1/*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31#ifndef __T4_H__
32#define __T4_H__
33
34#include "t4_hw.h"
35#include "t4_regs.h"
36#include "t4_values.h"
37#include "t4_msg.h"
38#include "t4_tcb.h"
39#include "t4fw_ri_api.h"
40
41#define T4_MAX_NUM_PD 65536
42#define T4_MAX_MR_SIZE (~0ULL)
43#define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
44#define T4_STAG_UNSET 0xffffffff
45#define T4_FW_MAJ 0
46#define PCIE_MA_SYNC_A 0x30b4
47
48struct t4_status_page {
49	__be32 rsvd1;	/* flit 0 - hw owns */
50	__be16 rsvd2;
51	__be16 qid;
52	__be16 cidx;
53	__be16 pidx;
54	u8 qp_err;	/* flit 1 - sw owns */
55	u8 db_off;
56	u8 pad[2];
57	u16 host_wq_pidx;
58	u16 host_cidx;
59	u16 host_pidx;
60	u16 pad2;
61	u32 srqidx;
62};
63
64#define T4_RQT_ENTRY_SHIFT 6
65#define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
66#define T4_EQ_ENTRY_SIZE 64
67
68#define T4_SQ_NUM_SLOTS 5
69#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73			sizeof(struct fw_ri_immd)))
74#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75			sizeof(struct fw_ri_rdma_write_wr) - \
76			sizeof(struct fw_ri_immd)))
77#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78			sizeof(struct fw_ri_rdma_write_wr) - \
79			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81			sizeof(struct fw_ri_immd)) & ~31UL)
82#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83#define T4_MAX_FR_DSGL 1024
84#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
85
86static inline int t4_max_fr_depth(int use_dsgl)
87{
88	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
89}
90
91#define T4_RQ_NUM_SLOTS 2
92#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93#define T4_MAX_RECV_SGE 4
94
95#define T4_WRITE_CMPL_MAX_SGL 4
96#define T4_WRITE_CMPL_MAX_CQE 16
97
98union t4_wr {
99	struct fw_ri_res_wr res;
100	struct fw_ri_wr ri;
101	struct fw_ri_rdma_write_wr write;
102	struct fw_ri_send_wr send;
103	struct fw_ri_rdma_read_wr read;
104	struct fw_ri_bind_mw_wr bind;
105	struct fw_ri_fr_nsmr_wr fr;
106	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
107	struct fw_ri_inv_lstag_wr inv;
108	struct fw_ri_rdma_write_cmpl_wr write_cmpl;
109	struct t4_status_page status;
110	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
111};
112
113union t4_recv_wr {
114	struct fw_ri_recv_wr recv;
115	struct t4_status_page status;
116	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
117};
118
119static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
121{
122	wqe->send.opcode = (u8)opcode;
123	wqe->send.flags = flags;
124	wqe->send.wrid = wrid;
125	wqe->send.r1[0] = 0;
126	wqe->send.r1[1] = 0;
127	wqe->send.r1[2] = 0;
128	wqe->send.len16 = len16;
129}
130
131/* CQE/AE status codes */
132#define T4_ERR_SUCCESS                     0x0
133#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
134						/* STAG is offlimt, being 0, */
135						/* or STAG_key mismatch */
136#define T4_ERR_PDID                        0x2	/* PDID mismatch */
137#define T4_ERR_QPID                        0x3	/* QPID mismatch */
138#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
139#define T4_ERR_WRAP                        0x5	/* Wrap error */
140#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
141#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
142						/* shared memory region */
143#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
144						/* shared memory region */
145#define T4_ERR_ECC                         0x9	/* ECC error detected */
146#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
147						/* reading PSTAG for a MW  */
148						/* Invalidate */
149#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
150						/* software error */
151#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
152#define T4_ERR_CRC                         0x10 /* CRC error */
153#define T4_ERR_MARKER                      0x11 /* Marker error */
154#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
155#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
156#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
157#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
158#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
159#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
160#define T4_ERR_MSN                         0x18 /* MSN error */
161#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
162#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
163						/* or READ_REQ */
164#define T4_ERR_MSN_GAP                     0x1B
165#define T4_ERR_MSN_RANGE                   0x1C
166#define T4_ERR_IRD_OVERFLOW                0x1D
167#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
168						/* software error */
169#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
170						/* mismatch) */
171/*
172 * CQE defs
173 */
174struct t4_cqe {
175	__be32 header;
176	__be32 len;
177	union {
178		struct {
179			__be32 stag;
180			__be32 msn;
181		} rcqe;
182		struct {
183			__be32 stag;
184			u16 nada2;
185			u16 cidx;
186		} scqe;
187		struct {
188			__be32 wrid_hi;
189			__be32 wrid_low;
190		} gen;
191		struct {
192			__be32 stag;
193			__be32 msn;
194			__be32 reserved;
195			__be32 abs_rqe_idx;
196		} srcqe;
197		struct {
198			__be32 mo;
199			__be32 msn;
200			/*
201			 * Use union for immediate data to be consistent with
202			 * stack's 32 bit data and iWARP spec's 64 bit data.
203			 */
204			union {
205				struct {
206					__be32 imm_data32;
207					u32 reserved;
208				} ib_imm_data;
209				__be64 imm_data64;
210			} iw_imm_data;
211		} imm_data_rcqe;
212
213		u64 drain_cookie;
214		__be64 flits[3];
215	} u;
216	__be64 reserved[3];
217	__be64 bits_type_ts;
218};
219
220/* macros for flit 0 of the cqe */
221
222#define CQE_QPID_S        12
223#define CQE_QPID_M        0xFFFFF
224#define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225#define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
226
227#define CQE_SWCQE_S       11
228#define CQE_SWCQE_M       0x1
229#define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230#define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
231
232#define CQE_DRAIN_S       10
233#define CQE_DRAIN_M       0x1
234#define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235#define CQE_DRAIN_V(x)	  ((x)<<CQE_DRAIN_S)
236
237#define CQE_STATUS_S      5
238#define CQE_STATUS_M      0x1F
239#define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240#define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
241
242#define CQE_TYPE_S        4
243#define CQE_TYPE_M        0x1
244#define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245#define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
246
247#define CQE_OPCODE_S      0
248#define CQE_OPCODE_M      0xF
249#define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250#define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
251
252#define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253#define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254#define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
255#define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
256#define SQ_TYPE(x)	  (CQE_TYPE((x)))
257#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
258#define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
259#define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
260
261#define CQE_SEND_OPCODE(x)( \
262	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
266
267#define CQE_LEN(x)        (be32_to_cpu((x)->len))
268
269/* used for RQ completion processing */
270#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
271#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
272#define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273#define CQE_IMM_DATA(x)( \
274	(x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
275
276/* used for SQ completion processing */
277#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
278#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
279
280/* generic accessor macros */
281#define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
282#define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
283#define CQE_DRAIN_COOKIE(x)	((x)->u.drain_cookie)
284
285/* macros for flit 3 of the cqe */
286#define CQE_GENBIT_S	63
287#define CQE_GENBIT_M	0x1
288#define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289#define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
290
291#define CQE_OVFBIT_S	62
292#define CQE_OVFBIT_M	0x1
293#define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
294
295#define CQE_IQTYPE_S	60
296#define CQE_IQTYPE_M	0x3
297#define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
298
299#define CQE_TS_M	0x0fffffffffffffffULL
300#define CQE_TS_G(x)	((x) & CQE_TS_M)
301
302#define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303#define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304#define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
305
306struct t4_swsqe {
307	u64			wr_id;
308	struct t4_cqe		cqe;
309	int			read_len;
310	int			opcode;
311	int			complete;
312	int			signaled;
313	u16			idx;
314	int                     flushed;
315	ktime_t			host_time;
316	u64                     sge_ts;
317};
318
319static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
320{
321#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322	return pgprot_writecombine(prot);
323#else
324	return pgprot_noncached(prot);
325#endif
326}
327
328enum {
329	T4_SQ_ONCHIP = (1<<0),
330};
331
332struct t4_sq {
333	union t4_wr *queue;
334	dma_addr_t dma_addr;
335	DEFINE_DMA_UNMAP_ADDR(mapping);
336	unsigned long phys_addr;
337	struct t4_swsqe *sw_sq;
338	struct t4_swsqe *oldest_read;
339	void __iomem *bar2_va;
340	u64 bar2_pa;
341	size_t memsize;
342	u32 bar2_qid;
343	u32 qid;
344	u16 in_use;
345	u16 size;
346	u16 cidx;
347	u16 pidx;
348	u16 wq_pidx;
349	u16 wq_pidx_inc;
350	u16 flags;
351	short flush_cidx;
352};
353
354struct t4_swrqe {
355	u64 wr_id;
356	ktime_t	host_time;
357	u64 sge_ts;
358	int valid;
359};
360
361struct t4_rq {
362	union  t4_recv_wr *queue;
363	dma_addr_t dma_addr;
364	DEFINE_DMA_UNMAP_ADDR(mapping);
365	struct t4_swrqe *sw_rq;
366	void __iomem *bar2_va;
367	u64 bar2_pa;
368	size_t memsize;
369	u32 bar2_qid;
370	u32 qid;
371	u32 msn;
372	u32 rqt_hwaddr;
373	u16 rqt_size;
374	u16 in_use;
375	u16 size;
376	u16 cidx;
377	u16 pidx;
378	u16 wq_pidx;
379	u16 wq_pidx_inc;
380};
381
382struct t4_wq {
383	struct t4_sq sq;
384	struct t4_rq rq;
385	void __iomem *db;
386	struct c4iw_rdev *rdev;
387	int flushed;
388	u8 *qp_errp;
389	u32 *srqidxp;
390};
391
392struct t4_srq_pending_wr {
393	u64 wr_id;
394	union t4_recv_wr wqe;
395	u8 len16;
396};
397
398struct t4_srq {
399	union t4_recv_wr *queue;
400	dma_addr_t dma_addr;
401	DEFINE_DMA_UNMAP_ADDR(mapping);
402	struct t4_swrqe *sw_rq;
403	void __iomem *bar2_va;
404	u64 bar2_pa;
405	size_t memsize;
406	u32 bar2_qid;
407	u32 qid;
408	u32 msn;
409	u32 rqt_hwaddr;
410	u32 rqt_abs_idx;
411	u16 rqt_size;
412	u16 size;
413	u16 cidx;
414	u16 pidx;
415	u16 wq_pidx;
416	u16 wq_pidx_inc;
417	u16 in_use;
418	struct t4_srq_pending_wr *pending_wrs;
419	u16 pending_cidx;
420	u16 pending_pidx;
421	u16 pending_in_use;
422	u16 ooo_count;
423};
424
425static inline u32 t4_srq_avail(struct t4_srq *srq)
426{
427	return srq->size - 1 - srq->in_use;
428}
429
430static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
431{
432	srq->in_use++;
433	if (++srq->pidx == srq->size)
434		srq->pidx = 0;
435	srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
436	if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
437		srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
438	srq->queue[srq->size].status.host_pidx = srq->pidx;
439}
440
441static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
442{
443	srq->pending_in_use++;
444	srq->in_use++;
445	if (++srq->pending_pidx == srq->size)
446		srq->pending_pidx = 0;
447}
448
449static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
450{
451	srq->pending_in_use--;
452	srq->in_use--;
453	if (++srq->pending_cidx == srq->size)
454		srq->pending_cidx = 0;
455}
456
457static inline void t4_srq_produce_ooo(struct t4_srq *srq)
458{
459	srq->in_use--;
460	srq->ooo_count++;
461}
462
463static inline void t4_srq_consume_ooo(struct t4_srq *srq)
464{
465	srq->cidx++;
466	if (srq->cidx == srq->size)
467		srq->cidx  = 0;
468	srq->queue[srq->size].status.host_cidx = srq->cidx;
469	srq->ooo_count--;
470}
471
472static inline void t4_srq_consume(struct t4_srq *srq)
473{
474	srq->in_use--;
475	if (++srq->cidx == srq->size)
476		srq->cidx = 0;
477	srq->queue[srq->size].status.host_cidx = srq->cidx;
478}
479
480static inline int t4_rqes_posted(struct t4_wq *wq)
481{
482	return wq->rq.in_use;
483}
484
485static inline int t4_rq_empty(struct t4_wq *wq)
486{
487	return wq->rq.in_use == 0;
488}
489
490static inline u32 t4_rq_avail(struct t4_wq *wq)
491{
492	return wq->rq.size - 1 - wq->rq.in_use;
493}
494
495static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
496{
497	wq->rq.in_use++;
498	if (++wq->rq.pidx == wq->rq.size)
499		wq->rq.pidx = 0;
500	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
501	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
502		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
503}
504
505static inline void t4_rq_consume(struct t4_wq *wq)
506{
507	wq->rq.in_use--;
508	if (++wq->rq.cidx == wq->rq.size)
509		wq->rq.cidx = 0;
510}
511
512static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
513{
514	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
515}
516
517static inline u16 t4_rq_wq_size(struct t4_wq *wq)
518{
519		return wq->rq.size * T4_RQ_NUM_SLOTS;
520}
521
522static inline int t4_sq_onchip(struct t4_sq *sq)
523{
524	return sq->flags & T4_SQ_ONCHIP;
525}
526
527static inline int t4_sq_empty(struct t4_wq *wq)
528{
529	return wq->sq.in_use == 0;
530}
531
532static inline u32 t4_sq_avail(struct t4_wq *wq)
533{
534	return wq->sq.size - 1 - wq->sq.in_use;
535}
536
537static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
538{
539	wq->sq.in_use++;
540	if (++wq->sq.pidx == wq->sq.size)
541		wq->sq.pidx = 0;
542	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
543	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
544		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
545}
546
547static inline void t4_sq_consume(struct t4_wq *wq)
548{
549	if (wq->sq.cidx == wq->sq.flush_cidx)
550		wq->sq.flush_cidx = -1;
551	wq->sq.in_use--;
552	if (++wq->sq.cidx == wq->sq.size)
553		wq->sq.cidx = 0;
554}
555
556static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
557{
558	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
559}
560
561static inline u16 t4_sq_wq_size(struct t4_wq *wq)
562{
563		return wq->sq.size * T4_SQ_NUM_SLOTS;
564}
565
566/* This function copies 64 byte coalesced work request to memory
567 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
568 * from the FIFO instead of from Host.
569 */
570static inline void pio_copy(u64 __iomem *dst, u64 *src)
571{
572	int count = 8;
573
574	while (count) {
575		writeq(*src, dst);
576		src++;
577		dst++;
578		count--;
579	}
580}
581
582static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
583				  union t4_recv_wr *wqe)
584{
585	/* Flush host queue memory writes. */
586	wmb();
587	if (inc == 1 && srq->bar2_qid == 0 && wqe) {
588		pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
589			 __func__, srq->pidx, len16);
590		pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
591	} else {
592		pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
593			 __func__, srq->pidx, len16);
594		writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
595		       srq->bar2_va + SGE_UDB_KDOORBELL);
596	}
597	/* Flush user doorbell area writes. */
598	wmb();
599}
600
601static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
602{
603
604	/* Flush host queue memory writes. */
605	wmb();
606	if (wq->sq.bar2_va) {
607		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
608			pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
609			pio_copy((u64 __iomem *)
610				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
611				 (u64 *)wqe);
612		} else {
613			pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
614			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
615			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
616		}
617
618		/* Flush user doorbell area writes. */
619		wmb();
620		return;
621	}
622	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
623}
624
625static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
626				 union t4_recv_wr *wqe)
627{
628
629	/* Flush host queue memory writes. */
630	wmb();
631	if (wq->rq.bar2_va) {
632		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
633			pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
634			pio_copy((u64 __iomem *)
635				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
636				 (void *)wqe);
637		} else {
638			pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
639			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
640			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
641		}
642
643		/* Flush user doorbell area writes. */
644		wmb();
645		return;
646	}
647	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
648}
649
650static inline int t4_wq_in_error(struct t4_wq *wq)
651{
652	return *wq->qp_errp;
653}
654
655static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
656{
657	if (srqidx)
658		*wq->srqidxp = srqidx;
659	*wq->qp_errp = 1;
660}
661
662static inline void t4_disable_wq_db(struct t4_wq *wq)
663{
664	wq->rq.queue[wq->rq.size].status.db_off = 1;
665}
666
667static inline void t4_enable_wq_db(struct t4_wq *wq)
668{
669	wq->rq.queue[wq->rq.size].status.db_off = 0;
670}
671
672enum t4_cq_flags {
673	CQ_ARMED	= 1,
674};
675
676struct t4_cq {
677	struct t4_cqe *queue;
678	dma_addr_t dma_addr;
679	DEFINE_DMA_UNMAP_ADDR(mapping);
680	struct t4_cqe *sw_queue;
681	void __iomem *gts;
682	void __iomem *bar2_va;
683	u64 bar2_pa;
684	u32 bar2_qid;
685	struct c4iw_rdev *rdev;
686	size_t memsize;
687	__be64 bits_type_ts;
688	u32 cqid;
689	u32 qid_mask;
690	int vector;
691	u16 size; /* including status page */
692	u16 cidx;
693	u16 sw_pidx;
694	u16 sw_cidx;
695	u16 sw_in_use;
696	u16 cidx_inc;
697	u8 gen;
698	u8 error;
699	u8 *qp_errp;
700	unsigned long flags;
701};
702
703static inline void write_gts(struct t4_cq *cq, u32 val)
704{
705	if (cq->bar2_va)
706		writel(val | INGRESSQID_V(cq->bar2_qid),
707		       cq->bar2_va + SGE_UDB_GTS);
708	else
709		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
710}
711
712static inline int t4_clear_cq_armed(struct t4_cq *cq)
713{
714	return test_and_clear_bit(CQ_ARMED, &cq->flags);
715}
716
717static inline int t4_arm_cq(struct t4_cq *cq, int se)
718{
719	u32 val;
720
721	set_bit(CQ_ARMED, &cq->flags);
722	while (cq->cidx_inc > CIDXINC_M) {
723		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
724		write_gts(cq, val);
725		cq->cidx_inc -= CIDXINC_M;
726	}
727	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
728	write_gts(cq, val);
729	cq->cidx_inc = 0;
730	return 0;
731}
732
733static inline void t4_swcq_produce(struct t4_cq *cq)
734{
735	cq->sw_in_use++;
736	if (cq->sw_in_use == cq->size) {
737		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
738			__func__, cq->cqid);
739		cq->error = 1;
740		cq->sw_in_use--;
741		return;
742	}
743	if (++cq->sw_pidx == cq->size)
744		cq->sw_pidx = 0;
745}
746
747static inline void t4_swcq_consume(struct t4_cq *cq)
748{
749	cq->sw_in_use--;
750	if (++cq->sw_cidx == cq->size)
751		cq->sw_cidx = 0;
752}
753
754static inline void t4_hwcq_consume(struct t4_cq *cq)
755{
756	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
757	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
758		u32 val;
759
760		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
761		write_gts(cq, val);
762		cq->cidx_inc = 0;
763	}
764	if (++cq->cidx == cq->size) {
765		cq->cidx = 0;
766		cq->gen ^= 1;
767	}
768}
769
770static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
771{
772	return (CQE_GENBIT(cqe) == cq->gen);
773}
774
775static inline int t4_cq_notempty(struct t4_cq *cq)
776{
777	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
778}
779
780static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
781{
782	int ret;
783	u16 prev_cidx;
784
785	if (cq->cidx == 0)
786		prev_cidx = cq->size - 1;
787	else
788		prev_cidx = cq->cidx - 1;
789
790	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
791		ret = -EOVERFLOW;
792		cq->error = 1;
793		pr_err("cq overflow cqid %u\n", cq->cqid);
794	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
795
796		/* Ensure CQE is flushed to memory */
797		rmb();
798		*cqe = &cq->queue[cq->cidx];
799		ret = 0;
800	} else
801		ret = -ENODATA;
802	return ret;
803}
804
805static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
806{
807	int ret = 0;
808
809	if (cq->error)
810		ret = -ENODATA;
811	else if (cq->sw_in_use)
812		*cqe = &cq->sw_queue[cq->sw_cidx];
813	else
814		ret = t4_next_hw_cqe(cq, cqe);
815	return ret;
816}
817
818static inline void t4_set_cq_in_error(struct t4_cq *cq)
819{
820	*cq->qp_errp = 1;
821}
822#endif
823
824struct t4_dev_status_page {
825	u8 db_off;
826	u8 write_cmpl_supported;
827	u16 pad2;
828	u32 pad3;
829	u64 qp_start;
830	u64 qp_size;
831	u64 cq_start;
832	u64 cq_size;
833};
834