1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses.  You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 *     Redistribution and use in source and binary forms, with or
17 *     without modification, are permitted provided that the following
18 *     conditions are met:
19 *
20 *      - Redistributions of source code must retain the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer.
23 *
24 *      - Redistributions in binary form must reproduce the above
25 *        copyright notice, this list of conditions and the following
26 *        disclaimer in the documentation and/or other materials
27 *        provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59			       struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62	[IB_EVENT_CQ_ERR]		= "CQ error",
63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66	[IB_EVENT_COMM_EST]		= "communication established",
67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68	[IB_EVENT_PATH_MIG]		= "path migration successful",
69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71	[IB_EVENT_PORT_ACTIVE]		= "port active",
72	[IB_EVENT_PORT_ERR]		= "port error",
73	[IB_EVENT_LID_CHANGE]		= "LID change",
74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75	[IB_EVENT_SM_CHANGE]		= "SM change",
76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80	[IB_EVENT_GID_CHANGE]		= "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85	size_t index = event;
86
87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88			ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93	[IB_WC_SUCCESS]			= "success",
94	[IB_WC_LOC_LEN_ERR]		= "local length error",
95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104	[IB_WC_REM_OP_ERR]		= "remote operation error",
105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112	[IB_WC_FATAL_ERR]		= "fatal error",
113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114	[IB_WC_GENERAL_ERR]		= "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119	size_t index = status;
120
121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122			wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128	switch (rate) {
129	case IB_RATE_2_5_GBPS: return   1;
130	case IB_RATE_5_GBPS:   return   2;
131	case IB_RATE_10_GBPS:  return   4;
132	case IB_RATE_20_GBPS:  return   8;
133	case IB_RATE_30_GBPS:  return  12;
134	case IB_RATE_40_GBPS:  return  16;
135	case IB_RATE_60_GBPS:  return  24;
136	case IB_RATE_80_GBPS:  return  32;
137	case IB_RATE_120_GBPS: return  48;
138	case IB_RATE_14_GBPS:  return   6;
139	case IB_RATE_56_GBPS:  return  22;
140	case IB_RATE_112_GBPS: return  45;
141	case IB_RATE_168_GBPS: return  67;
142	case IB_RATE_25_GBPS:  return  10;
143	case IB_RATE_100_GBPS: return  40;
144	case IB_RATE_200_GBPS: return  80;
145	case IB_RATE_300_GBPS: return 120;
146	case IB_RATE_28_GBPS:  return  11;
147	case IB_RATE_50_GBPS:  return  20;
148	case IB_RATE_400_GBPS: return 160;
149	case IB_RATE_600_GBPS: return 240;
150	default:	       return  -1;
151	}
152}
153EXPORT_SYMBOL(ib_rate_to_mult);
154
155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156{
157	switch (mult) {
158	case 1:   return IB_RATE_2_5_GBPS;
159	case 2:   return IB_RATE_5_GBPS;
160	case 4:   return IB_RATE_10_GBPS;
161	case 8:   return IB_RATE_20_GBPS;
162	case 12:  return IB_RATE_30_GBPS;
163	case 16:  return IB_RATE_40_GBPS;
164	case 24:  return IB_RATE_60_GBPS;
165	case 32:  return IB_RATE_80_GBPS;
166	case 48:  return IB_RATE_120_GBPS;
167	case 6:   return IB_RATE_14_GBPS;
168	case 22:  return IB_RATE_56_GBPS;
169	case 45:  return IB_RATE_112_GBPS;
170	case 67:  return IB_RATE_168_GBPS;
171	case 10:  return IB_RATE_25_GBPS;
172	case 40:  return IB_RATE_100_GBPS;
173	case 80:  return IB_RATE_200_GBPS;
174	case 120: return IB_RATE_300_GBPS;
175	case 11:  return IB_RATE_28_GBPS;
176	case 20:  return IB_RATE_50_GBPS;
177	case 160: return IB_RATE_400_GBPS;
178	case 240: return IB_RATE_600_GBPS;
179	default:  return IB_RATE_PORT_CURRENT;
180	}
181}
182EXPORT_SYMBOL(mult_to_ib_rate);
183
184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185{
186	switch (rate) {
187	case IB_RATE_2_5_GBPS: return 2500;
188	case IB_RATE_5_GBPS:   return 5000;
189	case IB_RATE_10_GBPS:  return 10000;
190	case IB_RATE_20_GBPS:  return 20000;
191	case IB_RATE_30_GBPS:  return 30000;
192	case IB_RATE_40_GBPS:  return 40000;
193	case IB_RATE_60_GBPS:  return 60000;
194	case IB_RATE_80_GBPS:  return 80000;
195	case IB_RATE_120_GBPS: return 120000;
196	case IB_RATE_14_GBPS:  return 14062;
197	case IB_RATE_56_GBPS:  return 56250;
198	case IB_RATE_112_GBPS: return 112500;
199	case IB_RATE_168_GBPS: return 168750;
200	case IB_RATE_25_GBPS:  return 25781;
201	case IB_RATE_100_GBPS: return 103125;
202	case IB_RATE_200_GBPS: return 206250;
203	case IB_RATE_300_GBPS: return 309375;
204	case IB_RATE_28_GBPS:  return 28125;
205	case IB_RATE_50_GBPS:  return 53125;
206	case IB_RATE_400_GBPS: return 425000;
207	case IB_RATE_600_GBPS: return 637500;
208	default:	       return -1;
209	}
210}
211EXPORT_SYMBOL(ib_rate_to_mbps);
212
213__attribute_const__ enum rdma_transport_type
214rdma_node_get_transport(unsigned int node_type)
215{
216
217	if (node_type == RDMA_NODE_USNIC)
218		return RDMA_TRANSPORT_USNIC;
219	if (node_type == RDMA_NODE_USNIC_UDP)
220		return RDMA_TRANSPORT_USNIC_UDP;
221	if (node_type == RDMA_NODE_RNIC)
222		return RDMA_TRANSPORT_IWARP;
223	if (node_type == RDMA_NODE_UNSPECIFIED)
224		return RDMA_TRANSPORT_UNSPECIFIED;
225
226	return RDMA_TRANSPORT_IB;
227}
228EXPORT_SYMBOL(rdma_node_get_transport);
229
230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231					      u32 port_num)
232{
233	enum rdma_transport_type lt;
234	if (device->ops.get_link_layer)
235		return device->ops.get_link_layer(device, port_num);
236
237	lt = rdma_node_get_transport(device->node_type);
238	if (lt == RDMA_TRANSPORT_IB)
239		return IB_LINK_LAYER_INFINIBAND;
240
241	return IB_LINK_LAYER_ETHERNET;
242}
243EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245/* Protection domains */
246
247/**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
259struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260		const char *caller)
261{
262	struct ib_pd *pd;
263	int mr_access_flags = 0;
264	int ret;
265
266	pd = rdma_zalloc_drv_obj(device, ib_pd);
267	if (!pd)
268		return ERR_PTR(-ENOMEM);
269
270	pd->device = device;
271	pd->flags = flags;
272
273	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274	rdma_restrack_set_name(&pd->res, caller);
275
276	ret = device->ops.alloc_pd(pd, NULL);
277	if (ret) {
278		rdma_restrack_put(&pd->res);
279		kfree(pd);
280		return ERR_PTR(ret);
281	}
282	rdma_restrack_add(&pd->res);
283
284	if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285		pd->local_dma_lkey = device->local_dma_lkey;
286	else
287		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288
289	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290		pr_warn("%s: enabling unsafe global rkey\n", caller);
291		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292	}
293
294	if (mr_access_flags) {
295		struct ib_mr *mr;
296
297		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298		if (IS_ERR(mr)) {
299			ib_dealloc_pd(pd);
300			return ERR_CAST(mr);
301		}
302
303		mr->device	= pd->device;
304		mr->pd		= pd;
305		mr->type        = IB_MR_TYPE_DMA;
306		mr->uobject	= NULL;
307		mr->need_inval	= false;
308
309		pd->__internal_mr = mr;
310
311		if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312			pd->local_dma_lkey = pd->__internal_mr->lkey;
313
314		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316	}
317
318	return pd;
319}
320EXPORT_SYMBOL(__ib_alloc_pd);
321
322/**
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
326 *
327 * It is an error to call this function while any resources in the pd still
328 * exist.  The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
330 */
331int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332{
333	int ret;
334
335	if (pd->__internal_mr) {
336		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337		WARN_ON(ret);
338		pd->__internal_mr = NULL;
339	}
340
341	ret = pd->device->ops.dealloc_pd(pd, udata);
342	if (ret)
343		return ret;
344
345	rdma_restrack_del(&pd->res);
346	kfree(pd);
347	return ret;
348}
349EXPORT_SYMBOL(ib_dealloc_pd_user);
350
351/* Address handles */
352
353/**
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest:       Pointer to destination ah_attr. Contents of the destination
356 *              pointer is assumed to be invalid and attribute are overwritten.
357 * @src:        Pointer to source ah_attr.
358 */
359void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360		       const struct rdma_ah_attr *src)
361{
362	*dest = *src;
363	if (dest->grh.sgid_attr)
364		rdma_hold_gid_attr(dest->grh.sgid_attr);
365}
366EXPORT_SYMBOL(rdma_copy_ah_attr);
367
368/**
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old:        Pointer to existing ah_attr which needs to be replaced.
371 *              old is assumed to be valid or zero'd
372 * @new:        Pointer to the new ah_attr.
373 *
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
377 */
378void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379			  const struct rdma_ah_attr *new)
380{
381	rdma_destroy_ah_attr(old);
382	*old = *new;
383	if (old->grh.sgid_attr)
384		rdma_hold_gid_attr(old->grh.sgid_attr);
385}
386EXPORT_SYMBOL(rdma_replace_ah_attr);
387
388/**
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest:       Pointer to destination ah_attr to copy to.
391 *              dest is assumed to be valid or zero'd
392 * @src:        Pointer to the new ah_attr.
393 *
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
397 * ah_attr is taken.
398 */
399void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400{
401	rdma_destroy_ah_attr(dest);
402	*dest = *src;
403	src->grh.sgid_attr = NULL;
404}
405EXPORT_SYMBOL(rdma_move_ah_attr);
406
407/*
408 * Validate that the rdma_ah_attr is valid for the device before passing it
409 * off to the driver.
410 */
411static int rdma_check_ah_attr(struct ib_device *device,
412			      struct rdma_ah_attr *ah_attr)
413{
414	if (!rdma_is_port_valid(device, ah_attr->port_num))
415		return -EINVAL;
416
417	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419	    !(ah_attr->ah_flags & IB_AH_GRH))
420		return -EINVAL;
421
422	if (ah_attr->grh.sgid_attr) {
423		/*
424		 * Make sure the passed sgid_attr is consistent with the
425		 * parameters
426		 */
427		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429			return -EINVAL;
430	}
431	return 0;
432}
433
434/*
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
437 */
438static int rdma_fill_sgid_attr(struct ib_device *device,
439			       struct rdma_ah_attr *ah_attr,
440			       const struct ib_gid_attr **old_sgid_attr)
441{
442	const struct ib_gid_attr *sgid_attr;
443	struct ib_global_route *grh;
444	int ret;
445
446	*old_sgid_attr = ah_attr->grh.sgid_attr;
447
448	ret = rdma_check_ah_attr(device, ah_attr);
449	if (ret)
450		return ret;
451
452	if (!(ah_attr->ah_flags & IB_AH_GRH))
453		return 0;
454
455	grh = rdma_ah_retrieve_grh(ah_attr);
456	if (grh->sgid_attr)
457		return 0;
458
459	sgid_attr =
460		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461	if (IS_ERR(sgid_attr))
462		return PTR_ERR(sgid_attr);
463
464	/* Move ownerhip of the kref into the ah_attr */
465	grh->sgid_attr = sgid_attr;
466	return 0;
467}
468
469static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470				  const struct ib_gid_attr *old_sgid_attr)
471{
472	/*
473	 * Fill didn't change anything, the caller retains ownership of
474	 * whatever it passed
475	 */
476	if (ah_attr->grh.sgid_attr == old_sgid_attr)
477		return;
478
479	/*
480	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481	 * doesn't see any change in the rdma_ah_attr. If we get here
482	 * old_sgid_attr is NULL.
483	 */
484	rdma_destroy_ah_attr(ah_attr);
485}
486
487static const struct ib_gid_attr *
488rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489		      const struct ib_gid_attr *old_attr)
490{
491	if (old_attr)
492		rdma_put_gid_attr(old_attr);
493	if (ah_attr->ah_flags & IB_AH_GRH) {
494		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495		return ah_attr->grh.sgid_attr;
496	}
497	return NULL;
498}
499
500static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501				     struct rdma_ah_attr *ah_attr,
502				     u32 flags,
503				     struct ib_udata *udata,
504				     struct net_device *xmit_slave)
505{
506	struct rdma_ah_init_attr init_attr = {};
507	struct ib_device *device = pd->device;
508	struct ib_ah *ah;
509	int ret;
510
511	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
512
513	if (!udata && !device->ops.create_ah)
514		return ERR_PTR(-EOPNOTSUPP);
515
516	ah = rdma_zalloc_drv_obj_gfp(
517		device, ib_ah,
518		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
519	if (!ah)
520		return ERR_PTR(-ENOMEM);
521
522	ah->device = device;
523	ah->pd = pd;
524	ah->type = ah_attr->type;
525	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526	init_attr.ah_attr = ah_attr;
527	init_attr.flags = flags;
528	init_attr.xmit_slave = xmit_slave;
529
530	if (udata)
531		ret = device->ops.create_user_ah(ah, &init_attr, udata);
532	else
533		ret = device->ops.create_ah(ah, &init_attr, NULL);
534	if (ret) {
535		if (ah->sgid_attr)
536			rdma_put_gid_attr(ah->sgid_attr);
537		kfree(ah);
538		return ERR_PTR(ret);
539	}
540
541	atomic_inc(&pd->usecnt);
542	return ah;
543}
544
545/**
546 * rdma_create_ah - Creates an address handle for the
547 * given address vector.
548 * @pd: The protection domain associated with the address handle.
549 * @ah_attr: The attributes of the address vector.
550 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
551 *
552 * It returns 0 on success and returns appropriate error code on error.
553 * The address handle is used to reference a local or global destination
554 * in all UD QP post sends.
555 */
556struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
557			     u32 flags)
558{
559	const struct ib_gid_attr *old_sgid_attr;
560	struct net_device *slave;
561	struct ib_ah *ah;
562	int ret;
563
564	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
565	if (ret)
566		return ERR_PTR(ret);
567	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
568					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
569					   GFP_KERNEL : GFP_ATOMIC);
570	if (IS_ERR(slave)) {
571		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
572		return (void *)slave;
573	}
574	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
575	rdma_lag_put_ah_roce_slave(slave);
576	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
577	return ah;
578}
579EXPORT_SYMBOL(rdma_create_ah);
580
581/**
582 * rdma_create_user_ah - Creates an address handle for the
583 * given address vector.
584 * It resolves destination mac address for ah attribute of RoCE type.
585 * @pd: The protection domain associated with the address handle.
586 * @ah_attr: The attributes of the address vector.
587 * @udata: pointer to user's input output buffer information need by
588 *         provider driver.
589 *
590 * It returns 0 on success and returns appropriate error code on error.
591 * The address handle is used to reference a local or global destination
592 * in all UD QP post sends.
593 */
594struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
595				  struct rdma_ah_attr *ah_attr,
596				  struct ib_udata *udata)
597{
598	const struct ib_gid_attr *old_sgid_attr;
599	struct ib_ah *ah;
600	int err;
601
602	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
603	if (err)
604		return ERR_PTR(err);
605
606	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
607		err = ib_resolve_eth_dmac(pd->device, ah_attr);
608		if (err) {
609			ah = ERR_PTR(err);
610			goto out;
611		}
612	}
613
614	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
615			     udata, NULL);
616
617out:
618	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
619	return ah;
620}
621EXPORT_SYMBOL(rdma_create_user_ah);
622
623int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
624{
625	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
626	struct iphdr ip4h_checked;
627	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
628
629	/* If it's IPv6, the version must be 6, otherwise, the first
630	 * 20 bytes (before the IPv4 header) are garbled.
631	 */
632	if (ip6h->version != 6)
633		return (ip4h->version == 4) ? 4 : 0;
634	/* version may be 6 or 4 because the first 20 bytes could be garbled */
635
636	/* RoCE v2 requires no options, thus header length
637	 * must be 5 words
638	 */
639	if (ip4h->ihl != 5)
640		return 6;
641
642	/* Verify checksum.
643	 * We can't write on scattered buffers so we need to copy to
644	 * temp buffer.
645	 */
646	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
647	ip4h_checked.check = 0;
648	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
649	/* if IPv4 header checksum is OK, believe it */
650	if (ip4h->check == ip4h_checked.check)
651		return 4;
652	return 6;
653}
654EXPORT_SYMBOL(ib_get_rdma_header_version);
655
656static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
657						     u32 port_num,
658						     const struct ib_grh *grh)
659{
660	int grh_version;
661
662	if (rdma_protocol_ib(device, port_num))
663		return RDMA_NETWORK_IB;
664
665	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
666
667	if (grh_version == 4)
668		return RDMA_NETWORK_IPV4;
669
670	if (grh->next_hdr == IPPROTO_UDP)
671		return RDMA_NETWORK_IPV6;
672
673	return RDMA_NETWORK_ROCE_V1;
674}
675
676struct find_gid_index_context {
677	u16 vlan_id;
678	enum ib_gid_type gid_type;
679};
680
681static bool find_gid_index(const union ib_gid *gid,
682			   const struct ib_gid_attr *gid_attr,
683			   void *context)
684{
685	struct find_gid_index_context *ctx = context;
686	u16 vlan_id = 0xffff;
687	int ret;
688
689	if (ctx->gid_type != gid_attr->gid_type)
690		return false;
691
692	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
693	if (ret)
694		return false;
695
696	return ctx->vlan_id == vlan_id;
697}
698
699static const struct ib_gid_attr *
700get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
701		       u16 vlan_id, const union ib_gid *sgid,
702		       enum ib_gid_type gid_type)
703{
704	struct find_gid_index_context context = {.vlan_id = vlan_id,
705						 .gid_type = gid_type};
706
707	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
708				       &context);
709}
710
711int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
712			      enum rdma_network_type net_type,
713			      union ib_gid *sgid, union ib_gid *dgid)
714{
715	struct sockaddr_in  src_in;
716	struct sockaddr_in  dst_in;
717	__be32 src_saddr, dst_saddr;
718
719	if (!sgid || !dgid)
720		return -EINVAL;
721
722	if (net_type == RDMA_NETWORK_IPV4) {
723		memcpy(&src_in.sin_addr.s_addr,
724		       &hdr->roce4grh.saddr, 4);
725		memcpy(&dst_in.sin_addr.s_addr,
726		       &hdr->roce4grh.daddr, 4);
727		src_saddr = src_in.sin_addr.s_addr;
728		dst_saddr = dst_in.sin_addr.s_addr;
729		ipv6_addr_set_v4mapped(src_saddr,
730				       (struct in6_addr *)sgid);
731		ipv6_addr_set_v4mapped(dst_saddr,
732				       (struct in6_addr *)dgid);
733		return 0;
734	} else if (net_type == RDMA_NETWORK_IPV6 ||
735		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
736		*dgid = hdr->ibgrh.dgid;
737		*sgid = hdr->ibgrh.sgid;
738		return 0;
739	} else {
740		return -EINVAL;
741	}
742}
743EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
744
745/* Resolve destination mac address and hop limit for unicast destination
746 * GID entry, considering the source GID entry as well.
747 * ah_attribute must have have valid port_num, sgid_index.
748 */
749static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
750				       struct rdma_ah_attr *ah_attr)
751{
752	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
753	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
754	int hop_limit = 0xff;
755	int ret = 0;
756
757	/* If destination is link local and source GID is RoCEv1,
758	 * IP stack is not used.
759	 */
760	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
761	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
762		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
763				ah_attr->roce.dmac);
764		return ret;
765	}
766
767	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
768					   ah_attr->roce.dmac,
769					   sgid_attr, &hop_limit);
770
771	grh->hop_limit = hop_limit;
772	return ret;
773}
774
775/*
776 * This function initializes address handle attributes from the incoming packet.
777 * Incoming packet has dgid of the receiver node on which this code is
778 * getting executed and, sgid contains the GID of the sender.
779 *
780 * When resolving mac address of destination, the arrived dgid is used
781 * as sgid and, sgid is used as dgid because sgid contains destinations
782 * GID whom to respond to.
783 *
784 * On success the caller is responsible to call rdma_destroy_ah_attr on the
785 * attr.
786 */
787int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
788			    const struct ib_wc *wc, const struct ib_grh *grh,
789			    struct rdma_ah_attr *ah_attr)
790{
791	u32 flow_class;
792	int ret;
793	enum rdma_network_type net_type = RDMA_NETWORK_IB;
794	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
795	const struct ib_gid_attr *sgid_attr;
796	int hoplimit = 0xff;
797	union ib_gid dgid;
798	union ib_gid sgid;
799
800	might_sleep();
801
802	memset(ah_attr, 0, sizeof *ah_attr);
803	ah_attr->type = rdma_ah_find_type(device, port_num);
804	if (rdma_cap_eth_ah(device, port_num)) {
805		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
806			net_type = wc->network_hdr_type;
807		else
808			net_type = ib_get_net_type_by_grh(device, port_num, grh);
809		gid_type = ib_network_to_gid_type(net_type);
810	}
811	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
812					&sgid, &dgid);
813	if (ret)
814		return ret;
815
816	rdma_ah_set_sl(ah_attr, wc->sl);
817	rdma_ah_set_port_num(ah_attr, port_num);
818
819	if (rdma_protocol_roce(device, port_num)) {
820		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
821				wc->vlan_id : 0xffff;
822
823		if (!(wc->wc_flags & IB_WC_GRH))
824			return -EPROTOTYPE;
825
826		sgid_attr = get_sgid_attr_from_eth(device, port_num,
827						   vlan_id, &dgid,
828						   gid_type);
829		if (IS_ERR(sgid_attr))
830			return PTR_ERR(sgid_attr);
831
832		flow_class = be32_to_cpu(grh->version_tclass_flow);
833		rdma_move_grh_sgid_attr(ah_attr,
834					&sgid,
835					flow_class & 0xFFFFF,
836					hoplimit,
837					(flow_class >> 20) & 0xFF,
838					sgid_attr);
839
840		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
841		if (ret)
842			rdma_destroy_ah_attr(ah_attr);
843
844		return ret;
845	} else {
846		rdma_ah_set_dlid(ah_attr, wc->slid);
847		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
848
849		if ((wc->wc_flags & IB_WC_GRH) == 0)
850			return 0;
851
852		if (dgid.global.interface_id !=
853					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
854			sgid_attr = rdma_find_gid_by_port(
855				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
856		} else
857			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
858
859		if (IS_ERR(sgid_attr))
860			return PTR_ERR(sgid_attr);
861		flow_class = be32_to_cpu(grh->version_tclass_flow);
862		rdma_move_grh_sgid_attr(ah_attr,
863					&sgid,
864					flow_class & 0xFFFFF,
865					hoplimit,
866					(flow_class >> 20) & 0xFF,
867					sgid_attr);
868
869		return 0;
870	}
871}
872EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
873
874/**
875 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
876 * of the reference
877 *
878 * @attr:	Pointer to AH attribute structure
879 * @dgid:	Destination GID
880 * @flow_label:	Flow label
881 * @hop_limit:	Hop limit
882 * @traffic_class: traffic class
883 * @sgid_attr:	Pointer to SGID attribute
884 *
885 * This takes ownership of the sgid_attr reference. The caller must ensure
886 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
887 * calling this function.
888 */
889void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
890			     u32 flow_label, u8 hop_limit, u8 traffic_class,
891			     const struct ib_gid_attr *sgid_attr)
892{
893	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
894			traffic_class);
895	attr->grh.sgid_attr = sgid_attr;
896}
897EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
898
899/**
900 * rdma_destroy_ah_attr - Release reference to SGID attribute of
901 * ah attribute.
902 * @ah_attr: Pointer to ah attribute
903 *
904 * Release reference to the SGID attribute of the ah attribute if it is
905 * non NULL. It is safe to call this multiple times, and safe to call it on
906 * a zero initialized ah_attr.
907 */
908void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
909{
910	if (ah_attr->grh.sgid_attr) {
911		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
912		ah_attr->grh.sgid_attr = NULL;
913	}
914}
915EXPORT_SYMBOL(rdma_destroy_ah_attr);
916
917struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
918				   const struct ib_grh *grh, u32 port_num)
919{
920	struct rdma_ah_attr ah_attr;
921	struct ib_ah *ah;
922	int ret;
923
924	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
925	if (ret)
926		return ERR_PTR(ret);
927
928	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
929
930	rdma_destroy_ah_attr(&ah_attr);
931	return ah;
932}
933EXPORT_SYMBOL(ib_create_ah_from_wc);
934
935int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
936{
937	const struct ib_gid_attr *old_sgid_attr;
938	int ret;
939
940	if (ah->type != ah_attr->type)
941		return -EINVAL;
942
943	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
944	if (ret)
945		return ret;
946
947	ret = ah->device->ops.modify_ah ?
948		ah->device->ops.modify_ah(ah, ah_attr) :
949		-EOPNOTSUPP;
950
951	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
952	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
953	return ret;
954}
955EXPORT_SYMBOL(rdma_modify_ah);
956
957int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
958{
959	ah_attr->grh.sgid_attr = NULL;
960
961	return ah->device->ops.query_ah ?
962		ah->device->ops.query_ah(ah, ah_attr) :
963		-EOPNOTSUPP;
964}
965EXPORT_SYMBOL(rdma_query_ah);
966
967int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
968{
969	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
970	struct ib_pd *pd;
971	int ret;
972
973	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
974
975	pd = ah->pd;
976
977	ret = ah->device->ops.destroy_ah(ah, flags);
978	if (ret)
979		return ret;
980
981	atomic_dec(&pd->usecnt);
982	if (sgid_attr)
983		rdma_put_gid_attr(sgid_attr);
984
985	kfree(ah);
986	return ret;
987}
988EXPORT_SYMBOL(rdma_destroy_ah_user);
989
990/* Shared receive queues */
991
992/**
993 * ib_create_srq_user - Creates a SRQ associated with the specified protection
994 *   domain.
995 * @pd: The protection domain associated with the SRQ.
996 * @srq_init_attr: A list of initial attributes required to create the
997 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
998 *   the actual capabilities of the created SRQ.
999 * @uobject: uobject pointer if this is not a kernel SRQ
1000 * @udata: udata pointer if this is not a kernel SRQ
1001 *
1002 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1003 * requested size of the SRQ, and set to the actual values allocated
1004 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1005 * will always be at least as large as the requested values.
1006 */
1007struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1008				  struct ib_srq_init_attr *srq_init_attr,
1009				  struct ib_usrq_object *uobject,
1010				  struct ib_udata *udata)
1011{
1012	struct ib_srq *srq;
1013	int ret;
1014
1015	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1016	if (!srq)
1017		return ERR_PTR(-ENOMEM);
1018
1019	srq->device = pd->device;
1020	srq->pd = pd;
1021	srq->event_handler = srq_init_attr->event_handler;
1022	srq->srq_context = srq_init_attr->srq_context;
1023	srq->srq_type = srq_init_attr->srq_type;
1024	srq->uobject = uobject;
1025
1026	if (ib_srq_has_cq(srq->srq_type)) {
1027		srq->ext.cq = srq_init_attr->ext.cq;
1028		atomic_inc(&srq->ext.cq->usecnt);
1029	}
1030	if (srq->srq_type == IB_SRQT_XRC) {
1031		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1032		if (srq->ext.xrc.xrcd)
1033			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1034	}
1035	atomic_inc(&pd->usecnt);
1036
1037	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1038	rdma_restrack_parent_name(&srq->res, &pd->res);
1039
1040	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1041	if (ret) {
1042		rdma_restrack_put(&srq->res);
1043		atomic_dec(&pd->usecnt);
1044		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1045			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1046		if (ib_srq_has_cq(srq->srq_type))
1047			atomic_dec(&srq->ext.cq->usecnt);
1048		kfree(srq);
1049		return ERR_PTR(ret);
1050	}
1051
1052	rdma_restrack_add(&srq->res);
1053
1054	return srq;
1055}
1056EXPORT_SYMBOL(ib_create_srq_user);
1057
1058int ib_modify_srq(struct ib_srq *srq,
1059		  struct ib_srq_attr *srq_attr,
1060		  enum ib_srq_attr_mask srq_attr_mask)
1061{
1062	return srq->device->ops.modify_srq ?
1063		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1064					    NULL) : -EOPNOTSUPP;
1065}
1066EXPORT_SYMBOL(ib_modify_srq);
1067
1068int ib_query_srq(struct ib_srq *srq,
1069		 struct ib_srq_attr *srq_attr)
1070{
1071	return srq->device->ops.query_srq ?
1072		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1073}
1074EXPORT_SYMBOL(ib_query_srq);
1075
1076int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1077{
1078	int ret;
1079
1080	if (atomic_read(&srq->usecnt))
1081		return -EBUSY;
1082
1083	ret = srq->device->ops.destroy_srq(srq, udata);
1084	if (ret)
1085		return ret;
1086
1087	atomic_dec(&srq->pd->usecnt);
1088	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1089		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1090	if (ib_srq_has_cq(srq->srq_type))
1091		atomic_dec(&srq->ext.cq->usecnt);
1092	rdma_restrack_del(&srq->res);
1093	kfree(srq);
1094
1095	return ret;
1096}
1097EXPORT_SYMBOL(ib_destroy_srq_user);
1098
1099/* Queue pairs */
1100
1101static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1102{
1103	struct ib_qp *qp = context;
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1107	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1108		if (event->element.qp->event_handler)
1109			event->element.qp->event_handler(event, event->element.qp->qp_context);
1110	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1111}
1112
1113static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1114				  void (*event_handler)(struct ib_event *, void *),
1115				  void *qp_context)
1116{
1117	struct ib_qp *qp;
1118	unsigned long flags;
1119	int err;
1120
1121	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1122	if (!qp)
1123		return ERR_PTR(-ENOMEM);
1124
1125	qp->real_qp = real_qp;
1126	err = ib_open_shared_qp_security(qp, real_qp->device);
1127	if (err) {
1128		kfree(qp);
1129		return ERR_PTR(err);
1130	}
1131
1132	qp->real_qp = real_qp;
1133	atomic_inc(&real_qp->usecnt);
1134	qp->device = real_qp->device;
1135	qp->event_handler = event_handler;
1136	qp->qp_context = qp_context;
1137	qp->qp_num = real_qp->qp_num;
1138	qp->qp_type = real_qp->qp_type;
1139
1140	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1141	list_add(&qp->open_list, &real_qp->open_list);
1142	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1143
1144	return qp;
1145}
1146
1147struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1148			 struct ib_qp_open_attr *qp_open_attr)
1149{
1150	struct ib_qp *qp, *real_qp;
1151
1152	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1153		return ERR_PTR(-EINVAL);
1154
1155	down_read(&xrcd->tgt_qps_rwsem);
1156	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1157	if (!real_qp) {
1158		up_read(&xrcd->tgt_qps_rwsem);
1159		return ERR_PTR(-EINVAL);
1160	}
1161	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1162			  qp_open_attr->qp_context);
1163	up_read(&xrcd->tgt_qps_rwsem);
1164	return qp;
1165}
1166EXPORT_SYMBOL(ib_open_qp);
1167
1168static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1169					struct ib_qp_init_attr *qp_init_attr)
1170{
1171	struct ib_qp *real_qp = qp;
1172	int err;
1173
1174	qp->event_handler = __ib_shared_qp_event_handler;
1175	qp->qp_context = qp;
1176	qp->pd = NULL;
1177	qp->send_cq = qp->recv_cq = NULL;
1178	qp->srq = NULL;
1179	qp->xrcd = qp_init_attr->xrcd;
1180	atomic_inc(&qp_init_attr->xrcd->usecnt);
1181	INIT_LIST_HEAD(&qp->open_list);
1182
1183	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1184			  qp_init_attr->qp_context);
1185	if (IS_ERR(qp))
1186		return qp;
1187
1188	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1189			      real_qp, GFP_KERNEL));
1190	if (err) {
1191		ib_close_qp(qp);
1192		return ERR_PTR(err);
1193	}
1194	return qp;
1195}
1196
1197static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1198			       struct ib_qp_init_attr *attr,
1199			       struct ib_udata *udata,
1200			       struct ib_uqp_object *uobj, const char *caller)
1201{
1202	struct ib_udata dummy = {};
1203	struct ib_qp *qp;
1204	int ret;
1205
1206	if (!dev->ops.create_qp)
1207		return ERR_PTR(-EOPNOTSUPP);
1208
1209	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1210	if (!qp)
1211		return ERR_PTR(-ENOMEM);
1212
1213	qp->device = dev;
1214	qp->pd = pd;
1215	qp->uobject = uobj;
1216	qp->real_qp = qp;
1217
1218	qp->qp_type = attr->qp_type;
1219	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1220	qp->srq = attr->srq;
1221	qp->event_handler = attr->event_handler;
1222	qp->port = attr->port_num;
1223	qp->qp_context = attr->qp_context;
1224
1225	spin_lock_init(&qp->mr_lock);
1226	INIT_LIST_HEAD(&qp->rdma_mrs);
1227	INIT_LIST_HEAD(&qp->sig_mrs);
1228
1229	qp->send_cq = attr->send_cq;
1230	qp->recv_cq = attr->recv_cq;
1231
1232	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1233	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1234	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1235	ret = dev->ops.create_qp(qp, attr, udata);
1236	if (ret)
1237		goto err_create;
1238
1239	/*
1240	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1241	 * Unfortunately, it is not an easy task to fix that driver.
1242	 */
1243	qp->send_cq = attr->send_cq;
1244	qp->recv_cq = attr->recv_cq;
1245
1246	ret = ib_create_qp_security(qp, dev);
1247	if (ret)
1248		goto err_security;
1249
1250	rdma_restrack_add(&qp->res);
1251	return qp;
1252
1253err_security:
1254	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1255err_create:
1256	rdma_restrack_put(&qp->res);
1257	kfree(qp);
1258	return ERR_PTR(ret);
1259
1260}
1261
1262/**
1263 * ib_create_qp_user - Creates a QP associated with the specified protection
1264 *   domain.
1265 * @dev: IB device
1266 * @pd: The protection domain associated with the QP.
1267 * @attr: A list of initial attributes required to create the
1268 *   QP.  If QP creation succeeds, then the attributes are updated to
1269 *   the actual capabilities of the created QP.
1270 * @udata: User data
1271 * @uobj: uverbs obect
1272 * @caller: caller's build-time module name
1273 */
1274struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1275				struct ib_qp_init_attr *attr,
1276				struct ib_udata *udata,
1277				struct ib_uqp_object *uobj, const char *caller)
1278{
1279	struct ib_qp *qp, *xrc_qp;
1280
1281	if (attr->qp_type == IB_QPT_XRC_TGT)
1282		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1283	else
1284		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1285	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1286		return qp;
1287
1288	xrc_qp = create_xrc_qp_user(qp, attr);
1289	if (IS_ERR(xrc_qp)) {
1290		ib_destroy_qp(qp);
1291		return xrc_qp;
1292	}
1293
1294	xrc_qp->uobject = uobj;
1295	return xrc_qp;
1296}
1297EXPORT_SYMBOL(ib_create_qp_user);
1298
1299void ib_qp_usecnt_inc(struct ib_qp *qp)
1300{
1301	if (qp->pd)
1302		atomic_inc(&qp->pd->usecnt);
1303	if (qp->send_cq)
1304		atomic_inc(&qp->send_cq->usecnt);
1305	if (qp->recv_cq)
1306		atomic_inc(&qp->recv_cq->usecnt);
1307	if (qp->srq)
1308		atomic_inc(&qp->srq->usecnt);
1309	if (qp->rwq_ind_tbl)
1310		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1311}
1312EXPORT_SYMBOL(ib_qp_usecnt_inc);
1313
1314void ib_qp_usecnt_dec(struct ib_qp *qp)
1315{
1316	if (qp->rwq_ind_tbl)
1317		atomic_dec(&qp->rwq_ind_tbl->usecnt);
1318	if (qp->srq)
1319		atomic_dec(&qp->srq->usecnt);
1320	if (qp->recv_cq)
1321		atomic_dec(&qp->recv_cq->usecnt);
1322	if (qp->send_cq)
1323		atomic_dec(&qp->send_cq->usecnt);
1324	if (qp->pd)
1325		atomic_dec(&qp->pd->usecnt);
1326}
1327EXPORT_SYMBOL(ib_qp_usecnt_dec);
1328
1329struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1330				  struct ib_qp_init_attr *qp_init_attr,
1331				  const char *caller)
1332{
1333	struct ib_device *device = pd->device;
1334	struct ib_qp *qp;
1335	int ret;
1336
1337	/*
1338	 * If the callers is using the RDMA API calculate the resources
1339	 * needed for the RDMA READ/WRITE operations.
1340	 *
1341	 * Note that these callers need to pass in a port number.
1342	 */
1343	if (qp_init_attr->cap.max_rdma_ctxs)
1344		rdma_rw_init_qp(device, qp_init_attr);
1345
1346	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1347	if (IS_ERR(qp))
1348		return qp;
1349
1350	ib_qp_usecnt_inc(qp);
1351
1352	if (qp_init_attr->cap.max_rdma_ctxs) {
1353		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1354		if (ret)
1355			goto err;
1356	}
1357
1358	/*
1359	 * Note: all hw drivers guarantee that max_send_sge is lower than
1360	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1361	 * max_send_sge <= max_sge_rd.
1362	 */
1363	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1364	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1365				 device->attrs.max_sge_rd);
1366	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1367		qp->integrity_en = true;
1368
1369	return qp;
1370
1371err:
1372	ib_destroy_qp(qp);
1373	return ERR_PTR(ret);
1374
1375}
1376EXPORT_SYMBOL(ib_create_qp_kernel);
1377
1378static const struct {
1379	int			valid;
1380	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1381	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1382} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1383	[IB_QPS_RESET] = {
1384		[IB_QPS_RESET] = { .valid = 1 },
1385		[IB_QPS_INIT]  = {
1386			.valid = 1,
1387			.req_param = {
1388				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1389						IB_QP_PORT			|
1390						IB_QP_QKEY),
1391				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1392				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1393						IB_QP_PORT			|
1394						IB_QP_ACCESS_FLAGS),
1395				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1396						IB_QP_PORT			|
1397						IB_QP_ACCESS_FLAGS),
1398				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1399						IB_QP_PORT			|
1400						IB_QP_ACCESS_FLAGS),
1401				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1402						IB_QP_PORT			|
1403						IB_QP_ACCESS_FLAGS),
1404				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1405						IB_QP_QKEY),
1406				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1407						IB_QP_QKEY),
1408			}
1409		},
1410	},
1411	[IB_QPS_INIT]  = {
1412		[IB_QPS_RESET] = { .valid = 1 },
1413		[IB_QPS_ERR] =   { .valid = 1 },
1414		[IB_QPS_INIT]  = {
1415			.valid = 1,
1416			.opt_param = {
1417				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1418						IB_QP_PORT			|
1419						IB_QP_QKEY),
1420				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1421						IB_QP_PORT			|
1422						IB_QP_ACCESS_FLAGS),
1423				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1424						IB_QP_PORT			|
1425						IB_QP_ACCESS_FLAGS),
1426				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1427						IB_QP_PORT			|
1428						IB_QP_ACCESS_FLAGS),
1429				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1430						IB_QP_PORT			|
1431						IB_QP_ACCESS_FLAGS),
1432				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1433						IB_QP_QKEY),
1434				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1435						IB_QP_QKEY),
1436			}
1437		},
1438		[IB_QPS_RTR]   = {
1439			.valid = 1,
1440			.req_param = {
1441				[IB_QPT_UC]  = (IB_QP_AV			|
1442						IB_QP_PATH_MTU			|
1443						IB_QP_DEST_QPN			|
1444						IB_QP_RQ_PSN),
1445				[IB_QPT_RC]  = (IB_QP_AV			|
1446						IB_QP_PATH_MTU			|
1447						IB_QP_DEST_QPN			|
1448						IB_QP_RQ_PSN			|
1449						IB_QP_MAX_DEST_RD_ATOMIC	|
1450						IB_QP_MIN_RNR_TIMER),
1451				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1452						IB_QP_PATH_MTU			|
1453						IB_QP_DEST_QPN			|
1454						IB_QP_RQ_PSN),
1455				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1456						IB_QP_PATH_MTU			|
1457						IB_QP_DEST_QPN			|
1458						IB_QP_RQ_PSN			|
1459						IB_QP_MAX_DEST_RD_ATOMIC	|
1460						IB_QP_MIN_RNR_TIMER),
1461			},
1462			.opt_param = {
1463				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1464						 IB_QP_QKEY),
1465				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1466						 IB_QP_ACCESS_FLAGS		|
1467						 IB_QP_PKEY_INDEX),
1468				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1469						 IB_QP_ACCESS_FLAGS		|
1470						 IB_QP_PKEY_INDEX),
1471				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1472						 IB_QP_ACCESS_FLAGS		|
1473						 IB_QP_PKEY_INDEX),
1474				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1475						 IB_QP_ACCESS_FLAGS		|
1476						 IB_QP_PKEY_INDEX),
1477				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1478						 IB_QP_QKEY),
1479				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1480						 IB_QP_QKEY),
1481			 },
1482		},
1483	},
1484	[IB_QPS_RTR]   = {
1485		[IB_QPS_RESET] = { .valid = 1 },
1486		[IB_QPS_ERR] =   { .valid = 1 },
1487		[IB_QPS_RTS]   = {
1488			.valid = 1,
1489			.req_param = {
1490				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1491				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1492				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1493						IB_QP_RETRY_CNT			|
1494						IB_QP_RNR_RETRY			|
1495						IB_QP_SQ_PSN			|
1496						IB_QP_MAX_QP_RD_ATOMIC),
1497				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1498						IB_QP_RETRY_CNT			|
1499						IB_QP_RNR_RETRY			|
1500						IB_QP_SQ_PSN			|
1501						IB_QP_MAX_QP_RD_ATOMIC),
1502				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1503						IB_QP_SQ_PSN),
1504				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1505				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1506			},
1507			.opt_param = {
1508				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1509						 IB_QP_QKEY),
1510				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1511						 IB_QP_ALT_PATH			|
1512						 IB_QP_ACCESS_FLAGS		|
1513						 IB_QP_PATH_MIG_STATE),
1514				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1515						 IB_QP_ALT_PATH			|
1516						 IB_QP_ACCESS_FLAGS		|
1517						 IB_QP_MIN_RNR_TIMER		|
1518						 IB_QP_PATH_MIG_STATE),
1519				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1520						 IB_QP_ALT_PATH			|
1521						 IB_QP_ACCESS_FLAGS		|
1522						 IB_QP_PATH_MIG_STATE),
1523				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1524						 IB_QP_ALT_PATH			|
1525						 IB_QP_ACCESS_FLAGS		|
1526						 IB_QP_MIN_RNR_TIMER		|
1527						 IB_QP_PATH_MIG_STATE),
1528				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1529						 IB_QP_QKEY),
1530				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1531						 IB_QP_QKEY),
1532				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1533			 }
1534		}
1535	},
1536	[IB_QPS_RTS]   = {
1537		[IB_QPS_RESET] = { .valid = 1 },
1538		[IB_QPS_ERR] =   { .valid = 1 },
1539		[IB_QPS_RTS]   = {
1540			.valid = 1,
1541			.opt_param = {
1542				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1543						IB_QP_QKEY),
1544				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1545						IB_QP_ACCESS_FLAGS		|
1546						IB_QP_ALT_PATH			|
1547						IB_QP_PATH_MIG_STATE),
1548				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1549						IB_QP_ACCESS_FLAGS		|
1550						IB_QP_ALT_PATH			|
1551						IB_QP_PATH_MIG_STATE		|
1552						IB_QP_MIN_RNR_TIMER),
1553				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1554						IB_QP_ACCESS_FLAGS		|
1555						IB_QP_ALT_PATH			|
1556						IB_QP_PATH_MIG_STATE),
1557				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1558						IB_QP_ACCESS_FLAGS		|
1559						IB_QP_ALT_PATH			|
1560						IB_QP_PATH_MIG_STATE		|
1561						IB_QP_MIN_RNR_TIMER),
1562				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1563						IB_QP_QKEY),
1564				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1565						IB_QP_QKEY),
1566				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1567			}
1568		},
1569		[IB_QPS_SQD]   = {
1570			.valid = 1,
1571			.opt_param = {
1572				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1575				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1577				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1579			}
1580		},
1581	},
1582	[IB_QPS_SQD]   = {
1583		[IB_QPS_RESET] = { .valid = 1 },
1584		[IB_QPS_ERR] =   { .valid = 1 },
1585		[IB_QPS_RTS]   = {
1586			.valid = 1,
1587			.opt_param = {
1588				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1589						IB_QP_QKEY),
1590				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1591						IB_QP_ALT_PATH			|
1592						IB_QP_ACCESS_FLAGS		|
1593						IB_QP_PATH_MIG_STATE),
1594				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1595						IB_QP_ALT_PATH			|
1596						IB_QP_ACCESS_FLAGS		|
1597						IB_QP_MIN_RNR_TIMER		|
1598						IB_QP_PATH_MIG_STATE),
1599				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1600						IB_QP_ALT_PATH			|
1601						IB_QP_ACCESS_FLAGS		|
1602						IB_QP_PATH_MIG_STATE),
1603				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1604						IB_QP_ALT_PATH			|
1605						IB_QP_ACCESS_FLAGS		|
1606						IB_QP_MIN_RNR_TIMER		|
1607						IB_QP_PATH_MIG_STATE),
1608				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1609						IB_QP_QKEY),
1610				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1611						IB_QP_QKEY),
1612			}
1613		},
1614		[IB_QPS_SQD]   = {
1615			.valid = 1,
1616			.opt_param = {
1617				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1618						IB_QP_QKEY),
1619				[IB_QPT_UC]  = (IB_QP_AV			|
1620						IB_QP_ALT_PATH			|
1621						IB_QP_ACCESS_FLAGS		|
1622						IB_QP_PKEY_INDEX		|
1623						IB_QP_PATH_MIG_STATE),
1624				[IB_QPT_RC]  = (IB_QP_PORT			|
1625						IB_QP_AV			|
1626						IB_QP_TIMEOUT			|
1627						IB_QP_RETRY_CNT			|
1628						IB_QP_RNR_RETRY			|
1629						IB_QP_MAX_QP_RD_ATOMIC		|
1630						IB_QP_MAX_DEST_RD_ATOMIC	|
1631						IB_QP_ALT_PATH			|
1632						IB_QP_ACCESS_FLAGS		|
1633						IB_QP_PKEY_INDEX		|
1634						IB_QP_MIN_RNR_TIMER		|
1635						IB_QP_PATH_MIG_STATE),
1636				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1637						IB_QP_AV			|
1638						IB_QP_TIMEOUT			|
1639						IB_QP_RETRY_CNT			|
1640						IB_QP_RNR_RETRY			|
1641						IB_QP_MAX_QP_RD_ATOMIC		|
1642						IB_QP_ALT_PATH			|
1643						IB_QP_ACCESS_FLAGS		|
1644						IB_QP_PKEY_INDEX		|
1645						IB_QP_PATH_MIG_STATE),
1646				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1647						IB_QP_AV			|
1648						IB_QP_TIMEOUT			|
1649						IB_QP_MAX_DEST_RD_ATOMIC	|
1650						IB_QP_ALT_PATH			|
1651						IB_QP_ACCESS_FLAGS		|
1652						IB_QP_PKEY_INDEX		|
1653						IB_QP_MIN_RNR_TIMER		|
1654						IB_QP_PATH_MIG_STATE),
1655				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1656						IB_QP_QKEY),
1657				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1658						IB_QP_QKEY),
1659			}
1660		}
1661	},
1662	[IB_QPS_SQE]   = {
1663		[IB_QPS_RESET] = { .valid = 1 },
1664		[IB_QPS_ERR] =   { .valid = 1 },
1665		[IB_QPS_RTS]   = {
1666			.valid = 1,
1667			.opt_param = {
1668				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1669						IB_QP_QKEY),
1670				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1671						IB_QP_ACCESS_FLAGS),
1672				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1673						IB_QP_QKEY),
1674				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1675						IB_QP_QKEY),
1676			}
1677		}
1678	},
1679	[IB_QPS_ERR] = {
1680		[IB_QPS_RESET] = { .valid = 1 },
1681		[IB_QPS_ERR] =   { .valid = 1 }
1682	}
1683};
1684
1685bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1686			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1687{
1688	enum ib_qp_attr_mask req_param, opt_param;
1689
1690	if (mask & IB_QP_CUR_STATE  &&
1691	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1692	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1693		return false;
1694
1695	if (!qp_state_table[cur_state][next_state].valid)
1696		return false;
1697
1698	req_param = qp_state_table[cur_state][next_state].req_param[type];
1699	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1700
1701	if ((mask & req_param) != req_param)
1702		return false;
1703
1704	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1705		return false;
1706
1707	return true;
1708}
1709EXPORT_SYMBOL(ib_modify_qp_is_ok);
1710
1711/**
1712 * ib_resolve_eth_dmac - Resolve destination mac address
1713 * @device:		Device to consider
1714 * @ah_attr:		address handle attribute which describes the
1715 *			source and destination parameters
1716 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1717 * returns 0 on success or appropriate error code. It initializes the
1718 * necessary ah_attr fields when call is successful.
1719 */
1720static int ib_resolve_eth_dmac(struct ib_device *device,
1721			       struct rdma_ah_attr *ah_attr)
1722{
1723	int ret = 0;
1724
1725	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1726		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1727			__be32 addr = 0;
1728
1729			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1730			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1731		} else {
1732			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1733					(char *)ah_attr->roce.dmac);
1734		}
1735	} else {
1736		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1737	}
1738	return ret;
1739}
1740
1741static bool is_qp_type_connected(const struct ib_qp *qp)
1742{
1743	return (qp->qp_type == IB_QPT_UC ||
1744		qp->qp_type == IB_QPT_RC ||
1745		qp->qp_type == IB_QPT_XRC_INI ||
1746		qp->qp_type == IB_QPT_XRC_TGT);
1747}
1748
1749/*
1750 * IB core internal function to perform QP attributes modification.
1751 */
1752static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1753			 int attr_mask, struct ib_udata *udata)
1754{
1755	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1756	const struct ib_gid_attr *old_sgid_attr_av;
1757	const struct ib_gid_attr *old_sgid_attr_alt_av;
1758	int ret;
1759
1760	attr->xmit_slave = NULL;
1761	if (attr_mask & IB_QP_AV) {
1762		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1763					  &old_sgid_attr_av);
1764		if (ret)
1765			return ret;
1766
1767		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1768		    is_qp_type_connected(qp)) {
1769			struct net_device *slave;
1770
1771			/*
1772			 * If the user provided the qp_attr then we have to
1773			 * resolve it. Kerne users have to provide already
1774			 * resolved rdma_ah_attr's.
1775			 */
1776			if (udata) {
1777				ret = ib_resolve_eth_dmac(qp->device,
1778							  &attr->ah_attr);
1779				if (ret)
1780					goto out_av;
1781			}
1782			slave = rdma_lag_get_ah_roce_slave(qp->device,
1783							   &attr->ah_attr,
1784							   GFP_KERNEL);
1785			if (IS_ERR(slave)) {
1786				ret = PTR_ERR(slave);
1787				goto out_av;
1788			}
1789			attr->xmit_slave = slave;
1790		}
1791	}
1792	if (attr_mask & IB_QP_ALT_PATH) {
1793		/*
1794		 * FIXME: This does not track the migration state, so if the
1795		 * user loads a new alternate path after the HW has migrated
1796		 * from primary->alternate we will keep the wrong
1797		 * references. This is OK for IB because the reference
1798		 * counting does not serve any functional purpose.
1799		 */
1800		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1801					  &old_sgid_attr_alt_av);
1802		if (ret)
1803			goto out_av;
1804
1805		/*
1806		 * Today the core code can only handle alternate paths and APM
1807		 * for IB. Ban them in roce mode.
1808		 */
1809		if (!(rdma_protocol_ib(qp->device,
1810				       attr->alt_ah_attr.port_num) &&
1811		      rdma_protocol_ib(qp->device, port))) {
1812			ret = -EINVAL;
1813			goto out;
1814		}
1815	}
1816
1817	if (rdma_ib_or_roce(qp->device, port)) {
1818		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1819			dev_warn(&qp->device->dev,
1820				 "%s rq_psn overflow, masking to 24 bits\n",
1821				 __func__);
1822			attr->rq_psn &= 0xffffff;
1823		}
1824
1825		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1826			dev_warn(&qp->device->dev,
1827				 " %s sq_psn overflow, masking to 24 bits\n",
1828				 __func__);
1829			attr->sq_psn &= 0xffffff;
1830		}
1831	}
1832
1833	/*
1834	 * Bind this qp to a counter automatically based on the rdma counter
1835	 * rules. This only set in RST2INIT with port specified
1836	 */
1837	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1838	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1839		rdma_counter_bind_qp_auto(qp, attr->port_num);
1840
1841	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1842	if (ret)
1843		goto out;
1844
1845	if (attr_mask & IB_QP_PORT)
1846		qp->port = attr->port_num;
1847	if (attr_mask & IB_QP_AV)
1848		qp->av_sgid_attr =
1849			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1850	if (attr_mask & IB_QP_ALT_PATH)
1851		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1852			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1853
1854out:
1855	if (attr_mask & IB_QP_ALT_PATH)
1856		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1857out_av:
1858	if (attr_mask & IB_QP_AV) {
1859		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1860		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1861	}
1862	return ret;
1863}
1864
1865/**
1866 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1867 * @ib_qp: The QP to modify.
1868 * @attr: On input, specifies the QP attributes to modify.  On output,
1869 *   the current values of selected QP attributes are returned.
1870 * @attr_mask: A bit-mask used to specify which attributes of the QP
1871 *   are being modified.
1872 * @udata: pointer to user's input output buffer information
1873 *   are being modified.
1874 * It returns 0 on success and returns appropriate error code on error.
1875 */
1876int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1877			    int attr_mask, struct ib_udata *udata)
1878{
1879	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1880}
1881EXPORT_SYMBOL(ib_modify_qp_with_udata);
1882
1883static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1884				   u16 *speed, u8 *width)
1885{
1886	if (!lanes) {
1887		if (netdev_speed <= SPEED_1000) {
1888			*width = IB_WIDTH_1X;
1889			*speed = IB_SPEED_SDR;
1890		} else if (netdev_speed <= SPEED_10000) {
1891			*width = IB_WIDTH_1X;
1892			*speed = IB_SPEED_FDR10;
1893		} else if (netdev_speed <= SPEED_20000) {
1894			*width = IB_WIDTH_4X;
1895			*speed = IB_SPEED_DDR;
1896		} else if (netdev_speed <= SPEED_25000) {
1897			*width = IB_WIDTH_1X;
1898			*speed = IB_SPEED_EDR;
1899		} else if (netdev_speed <= SPEED_40000) {
1900			*width = IB_WIDTH_4X;
1901			*speed = IB_SPEED_FDR10;
1902		} else if (netdev_speed <= SPEED_50000) {
1903			*width = IB_WIDTH_2X;
1904			*speed = IB_SPEED_EDR;
1905		} else if (netdev_speed <= SPEED_100000) {
1906			*width = IB_WIDTH_4X;
1907			*speed = IB_SPEED_EDR;
1908		} else if (netdev_speed <= SPEED_200000) {
1909			*width = IB_WIDTH_4X;
1910			*speed = IB_SPEED_HDR;
1911		} else {
1912			*width = IB_WIDTH_4X;
1913			*speed = IB_SPEED_NDR;
1914		}
1915
1916		return;
1917	}
1918
1919	switch (lanes) {
1920	case 1:
1921		*width = IB_WIDTH_1X;
1922		break;
1923	case 2:
1924		*width = IB_WIDTH_2X;
1925		break;
1926	case 4:
1927		*width = IB_WIDTH_4X;
1928		break;
1929	case 8:
1930		*width = IB_WIDTH_8X;
1931		break;
1932	case 12:
1933		*width = IB_WIDTH_12X;
1934		break;
1935	default:
1936		*width = IB_WIDTH_1X;
1937	}
1938
1939	switch (netdev_speed / lanes) {
1940	case SPEED_2500:
1941		*speed = IB_SPEED_SDR;
1942		break;
1943	case SPEED_5000:
1944		*speed = IB_SPEED_DDR;
1945		break;
1946	case SPEED_10000:
1947		*speed = IB_SPEED_FDR10;
1948		break;
1949	case SPEED_14000:
1950		*speed = IB_SPEED_FDR;
1951		break;
1952	case SPEED_25000:
1953		*speed = IB_SPEED_EDR;
1954		break;
1955	case SPEED_50000:
1956		*speed = IB_SPEED_HDR;
1957		break;
1958	case SPEED_100000:
1959		*speed = IB_SPEED_NDR;
1960		break;
1961	default:
1962		*speed = IB_SPEED_SDR;
1963	}
1964}
1965
1966int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1967{
1968	int rc;
1969	u32 netdev_speed;
1970	struct net_device *netdev;
1971	struct ethtool_link_ksettings lksettings = {};
1972
1973	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1974		return -EINVAL;
1975
1976	netdev = ib_device_get_netdev(dev, port_num);
1977	if (!netdev)
1978		return -ENODEV;
1979
1980	rtnl_lock();
1981	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1982	rtnl_unlock();
1983
1984	dev_put(netdev);
1985
1986	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1987		netdev_speed = lksettings.base.speed;
1988	} else {
1989		netdev_speed = SPEED_1000;
1990		if (rc)
1991			pr_warn("%s speed is unknown, defaulting to %u\n",
1992				netdev->name, netdev_speed);
1993	}
1994
1995	ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1996			       speed, width);
1997
1998	return 0;
1999}
2000EXPORT_SYMBOL(ib_get_eth_speed);
2001
2002int ib_modify_qp(struct ib_qp *qp,
2003		 struct ib_qp_attr *qp_attr,
2004		 int qp_attr_mask)
2005{
2006	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2007}
2008EXPORT_SYMBOL(ib_modify_qp);
2009
2010int ib_query_qp(struct ib_qp *qp,
2011		struct ib_qp_attr *qp_attr,
2012		int qp_attr_mask,
2013		struct ib_qp_init_attr *qp_init_attr)
2014{
2015	qp_attr->ah_attr.grh.sgid_attr = NULL;
2016	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2017
2018	return qp->device->ops.query_qp ?
2019		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2020					 qp_init_attr) : -EOPNOTSUPP;
2021}
2022EXPORT_SYMBOL(ib_query_qp);
2023
2024int ib_close_qp(struct ib_qp *qp)
2025{
2026	struct ib_qp *real_qp;
2027	unsigned long flags;
2028
2029	real_qp = qp->real_qp;
2030	if (real_qp == qp)
2031		return -EINVAL;
2032
2033	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2034	list_del(&qp->open_list);
2035	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2036
2037	atomic_dec(&real_qp->usecnt);
2038	if (qp->qp_sec)
2039		ib_close_shared_qp_security(qp->qp_sec);
2040	kfree(qp);
2041
2042	return 0;
2043}
2044EXPORT_SYMBOL(ib_close_qp);
2045
2046static int __ib_destroy_shared_qp(struct ib_qp *qp)
2047{
2048	struct ib_xrcd *xrcd;
2049	struct ib_qp *real_qp;
2050	int ret;
2051
2052	real_qp = qp->real_qp;
2053	xrcd = real_qp->xrcd;
2054	down_write(&xrcd->tgt_qps_rwsem);
2055	ib_close_qp(qp);
2056	if (atomic_read(&real_qp->usecnt) == 0)
2057		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2058	else
2059		real_qp = NULL;
2060	up_write(&xrcd->tgt_qps_rwsem);
2061
2062	if (real_qp) {
2063		ret = ib_destroy_qp(real_qp);
2064		if (!ret)
2065			atomic_dec(&xrcd->usecnt);
2066	}
2067
2068	return 0;
2069}
2070
2071int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2072{
2073	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2074	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2075	struct ib_qp_security *sec;
2076	int ret;
2077
2078	WARN_ON_ONCE(qp->mrs_used > 0);
2079
2080	if (atomic_read(&qp->usecnt))
2081		return -EBUSY;
2082
2083	if (qp->real_qp != qp)
2084		return __ib_destroy_shared_qp(qp);
2085
2086	sec  = qp->qp_sec;
2087	if (sec)
2088		ib_destroy_qp_security_begin(sec);
2089
2090	if (!qp->uobject)
2091		rdma_rw_cleanup_mrs(qp);
2092
2093	rdma_counter_unbind_qp(qp, true);
2094	ret = qp->device->ops.destroy_qp(qp, udata);
2095	if (ret) {
2096		if (sec)
2097			ib_destroy_qp_security_abort(sec);
2098		return ret;
2099	}
2100
2101	if (alt_path_sgid_attr)
2102		rdma_put_gid_attr(alt_path_sgid_attr);
2103	if (av_sgid_attr)
2104		rdma_put_gid_attr(av_sgid_attr);
2105
2106	ib_qp_usecnt_dec(qp);
2107	if (sec)
2108		ib_destroy_qp_security_end(sec);
2109
2110	rdma_restrack_del(&qp->res);
2111	kfree(qp);
2112	return ret;
2113}
2114EXPORT_SYMBOL(ib_destroy_qp_user);
2115
2116/* Completion queues */
2117
2118struct ib_cq *__ib_create_cq(struct ib_device *device,
2119			     ib_comp_handler comp_handler,
2120			     void (*event_handler)(struct ib_event *, void *),
2121			     void *cq_context,
2122			     const struct ib_cq_init_attr *cq_attr,
2123			     const char *caller)
2124{
2125	struct ib_cq *cq;
2126	int ret;
2127
2128	cq = rdma_zalloc_drv_obj(device, ib_cq);
2129	if (!cq)
2130		return ERR_PTR(-ENOMEM);
2131
2132	cq->device = device;
2133	cq->uobject = NULL;
2134	cq->comp_handler = comp_handler;
2135	cq->event_handler = event_handler;
2136	cq->cq_context = cq_context;
2137	atomic_set(&cq->usecnt, 0);
2138
2139	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2140	rdma_restrack_set_name(&cq->res, caller);
2141
2142	ret = device->ops.create_cq(cq, cq_attr, NULL);
2143	if (ret) {
2144		rdma_restrack_put(&cq->res);
2145		kfree(cq);
2146		return ERR_PTR(ret);
2147	}
2148
2149	rdma_restrack_add(&cq->res);
2150	return cq;
2151}
2152EXPORT_SYMBOL(__ib_create_cq);
2153
2154int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2155{
2156	if (cq->shared)
2157		return -EOPNOTSUPP;
2158
2159	return cq->device->ops.modify_cq ?
2160		cq->device->ops.modify_cq(cq, cq_count,
2161					  cq_period) : -EOPNOTSUPP;
2162}
2163EXPORT_SYMBOL(rdma_set_cq_moderation);
2164
2165int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2166{
2167	int ret;
2168
2169	if (WARN_ON_ONCE(cq->shared))
2170		return -EOPNOTSUPP;
2171
2172	if (atomic_read(&cq->usecnt))
2173		return -EBUSY;
2174
2175	ret = cq->device->ops.destroy_cq(cq, udata);
2176	if (ret)
2177		return ret;
2178
2179	rdma_restrack_del(&cq->res);
2180	kfree(cq);
2181	return ret;
2182}
2183EXPORT_SYMBOL(ib_destroy_cq_user);
2184
2185int ib_resize_cq(struct ib_cq *cq, int cqe)
2186{
2187	if (cq->shared)
2188		return -EOPNOTSUPP;
2189
2190	return cq->device->ops.resize_cq ?
2191		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2192}
2193EXPORT_SYMBOL(ib_resize_cq);
2194
2195/* Memory regions */
2196
2197struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2198			     u64 virt_addr, int access_flags)
2199{
2200	struct ib_mr *mr;
2201
2202	if (access_flags & IB_ACCESS_ON_DEMAND) {
2203		if (!(pd->device->attrs.kernel_cap_flags &
2204		      IBK_ON_DEMAND_PAGING)) {
2205			pr_debug("ODP support not available\n");
2206			return ERR_PTR(-EINVAL);
2207		}
2208	}
2209
2210	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2211					 access_flags, NULL);
2212
2213	if (IS_ERR(mr))
2214		return mr;
2215
2216	mr->device = pd->device;
2217	mr->type = IB_MR_TYPE_USER;
2218	mr->pd = pd;
2219	mr->dm = NULL;
2220	atomic_inc(&pd->usecnt);
2221	mr->iova =  virt_addr;
2222	mr->length = length;
2223
2224	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2225	rdma_restrack_parent_name(&mr->res, &pd->res);
2226	rdma_restrack_add(&mr->res);
2227
2228	return mr;
2229}
2230EXPORT_SYMBOL(ib_reg_user_mr);
2231
2232int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2233		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2234{
2235	if (!pd->device->ops.advise_mr)
2236		return -EOPNOTSUPP;
2237
2238	if (!num_sge)
2239		return 0;
2240
2241	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2242					 NULL);
2243}
2244EXPORT_SYMBOL(ib_advise_mr);
2245
2246int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2247{
2248	struct ib_pd *pd = mr->pd;
2249	struct ib_dm *dm = mr->dm;
2250	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2251	int ret;
2252
2253	trace_mr_dereg(mr);
2254	rdma_restrack_del(&mr->res);
2255	ret = mr->device->ops.dereg_mr(mr, udata);
2256	if (!ret) {
2257		atomic_dec(&pd->usecnt);
2258		if (dm)
2259			atomic_dec(&dm->usecnt);
2260		kfree(sig_attrs);
2261	}
2262
2263	return ret;
2264}
2265EXPORT_SYMBOL(ib_dereg_mr_user);
2266
2267/**
2268 * ib_alloc_mr() - Allocates a memory region
2269 * @pd:            protection domain associated with the region
2270 * @mr_type:       memory region type
2271 * @max_num_sg:    maximum sg entries available for registration.
2272 *
2273 * Notes:
2274 * Memory registeration page/sg lists must not exceed max_num_sg.
2275 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2276 * max_num_sg * used_page_size.
2277 *
2278 */
2279struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2280			  u32 max_num_sg)
2281{
2282	struct ib_mr *mr;
2283
2284	if (!pd->device->ops.alloc_mr) {
2285		mr = ERR_PTR(-EOPNOTSUPP);
2286		goto out;
2287	}
2288
2289	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2290		WARN_ON_ONCE(1);
2291		mr = ERR_PTR(-EINVAL);
2292		goto out;
2293	}
2294
2295	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2296	if (IS_ERR(mr))
2297		goto out;
2298
2299	mr->device = pd->device;
2300	mr->pd = pd;
2301	mr->dm = NULL;
2302	mr->uobject = NULL;
2303	atomic_inc(&pd->usecnt);
2304	mr->need_inval = false;
2305	mr->type = mr_type;
2306	mr->sig_attrs = NULL;
2307
2308	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2309	rdma_restrack_parent_name(&mr->res, &pd->res);
2310	rdma_restrack_add(&mr->res);
2311out:
2312	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2313	return mr;
2314}
2315EXPORT_SYMBOL(ib_alloc_mr);
2316
2317/**
2318 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2319 * @pd:                      protection domain associated with the region
2320 * @max_num_data_sg:         maximum data sg entries available for registration
2321 * @max_num_meta_sg:         maximum metadata sg entries available for
2322 *                           registration
2323 *
2324 * Notes:
2325 * Memory registration page/sg lists must not exceed max_num_sg,
2326 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2327 *
2328 */
2329struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2330				    u32 max_num_data_sg,
2331				    u32 max_num_meta_sg)
2332{
2333	struct ib_mr *mr;
2334	struct ib_sig_attrs *sig_attrs;
2335
2336	if (!pd->device->ops.alloc_mr_integrity ||
2337	    !pd->device->ops.map_mr_sg_pi) {
2338		mr = ERR_PTR(-EOPNOTSUPP);
2339		goto out;
2340	}
2341
2342	if (!max_num_meta_sg) {
2343		mr = ERR_PTR(-EINVAL);
2344		goto out;
2345	}
2346
2347	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2348	if (!sig_attrs) {
2349		mr = ERR_PTR(-ENOMEM);
2350		goto out;
2351	}
2352
2353	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2354						max_num_meta_sg);
2355	if (IS_ERR(mr)) {
2356		kfree(sig_attrs);
2357		goto out;
2358	}
2359
2360	mr->device = pd->device;
2361	mr->pd = pd;
2362	mr->dm = NULL;
2363	mr->uobject = NULL;
2364	atomic_inc(&pd->usecnt);
2365	mr->need_inval = false;
2366	mr->type = IB_MR_TYPE_INTEGRITY;
2367	mr->sig_attrs = sig_attrs;
2368
2369	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2370	rdma_restrack_parent_name(&mr->res, &pd->res);
2371	rdma_restrack_add(&mr->res);
2372out:
2373	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2374	return mr;
2375}
2376EXPORT_SYMBOL(ib_alloc_mr_integrity);
2377
2378/* Multicast groups */
2379
2380static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2381{
2382	struct ib_qp_init_attr init_attr = {};
2383	struct ib_qp_attr attr = {};
2384	int num_eth_ports = 0;
2385	unsigned int port;
2386
2387	/* If QP state >= init, it is assigned to a port and we can check this
2388	 * port only.
2389	 */
2390	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2391		if (attr.qp_state >= IB_QPS_INIT) {
2392			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2393			    IB_LINK_LAYER_INFINIBAND)
2394				return true;
2395			goto lid_check;
2396		}
2397	}
2398
2399	/* Can't get a quick answer, iterate over all ports */
2400	rdma_for_each_port(qp->device, port)
2401		if (rdma_port_get_link_layer(qp->device, port) !=
2402		    IB_LINK_LAYER_INFINIBAND)
2403			num_eth_ports++;
2404
2405	/* If we have at lease one Ethernet port, RoCE annex declares that
2406	 * multicast LID should be ignored. We can't tell at this step if the
2407	 * QP belongs to an IB or Ethernet port.
2408	 */
2409	if (num_eth_ports)
2410		return true;
2411
2412	/* If all the ports are IB, we can check according to IB spec. */
2413lid_check:
2414	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2415		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2416}
2417
2418int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2419{
2420	int ret;
2421
2422	if (!qp->device->ops.attach_mcast)
2423		return -EOPNOTSUPP;
2424
2425	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2426	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2427		return -EINVAL;
2428
2429	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2430	if (!ret)
2431		atomic_inc(&qp->usecnt);
2432	return ret;
2433}
2434EXPORT_SYMBOL(ib_attach_mcast);
2435
2436int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2437{
2438	int ret;
2439
2440	if (!qp->device->ops.detach_mcast)
2441		return -EOPNOTSUPP;
2442
2443	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2444	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2445		return -EINVAL;
2446
2447	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2448	if (!ret)
2449		atomic_dec(&qp->usecnt);
2450	return ret;
2451}
2452EXPORT_SYMBOL(ib_detach_mcast);
2453
2454/**
2455 * ib_alloc_xrcd_user - Allocates an XRC domain.
2456 * @device: The device on which to allocate the XRC domain.
2457 * @inode: inode to connect XRCD
2458 * @udata: Valid user data or NULL for kernel object
2459 */
2460struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2461				   struct inode *inode, struct ib_udata *udata)
2462{
2463	struct ib_xrcd *xrcd;
2464	int ret;
2465
2466	if (!device->ops.alloc_xrcd)
2467		return ERR_PTR(-EOPNOTSUPP);
2468
2469	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2470	if (!xrcd)
2471		return ERR_PTR(-ENOMEM);
2472
2473	xrcd->device = device;
2474	xrcd->inode = inode;
2475	atomic_set(&xrcd->usecnt, 0);
2476	init_rwsem(&xrcd->tgt_qps_rwsem);
2477	xa_init(&xrcd->tgt_qps);
2478
2479	ret = device->ops.alloc_xrcd(xrcd, udata);
2480	if (ret)
2481		goto err;
2482	return xrcd;
2483err:
2484	kfree(xrcd);
2485	return ERR_PTR(ret);
2486}
2487EXPORT_SYMBOL(ib_alloc_xrcd_user);
2488
2489/**
2490 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2491 * @xrcd: The XRC domain to deallocate.
2492 * @udata: Valid user data or NULL for kernel object
2493 */
2494int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2495{
2496	int ret;
2497
2498	if (atomic_read(&xrcd->usecnt))
2499		return -EBUSY;
2500
2501	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2502	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2503	if (ret)
2504		return ret;
2505	kfree(xrcd);
2506	return ret;
2507}
2508EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2509
2510/**
2511 * ib_create_wq - Creates a WQ associated with the specified protection
2512 * domain.
2513 * @pd: The protection domain associated with the WQ.
2514 * @wq_attr: A list of initial attributes required to create the
2515 * WQ. If WQ creation succeeds, then the attributes are updated to
2516 * the actual capabilities of the created WQ.
2517 *
2518 * wq_attr->max_wr and wq_attr->max_sge determine
2519 * the requested size of the WQ, and set to the actual values allocated
2520 * on return.
2521 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2522 * at least as large as the requested values.
2523 */
2524struct ib_wq *ib_create_wq(struct ib_pd *pd,
2525			   struct ib_wq_init_attr *wq_attr)
2526{
2527	struct ib_wq *wq;
2528
2529	if (!pd->device->ops.create_wq)
2530		return ERR_PTR(-EOPNOTSUPP);
2531
2532	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2533	if (!IS_ERR(wq)) {
2534		wq->event_handler = wq_attr->event_handler;
2535		wq->wq_context = wq_attr->wq_context;
2536		wq->wq_type = wq_attr->wq_type;
2537		wq->cq = wq_attr->cq;
2538		wq->device = pd->device;
2539		wq->pd = pd;
2540		wq->uobject = NULL;
2541		atomic_inc(&pd->usecnt);
2542		atomic_inc(&wq_attr->cq->usecnt);
2543		atomic_set(&wq->usecnt, 0);
2544	}
2545	return wq;
2546}
2547EXPORT_SYMBOL(ib_create_wq);
2548
2549/**
2550 * ib_destroy_wq_user - Destroys the specified user WQ.
2551 * @wq: The WQ to destroy.
2552 * @udata: Valid user data
2553 */
2554int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2555{
2556	struct ib_cq *cq = wq->cq;
2557	struct ib_pd *pd = wq->pd;
2558	int ret;
2559
2560	if (atomic_read(&wq->usecnt))
2561		return -EBUSY;
2562
2563	ret = wq->device->ops.destroy_wq(wq, udata);
2564	if (ret)
2565		return ret;
2566
2567	atomic_dec(&pd->usecnt);
2568	atomic_dec(&cq->usecnt);
2569	return ret;
2570}
2571EXPORT_SYMBOL(ib_destroy_wq_user);
2572
2573int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2574		       struct ib_mr_status *mr_status)
2575{
2576	if (!mr->device->ops.check_mr_status)
2577		return -EOPNOTSUPP;
2578
2579	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2580}
2581EXPORT_SYMBOL(ib_check_mr_status);
2582
2583int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2584			 int state)
2585{
2586	if (!device->ops.set_vf_link_state)
2587		return -EOPNOTSUPP;
2588
2589	return device->ops.set_vf_link_state(device, vf, port, state);
2590}
2591EXPORT_SYMBOL(ib_set_vf_link_state);
2592
2593int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2594		     struct ifla_vf_info *info)
2595{
2596	if (!device->ops.get_vf_config)
2597		return -EOPNOTSUPP;
2598
2599	return device->ops.get_vf_config(device, vf, port, info);
2600}
2601EXPORT_SYMBOL(ib_get_vf_config);
2602
2603int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2604		    struct ifla_vf_stats *stats)
2605{
2606	if (!device->ops.get_vf_stats)
2607		return -EOPNOTSUPP;
2608
2609	return device->ops.get_vf_stats(device, vf, port, stats);
2610}
2611EXPORT_SYMBOL(ib_get_vf_stats);
2612
2613int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2614		   int type)
2615{
2616	if (!device->ops.set_vf_guid)
2617		return -EOPNOTSUPP;
2618
2619	return device->ops.set_vf_guid(device, vf, port, guid, type);
2620}
2621EXPORT_SYMBOL(ib_set_vf_guid);
2622
2623int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2624		   struct ifla_vf_guid *node_guid,
2625		   struct ifla_vf_guid *port_guid)
2626{
2627	if (!device->ops.get_vf_guid)
2628		return -EOPNOTSUPP;
2629
2630	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2631}
2632EXPORT_SYMBOL(ib_get_vf_guid);
2633/**
2634 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2635 *     information) and set an appropriate memory region for registration.
2636 * @mr:             memory region
2637 * @data_sg:        dma mapped scatterlist for data
2638 * @data_sg_nents:  number of entries in data_sg
2639 * @data_sg_offset: offset in bytes into data_sg
2640 * @meta_sg:        dma mapped scatterlist for metadata
2641 * @meta_sg_nents:  number of entries in meta_sg
2642 * @meta_sg_offset: offset in bytes into meta_sg
2643 * @page_size:      page vector desired page size
2644 *
2645 * Constraints:
2646 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2647 *
2648 * Return: 0 on success.
2649 *
2650 * After this completes successfully, the  memory region
2651 * is ready for registration.
2652 */
2653int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2654		    int data_sg_nents, unsigned int *data_sg_offset,
2655		    struct scatterlist *meta_sg, int meta_sg_nents,
2656		    unsigned int *meta_sg_offset, unsigned int page_size)
2657{
2658	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2659		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2660		return -EOPNOTSUPP;
2661
2662	mr->page_size = page_size;
2663
2664	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2665					    data_sg_offset, meta_sg,
2666					    meta_sg_nents, meta_sg_offset);
2667}
2668EXPORT_SYMBOL(ib_map_mr_sg_pi);
2669
2670/**
2671 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2672 *     and set it the memory region.
2673 * @mr:            memory region
2674 * @sg:            dma mapped scatterlist
2675 * @sg_nents:      number of entries in sg
2676 * @sg_offset:     offset in bytes into sg
2677 * @page_size:     page vector desired page size
2678 *
2679 * Constraints:
2680 *
2681 * - The first sg element is allowed to have an offset.
2682 * - Each sg element must either be aligned to page_size or virtually
2683 *   contiguous to the previous element. In case an sg element has a
2684 *   non-contiguous offset, the mapping prefix will not include it.
2685 * - The last sg element is allowed to have length less than page_size.
2686 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2687 *   then only max_num_sg entries will be mapped.
2688 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2689 *   constraints holds and the page_size argument is ignored.
2690 *
2691 * Returns the number of sg elements that were mapped to the memory region.
2692 *
2693 * After this completes successfully, the  memory region
2694 * is ready for registration.
2695 */
2696int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2697		 unsigned int *sg_offset, unsigned int page_size)
2698{
2699	if (unlikely(!mr->device->ops.map_mr_sg))
2700		return -EOPNOTSUPP;
2701
2702	mr->page_size = page_size;
2703
2704	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2705}
2706EXPORT_SYMBOL(ib_map_mr_sg);
2707
2708/**
2709 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2710 *     to a page vector
2711 * @mr:            memory region
2712 * @sgl:           dma mapped scatterlist
2713 * @sg_nents:      number of entries in sg
2714 * @sg_offset_p:   ==== =======================================================
2715 *                 IN   start offset in bytes into sg
2716 *                 OUT  offset in bytes for element n of the sg of the first
2717 *                      byte that has not been processed where n is the return
2718 *                      value of this function.
2719 *                 ==== =======================================================
2720 * @set_page:      driver page assignment function pointer
2721 *
2722 * Core service helper for drivers to convert the largest
2723 * prefix of given sg list to a page vector. The sg list
2724 * prefix converted is the prefix that meet the requirements
2725 * of ib_map_mr_sg.
2726 *
2727 * Returns the number of sg elements that were assigned to
2728 * a page vector.
2729 */
2730int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2731		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2732{
2733	struct scatterlist *sg;
2734	u64 last_end_dma_addr = 0;
2735	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2736	unsigned int last_page_off = 0;
2737	u64 page_mask = ~((u64)mr->page_size - 1);
2738	int i, ret;
2739
2740	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2741		return -EINVAL;
2742
2743	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2744	mr->length = 0;
2745
2746	for_each_sg(sgl, sg, sg_nents, i) {
2747		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2748		u64 prev_addr = dma_addr;
2749		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2750		u64 end_dma_addr = dma_addr + dma_len;
2751		u64 page_addr = dma_addr & page_mask;
2752
2753		/*
2754		 * For the second and later elements, check whether either the
2755		 * end of element i-1 or the start of element i is not aligned
2756		 * on a page boundary.
2757		 */
2758		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2759			/* Stop mapping if there is a gap. */
2760			if (last_end_dma_addr != dma_addr)
2761				break;
2762
2763			/*
2764			 * Coalesce this element with the last. If it is small
2765			 * enough just update mr->length. Otherwise start
2766			 * mapping from the next page.
2767			 */
2768			goto next_page;
2769		}
2770
2771		do {
2772			ret = set_page(mr, page_addr);
2773			if (unlikely(ret < 0)) {
2774				sg_offset = prev_addr - sg_dma_address(sg);
2775				mr->length += prev_addr - dma_addr;
2776				if (sg_offset_p)
2777					*sg_offset_p = sg_offset;
2778				return i || sg_offset ? i : ret;
2779			}
2780			prev_addr = page_addr;
2781next_page:
2782			page_addr += mr->page_size;
2783		} while (page_addr < end_dma_addr);
2784
2785		mr->length += dma_len;
2786		last_end_dma_addr = end_dma_addr;
2787		last_page_off = end_dma_addr & ~page_mask;
2788
2789		sg_offset = 0;
2790	}
2791
2792	if (sg_offset_p)
2793		*sg_offset_p = 0;
2794	return i;
2795}
2796EXPORT_SYMBOL(ib_sg_to_pages);
2797
2798struct ib_drain_cqe {
2799	struct ib_cqe cqe;
2800	struct completion done;
2801};
2802
2803static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2804{
2805	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2806						cqe);
2807
2808	complete(&cqe->done);
2809}
2810
2811/*
2812 * Post a WR and block until its completion is reaped for the SQ.
2813 */
2814static void __ib_drain_sq(struct ib_qp *qp)
2815{
2816	struct ib_cq *cq = qp->send_cq;
2817	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2818	struct ib_drain_cqe sdrain;
2819	struct ib_rdma_wr swr = {
2820		.wr = {
2821			.next = NULL,
2822			{ .wr_cqe	= &sdrain.cqe, },
2823			.opcode	= IB_WR_RDMA_WRITE,
2824		},
2825	};
2826	int ret;
2827
2828	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2829	if (ret) {
2830		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2831		return;
2832	}
2833
2834	sdrain.cqe.done = ib_drain_qp_done;
2835	init_completion(&sdrain.done);
2836
2837	ret = ib_post_send(qp, &swr.wr, NULL);
2838	if (ret) {
2839		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2840		return;
2841	}
2842
2843	if (cq->poll_ctx == IB_POLL_DIRECT)
2844		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2845			ib_process_cq_direct(cq, -1);
2846	else
2847		wait_for_completion(&sdrain.done);
2848}
2849
2850/*
2851 * Post a WR and block until its completion is reaped for the RQ.
2852 */
2853static void __ib_drain_rq(struct ib_qp *qp)
2854{
2855	struct ib_cq *cq = qp->recv_cq;
2856	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2857	struct ib_drain_cqe rdrain;
2858	struct ib_recv_wr rwr = {};
2859	int ret;
2860
2861	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2862	if (ret) {
2863		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2864		return;
2865	}
2866
2867	rwr.wr_cqe = &rdrain.cqe;
2868	rdrain.cqe.done = ib_drain_qp_done;
2869	init_completion(&rdrain.done);
2870
2871	ret = ib_post_recv(qp, &rwr, NULL);
2872	if (ret) {
2873		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2874		return;
2875	}
2876
2877	if (cq->poll_ctx == IB_POLL_DIRECT)
2878		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2879			ib_process_cq_direct(cq, -1);
2880	else
2881		wait_for_completion(&rdrain.done);
2882}
2883
2884/**
2885 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2886 *		   application.
2887 * @qp:            queue pair to drain
2888 *
2889 * If the device has a provider-specific drain function, then
2890 * call that.  Otherwise call the generic drain function
2891 * __ib_drain_sq().
2892 *
2893 * The caller must:
2894 *
2895 * ensure there is room in the CQ and SQ for the drain work request and
2896 * completion.
2897 *
2898 * allocate the CQ using ib_alloc_cq().
2899 *
2900 * ensure that there are no other contexts that are posting WRs concurrently.
2901 * Otherwise the drain is not guaranteed.
2902 */
2903void ib_drain_sq(struct ib_qp *qp)
2904{
2905	if (qp->device->ops.drain_sq)
2906		qp->device->ops.drain_sq(qp);
2907	else
2908		__ib_drain_sq(qp);
2909	trace_cq_drain_complete(qp->send_cq);
2910}
2911EXPORT_SYMBOL(ib_drain_sq);
2912
2913/**
2914 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2915 *		   application.
2916 * @qp:            queue pair to drain
2917 *
2918 * If the device has a provider-specific drain function, then
2919 * call that.  Otherwise call the generic drain function
2920 * __ib_drain_rq().
2921 *
2922 * The caller must:
2923 *
2924 * ensure there is room in the CQ and RQ for the drain work request and
2925 * completion.
2926 *
2927 * allocate the CQ using ib_alloc_cq().
2928 *
2929 * ensure that there are no other contexts that are posting WRs concurrently.
2930 * Otherwise the drain is not guaranteed.
2931 */
2932void ib_drain_rq(struct ib_qp *qp)
2933{
2934	if (qp->device->ops.drain_rq)
2935		qp->device->ops.drain_rq(qp);
2936	else
2937		__ib_drain_rq(qp);
2938	trace_cq_drain_complete(qp->recv_cq);
2939}
2940EXPORT_SYMBOL(ib_drain_rq);
2941
2942/**
2943 * ib_drain_qp() - Block until all CQEs have been consumed by the
2944 *		   application on both the RQ and SQ.
2945 * @qp:            queue pair to drain
2946 *
2947 * The caller must:
2948 *
2949 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2950 * and completions.
2951 *
2952 * allocate the CQs using ib_alloc_cq().
2953 *
2954 * ensure that there are no other contexts that are posting WRs concurrently.
2955 * Otherwise the drain is not guaranteed.
2956 */
2957void ib_drain_qp(struct ib_qp *qp)
2958{
2959	ib_drain_sq(qp);
2960	if (!qp->srq)
2961		ib_drain_rq(qp);
2962}
2963EXPORT_SYMBOL(ib_drain_qp);
2964
2965struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2966				     enum rdma_netdev_t type, const char *name,
2967				     unsigned char name_assign_type,
2968				     void (*setup)(struct net_device *))
2969{
2970	struct rdma_netdev_alloc_params params;
2971	struct net_device *netdev;
2972	int rc;
2973
2974	if (!device->ops.rdma_netdev_get_params)
2975		return ERR_PTR(-EOPNOTSUPP);
2976
2977	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2978						&params);
2979	if (rc)
2980		return ERR_PTR(rc);
2981
2982	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2983				  setup, params.txqs, params.rxqs);
2984	if (!netdev)
2985		return ERR_PTR(-ENOMEM);
2986
2987	return netdev;
2988}
2989EXPORT_SYMBOL(rdma_alloc_netdev);
2990
2991int rdma_init_netdev(struct ib_device *device, u32 port_num,
2992		     enum rdma_netdev_t type, const char *name,
2993		     unsigned char name_assign_type,
2994		     void (*setup)(struct net_device *),
2995		     struct net_device *netdev)
2996{
2997	struct rdma_netdev_alloc_params params;
2998	int rc;
2999
3000	if (!device->ops.rdma_netdev_get_params)
3001		return -EOPNOTSUPP;
3002
3003	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3004						&params);
3005	if (rc)
3006		return rc;
3007
3008	return params.initialize_rdma_netdev(device, port_num,
3009					     netdev, params.param);
3010}
3011EXPORT_SYMBOL(rdma_init_netdev);
3012
3013void __rdma_block_iter_start(struct ib_block_iter *biter,
3014			     struct scatterlist *sglist, unsigned int nents,
3015			     unsigned long pgsz)
3016{
3017	memset(biter, 0, sizeof(struct ib_block_iter));
3018	biter->__sg = sglist;
3019	biter->__sg_nents = nents;
3020
3021	/* Driver provides best block size to use */
3022	biter->__pg_bit = __fls(pgsz);
3023}
3024EXPORT_SYMBOL(__rdma_block_iter_start);
3025
3026bool __rdma_block_iter_next(struct ib_block_iter *biter)
3027{
3028	unsigned int block_offset;
3029	unsigned int sg_delta;
3030
3031	if (!biter->__sg_nents || !biter->__sg)
3032		return false;
3033
3034	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3035	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3036	sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3037
3038	if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3039		biter->__sg_advance += sg_delta;
3040	} else {
3041		biter->__sg_advance = 0;
3042		biter->__sg = sg_next(biter->__sg);
3043		biter->__sg_nents--;
3044	}
3045
3046	return true;
3047}
3048EXPORT_SYMBOL(__rdma_block_iter_next);
3049
3050/**
3051 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3052 *   for the drivers.
3053 * @descs: array of static descriptors
3054 * @num_counters: number of elements in array
3055 * @lifespan: milliseconds between updates
3056 */
3057struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3058	const struct rdma_stat_desc *descs, int num_counters,
3059	unsigned long lifespan)
3060{
3061	struct rdma_hw_stats *stats;
3062
3063	stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3064	if (!stats)
3065		return NULL;
3066
3067	stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3068				     sizeof(*stats->is_disabled), GFP_KERNEL);
3069	if (!stats->is_disabled)
3070		goto err;
3071
3072	stats->descs = descs;
3073	stats->num_counters = num_counters;
3074	stats->lifespan = msecs_to_jiffies(lifespan);
3075	mutex_init(&stats->lock);
3076
3077	return stats;
3078
3079err:
3080	kfree(stats);
3081	return NULL;
3082}
3083EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3084
3085/**
3086 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3087 * @stats: statistics to release
3088 */
3089void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3090{
3091	if (!stats)
3092		return;
3093
3094	kfree(stats->is_disabled);
3095	kfree(stats);
3096}
3097EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3098