit(dd);
1076}
1077
1078/**
1079 * hfi1_free_ctxtdata - free a context's allocated data
1080 * @dd: the hfi1_ib device
1081 * @rcd: the ctxtdata structure
1082 *
1083 * free up any allocated data for a context
1084 * It should never change any chip state, or global driver state.
1085 */
1086void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1087{
1088	u32 e;
1089
1090	if (!rcd)
1091		return;
1092
1093	if (rcd->rcvhdrq) {
1094		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1095				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1096		rcd->rcvhdrq = NULL;
1097		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1098			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1099					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1100					  rcd->rcvhdrqtailaddr_dma);
1101			rcd->rcvhdrtail_kvaddr = NULL;
1102		}
1103	}
1104
1105	/* all the RcvArray entries should have been cleared by now */
1106	kfree(rcd->egrbufs.rcvtids);
1107	rcd->egrbufs.rcvtids = NULL;
1108
1109	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1110		if (rcd->egrbufs.buffers[e].addr)
1111			dma_free_coherent(&dd->pcidev->dev,
1112					  rcd->egrbufs.buffers[e].len,
1113					  rcd->egrbufs.buffers[e].addr,
1114					  rcd->egrbufs.buffers[e].dma);
1115	}
1116	kfree(rcd->egrbufs.buffers);
1117	rcd->egrbufs.alloced = 0;
1118	rcd->egrbufs.buffers = NULL;
1119
1120	sc_free(rcd->sc);
1121	rcd->sc = NULL;
1122
1123	vfree(rcd->subctxt_uregbase);
1124	vfree(rcd->subctxt_rcvegrbuf);
1125	vfree(rcd->subctxt_rcvhdr_base);
1126	kfree(rcd->opstats);
1127
1128	rcd->subctxt_uregbase = NULL;
1129	rcd->subctxt_rcvegrbuf = NULL;
1130	rcd->subctxt_rcvhdr_base = NULL;
1131	rcd->opstats = NULL;
1132}
1133
1134/*
1135 * Release our hold on the shared asic data.  If we are the last one,
1136 * return the structure to be finalized outside the lock.  Must be
1137 * holding hfi1_dev_table lock.
1138 */
1139static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1140{
1141	struct hfi1_asic_data *ad;
1142	int other;
1143
1144	if (!dd->asic_data)
1145		return NULL;
1146	dd->asic_data->dds[dd->hfi1_id] = NULL;
1147	other = dd->hfi1_id ? 0 : 1;
1148	ad = dd->asic_data;
1149	dd->asic_data = NULL;
1150	/* return NULL if the other dd still has a link */
1151	return ad->dds[other] ? NULL : ad;
1152}
1153
1154static void finalize_asic_data(struct hfi1_devdata *dd,
1155			       struct hfi1_asic_data *ad)
1156{
1157	clean_up_i2c(dd, ad);
1158	kfree(ad);
1159}
1160
1161/**
1162 * hfi1_free_devdata - cleans up and frees per-unit data structure
1163 * @dd: pointer to a valid devdata structure
1164 *
1165 * It cleans up and frees all data structures set up by
1166 * by hfi1_alloc_devdata().
1167 */
1168void hfi1_free_devdata(struct hfi1_devdata *dd)
1169{
1170	struct hfi1_asic_data *ad;
1171	unsigned long flags;
1172
1173	xa_lock_irqsave(&hfi1_dev_table, flags);
1174	__xa_erase(&hfi1_dev_table, dd->unit);
1175	ad = release_asic_data(dd);
1176	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1177
1178	finalize_asic_data(dd, ad);
1179	free_platform_config(dd);
1180	rcu_barrier(); /* wait for rcu callbacks to complete */
1181	free_percpu(dd->int_counter);
1182	free_percpu(dd->rcv_limit);
1183	free_percpu(dd->send_schedule);
1184	free_percpu(dd->tx_opstats);
1185	dd->int_counter   = NULL;
1186	dd->rcv_limit     = NULL;
1187	dd->send_schedule = NULL;
1188	dd->tx_opstats    = NULL;
1189	kfree(dd->comp_vect);
1190	dd->comp_vect = NULL;
1191	if (dd->rcvhdrtail_dummy_kvaddr)
1192		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1193				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1194				  dd->rcvhdrtail_dummy_dma);
1195	dd->rcvhdrtail_dummy_kvaddr = NULL;
1196	sdma_clean(dd, dd->num_sdma);
1197	rvt_dealloc_device(&dd->verbs_dev.rdi);
1198}
1199
1200/**
1201 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1202 * @pdev: Valid PCI device
1203 * @extra: How many bytes to alloc past the default
1204 *
1205 * Must be done via verbs allocator, because the verbs cleanup process
1206 * both does cleanup and free of the data structure.
1207 * "extra" is for chip-specific data.
1208 */
1209static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1210					       size_t extra)
1211{
1212	struct hfi1_devdata *dd;
1213	int ret, nports;
1214
1215	/* extra is * number of ports */
1216	nports = extra / sizeof(struct hfi1_pportdata);
1217
1218	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1219						     nports);
1220	if (!dd)
1221		return ERR_PTR(-ENOMEM);
1222	dd->num_pports = nports;
1223	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1224	dd->pcidev = pdev;
1225	pci_set_drvdata(pdev, dd);
1226
1227	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1228			GFP_KERNEL);
1229	if (ret < 0) {
1230		dev_err(&pdev->dev,
1231			"Could not allocate unit ID: error %d\n", -ret);
1232		goto bail;
1233	}
1234	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1235	/*
1236	 * If the BIOS does not have the NUMA node information set, select
1237	 * NUMA 0 so we get consistent performance.
1238	 */
1239	dd->node = pcibus_to_node(pdev->bus);
1240	if (dd->node == NUMA_NO_NODE) {
1241		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1242		dd->node = 0;
1243	}
1244
1245	/*
1246	 * Initialize all locks for the device. This needs to be as early as
1247	 * possible so locks are usable.
1248	 */
1249	spin_lock_init(&dd->sc_lock);
1250	spin_lock_init(&dd->sendctrl_lock);
1251	spin_lock_init(&dd->rcvctrl_lock);
1252	spin_lock_init(&dd->uctxt_lock);
1253	spin_lock_init(&dd->hfi1_diag_trans_lock);
1254	spin_lock_init(&dd->sc_init_lock);
1255	spin_lock_init(&dd->dc8051_memlock);
1256	seqlock_init(&dd->sc2vl_lock);
1257	spin_lock_init(&dd->sde_map_lock);
1258	spin_lock_init(&dd->pio_map_lock);
1259	mutex_init(&dd->dc8051_lock);
1260	init_waitqueue_head(&dd->event_queue);
1261	spin_lock_init(&dd->irq_src_lock);
1262
1263	dd->int_counter = alloc_percpu(u64);
1264	if (!dd->int_counter) {
1265		ret = -ENOMEM;
1266		goto bail;
1267	}
1268
1269	dd->rcv_limit = alloc_percpu(u64);
1270	if (!dd->rcv_limit) {
1271		ret = -ENOMEM;
1272		goto bail;
1273	}
1274
1275	dd->send_schedule = alloc_percpu(u64);
1276	if (!dd->send_schedule) {
1277		ret = -ENOMEM;
1278		goto bail;
1279	}
1280
1281	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1282	if (!dd->tx_opstats) {
1283		ret = -ENOMEM;
1284		goto bail;
1285	}
1286
1287	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1288	if (!dd->comp_vect) {
1289		ret = -ENOMEM;
1290		goto bail;
1291	}
1292
1293	/* allocate dummy tail memory for all receive contexts */
1294	dd->rcvhdrtail_dummy_kvaddr =
1295		dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1296				   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1297	if (!dd->rcvhdrtail_dummy_kvaddr) {
1298		ret = -ENOMEM;
1299		goto bail;
1300	}
1301
1302	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1303	return dd;
1304
1305bail:
1306	hfi1_free_devdata(dd);
1307	return ERR_PTR(ret);
1308}
1309
1310/*
1311 * Called from freeze mode handlers, and from PCI error
1312 * reporting code.  Should be paranoid about state of
1313 * system and data structures.
1314 */
1315void hfi1_disable_after_error(struct hfi1_devdata *dd)
1316{
1317	if (dd->flags & HFI1_INITTED) {
1318		u32 pidx;
1319
1320		dd->flags &= ~HFI1_INITTED;
1321		if (dd->pport)
1322			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1323				struct hfi1_pportdata *ppd;
1324
1325				ppd = dd->pport + pidx;
1326				if (dd->flags & HFI1_PRESENT)
1327					set_link_state(ppd, HLS_DN_DISABLE);
1328
1329				if (ppd->statusp)
1330					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1331			}
1332	}
1333
1334	/*
1335	 * Mark as having had an error for driver, and also
1336	 * for /sys and status word mapped to user programs.
1337	 * This marks unit as not usable, until reset.
1338	 */
1339	if (dd->status)
1340		dd->status->dev |= HFI1_STATUS_HWERROR;
1341}
1342
1343static void remove_one(struct pci_dev *);
1344static int init_one(struct pci_dev *, const struct pci_device_id *);
1345static void shutdown_one(struct pci_dev *);
1346
1347#define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1348#define PFX DRIVER_NAME ": "
1349
1350const struct pci_device_id hfi1_pci_tbl[] = {
1351	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1352	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1353	{ 0, }
1354};
1355
1356MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1357
1358static struct pci_driver hfi1_pci_driver = {
1359	.name = DRIVER_NAME,
1360	.probe = init_one,
1361	.remove = remove_one,
1362	.shutdown = shutdown_one,
1363	.id_table = hfi1_pci_tbl,
1364	.err_handler = &hfi1_pci_err_handler,
1365};
1366
1367static void __init compute_krcvqs(void)
1368{
1369	int i;
1370
1371	for (i = 0; i < krcvqsset; i++)
1372		n_krcvqs += krcvqs[i];
1373}
1374
1375/*
1376 * Do all the generic driver unit- and chip-independent memory
1377 * allocation and initialization.
1378 */
1379static int __init hfi1_mod_init(void)
1380{
1381	int ret;
1382
1383	ret = dev_init();
1384	if (ret)
1385		goto bail;
1386
1387	ret = node_affinity_init();
1388	if (ret)
1389		goto bail;
1390
1391	/* validate max MTU before any devices start */
1392	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1393		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1394		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1395		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1396	}
1397	/* valid CUs run from 1-128 in powers of 2 */
1398	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1399		hfi1_cu = 1;
1400	/* valid credit return threshold is 0-100, variable is unsigned */
1401	if (user_credit_return_threshold > 100)
1402		user_credit_return_threshold = 100;
1403
1404	compute_krcvqs();
1405	/*
1406	 * sanitize receive interrupt count, time must wait until after
1407	 * the hardware type is known
1408	 */
1409	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1410		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1411	/* reject invalid combinations */
1412	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1413		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1414		rcv_intr_count = 1;
1415	}
1416	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1417		/*
1418		 * Avoid indefinite packet delivery by requiring a timeout
1419		 * if count is > 1.
1420		 */
1421		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1422		rcv_intr_timeout = 1;
1423	}
1424	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1425		/*
1426		 * The dynamic algorithm expects a non-zero timeout
1427		 * and a count > 1.
1428		 */
1429		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1430		rcv_intr_dynamic = 0;
1431	}
1432
1433	/* sanitize link CRC options */
1434	link_crc_mask &= SUPPORTED_CRCS;
1435
1436	ret = opfn_init();
1437	if (ret < 0) {
1438		pr_err("Failed to allocate opfn_wq");
1439		goto bail_dev;
1440	}
1441
1442	/*
1443	 * These must be called before the driver is registered with
1444	 * the PCI subsystem.
1445	 */
1446	hfi1_dbg_init();
1447	ret = pci_register_driver(&hfi1_pci_driver);
1448	if (ret < 0) {
1449		pr_err("Unable to register driver: error %d\n", -ret);
1450		goto bail_dev;
1451	}
1452	goto bail; /* all OK */
1453
1454bail_dev:
1455	hfi1_dbg_exit();
1456	dev_cleanup();
1457bail:
1458	return ret;
1459}
1460
1461module_init(hfi1_mod_init);
1462
1463/*
1464 * Do the non-unit driver cleanup, memory free, etc. at unload.
1465 */
1466static void __exit hfi1_mod_cleanup(void)
1467{
1468	pci_unregister_driver(&hfi1_pci_driver);
1469	opfn_exit();
1470	node_affinity_destroy_all();
1471	hfi1_dbg_exit();
1472
1473	WARN_ON(!xa_empty(&hfi1_dev_table));
1474	dispose_firmware();	/* asymmetric with obtain_firmware() */
1475	dev_cleanup();
1476}
1477
1478module_exit(hfi1_mod_cleanup);
1479
1480/* this can only be called after a successful initialization */
1481static void cleanup_device_data(struct hfi1_devdata *dd)
1482{
1483	int ctxt;
1484	int pidx;
1485
1486	/* users can't do anything more with chip */
1487	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1488		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1489		struct cc_state *cc_state;
1490		int i;
1491
1492		if (ppd->statusp)
1493			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1494
1495		for (i = 0; i < OPA_MAX_SLS; i++)
1496			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1497
1498		spin_lock(&ppd->cc_state_lock);
1499		cc_state = get_cc_state_protected(ppd);
1500		RCU_INIT_POINTER(ppd->cc_state, NULL);
1501		spin_unlock(&ppd->cc_state_lock);
1502
1503		if (cc_state)
1504			kfree_rcu(cc_state, rcu);
1505	}
1506
1507	free_credit_return(dd);
1508
1509	/*
1510	 * Free any resources still in use (usually just kernel contexts)
1511	 * at unload; we do for ctxtcnt, because that's what we allocate.
1512	 */
1513	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1514		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1515
1516		if (rcd) {
1517			hfi1_free_ctxt_rcv_groups(rcd);
1518			hfi1_free_ctxt(rcd);
1519		}
1520	}
1521
1522	kfree(dd->rcd);
1523	dd->rcd = NULL;
1524
1525	free_pio_map(dd);
1526	/* must follow rcv context free - need to remove rcv's hooks */
1527	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1528		sc_free(dd->send_contexts[ctxt].sc);
1529	dd->num_send_contexts = 0;
1530	kfree(dd->send_contexts);
1531	dd->send_contexts = NULL;
1532	kfree(dd->hw_to_sw);
1533	dd->hw_to_sw = NULL;
1534	kfree(dd->boardname);
1535	vfree(dd->events);
1536	vfree(dd->status);
1537}
1538
1539/*
1540 * Clean up on unit shutdown, or error during unit load after
1541 * successful initialization.
1542 */
1543static void postinit_cleanup(struct hfi1_devdata *dd)
1544{
1545	hfi1_start_cleanup(dd);
1546	hfi1_comp_vectors_clean_up(dd);
1547	hfi1_dev_affinity_clean_up(dd);
1548
1549	hfi1_pcie_ddcleanup(dd);
1550	hfi1_pcie_cleanup(dd->pcidev);
1551
1552	cleanup_device_data(dd);
1553
1554	hfi1_free_devdata(dd);
1555}
1556
1557static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1558{
1559	int ret = 0, j, pidx, initfail;
1560	struct hfi1_devdata *dd;
1561	struct hfi1_pportdata *ppd;
1562
1563	/* First, lock the non-writable module parameters */
1564	HFI1_CAP_LOCK();
1565
1566	/* Validate dev ids */
1567	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1568	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1569		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1570			ent->device);
1571		ret = -ENODEV;
1572		goto bail;
1573	}
1574
1575	/* Allocate the dd so we can get to work */
1576	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1577				sizeof(struct hfi1_pportdata));
1578	if (IS_ERR(dd)) {
1579		ret = PTR_ERR(dd);
1580		goto bail;
1581	}
1582
1583	/* Validate some global module parameters */
1584	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1585	if (ret)
1586		goto bail;
1587
1588	/* use the encoding function as a sanitization check */
1589	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1590		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1591			   hfi1_hdrq_entsize);
1592		ret = -EINVAL;
1593		goto bail;
1594	}
1595
1596	/* The receive eager buffer size must be set before the receive
1597	 * contexts are created.
1598	 *
1599	 * Set the eager buffer size.  Validate that it falls in a range
1600	 * allowed by the hardware - all powers of 2 between the min and
1601	 * max.  The maximum valid MTU is within the eager buffer range
1602	 * so we do not need to cap the max_mtu by an eager buffer size
1603	 * setting.
1604	 */
1605	if (eager_buffer_size) {
1606		if (!is_power_of_2(eager_buffer_size))
1607			eager_buffer_size =
1608				roundup_pow_of_two(eager_buffer_size);
1609		eager_buffer_size =
1610			clamp_val(eager_buffer_size,
1611				  MIN_EAGER_BUFFER * 8,
1612				  MAX_EAGER_BUFFER_TOTAL);
1613		dd_dev_info(dd, "Eager buffer size %u\n",
1614			    eager_buffer_size);
1615	} else {
1616		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1617		ret = -EINVAL;
1618		goto bail;
1619	}
1620
1621	/* restrict value of hfi1_rcvarr_split */
1622	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1623
1624	ret = hfi1_pcie_init(dd);
1625	if (ret)
1626		goto bail;
1627
1628	/*
1629	 * Do device-specific initialization, function table setup, dd
1630	 * allocation, etc.
1631	 */
1632	ret = hfi1_init_dd(dd);
1633	if (ret)
1634		goto clean_bail; /* error already printed */
1635
1636	ret = create_workqueues(dd);
1637	if (ret)
1638		goto clean_bail;
1639
1640	/* do the generic initialization */
1641	initfail = hfi1_init(dd, 0);
1642
1643	ret = hfi1_register_ib_device(dd);
1644
1645	/*
1646	 * Now ready for use.  this should be cleared whenever we
1647	 * detect a reset, or initiate one.  If earlier failure,
1648	 * we still create devices, so diags, etc. can be used
1649	 * to determine cause of problem.
1650	 */
1651	if (!initfail && !ret) {
1652		dd->flags |= HFI1_INITTED;
1653		/* create debufs files after init and ib register */
1654		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1655	}
1656
1657	j = hfi1_device_create(dd);
1658	if (j)
1659		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1660
1661	if (initfail || ret) {
1662		msix_clean_up_interrupts(dd);
1663		stop_timers(dd);
1664		flush_workqueue(ib_wq);
1665		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1666			hfi1_quiet_serdes(dd->pport + pidx);
1667			ppd = dd->pport + pidx;
1668			if (ppd->hfi1_wq) {
1669				destroy_workqueue(ppd->hfi1_wq);
1670				ppd->hfi1_wq = NULL;
1671			}
1672			if (ppd->link_wq) {
1673				destroy_workqueue(ppd->link_wq);
1674				ppd->link_wq = NULL;
1675			}
1676		}
1677		if (!j)
1678			hfi1_device_remove(dd);
1679		if (!ret)
1680			hfi1_unregister_ib_device(dd);
1681		postinit_cleanup(dd);
1682		if (initfail)
1683			ret = initfail;
1684		goto bail;	/* everything already cleaned */
1685	}
1686
1687	sdma_start(dd);
1688
1689	return 0;
1690
1691clean_bail:
1692	hfi1_pcie_cleanup(pdev);
1693bail:
1694	return ret;
1695}
1696
1697static void wait_for_clients(struct hfi1_devdata *dd)
1698{
1699	/*
1700	 * Remove the device init value and complete the device if there is
1701	 * no clients or wait for active clients to finish.
1702	 */
1703	if (refcount_dec_and_test(&dd->user_refcount))
1704		complete(&dd->user_comp);
1705
1706	wait_for_completion(&dd->user_comp);
1707}
1708
1709static void remove_one(struct pci_dev *pdev)
1710{
1711	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1712
1713	/* close debugfs files before ib unregister */
1714	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1715
1716	/* remove the /dev hfi1 interface */
1717	hfi1_device_remove(dd);
1718
1719	/* wait for existing user space clients to finish */
1720	wait_for_clients(dd);
1721
1722	/* unregister from IB core */
1723	hfi1_unregister_ib_device(dd);
1724
1725	/* free netdev data */
1726	hfi1_free_rx(dd);
1727
1728	/*
1729	 * Disable the IB link, disable interrupts on the device,
1730	 * clear dma engines, etc.
1731	 */
1732	shutdown_device(dd);
1733	destroy_workqueues(dd);
1734
1735	stop_timers(dd);
1736
1737	/* wait until all of our (qsfp) queue_work() calls complete */
1738	flush_workqueue(ib_wq);
1739
1740	postinit_cleanup(dd);
1741}
1742
1743static void shutdown_one(struct pci_dev *pdev)
1744{
1745	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1746
1747	shutdown_device(dd);
1748}
1749
1750/**
1751 * hfi1_create_rcvhdrq - create a receive header queue
1752 * @dd: the hfi1_ib device
1753 * @rcd: the context data
1754 *
1755 * This must be contiguous memory (from an i/o perspective), and must be
1756 * DMA'able (which means for some systems, it will go through an IOMMU,
1757 * or be forced into a low address range).
1758 */
1759int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1760{
1761	unsigned amt;
1762
1763	if (!rcd->rcvhdrq) {
1764		amt = rcvhdrq_size(rcd);
1765
1766		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1767						  &rcd->rcvhdrq_dma,
1768						  GFP_KERNEL);
1769
1770		if (!rcd->rcvhdrq) {
1771			dd_dev_err(dd,
1772				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1773				   amt, rcd->ctxt);
1774			goto bail;
1775		}
1776
1777		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1778		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1779			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1780								    PAGE_SIZE,
1781								    &rcd->rcvhdrqtailaddr_dma,
1782								    GFP_KERNEL);
1783			if (!rcd->rcvhdrtail_kvaddr)
1784				goto bail_free;
1785		}
1786	}
1787
1788	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1789		      rcd->rcvhdrq_cnt);
1790
1791	return 0;
1792
1793bail_free:
1794	dd_dev_err(dd,
1795		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1796		   rcd->ctxt);
1797	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1798			  rcd->rcvhdrq_dma);
1799	rcd->rcvhdrq = NULL;
1800bail:
1801	return -ENOMEM;
1802}
1803
1804/**
1805 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1806 * contexts.
1807 * @rcd: the context we are setting up.
1808 *
1809 * Allocate the eager TID buffers and program them into hip.
1810 * They are no longer completely contiguous, we do multiple allocation
1811 * calls.  Otherwise we get the OOM code involved, by asking for too
1812 * much per call, with disastrous results on some kernels.
1813 */
1814int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1815{
1816	struct hfi1_devdata *dd = rcd->dd;
1817	u32 max_entries, egrtop, alloced_bytes = 0;
1818	u16 order, idx = 0;
1819	int ret = 0;
1820	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1821
1822	/*
1823	 * The minimum size of the eager buffers is a groups of MTU-sized
1824	 * buffers.
1825	 * The global eager_buffer_size parameter is checked against the
1826	 * theoretical lower limit of the value. Here, we check against the
1827	 * MTU.
1828	 */
1829	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1830		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1831	/*
1832	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1833	 * size to the max MTU (page-aligned).
1834	 */
1835	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1836		rcd->egrbufs.rcvtid_size = round_mtu;
1837
1838	/*
1839	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1840	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1841	 */
1842	if (rcd->egrbufs.size <= (1 << 20))
1843		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1844			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1845
1846	while (alloced_bytes < rcd->egrbufs.size &&
1847	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1848		rcd->egrbufs.buffers[idx].addr =
1849			dma_alloc_coherent(&dd->pcidev->dev,
1850					   rcd->egrbufs.rcvtid_size,
1851					   &rcd->egrbufs.buffers[idx].dma,
1852					   GFP_KERNEL);
1853		if (rcd->egrbufs.buffers[idx].addr) {
1854			rcd->egrbufs.buffers[idx].len =
1855				rcd->egrbufs.rcvtid_size;
1856			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1857				rcd->egrbufs.buffers[idx].addr;
1858			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1859				rcd->egrbufs.buffers[idx].dma;
1860			rcd->egrbufs.alloced++;
1861			alloced_bytes += rcd->egrbufs.rcvtid_size;
1862			idx++;
1863		} else {
1864			u32 new_size, i, j;
1865			u64 offset = 0;
1866
1867			/*
1868			 * Fail the eager buffer allocation if:
1869			 *   - we are already using the lowest acceptable size
1870			 *   - we are using one-pkt-per-egr-buffer (this implies
1871			 *     that we are accepting only one size)
1872			 */
1873			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1874			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1875				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1876					   rcd->ctxt);
1877				ret = -ENOMEM;
1878				goto bail_rcvegrbuf_phys;
1879			}
1880
1881			new_size = rcd->egrbufs.rcvtid_size / 2;
1882
1883			/*
1884			 * If the first attempt to allocate memory failed, don't
1885			 * fail everything but continue with the next lower
1886			 * size.
1887			 */
1888			if (idx == 0) {
1889				rcd->egrbufs.rcvtid_size = new_size;
1890				continue;
1891			}
1892
1893			/*
1894			 * Re-partition already allocated buffers to a smaller
1895			 * size.
1896			 */
1897			rcd->egrbufs.alloced = 0;
1898			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1899				if (i >= rcd->egrbufs.count)
1900					break;
1901				rcd->egrbufs.rcvtids[i].dma =
1902					rcd->egrbufs.buffers[j].dma + offset;
1903				rcd->egrbufs.rcvtids[i].addr =
1904					rcd->egrbufs.buffers[j].addr + offset;
1905				rcd->egrbufs.alloced++;
1906				if ((rcd->egrbufs.buffers[j].dma + offset +
1907				     new_size) ==
1908				    (rcd->egrbufs.buffers[j].dma +
1909				     rcd->egrbufs.buffers[j].len)) {
1910					j++;
1911					offset = 0;
1912				} else {
1913					offset += new_size;
1914				}
1915			}
1916			rcd->egrbufs.rcvtid_size = new_size;
1917		}
1918	}
1919	rcd->egrbufs.numbufs = idx;
1920	rcd->egrbufs.size = alloced_bytes;
1921
1922	hfi1_cdbg(PROC,
1923		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB",
1924		  rcd->ctxt, rcd->egrbufs.alloced,
1925		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1926
1927	/*
1928	 * Set the contexts rcv array head update threshold to the closest
1929	 * power of 2 (so we can use a mask instead of modulo) below half
1930	 * the allocated entries.
1931	 */
1932	rcd->egrbufs.threshold =
1933		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1934	/*
1935	 * Compute the expected RcvArray entry base. This is done after
1936	 * allocating the eager buffers in order to maximize the
1937	 * expected RcvArray entries for the context.
1938	 */
1939	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1940	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1941	rcd->expected_count = max_entries - egrtop;
1942	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1943		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1944
1945	rcd->expected_base = rcd->eager_base + egrtop;
1946	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u",
1947		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1948		  rcd->eager_base, rcd->expected_base);
1949
1950	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1951		hfi1_cdbg(PROC,
1952			  "ctxt%u: current Eager buffer size is invalid %u",
1953			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1954		ret = -EINVAL;
1955		goto bail_rcvegrbuf_phys;
1956	}
1957
1958	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1959		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1960			     rcd->egrbufs.rcvtids[idx].dma, order);
1961		cond_resched();
1962	}
1963
1964	return 0;
1965
1966bail_rcvegrbuf_phys:
1967	for (idx = 0; idx < rcd->egrbufs.alloced &&
1968	     rcd->egrbufs.buffers[idx].addr;
1969	     idx++) {
1970		dma_free_coherent(&dd->pcidev->dev,
1971				  rcd->egrbufs.buffers[idx].len,
1972				  rcd->egrbufs.buffers[idx].addr,
1973				  rcd->egrbufs.buffers[idx].dma);
1974		rcd->egrbufs.buffers[idx].addr = NULL;
1975		rcd->egrbufs.buffers[idx].dma = 0;
1976		rcd->egrbufs.buffers[idx].len = 0;
1977	}
1978
1979	return ret;
1980}
1981