1/*
2 * Broadcom NetXtreme-E RoCE driver.
3 *
4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in
21 *    the documentation and/or other materials provided with the
22 *    distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Description: Slow Path Operators
37 */
38
39#define dev_fmt(fmt) "QPLIB: " fmt
40
41#include <linux/interrupt.h>
42#include <linux/spinlock.h>
43#include <linux/sched.h>
44#include <linux/pci.h>
45
46#include "roce_hsi.h"
47
48#include "qplib_res.h"
49#include "qplib_rcfw.h"
50#include "qplib_sp.h"
51#include "qplib_tlv.h"
52
53const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54						     0, 0, 0, 0, 0, 0, 0, 0 } };
55
56/* Device */
57
58static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59{
60	u16 pcie_ctl2 = 0;
61
62	if (!bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx))
63		return false;
64
65	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67}
68
69static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70				     char *fw_ver)
71{
72	struct creq_query_version_resp resp = {};
73	struct bnxt_qplib_cmdqmsg msg = {};
74	struct cmdq_query_version req = {};
75	int rc;
76
77	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79				 sizeof(req));
80
81	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83	if (rc)
84		return;
85	fw_ver[0] = resp.fw_maj;
86	fw_ver[1] = resp.fw_minor;
87	fw_ver[2] = resp.fw_bld;
88	fw_ver[3] = resp.fw_rsvd;
89}
90
91int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92			    struct bnxt_qplib_dev_attr *attr)
93{
94	struct creq_query_func_resp resp = {};
95	struct bnxt_qplib_cmdqmsg msg = {};
96	struct creq_query_func_resp_sb *sb;
97	struct bnxt_qplib_rcfw_sbuf sbuf;
98	struct cmdq_query_func req = {};
99	u8 *tqm_alloc;
100	int i, rc;
101	u32 temp;
102
103	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
104				 CMDQ_BASE_OPCODE_QUERY_FUNC,
105				 sizeof(req));
106
107	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
108	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
109				     &sbuf.dma_addr, GFP_KERNEL);
110	if (!sbuf.sb)
111		return -ENOMEM;
112	sb = sbuf.sb;
113	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
114	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
115				sizeof(resp), 0);
116	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
117	if (rc)
118		goto bail;
119
120	/* Extract the context from the side buffer */
121	attr->max_qp = le32_to_cpu(sb->max_qp);
122	/* max_qp value reported by FW doesn't include the QP1 */
123	attr->max_qp += 1;
124	attr->max_qp_rd_atom =
125		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
126		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
127	attr->max_qp_init_rd_atom =
128		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
129		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
130	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
131	/*
132	 * 128 WQEs needs to be reserved for the HW (8916). Prevent
133	 * reporting the max number
134	 */
135	attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
136	attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx) ?
137			    6 : sb->max_sge;
138	attr->max_cq = le32_to_cpu(sb->max_cq);
139	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
140	attr->max_cq_sges = attr->max_qp_sges;
141	attr->max_mr = le32_to_cpu(sb->max_mr);
142	attr->max_mw = le32_to_cpu(sb->max_mw);
143
144	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
145	attr->max_pd = 64 * 1024;
146	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
147	attr->max_ah = le32_to_cpu(sb->max_ah);
148
149	attr->max_srq = le16_to_cpu(sb->max_srq);
150	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
151	attr->max_srq_sges = sb->max_srq_sge;
152	attr->max_pkey = 1;
153	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
154	attr->l2_db_size = (sb->l2_db_space_size + 1) *
155			    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
156	attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED;
157	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
158
159	bnxt_qplib_query_version(rcfw, attr->fw_ver);
160
161	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
162		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
163		tqm_alloc = (u8 *)&temp;
164		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
165		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
166		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
167		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
168	}
169
170	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
171		attr->max_dpi = le32_to_cpu(sb->max_dpi);
172
173	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
174bail:
175	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
176			  sbuf.sb, sbuf.dma_addr);
177	return rc;
178}
179
180int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
181				  struct bnxt_qplib_rcfw *rcfw,
182				  struct bnxt_qplib_ctx *ctx)
183{
184	struct creq_set_func_resources_resp resp = {};
185	struct cmdq_set_func_resources req = {};
186	struct bnxt_qplib_cmdqmsg msg = {};
187	int rc;
188
189	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
190				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
191				 sizeof(req));
192
193	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
194	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
195	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
196	req.number_of_cq = cpu_to_le32(ctx->cq_count);
197
198	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
199	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
200	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
201	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
202	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
203
204	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
205				sizeof(resp), 0);
206	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
207	if (rc) {
208		dev_err(&res->pdev->dev, "Failed to set function resources\n");
209	}
210	return rc;
211}
212
213/* SGID */
214int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
215			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
216			struct bnxt_qplib_gid *gid)
217{
218	if (index >= sgid_tbl->max) {
219		dev_err(&res->pdev->dev,
220			"Index %d exceeded SGID table max (%d)\n",
221			index, sgid_tbl->max);
222		return -EINVAL;
223	}
224	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
225	return 0;
226}
227
228int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
229			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
230{
231	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
232						   struct bnxt_qplib_res,
233						   sgid_tbl);
234	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
235	int index;
236
237	/* Do we need a sgid_lock here? */
238	if (!sgid_tbl->active) {
239		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
240		return -ENOMEM;
241	}
242	for (index = 0; index < sgid_tbl->max; index++) {
243		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
244		    vlan_id == sgid_tbl->tbl[index].vlan_id)
245			break;
246	}
247	if (index == sgid_tbl->max) {
248		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
249		return 0;
250	}
251	/* Remove GID from the SGID table */
252	if (update) {
253		struct creq_delete_gid_resp resp = {};
254		struct bnxt_qplib_cmdqmsg msg = {};
255		struct cmdq_delete_gid req = {};
256		int rc;
257
258		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
259					 CMDQ_BASE_OPCODE_DELETE_GID,
260					 sizeof(req));
261		if (sgid_tbl->hw_id[index] == 0xFFFF) {
262			dev_err(&res->pdev->dev,
263				"GID entry contains an invalid HW id\n");
264			return -EINVAL;
265		}
266		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
267		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
268					sizeof(resp), 0);
269		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
270		if (rc)
271			return rc;
272	}
273	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
274	       sizeof(bnxt_qplib_gid_zero));
275	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
276	sgid_tbl->vlan[index] = 0;
277	sgid_tbl->active--;
278	dev_dbg(&res->pdev->dev,
279		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
280		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
281	sgid_tbl->hw_id[index] = (u16)-1;
282
283	/* unlock */
284	return 0;
285}
286
287int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
288			struct bnxt_qplib_gid *gid, const u8 *smac,
289			u16 vlan_id, bool update, u32 *index)
290{
291	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
292						   struct bnxt_qplib_res,
293						   sgid_tbl);
294	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
295	int i, free_idx;
296
297	/* Do we need a sgid_lock here? */
298	if (sgid_tbl->active == sgid_tbl->max) {
299		dev_err(&res->pdev->dev, "SGID table is full\n");
300		return -ENOMEM;
301	}
302	free_idx = sgid_tbl->max;
303	for (i = 0; i < sgid_tbl->max; i++) {
304		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
305		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
306			dev_dbg(&res->pdev->dev,
307				"SGID entry already exist in entry %d!\n", i);
308			*index = i;
309			return -EALREADY;
310		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
311				   sizeof(bnxt_qplib_gid_zero)) &&
312			   free_idx == sgid_tbl->max) {
313			free_idx = i;
314		}
315	}
316	if (free_idx == sgid_tbl->max) {
317		dev_err(&res->pdev->dev,
318			"SGID table is FULL but count is not MAX??\n");
319		return -ENOMEM;
320	}
321	if (update) {
322		struct creq_add_gid_resp resp = {};
323		struct bnxt_qplib_cmdqmsg msg = {};
324		struct cmdq_add_gid req = {};
325		int rc;
326
327		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
328					 CMDQ_BASE_OPCODE_ADD_GID,
329					 sizeof(req));
330
331		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
332		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
333		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
334		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
335		/*
336		 * driver should ensure that all RoCE traffic is always VLAN
337		 * tagged if RoCE traffic is running on non-zero VLAN ID or
338		 * RoCE traffic is running on non-zero Priority.
339		 */
340		if ((vlan_id != 0xFFFF) || res->prio) {
341			if (vlan_id != 0xFFFF)
342				req.vlan = cpu_to_le16
343				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
344			req.vlan |= cpu_to_le16
345					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
346					 CMDQ_ADD_GID_VLAN_VLAN_EN);
347		}
348
349		/* MAC in network format */
350		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
351		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
352		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
353
354		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
355					sizeof(resp), 0);
356		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
357		if (rc)
358			return rc;
359		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
360	}
361	/* Add GID to the sgid_tbl */
362	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
363	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
364	sgid_tbl->active++;
365	if (vlan_id != 0xFFFF)
366		sgid_tbl->vlan[free_idx] = 1;
367
368	dev_dbg(&res->pdev->dev,
369		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
370		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
371
372	*index = free_idx;
373	/* unlock */
374	return 0;
375}
376
377int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
378			   struct bnxt_qplib_gid *gid, u16 gid_idx,
379			   const u8 *smac)
380{
381	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
382						   struct bnxt_qplib_res,
383						   sgid_tbl);
384	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
385	struct creq_modify_gid_resp resp = {};
386	struct bnxt_qplib_cmdqmsg msg = {};
387	struct cmdq_modify_gid req = {};
388	int rc;
389
390	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
391				 CMDQ_BASE_OPCODE_MODIFY_GID,
392				 sizeof(req));
393
394	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
395	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
396	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
397	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
398	if (res->prio) {
399		req.vlan |= cpu_to_le16
400			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
401			 CMDQ_ADD_GID_VLAN_VLAN_EN);
402	}
403
404	/* MAC in network format */
405	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
406	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
407	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
408
409	req.gid_index = cpu_to_le16(gid_idx);
410
411	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
412				sizeof(resp), 0);
413	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
414	return rc;
415}
416
417/* AH */
418int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
419			 bool block)
420{
421	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
422	struct creq_create_ah_resp resp = {};
423	struct bnxt_qplib_cmdqmsg msg = {};
424	struct cmdq_create_ah req = {};
425	u32 temp32[4];
426	u16 temp16[3];
427	int rc;
428
429	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
430				 CMDQ_BASE_OPCODE_CREATE_AH,
431				 sizeof(req));
432
433	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
434	req.dgid[0] = cpu_to_le32(temp32[0]);
435	req.dgid[1] = cpu_to_le32(temp32[1]);
436	req.dgid[2] = cpu_to_le32(temp32[2]);
437	req.dgid[3] = cpu_to_le32(temp32[3]);
438
439	req.type = ah->nw_type;
440	req.hop_limit = ah->hop_limit;
441	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
442	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
443					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
444					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
445	req.pd_id = cpu_to_le32(ah->pd->id);
446	req.traffic_class = ah->traffic_class;
447
448	/* MAC in network format */
449	memcpy(temp16, ah->dmac, 6);
450	req.dest_mac[0] = cpu_to_le16(temp16[0]);
451	req.dest_mac[1] = cpu_to_le16(temp16[1]);
452	req.dest_mac[2] = cpu_to_le16(temp16[2]);
453
454	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
455				sizeof(resp), block);
456	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
457	if (rc)
458		return rc;
459
460	ah->id = le32_to_cpu(resp.xid);
461	return 0;
462}
463
464int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
465			  bool block)
466{
467	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
468	struct creq_destroy_ah_resp resp = {};
469	struct bnxt_qplib_cmdqmsg msg = {};
470	struct cmdq_destroy_ah req = {};
471	int rc;
472
473	/* Clean up the AH table in the device */
474	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
475				 CMDQ_BASE_OPCODE_DESTROY_AH,
476				 sizeof(req));
477
478	req.ah_cid = cpu_to_le32(ah->id);
479
480	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
481				sizeof(resp), block);
482	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
483	return rc;
484}
485
486/* MRW */
487int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
488{
489	struct creq_deallocate_key_resp resp = {};
490	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
491	struct cmdq_deallocate_key req = {};
492	struct bnxt_qplib_cmdqmsg msg = {};
493	int rc;
494
495	if (mrw->lkey == 0xFFFFFFFF) {
496		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
497		return 0;
498	}
499
500	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
501				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
502				 sizeof(req));
503
504	req.mrw_flags = mrw->type;
505
506	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
507	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
508	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
509		req.key = cpu_to_le32(mrw->rkey);
510	else
511		req.key = cpu_to_le32(mrw->lkey);
512
513	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
514				sizeof(resp), 0);
515	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
516	if (rc)
517		return rc;
518
519	/* Free the qplib's MRW memory */
520	if (mrw->hwq.max_elements)
521		bnxt_qplib_free_hwq(res, &mrw->hwq);
522
523	return 0;
524}
525
526int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
527{
528	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
529	struct creq_allocate_mrw_resp resp = {};
530	struct bnxt_qplib_cmdqmsg msg = {};
531	struct cmdq_allocate_mrw req = {};
532	unsigned long tmp;
533	int rc;
534
535	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
536				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
537				 sizeof(req));
538
539	req.pd_id = cpu_to_le32(mrw->pd->id);
540	req.mrw_flags = mrw->type;
541	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
542	     mrw->flags & BNXT_QPLIB_FR_PMR) ||
543	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
544	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
545		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
546	tmp = (unsigned long)mrw;
547	req.mrw_handle = cpu_to_le64(tmp);
548
549	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
550				sizeof(resp), 0);
551	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
552	if (rc)
553		return rc;
554
555	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
556	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
557	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
558		mrw->rkey = le32_to_cpu(resp.xid);
559	else
560		mrw->lkey = le32_to_cpu(resp.xid);
561	return 0;
562}
563
564int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
565			 bool block)
566{
567	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
568	struct creq_deregister_mr_resp resp = {};
569	struct bnxt_qplib_cmdqmsg msg = {};
570	struct cmdq_deregister_mr req = {};
571	int rc;
572
573	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
574				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
575				 sizeof(req));
576
577	req.lkey = cpu_to_le32(mrw->lkey);
578	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
579				sizeof(resp), block);
580	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
581	if (rc)
582		return rc;
583
584	/* Free the qplib's MR memory */
585	if (mrw->hwq.max_elements) {
586		mrw->va = 0;
587		mrw->total_size = 0;
588		bnxt_qplib_free_hwq(res, &mrw->hwq);
589	}
590
591	return 0;
592}
593
594int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
595		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
596{
597	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
598	struct bnxt_qplib_hwq_attr hwq_attr = {};
599	struct bnxt_qplib_sg_info sginfo = {};
600	struct creq_register_mr_resp resp = {};
601	struct bnxt_qplib_cmdqmsg msg = {};
602	struct cmdq_register_mr req = {};
603	int pages, rc;
604	u32 pg_size;
605	u16 level;
606
607	if (num_pbls) {
608		pages = roundup_pow_of_two(num_pbls);
609		/* Allocate memory for the non-leaf pages to store buf ptrs.
610		 * Non-leaf pages always uses system PAGE_SIZE
611		 */
612		/* Free the hwq if it already exist, must be a rereg */
613		if (mr->hwq.max_elements)
614			bnxt_qplib_free_hwq(res, &mr->hwq);
615		hwq_attr.res = res;
616		hwq_attr.depth = pages;
617		hwq_attr.stride = sizeof(dma_addr_t);
618		hwq_attr.type = HWQ_TYPE_MR;
619		hwq_attr.sginfo = &sginfo;
620		hwq_attr.sginfo->umem = umem;
621		hwq_attr.sginfo->npages = pages;
622		hwq_attr.sginfo->pgsize = buf_pg_size;
623		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
624		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
625		if (rc) {
626			dev_err(&res->pdev->dev,
627				"SP: Reg MR memory allocation failed\n");
628			return -ENOMEM;
629		}
630	}
631
632	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
633				 CMDQ_BASE_OPCODE_REGISTER_MR,
634				 sizeof(req));
635
636	/* Configure the request */
637	if (mr->hwq.level == PBL_LVL_MAX) {
638		/* No PBL provided, just use system PAGE_SIZE */
639		level = 0;
640		req.pbl = 0;
641		pg_size = PAGE_SIZE;
642	} else {
643		level = mr->hwq.level;
644		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
645	}
646	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
647	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
648			       ((ilog2(pg_size) <<
649				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
650				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
651	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
652				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
653				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
654	req.access = (mr->flags & 0xFFFF);
655	req.va = cpu_to_le64(mr->va);
656	req.key = cpu_to_le32(mr->lkey);
657	req.mr_size = cpu_to_le64(mr->total_size);
658
659	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
660				sizeof(resp), 0);
661	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
662	if (rc)
663		goto fail;
664
665	return 0;
666
667fail:
668	if (mr->hwq.max_elements)
669		bnxt_qplib_free_hwq(res, &mr->hwq);
670	return rc;
671}
672
673int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
674					struct bnxt_qplib_frpl *frpl,
675					int max_pg_ptrs)
676{
677	struct bnxt_qplib_hwq_attr hwq_attr = {};
678	struct bnxt_qplib_sg_info sginfo = {};
679	int pg_ptrs, pages, rc;
680
681	/* Re-calculate the max to fit the HWQ allocation model */
682	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
683	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
684	if (!pages)
685		pages++;
686
687	if (pages > MAX_PBL_LVL_1_PGS)
688		return -ENOMEM;
689
690	sginfo.pgsize = PAGE_SIZE;
691	sginfo.nopte = true;
692
693	hwq_attr.res = res;
694	hwq_attr.depth = pg_ptrs;
695	hwq_attr.stride = PAGE_SIZE;
696	hwq_attr.sginfo = &sginfo;
697	hwq_attr.type = HWQ_TYPE_CTX;
698	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
699	if (!rc)
700		frpl->max_pg_ptrs = pg_ptrs;
701
702	return rc;
703}
704
705int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
706				       struct bnxt_qplib_frpl *frpl)
707{
708	bnxt_qplib_free_hwq(res, &frpl->hwq);
709	return 0;
710}
711
712int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
713			      struct bnxt_qplib_roce_stats *stats)
714{
715	struct creq_query_roce_stats_resp resp = {};
716	struct creq_query_roce_stats_resp_sb *sb;
717	struct cmdq_query_roce_stats req = {};
718	struct bnxt_qplib_cmdqmsg msg = {};
719	struct bnxt_qplib_rcfw_sbuf sbuf;
720	int rc;
721
722	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
723				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
724				 sizeof(req));
725
726	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
727	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
728				     &sbuf.dma_addr, GFP_KERNEL);
729	if (!sbuf.sb)
730		return -ENOMEM;
731	sb = sbuf.sb;
732
733	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
734	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
735				sizeof(resp), 0);
736	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
737	if (rc)
738		goto bail;
739	/* Extract the context from the side buffer */
740	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
741	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
742	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
743	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
744	stats->missing_resp = le64_to_cpu(sb->missing_resp);
745	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
746	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
747	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
748	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
749	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
750	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
751	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
752	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
753	stats->dup_req = le64_to_cpu(sb->dup_req);
754	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
755	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
756	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
757	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
758	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
759	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
760	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
761	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
762	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
763	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
764	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
765	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
766	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
767	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
768	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
769	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
770	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
771	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
772	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
773	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
774	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
775	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
776	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
777	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
778	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
779	if (!rcfw->init_oos_stats) {
780		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
781		rcfw->init_oos_stats = 1;
782	} else {
783		stats->res_oos_drop_count +=
784				(le64_to_cpu(sb->res_oos_drop_count) -
785				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
786		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
787	}
788
789bail:
790	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
791			  sbuf.sb, sbuf.dma_addr);
792	return rc;
793}
794
795int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
796			 struct bnxt_qplib_ext_stat *estat)
797{
798	struct creq_query_roce_stats_ext_resp resp = {};
799	struct creq_query_roce_stats_ext_resp_sb *sb;
800	struct cmdq_query_roce_stats_ext req = {};
801	struct bnxt_qplib_cmdqmsg msg = {};
802	struct bnxt_qplib_rcfw_sbuf sbuf;
803	int rc;
804
805	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
806	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
807				     &sbuf.dma_addr, GFP_KERNEL);
808	if (!sbuf.sb)
809		return -ENOMEM;
810
811	sb = sbuf.sb;
812	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
813				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
814				 sizeof(req));
815
816	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
817	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
818	req.function_id = cpu_to_le32(fid);
819	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
820
821	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
822				sizeof(resp), 0);
823	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
824	if (rc)
825		goto bail;
826
827	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
828	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
829	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
830	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
831	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
832	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
833	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
834	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
835	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
836	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
837	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
838	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
839	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
840	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
841	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
842	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
843	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
844	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
845	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
846	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
847	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
848
849bail:
850	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
851			  sbuf.sb, sbuf.dma_addr);
852	return rc;
853}
854
855static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
856				    struct bnxt_qplib_cc_param_ext *cc_ext)
857{
858	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
859	cc_ext->ext_mask = 0;
860	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
861	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
862	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
863	ext_req->tr_update_mode = cc_ext->tr_update_mode;
864	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
865	ext_req->fr_num_rtts = cc_ext->fr_rtt;
866	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
867	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
868	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
869	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
870	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
871	ext_req->actual_cr_factor = cc_ext->cr_factor;
872	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
873	ext_req->cp_bias_en = cc_ext->cp_bias_en;
874	ext_req->cp_bias = cc_ext->cp_bias;
875	ext_req->cnp_ecn = cc_ext->cnp_ecn;
876	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
877	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
878	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
879	ext_req->cr_width = cc_ext->cr_width;
880	ext_req->quota_period_min = cc_ext->min_quota;
881	ext_req->quota_period_max = cc_ext->max_quota;
882	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
883	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
884	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
885	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
886	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
887	ext_req->red_div = cc_ext->red_div;
888	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
889	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
890	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
891	ext_req->use_rate_table = cc_ext->low_rate_en;
892	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
893	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
894	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
895	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
896	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
897	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
898	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
899	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
900}
901
902int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
903			 struct bnxt_qplib_cc_param *cc_param)
904{
905	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
906	struct creq_modify_roce_cc_resp resp = {};
907	struct bnxt_qplib_cmdqmsg msg = {};
908	struct cmdq_modify_roce_cc *req;
909	int req_size;
910	void *cmd;
911	int rc;
912
913	/* Prepare the older base command */
914	req = &tlv_req.base_req;
915	cmd = req;
916	req_size = sizeof(*req);
917	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
918				 sizeof(*req));
919	req->modify_mask = cpu_to_le32(cc_param->mask);
920	req->enable_cc = cc_param->enable;
921	req->g = cc_param->g;
922	req->num_phases_per_state = cc_param->nph_per_state;
923	req->time_per_phase = cc_param->time_pph;
924	req->pkts_per_phase = cc_param->pkts_pph;
925	req->init_cr = cpu_to_le16(cc_param->init_cr);
926	req->init_tr = cpu_to_le16(cc_param->init_tr);
927	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
928				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
929	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
930	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
931	req->rtt = cpu_to_le16(cc_param->rtt);
932	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
933	req->cc_mode = cc_param->cc_mode;
934	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
935
936	/* For chip gen P5 onwards fill extended cmd and header */
937	if (bnxt_qplib_is_chip_gen_p5(res->cctx)) {
938		struct roce_tlv *hdr;
939		u32 payload;
940		u32 chunks;
941
942		cmd = &tlv_req;
943		req_size = sizeof(tlv_req);
944		/* Prepare primary tlv header */
945		hdr = &tlv_req.tlv_hdr;
946		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
947		payload = sizeof(struct cmdq_modify_roce_cc);
948		__roce_1st_tlv_prep(hdr, chunks, payload, true);
949		/* Prepare secondary tlv header */
950		hdr = (struct roce_tlv *)&tlv_req.ext_req;
951		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
952			  sizeof(struct roce_tlv);
953		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
954		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
955	}
956
957	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
958				sizeof(resp), 0);
959	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
960	return rc;
961}
962