1/*
2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/netdevice.h>
41#include <net/net_namespace.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/hashtable.h>
45#include <rdma/rdma_netlink.h>
46#include <rdma/ib_addr.h>
47#include <rdma/ib_cache.h>
48#include <rdma/rdma_counter.h>
49
50#include "core_priv.h"
51#include "restrack.h"
52
53MODULE_AUTHOR("Roland Dreier");
54MODULE_DESCRIPTION("core kernel InfiniBand API");
55MODULE_LICENSE("Dual BSD/GPL");
56
57struct workqueue_struct *ib_comp_wq;
58struct workqueue_struct *ib_comp_unbound_wq;
59struct workqueue_struct *ib_wq;
60EXPORT_SYMBOL_GPL(ib_wq);
61static struct workqueue_struct *ib_unreg_wq;
62
63/*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86/*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94static DECLARE_RWSEM(devices_rwsem);
95#define DEVICE_REGISTERED XA_MARK_1
96
97static u32 highest_client_id;
98#define CLIENT_REGISTERED XA_MARK_1
99static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100static DECLARE_RWSEM(clients_rwsem);
101
102static void ib_client_put(struct ib_client *client)
103{
104	if (refcount_dec_and_test(&client->uses))
105		complete(&client->uses_zero);
106}
107
108/*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112#define CLIENT_DATA_REGISTERED XA_MARK_1
113
114unsigned int rdma_dev_net_id;
115
116/*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122/*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125static DECLARE_RWSEM(rdma_nets_rwsem);
126
127bool ib_devices_shared_netns = true;
128module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129MODULE_PARM_DESC(netns_mode,
130		 "Share device among net namespaces; default=1 (shared)");
131/**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 *			     from a specified net namespace or not.
134 * @dev:	Pointer to rdma device which needs to be checked
135 * @net:	Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
141bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142{
143	return (ib_devices_shared_netns ||
144		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145}
146EXPORT_SYMBOL(rdma_dev_access_netns);
147
148/*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays.  So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
155static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156			     xa_mark_t filter)
157{
158	XA_STATE(xas, xa, *indexp);
159	void *entry;
160
161	rcu_read_lock();
162	do {
163		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164		if (xa_is_zero(entry))
165			break;
166	} while (xas_retry(&xas, entry));
167	rcu_read_unlock();
168
169	if (entry) {
170		*indexp = xas.xa_index;
171		if (xa_is_zero(entry))
172			return NULL;
173		return entry;
174	}
175	return XA_ERROR(-ENOENT);
176}
177#define xan_for_each_marked(xa, index, entry, filter)                          \
178	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179	     !xa_is_err(entry);                                                \
180	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182/* RCU hash table mapping netdevice pointers to struct ib_port_data */
183static DEFINE_SPINLOCK(ndev_hash_lock);
184static DECLARE_HASHTABLE(ndev_hash, 5);
185
186static void free_netdevs(struct ib_device *ib_dev);
187static void ib_unregister_work(struct work_struct *work);
188static void __ib_unregister_device(struct ib_device *device);
189static int ib_security_change(struct notifier_block *nb, unsigned long event,
190			      void *lsm_data);
191static void ib_policy_change_task(struct work_struct *work);
192static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
194static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195			   struct va_format *vaf)
196{
197	if (ibdev && ibdev->dev.parent)
198		dev_printk_emit(level[1] - '0',
199				ibdev->dev.parent,
200				"%s %s %s: %pV",
201				dev_driver_string(ibdev->dev.parent),
202				dev_name(ibdev->dev.parent),
203				dev_name(&ibdev->dev),
204				vaf);
205	else if (ibdev)
206		printk("%s%s: %pV",
207		       level, dev_name(&ibdev->dev), vaf);
208	else
209		printk("%s(NULL ib_device): %pV", level, vaf);
210}
211
212void ibdev_printk(const char *level, const struct ib_device *ibdev,
213		  const char *format, ...)
214{
215	struct va_format vaf;
216	va_list args;
217
218	va_start(args, format);
219
220	vaf.fmt = format;
221	vaf.va = &args;
222
223	__ibdev_printk(level, ibdev, &vaf);
224
225	va_end(args);
226}
227EXPORT_SYMBOL(ibdev_printk);
228
229#define define_ibdev_printk_level(func, level)                  \
230void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231{                                                               \
232	struct va_format vaf;                                   \
233	va_list args;                                           \
234								\
235	va_start(args, fmt);                                    \
236								\
237	vaf.fmt = fmt;                                          \
238	vaf.va = &args;                                         \
239								\
240	__ibdev_printk(level, ibdev, &vaf);                     \
241								\
242	va_end(args);                                           \
243}                                                               \
244EXPORT_SYMBOL(func);
245
246define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249define_ibdev_printk_level(ibdev_err, KERN_ERR);
250define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252define_ibdev_printk_level(ibdev_info, KERN_INFO);
253
254static struct notifier_block ibdev_lsm_nb = {
255	.notifier_call = ib_security_change,
256};
257
258static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259				 struct net *net);
260
261/* Pointer to the RCU head at the start of the ib_port_data array */
262struct ib_port_data_rcu {
263	struct rcu_head rcu_head;
264	struct ib_port_data pdata[];
265};
266
267static void ib_device_check_mandatory(struct ib_device *device)
268{
269#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270	static const struct {
271		size_t offset;
272		char  *name;
273	} mandatory_table[] = {
274		IB_MANDATORY_FUNC(query_device),
275		IB_MANDATORY_FUNC(query_port),
276		IB_MANDATORY_FUNC(alloc_pd),
277		IB_MANDATORY_FUNC(dealloc_pd),
278		IB_MANDATORY_FUNC(create_qp),
279		IB_MANDATORY_FUNC(modify_qp),
280		IB_MANDATORY_FUNC(destroy_qp),
281		IB_MANDATORY_FUNC(post_send),
282		IB_MANDATORY_FUNC(post_recv),
283		IB_MANDATORY_FUNC(create_cq),
284		IB_MANDATORY_FUNC(destroy_cq),
285		IB_MANDATORY_FUNC(poll_cq),
286		IB_MANDATORY_FUNC(req_notify_cq),
287		IB_MANDATORY_FUNC(get_dma_mr),
288		IB_MANDATORY_FUNC(reg_user_mr),
289		IB_MANDATORY_FUNC(dereg_mr),
290		IB_MANDATORY_FUNC(get_port_immutable)
291	};
292	int i;
293
294	device->kverbs_provider = true;
295	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296		if (!*(void **) ((void *) &device->ops +
297				 mandatory_table[i].offset)) {
298			device->kverbs_provider = false;
299			break;
300		}
301	}
302}
303
304/*
305 * Caller must perform ib_device_put() to return the device reference count
306 * when ib_device_get_by_index() returns valid device pointer.
307 */
308struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309{
310	struct ib_device *device;
311
312	down_read(&devices_rwsem);
313	device = xa_load(&devices, index);
314	if (device) {
315		if (!rdma_dev_access_netns(device, net)) {
316			device = NULL;
317			goto out;
318		}
319
320		if (!ib_device_try_get(device))
321			device = NULL;
322	}
323out:
324	up_read(&devices_rwsem);
325	return device;
326}
327
328/**
329 * ib_device_put - Release IB device reference
330 * @device: device whose reference to be released
331 *
332 * ib_device_put() releases reference to the IB device to allow it to be
333 * unregistered and eventually free.
334 */
335void ib_device_put(struct ib_device *device)
336{
337	if (refcount_dec_and_test(&device->refcount))
338		complete(&device->unreg_completion);
339}
340EXPORT_SYMBOL(ib_device_put);
341
342static struct ib_device *__ib_device_get_by_name(const char *name)
343{
344	struct ib_device *device;
345	unsigned long index;
346
347	xa_for_each (&devices, index, device)
348		if (!strcmp(name, dev_name(&device->dev)))
349			return device;
350
351	return NULL;
352}
353
354/**
355 * ib_device_get_by_name - Find an IB device by name
356 * @name: The name to look for
357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358 *
359 * Find and hold an ib_device by its name. The caller must call
360 * ib_device_put() on the returned pointer.
361 */
362struct ib_device *ib_device_get_by_name(const char *name,
363					enum rdma_driver_id driver_id)
364{
365	struct ib_device *device;
366
367	down_read(&devices_rwsem);
368	device = __ib_device_get_by_name(name);
369	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370	    device->ops.driver_id != driver_id)
371		device = NULL;
372
373	if (device) {
374		if (!ib_device_try_get(device))
375			device = NULL;
376	}
377	up_read(&devices_rwsem);
378	return device;
379}
380EXPORT_SYMBOL(ib_device_get_by_name);
381
382static int rename_compat_devs(struct ib_device *device)
383{
384	struct ib_core_device *cdev;
385	unsigned long index;
386	int ret = 0;
387
388	mutex_lock(&device->compat_devs_mutex);
389	xa_for_each (&device->compat_devs, index, cdev) {
390		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391		if (ret) {
392			dev_warn(&cdev->dev,
393				 "Fail to rename compatdev to new name %s\n",
394				 dev_name(&device->dev));
395			break;
396		}
397	}
398	mutex_unlock(&device->compat_devs_mutex);
399	return ret;
400}
401
402int ib_device_rename(struct ib_device *ibdev, const char *name)
403{
404	unsigned long index;
405	void *client_data;
406	int ret;
407
408	down_write(&devices_rwsem);
409	if (!strcmp(name, dev_name(&ibdev->dev))) {
410		up_write(&devices_rwsem);
411		return 0;
412	}
413
414	if (__ib_device_get_by_name(name)) {
415		up_write(&devices_rwsem);
416		return -EEXIST;
417	}
418
419	ret = device_rename(&ibdev->dev, name);
420	if (ret) {
421		up_write(&devices_rwsem);
422		return ret;
423	}
424
425	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426	ret = rename_compat_devs(ibdev);
427
428	downgrade_write(&devices_rwsem);
429	down_read(&ibdev->client_data_rwsem);
430	xan_for_each_marked(&ibdev->client_data, index, client_data,
431			    CLIENT_DATA_REGISTERED) {
432		struct ib_client *client = xa_load(&clients, index);
433
434		if (!client || !client->rename)
435			continue;
436
437		client->rename(ibdev, client_data);
438	}
439	up_read(&ibdev->client_data_rwsem);
440	up_read(&devices_rwsem);
441	return 0;
442}
443
444int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445{
446	if (use_dim > 1)
447		return -EINVAL;
448	ibdev->use_cq_dim = use_dim;
449
450	return 0;
451}
452
453static int alloc_name(struct ib_device *ibdev, const char *name)
454{
455	struct ib_device *device;
456	unsigned long index;
457	struct ida inuse;
458	int rc;
459	int i;
460
461	lockdep_assert_held_write(&devices_rwsem);
462	ida_init(&inuse);
463	xa_for_each (&devices, index, device) {
464		char buf[IB_DEVICE_NAME_MAX];
465
466		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467			continue;
468		if (i < 0 || i >= INT_MAX)
469			continue;
470		snprintf(buf, sizeof buf, name, i);
471		if (strcmp(buf, dev_name(&device->dev)) != 0)
472			continue;
473
474		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475		if (rc < 0)
476			goto out;
477	}
478
479	rc = ida_alloc(&inuse, GFP_KERNEL);
480	if (rc < 0)
481		goto out;
482
483	rc = dev_set_name(&ibdev->dev, name, rc);
484out:
485	ida_destroy(&inuse);
486	return rc;
487}
488
489static void ib_device_release(struct device *device)
490{
491	struct ib_device *dev = container_of(device, struct ib_device, dev);
492
493	free_netdevs(dev);
494	WARN_ON(refcount_read(&dev->refcount));
495	if (dev->hw_stats_data)
496		ib_device_release_hw_stats(dev->hw_stats_data);
497	if (dev->port_data) {
498		ib_cache_release_one(dev);
499		ib_security_release_port_pkey_list(dev);
500		rdma_counter_release(dev);
501		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502				       pdata[0]),
503			  rcu_head);
504	}
505
506	mutex_destroy(&dev->unregistration_lock);
507	mutex_destroy(&dev->compat_devs_mutex);
508
509	xa_destroy(&dev->compat_devs);
510	xa_destroy(&dev->client_data);
511	kfree_rcu(dev, rcu_head);
512}
513
514static int ib_device_uevent(const struct device *device,
515			    struct kobj_uevent_env *env)
516{
517	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518		return -ENOMEM;
519
520	/*
521	 * It would be nice to pass the node GUID with the event...
522	 */
523
524	return 0;
525}
526
527static const void *net_namespace(const struct device *d)
528{
529	const struct ib_core_device *coredev =
530			container_of(d, struct ib_core_device, dev);
531
532	return read_pnet(&coredev->rdma_net);
533}
534
535static struct class ib_class = {
536	.name    = "infiniband",
537	.dev_release = ib_device_release,
538	.dev_uevent = ib_device_uevent,
539	.ns_type = &net_ns_type_operations,
540	.namespace = net_namespace,
541};
542
543static void rdma_init_coredev(struct ib_core_device *coredev,
544			      struct ib_device *dev, struct net *net)
545{
546	/* This BUILD_BUG_ON is intended to catch layout change
547	 * of union of ib_core_device and device.
548	 * dev must be the first element as ib_core and providers
549	 * driver uses it. Adding anything in ib_core_device before
550	 * device will break this assumption.
551	 */
552	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553		     offsetof(struct ib_device, dev));
554
555	coredev->dev.class = &ib_class;
556	coredev->dev.groups = dev->groups;
557	device_initialize(&coredev->dev);
558	coredev->owner = dev;
559	INIT_LIST_HEAD(&coredev->port_list);
560	write_pnet(&coredev->rdma_net, net);
561}
562
563/**
564 * _ib_alloc_device - allocate an IB device struct
565 * @size:size of structure to allocate
566 *
567 * Low-level drivers should use ib_alloc_device() to allocate &struct
568 * ib_device.  @size is the size of the structure to be allocated,
569 * including any private data used by the low-level driver.
570 * ib_dealloc_device() must be used to free structures allocated with
571 * ib_alloc_device().
572 */
573struct ib_device *_ib_alloc_device(size_t size)
574{
575	struct ib_device *device;
576	unsigned int i;
577
578	if (WARN_ON(size < sizeof(struct ib_device)))
579		return NULL;
580
581	device = kzalloc(size, GFP_KERNEL);
582	if (!device)
583		return NULL;
584
585	if (rdma_restrack_init(device)) {
586		kfree(device);
587		return NULL;
588	}
589
590	rdma_init_coredev(&device->coredev, device, &init_net);
591
592	INIT_LIST_HEAD(&device->event_handler_list);
593	spin_lock_init(&device->qp_open_list_lock);
594	init_rwsem(&device->event_handler_rwsem);
595	mutex_init(&device->unregistration_lock);
596	/*
597	 * client_data needs to be alloc because we don't want our mark to be
598	 * destroyed if the user stores NULL in the client data.
599	 */
600	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
601	init_rwsem(&device->client_data_rwsem);
602	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
603	mutex_init(&device->compat_devs_mutex);
604	init_completion(&device->unreg_completion);
605	INIT_WORK(&device->unregistration_work, ib_unregister_work);
606
607	spin_lock_init(&device->cq_pools_lock);
608	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
609		INIT_LIST_HEAD(&device->cq_pools[i]);
610
611	rwlock_init(&device->cache_lock);
612
613	device->uverbs_cmd_mask =
614		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
615		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
616		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
617		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
618		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
619		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
620		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
621		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
622		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
623		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
624		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
625		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
626		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
627		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
628		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
629		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
630		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
631		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
632		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
633		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
634		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
635		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
636		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
637		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
638		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
639		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
640		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
641		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
642		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
643		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
644	return device;
645}
646EXPORT_SYMBOL(_ib_alloc_device);
647
648/**
649 * ib_dealloc_device - free an IB device struct
650 * @device:structure to free
651 *
652 * Free a structure allocated with ib_alloc_device().
653 */
654void ib_dealloc_device(struct ib_device *device)
655{
656	if (device->ops.dealloc_driver)
657		device->ops.dealloc_driver(device);
658
659	/*
660	 * ib_unregister_driver() requires all devices to remain in the xarray
661	 * while their ops are callable. The last op we call is dealloc_driver
662	 * above.  This is needed to create a fence on op callbacks prior to
663	 * allowing the driver module to unload.
664	 */
665	down_write(&devices_rwsem);
666	if (xa_load(&devices, device->index) == device)
667		xa_erase(&devices, device->index);
668	up_write(&devices_rwsem);
669
670	/* Expedite releasing netdev references */
671	free_netdevs(device);
672
673	WARN_ON(!xa_empty(&device->compat_devs));
674	WARN_ON(!xa_empty(&device->client_data));
675	WARN_ON(refcount_read(&device->refcount));
676	rdma_restrack_clean(device);
677	/* Balances with device_initialize */
678	put_device(&device->dev);
679}
680EXPORT_SYMBOL(ib_dealloc_device);
681
682/*
683 * add_client_context() and remove_client_context() must be safe against
684 * parallel calls on the same device - registration/unregistration of both the
685 * device and client can be occurring in parallel.
686 *
687 * The routines need to be a fence, any caller must not return until the add
688 * or remove is fully completed.
689 */
690static int add_client_context(struct ib_device *device,
691			      struct ib_client *client)
692{
693	int ret = 0;
694
695	if (!device->kverbs_provider && !client->no_kverbs_req)
696		return 0;
697
698	down_write(&device->client_data_rwsem);
699	/*
700	 * So long as the client is registered hold both the client and device
701	 * unregistration locks.
702	 */
703	if (!refcount_inc_not_zero(&client->uses))
704		goto out_unlock;
705	refcount_inc(&device->refcount);
706
707	/*
708	 * Another caller to add_client_context got here first and has already
709	 * completely initialized context.
710	 */
711	if (xa_get_mark(&device->client_data, client->client_id,
712		    CLIENT_DATA_REGISTERED))
713		goto out;
714
715	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
716			      GFP_KERNEL));
717	if (ret)
718		goto out;
719	downgrade_write(&device->client_data_rwsem);
720	if (client->add) {
721		if (client->add(device)) {
722			/*
723			 * If a client fails to add then the error code is
724			 * ignored, but we won't call any more ops on this
725			 * client.
726			 */
727			xa_erase(&device->client_data, client->client_id);
728			up_read(&device->client_data_rwsem);
729			ib_device_put(device);
730			ib_client_put(client);
731			return 0;
732		}
733	}
734
735	/* Readers shall not see a client until add has been completed */
736	xa_set_mark(&device->client_data, client->client_id,
737		    CLIENT_DATA_REGISTERED);
738	up_read(&device->client_data_rwsem);
739	return 0;
740
741out:
742	ib_device_put(device);
743	ib_client_put(client);
744out_unlock:
745	up_write(&device->client_data_rwsem);
746	return ret;
747}
748
749static void remove_client_context(struct ib_device *device,
750				  unsigned int client_id)
751{
752	struct ib_client *client;
753	void *client_data;
754
755	down_write(&device->client_data_rwsem);
756	if (!xa_get_mark(&device->client_data, client_id,
757			 CLIENT_DATA_REGISTERED)) {
758		up_write(&device->client_data_rwsem);
759		return;
760	}
761	client_data = xa_load(&device->client_data, client_id);
762	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
763	client = xa_load(&clients, client_id);
764	up_write(&device->client_data_rwsem);
765
766	/*
767	 * Notice we cannot be holding any exclusive locks when calling the
768	 * remove callback as the remove callback can recurse back into any
769	 * public functions in this module and thus try for any locks those
770	 * functions take.
771	 *
772	 * For this reason clients and drivers should not call the
773	 * unregistration functions will holdling any locks.
774	 */
775	if (client->remove)
776		client->remove(device, client_data);
777
778	xa_erase(&device->client_data, client_id);
779	ib_device_put(device);
780	ib_client_put(client);
781}
782
783static int alloc_port_data(struct ib_device *device)
784{
785	struct ib_port_data_rcu *pdata_rcu;
786	u32 port;
787
788	if (device->port_data)
789		return 0;
790
791	/* This can only be called once the physical port range is defined */
792	if (WARN_ON(!device->phys_port_cnt))
793		return -EINVAL;
794
795	/* Reserve U32_MAX so the logic to go over all the ports is sane */
796	if (WARN_ON(device->phys_port_cnt == U32_MAX))
797		return -EINVAL;
798
799	/*
800	 * device->port_data is indexed directly by the port number to make
801	 * access to this data as efficient as possible.
802	 *
803	 * Therefore port_data is declared as a 1 based array with potential
804	 * empty slots at the beginning.
805	 */
806	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
807					size_add(rdma_end_port(device), 1)),
808			    GFP_KERNEL);
809	if (!pdata_rcu)
810		return -ENOMEM;
811	/*
812	 * The rcu_head is put in front of the port data array and the stored
813	 * pointer is adjusted since we never need to see that member until
814	 * kfree_rcu.
815	 */
816	device->port_data = pdata_rcu->pdata;
817
818	rdma_for_each_port (device, port) {
819		struct ib_port_data *pdata = &device->port_data[port];
820
821		pdata->ib_dev = device;
822		spin_lock_init(&pdata->pkey_list_lock);
823		INIT_LIST_HEAD(&pdata->pkey_list);
824		spin_lock_init(&pdata->netdev_lock);
825		INIT_HLIST_NODE(&pdata->ndev_hash_link);
826	}
827	return 0;
828}
829
830static int verify_immutable(const struct ib_device *dev, u32 port)
831{
832	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
833			    rdma_max_mad_size(dev, port) != 0);
834}
835
836static int setup_port_data(struct ib_device *device)
837{
838	u32 port;
839	int ret;
840
841	ret = alloc_port_data(device);
842	if (ret)
843		return ret;
844
845	rdma_for_each_port (device, port) {
846		struct ib_port_data *pdata = &device->port_data[port];
847
848		ret = device->ops.get_port_immutable(device, port,
849						     &pdata->immutable);
850		if (ret)
851			return ret;
852
853		if (verify_immutable(device, port))
854			return -EINVAL;
855	}
856	return 0;
857}
858
859/**
860 * ib_port_immutable_read() - Read rdma port's immutable data
861 * @dev: IB device
862 * @port: port number whose immutable data to read. It starts with index 1 and
863 *        valid upto including rdma_end_port().
864 */
865const struct ib_port_immutable*
866ib_port_immutable_read(struct ib_device *dev, unsigned int port)
867{
868	WARN_ON(!rdma_is_port_valid(dev, port));
869	return &dev->port_data[port].immutable;
870}
871EXPORT_SYMBOL(ib_port_immutable_read);
872
873void ib_get_device_fw_str(struct ib_device *dev, char *str)
874{
875	if (dev->ops.get_dev_fw_str)
876		dev->ops.get_dev_fw_str(dev, str);
877	else
878		str[0] = '\0';
879}
880EXPORT_SYMBOL(ib_get_device_fw_str);
881
882static void ib_policy_change_task(struct work_struct *work)
883{
884	struct ib_device *dev;
885	unsigned long index;
886
887	down_read(&devices_rwsem);
888	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
889		unsigned int i;
890
891		rdma_for_each_port (dev, i) {
892			u64 sp;
893			ib_get_cached_subnet_prefix(dev, i, &sp);
894			ib_security_cache_change(dev, i, sp);
895		}
896	}
897	up_read(&devices_rwsem);
898}
899
900static int ib_security_change(struct notifier_block *nb, unsigned long event,
901			      void *lsm_data)
902{
903	if (event != LSM_POLICY_CHANGE)
904		return NOTIFY_DONE;
905
906	schedule_work(&ib_policy_change_work);
907	ib_mad_agent_security_change();
908
909	return NOTIFY_OK;
910}
911
912static void compatdev_release(struct device *dev)
913{
914	struct ib_core_device *cdev =
915		container_of(dev, struct ib_core_device, dev);
916
917	kfree(cdev);
918}
919
920static int add_one_compat_dev(struct ib_device *device,
921			      struct rdma_dev_net *rnet)
922{
923	struct ib_core_device *cdev;
924	int ret;
925
926	lockdep_assert_held(&rdma_nets_rwsem);
927	if (!ib_devices_shared_netns)
928		return 0;
929
930	/*
931	 * Create and add compat device in all namespaces other than where it
932	 * is currently bound to.
933	 */
934	if (net_eq(read_pnet(&rnet->net),
935		   read_pnet(&device->coredev.rdma_net)))
936		return 0;
937
938	/*
939	 * The first of init_net() or ib_register_device() to take the
940	 * compat_devs_mutex wins and gets to add the device. Others will wait
941	 * for completion here.
942	 */
943	mutex_lock(&device->compat_devs_mutex);
944	cdev = xa_load(&device->compat_devs, rnet->id);
945	if (cdev) {
946		ret = 0;
947		goto done;
948	}
949	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
950	if (ret)
951		goto done;
952
953	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
954	if (!cdev) {
955		ret = -ENOMEM;
956		goto cdev_err;
957	}
958
959	cdev->dev.parent = device->dev.parent;
960	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
961	cdev->dev.release = compatdev_release;
962	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
963	if (ret)
964		goto add_err;
965
966	ret = device_add(&cdev->dev);
967	if (ret)
968		goto add_err;
969	ret = ib_setup_port_attrs(cdev);
970	if (ret)
971		goto port_err;
972
973	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
974			      cdev, GFP_KERNEL));
975	if (ret)
976		goto insert_err;
977
978	mutex_unlock(&device->compat_devs_mutex);
979	return 0;
980
981insert_err:
982	ib_free_port_attrs(cdev);
983port_err:
984	device_del(&cdev->dev);
985add_err:
986	put_device(&cdev->dev);
987cdev_err:
988	xa_release(&device->compat_devs, rnet->id);
989done:
990	mutex_unlock(&device->compat_devs_mutex);
991	return ret;
992}
993
994static void remove_one_compat_dev(struct ib_device *device, u32 id)
995{
996	struct ib_core_device *cdev;
997
998	mutex_lock(&device->compat_devs_mutex);
999	cdev = xa_erase(&device->compat_devs, id);
1000	mutex_unlock(&device->compat_devs_mutex);
1001	if (cdev) {
1002		ib_free_port_attrs(cdev);
1003		device_del(&cdev->dev);
1004		put_device(&cdev->dev);
1005	}
1006}
1007
1008static void remove_compat_devs(struct ib_device *device)
1009{
1010	struct ib_core_device *cdev;
1011	unsigned long index;
1012
1013	xa_for_each (&device->compat_devs, index, cdev)
1014		remove_one_compat_dev(device, index);
1015}
1016
1017static int add_compat_devs(struct ib_device *device)
1018{
1019	struct rdma_dev_net *rnet;
1020	unsigned long index;
1021	int ret = 0;
1022
1023	lockdep_assert_held(&devices_rwsem);
1024
1025	down_read(&rdma_nets_rwsem);
1026	xa_for_each (&rdma_nets, index, rnet) {
1027		ret = add_one_compat_dev(device, rnet);
1028		if (ret)
1029			break;
1030	}
1031	up_read(&rdma_nets_rwsem);
1032	return ret;
1033}
1034
1035static void remove_all_compat_devs(void)
1036{
1037	struct ib_compat_device *cdev;
1038	struct ib_device *dev;
1039	unsigned long index;
1040
1041	down_read(&devices_rwsem);
1042	xa_for_each (&devices, index, dev) {
1043		unsigned long c_index = 0;
1044
1045		/* Hold nets_rwsem so that any other thread modifying this
1046		 * system param can sync with this thread.
1047		 */
1048		down_read(&rdma_nets_rwsem);
1049		xa_for_each (&dev->compat_devs, c_index, cdev)
1050			remove_one_compat_dev(dev, c_index);
1051		up_read(&rdma_nets_rwsem);
1052	}
1053	up_read(&devices_rwsem);
1054}
1055
1056static int add_all_compat_devs(void)
1057{
1058	struct rdma_dev_net *rnet;
1059	struct ib_device *dev;
1060	unsigned long index;
1061	int ret = 0;
1062
1063	down_read(&devices_rwsem);
1064	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065		unsigned long net_index = 0;
1066
1067		/* Hold nets_rwsem so that any other thread modifying this
1068		 * system param can sync with this thread.
1069		 */
1070		down_read(&rdma_nets_rwsem);
1071		xa_for_each (&rdma_nets, net_index, rnet) {
1072			ret = add_one_compat_dev(dev, rnet);
1073			if (ret)
1074				break;
1075		}
1076		up_read(&rdma_nets_rwsem);
1077	}
1078	up_read(&devices_rwsem);
1079	if (ret)
1080		remove_all_compat_devs();
1081	return ret;
1082}
1083
1084int rdma_compatdev_set(u8 enable)
1085{
1086	struct rdma_dev_net *rnet;
1087	unsigned long index;
1088	int ret = 0;
1089
1090	down_write(&rdma_nets_rwsem);
1091	if (ib_devices_shared_netns == enable) {
1092		up_write(&rdma_nets_rwsem);
1093		return 0;
1094	}
1095
1096	/* enable/disable of compat devices is not supported
1097	 * when more than default init_net exists.
1098	 */
1099	xa_for_each (&rdma_nets, index, rnet) {
1100		ret++;
1101		break;
1102	}
1103	if (!ret)
1104		ib_devices_shared_netns = enable;
1105	up_write(&rdma_nets_rwsem);
1106	if (ret)
1107		return -EBUSY;
1108
1109	if (enable)
1110		ret = add_all_compat_devs();
1111	else
1112		remove_all_compat_devs();
1113	return ret;
1114}
1115
1116static void rdma_dev_exit_net(struct net *net)
1117{
1118	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119	struct ib_device *dev;
1120	unsigned long index;
1121	int ret;
1122
1123	down_write(&rdma_nets_rwsem);
1124	/*
1125	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1126	 */
1127	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1128	WARN_ON(ret);
1129	up_write(&rdma_nets_rwsem);
1130
1131	down_read(&devices_rwsem);
1132	xa_for_each (&devices, index, dev) {
1133		get_device(&dev->dev);
1134		/*
1135		 * Release the devices_rwsem so that pontentially blocking
1136		 * device_del, doesn't hold the devices_rwsem for too long.
1137		 */
1138		up_read(&devices_rwsem);
1139
1140		remove_one_compat_dev(dev, rnet->id);
1141
1142		/*
1143		 * If the real device is in the NS then move it back to init.
1144		 */
1145		rdma_dev_change_netns(dev, net, &init_net);
1146
1147		put_device(&dev->dev);
1148		down_read(&devices_rwsem);
1149	}
1150	up_read(&devices_rwsem);
1151
1152	rdma_nl_net_exit(rnet);
1153	xa_erase(&rdma_nets, rnet->id);
1154}
1155
1156static __net_init int rdma_dev_init_net(struct net *net)
1157{
1158	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159	unsigned long index;
1160	struct ib_device *dev;
1161	int ret;
1162
1163	write_pnet(&rnet->net, net);
1164
1165	ret = rdma_nl_net_init(rnet);
1166	if (ret)
1167		return ret;
1168
1169	/* No need to create any compat devices in default init_net. */
1170	if (net_eq(net, &init_net))
1171		return 0;
1172
1173	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1174	if (ret) {
1175		rdma_nl_net_exit(rnet);
1176		return ret;
1177	}
1178
1179	down_read(&devices_rwsem);
1180	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181		/* Hold nets_rwsem so that netlink command cannot change
1182		 * system configuration for device sharing mode.
1183		 */
1184		down_read(&rdma_nets_rwsem);
1185		ret = add_one_compat_dev(dev, rnet);
1186		up_read(&rdma_nets_rwsem);
1187		if (ret)
1188			break;
1189	}
1190	up_read(&devices_rwsem);
1191
1192	if (ret)
1193		rdma_dev_exit_net(net);
1194
1195	return ret;
1196}
1197
1198/*
1199 * Assign the unique string device name and the unique device index. This is
1200 * undone by ib_dealloc_device.
1201 */
1202static int assign_name(struct ib_device *device, const char *name)
1203{
1204	static u32 last_id;
1205	int ret;
1206
1207	down_write(&devices_rwsem);
1208	/* Assign a unique name to the device */
1209	if (strchr(name, '%'))
1210		ret = alloc_name(device, name);
1211	else
1212		ret = dev_set_name(&device->dev, name);
1213	if (ret)
1214		goto out;
1215
1216	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1217		ret = -ENFILE;
1218		goto out;
1219	}
1220	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221
1222	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1223			&last_id, GFP_KERNEL);
1224	if (ret > 0)
1225		ret = 0;
1226
1227out:
1228	up_write(&devices_rwsem);
1229	return ret;
1230}
1231
1232/*
1233 * setup_device() allocates memory and sets up data that requires calling the
1234 * device ops, this is the only reason these actions are not done during
1235 * ib_alloc_device. It is undone by ib_dealloc_device().
1236 */
1237static int setup_device(struct ib_device *device)
1238{
1239	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240	int ret;
1241
1242	ib_device_check_mandatory(device);
1243
1244	ret = setup_port_data(device);
1245	if (ret) {
1246		dev_warn(&device->dev, "Couldn't create per-port data\n");
1247		return ret;
1248	}
1249
1250	memset(&device->attrs, 0, sizeof(device->attrs));
1251	ret = device->ops.query_device(device, &device->attrs, &uhw);
1252	if (ret) {
1253		dev_warn(&device->dev,
1254			 "Couldn't query the device attributes\n");
1255		return ret;
1256	}
1257
1258	return 0;
1259}
1260
1261static void disable_device(struct ib_device *device)
1262{
1263	u32 cid;
1264
1265	WARN_ON(!refcount_read(&device->refcount));
1266
1267	down_write(&devices_rwsem);
1268	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269	up_write(&devices_rwsem);
1270
1271	/*
1272	 * Remove clients in LIFO order, see assign_client_id. This could be
1273	 * more efficient if xarray learns to reverse iterate. Since no new
1274	 * clients can be added to this ib_device past this point we only need
1275	 * the maximum possible client_id value here.
1276	 */
1277	down_read(&clients_rwsem);
1278	cid = highest_client_id;
1279	up_read(&clients_rwsem);
1280	while (cid) {
1281		cid--;
1282		remove_client_context(device, cid);
1283	}
1284
1285	ib_cq_pool_cleanup(device);
1286
1287	/* Pairs with refcount_set in enable_device */
1288	ib_device_put(device);
1289	wait_for_completion(&device->unreg_completion);
1290
1291	/*
1292	 * compat devices must be removed after device refcount drops to zero.
1293	 * Otherwise init_net() may add more compatdevs after removing compat
1294	 * devices and before device is disabled.
1295	 */
1296	remove_compat_devs(device);
1297}
1298
1299/*
1300 * An enabled device is visible to all clients and to all the public facing
1301 * APIs that return a device pointer. This always returns with a new get, even
1302 * if it fails.
1303 */
1304static int enable_device_and_get(struct ib_device *device)
1305{
1306	struct ib_client *client;
1307	unsigned long index;
1308	int ret = 0;
1309
1310	/*
1311	 * One ref belongs to the xa and the other belongs to this
1312	 * thread. This is needed to guard against parallel unregistration.
1313	 */
1314	refcount_set(&device->refcount, 2);
1315	down_write(&devices_rwsem);
1316	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1317
1318	/*
1319	 * By using downgrade_write() we ensure that no other thread can clear
1320	 * DEVICE_REGISTERED while we are completing the client setup.
1321	 */
1322	downgrade_write(&devices_rwsem);
1323
1324	if (device->ops.enable_driver) {
1325		ret = device->ops.enable_driver(device);
1326		if (ret)
1327			goto out;
1328	}
1329
1330	down_read(&clients_rwsem);
1331	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332		ret = add_client_context(device, client);
1333		if (ret)
1334			break;
1335	}
1336	up_read(&clients_rwsem);
1337	if (!ret)
1338		ret = add_compat_devs(device);
1339out:
1340	up_read(&devices_rwsem);
1341	return ret;
1342}
1343
1344static void prevent_dealloc_device(struct ib_device *ib_dev)
1345{
1346}
1347
1348/**
1349 * ib_register_device - Register an IB device with IB core
1350 * @device: Device to register
1351 * @name: unique string device name. This may include a '%' which will
1352 * 	  cause a unique index to be added to the passed device name.
1353 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354 *	        device will be used. In this case the caller should fully
1355 *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1356 *
1357 * Low-level drivers use ib_register_device() to register their
1358 * devices with the IB core.  All registered clients will receive a
1359 * callback for each device that is added. @device must be allocated
1360 * with ib_alloc_device().
1361 *
1362 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363 * asynchronously then the device pointer may become freed as soon as this
1364 * function returns.
1365 */
1366int ib_register_device(struct ib_device *device, const char *name,
1367		       struct device *dma_device)
1368{
1369	int ret;
1370
1371	ret = assign_name(device, name);
1372	if (ret)
1373		return ret;
1374
1375	/*
1376	 * If the caller does not provide a DMA capable device then the IB core
1377	 * will set up ib_sge and scatterlist structures that stash the kernel
1378	 * virtual address into the address field.
1379	 */
1380	WARN_ON(dma_device && !dma_device->dma_parms);
1381	device->dma_device = dma_device;
1382
1383	ret = setup_device(device);
1384	if (ret)
1385		return ret;
1386
1387	ret = ib_cache_setup_one(device);
1388	if (ret) {
1389		dev_warn(&device->dev,
1390			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1391		return ret;
1392	}
1393
1394	device->groups[0] = &ib_dev_attr_group;
1395	device->groups[1] = device->ops.device_group;
1396	ret = ib_setup_device_attrs(device);
1397	if (ret)
1398		goto cache_cleanup;
1399
1400	ib_device_register_rdmacg(device);
1401
1402	rdma_counter_init(device);
1403
1404	/*
1405	 * Ensure that ADD uevent is not fired because it
1406	 * is too early amd device is not initialized yet.
1407	 */
1408	dev_set_uevent_suppress(&device->dev, true);
1409	ret = device_add(&device->dev);
1410	if (ret)
1411		goto cg_cleanup;
1412
1413	ret = ib_setup_port_attrs(&device->coredev);
1414	if (ret) {
1415		dev_warn(&device->dev,
1416			 "Couldn't register device with driver model\n");
1417		goto dev_cleanup;
1418	}
1419
1420	ret = enable_device_and_get(device);
1421	if (ret) {
1422		void (*dealloc_fn)(struct ib_device *);
1423
1424		/*
1425		 * If we hit this error flow then we don't want to
1426		 * automatically dealloc the device since the caller is
1427		 * expected to call ib_dealloc_device() after
1428		 * ib_register_device() fails. This is tricky due to the
1429		 * possibility for a parallel unregistration along with this
1430		 * error flow. Since we have a refcount here we know any
1431		 * parallel flow is stopped in disable_device and will see the
1432		 * special dealloc_driver pointer, causing the responsibility to
1433		 * ib_dealloc_device() to revert back to this thread.
1434		 */
1435		dealloc_fn = device->ops.dealloc_driver;
1436		device->ops.dealloc_driver = prevent_dealloc_device;
1437		ib_device_put(device);
1438		__ib_unregister_device(device);
1439		device->ops.dealloc_driver = dealloc_fn;
1440		dev_set_uevent_suppress(&device->dev, false);
1441		return ret;
1442	}
1443	dev_set_uevent_suppress(&device->dev, false);
1444	/* Mark for userspace that device is ready */
1445	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1446	ib_device_put(device);
1447
1448	return 0;
1449
1450dev_cleanup:
1451	device_del(&device->dev);
1452cg_cleanup:
1453	dev_set_uevent_suppress(&device->dev, false);
1454	ib_device_unregister_rdmacg(device);
1455cache_cleanup:
1456	ib_cache_cleanup_one(device);
1457	return ret;
1458}
1459EXPORT_SYMBOL(ib_register_device);
1460
1461/* Callers must hold a get on the device. */
1462static void __ib_unregister_device(struct ib_device *ib_dev)
1463{
1464	/*
1465	 * We have a registration lock so that all the calls to unregister are
1466	 * fully fenced, once any unregister returns the device is truely
1467	 * unregistered even if multiple callers are unregistering it at the
1468	 * same time. This also interacts with the registration flow and
1469	 * provides sane semantics if register and unregister are racing.
1470	 */
1471	mutex_lock(&ib_dev->unregistration_lock);
1472	if (!refcount_read(&ib_dev->refcount))
1473		goto out;
1474
1475	disable_device(ib_dev);
1476
1477	/* Expedite removing unregistered pointers from the hash table */
1478	free_netdevs(ib_dev);
1479
1480	ib_free_port_attrs(&ib_dev->coredev);
1481	device_del(&ib_dev->dev);
1482	ib_device_unregister_rdmacg(ib_dev);
1483	ib_cache_cleanup_one(ib_dev);
1484
1485	/*
1486	 * Drivers using the new flow may not call ib_dealloc_device except
1487	 * in error unwind prior to registration success.
1488	 */
1489	if (ib_dev->ops.dealloc_driver &&
1490	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492		ib_dealloc_device(ib_dev);
1493	}
1494out:
1495	mutex_unlock(&ib_dev->unregistration_lock);
1496}
1497
1498/**
1499 * ib_unregister_device - Unregister an IB device
1500 * @ib_dev: The device to unregister
1501 *
1502 * Unregister an IB device.  All clients will receive a remove callback.
1503 *
1504 * Callers should call this routine only once, and protect against races with
1505 * registration. Typically it should only be called as part of a remove
1506 * callback in an implementation of driver core's struct device_driver and
1507 * related.
1508 *
1509 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510 * this function.
1511 */
1512void ib_unregister_device(struct ib_device *ib_dev)
1513{
1514	get_device(&ib_dev->dev);
1515	__ib_unregister_device(ib_dev);
1516	put_device(&ib_dev->dev);
1517}
1518EXPORT_SYMBOL(ib_unregister_device);
1519
1520/**
1521 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522 * @ib_dev: The device to unregister
1523 *
1524 * This is the same as ib_unregister_device(), except it includes an internal
1525 * ib_device_put() that should match a 'get' obtained by the caller.
1526 *
1527 * It is safe to call this routine concurrently from multiple threads while
1528 * holding the 'get'. When the function returns the device is fully
1529 * unregistered.
1530 *
1531 * Drivers using this flow MUST use the driver_unregister callback to clean up
1532 * their resources associated with the device and dealloc it.
1533 */
1534void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535{
1536	WARN_ON(!ib_dev->ops.dealloc_driver);
1537	get_device(&ib_dev->dev);
1538	ib_device_put(ib_dev);
1539	__ib_unregister_device(ib_dev);
1540	put_device(&ib_dev->dev);
1541}
1542EXPORT_SYMBOL(ib_unregister_device_and_put);
1543
1544/**
1545 * ib_unregister_driver - Unregister all IB devices for a driver
1546 * @driver_id: The driver to unregister
1547 *
1548 * This implements a fence for device unregistration. It only returns once all
1549 * devices associated with the driver_id have fully completed their
1550 * unregistration and returned from ib_unregister_device*().
1551 *
1552 * If device's are not yet unregistered it goes ahead and starts unregistering
1553 * them.
1554 *
1555 * This does not block creation of new devices with the given driver_id, that
1556 * is the responsibility of the caller.
1557 */
1558void ib_unregister_driver(enum rdma_driver_id driver_id)
1559{
1560	struct ib_device *ib_dev;
1561	unsigned long index;
1562
1563	down_read(&devices_rwsem);
1564	xa_for_each (&devices, index, ib_dev) {
1565		if (ib_dev->ops.driver_id != driver_id)
1566			continue;
1567
1568		get_device(&ib_dev->dev);
1569		up_read(&devices_rwsem);
1570
1571		WARN_ON(!ib_dev->ops.dealloc_driver);
1572		__ib_unregister_device(ib_dev);
1573
1574		put_device(&ib_dev->dev);
1575		down_read(&devices_rwsem);
1576	}
1577	up_read(&devices_rwsem);
1578}
1579EXPORT_SYMBOL(ib_unregister_driver);
1580
1581static void ib_unregister_work(struct work_struct *work)
1582{
1583	struct ib_device *ib_dev =
1584		container_of(work, struct ib_device, unregistration_work);
1585
1586	__ib_unregister_device(ib_dev);
1587	put_device(&ib_dev->dev);
1588}
1589
1590/**
1591 * ib_unregister_device_queued - Unregister a device using a work queue
1592 * @ib_dev: The device to unregister
1593 *
1594 * This schedules an asynchronous unregistration using a WQ for the device. A
1595 * driver should use this to avoid holding locks while doing unregistration,
1596 * such as holding the RTNL lock.
1597 *
1598 * Drivers using this API must use ib_unregister_driver before module unload
1599 * to ensure that all scheduled unregistrations have completed.
1600 */
1601void ib_unregister_device_queued(struct ib_device *ib_dev)
1602{
1603	WARN_ON(!refcount_read(&ib_dev->refcount));
1604	WARN_ON(!ib_dev->ops.dealloc_driver);
1605	get_device(&ib_dev->dev);
1606	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1607		put_device(&ib_dev->dev);
1608}
1609EXPORT_SYMBOL(ib_unregister_device_queued);
1610
1611/*
1612 * The caller must pass in a device that has the kref held and the refcount
1613 * released. If the device is in cur_net and still registered then it is moved
1614 * into net.
1615 */
1616static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617				 struct net *net)
1618{
1619	int ret2 = -EINVAL;
1620	int ret;
1621
1622	mutex_lock(&device->unregistration_lock);
1623
1624	/*
1625	 * If a device not under ib_device_get() or if the unregistration_lock
1626	 * is not held, the namespace can be changed, or it can be unregistered.
1627	 * Check again under the lock.
1628	 */
1629	if (refcount_read(&device->refcount) == 0 ||
1630	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1631		ret = -ENODEV;
1632		goto out;
1633	}
1634
1635	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1636	disable_device(device);
1637
1638	/*
1639	 * At this point no one can be using the device, so it is safe to
1640	 * change the namespace.
1641	 */
1642	write_pnet(&device->coredev.rdma_net, net);
1643
1644	down_read(&devices_rwsem);
1645	/*
1646	 * Currently rdma devices are system wide unique. So the device name
1647	 * is guaranteed free in the new namespace. Publish the new namespace
1648	 * at the sysfs level.
1649	 */
1650	ret = device_rename(&device->dev, dev_name(&device->dev));
1651	up_read(&devices_rwsem);
1652	if (ret) {
1653		dev_warn(&device->dev,
1654			 "%s: Couldn't rename device after namespace change\n",
1655			 __func__);
1656		/* Try and put things back and re-enable the device */
1657		write_pnet(&device->coredev.rdma_net, cur_net);
1658	}
1659
1660	ret2 = enable_device_and_get(device);
1661	if (ret2) {
1662		/*
1663		 * This shouldn't really happen, but if it does, let the user
1664		 * retry at later point. So don't disable the device.
1665		 */
1666		dev_warn(&device->dev,
1667			 "%s: Couldn't re-enable device after namespace change\n",
1668			 __func__);
1669	}
1670	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1671
1672	ib_device_put(device);
1673out:
1674	mutex_unlock(&device->unregistration_lock);
1675	if (ret)
1676		return ret;
1677	return ret2;
1678}
1679
1680int ib_device_set_netns_put(struct sk_buff *skb,
1681			    struct ib_device *dev, u32 ns_fd)
1682{
1683	struct net *net;
1684	int ret;
1685
1686	net = get_net_ns_by_fd(ns_fd);
1687	if (IS_ERR(net)) {
1688		ret = PTR_ERR(net);
1689		goto net_err;
1690	}
1691
1692	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1693		ret = -EPERM;
1694		goto ns_err;
1695	}
1696
1697	/*
1698	 * All the ib_clients, including uverbs, are reset when the namespace is
1699	 * changed and this cannot be blocked waiting for userspace to do
1700	 * something, so disassociation is mandatory.
1701	 */
1702	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703		ret = -EOPNOTSUPP;
1704		goto ns_err;
1705	}
1706
1707	get_device(&dev->dev);
1708	ib_device_put(dev);
1709	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1710	put_device(&dev->dev);
1711
1712	put_net(net);
1713	return ret;
1714
1715ns_err:
1716	put_net(net);
1717net_err:
1718	ib_device_put(dev);
1719	return ret;
1720}
1721
1722static struct pernet_operations rdma_dev_net_ops = {
1723	.init = rdma_dev_init_net,
1724	.exit = rdma_dev_exit_net,
1725	.id = &rdma_dev_net_id,
1726	.size = sizeof(struct rdma_dev_net),
1727};
1728
1729static int assign_client_id(struct ib_client *client)
1730{
1731	int ret;
1732
1733	lockdep_assert_held(&clients_rwsem);
1734	/*
1735	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1736	 * achieve this we assign client_ids so they are sorted in
1737	 * registration order.
1738	 */
1739	client->client_id = highest_client_id;
1740	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1741	if (ret)
1742		return ret;
1743
1744	highest_client_id++;
1745	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1746	return 0;
1747}
1748
1749static void remove_client_id(struct ib_client *client)
1750{
1751	down_write(&clients_rwsem);
1752	xa_erase(&clients, client->client_id);
1753	for (; highest_client_id; highest_client_id--)
1754		if (xa_load(&clients, highest_client_id - 1))
1755			break;
1756	up_write(&clients_rwsem);
1757}
1758
1759/**
1760 * ib_register_client - Register an IB client
1761 * @client:Client to register
1762 *
1763 * Upper level users of the IB drivers can use ib_register_client() to
1764 * register callbacks for IB device addition and removal.  When an IB
1765 * device is added, each registered client's add method will be called
1766 * (in the order the clients were registered), and when a device is
1767 * removed, each client's remove method will be called (in the reverse
1768 * order that clients were registered).  In addition, when
1769 * ib_register_client() is called, the client will receive an add
1770 * callback for all devices already registered.
1771 */
1772int ib_register_client(struct ib_client *client)
1773{
1774	struct ib_device *device;
1775	unsigned long index;
1776	bool need_unreg = false;
1777	int ret;
1778
1779	refcount_set(&client->uses, 1);
1780	init_completion(&client->uses_zero);
1781
1782	/*
1783	 * The devices_rwsem is held in write mode to ensure that a racing
1784	 * ib_register_device() sees a consisent view of clients and devices.
1785	 */
1786	down_write(&devices_rwsem);
1787	down_write(&clients_rwsem);
1788	ret = assign_client_id(client);
1789	if (ret)
1790		goto out;
1791
1792	need_unreg = true;
1793	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1794		ret = add_client_context(device, client);
1795		if (ret)
1796			goto out;
1797	}
1798	ret = 0;
1799out:
1800	up_write(&clients_rwsem);
1801	up_write(&devices_rwsem);
1802	if (need_unreg && ret)
1803		ib_unregister_client(client);
1804	return ret;
1805}
1806EXPORT_SYMBOL(ib_register_client);
1807
1808/**
1809 * ib_unregister_client - Unregister an IB client
1810 * @client:Client to unregister
1811 *
1812 * Upper level users use ib_unregister_client() to remove their client
1813 * registration.  When ib_unregister_client() is called, the client
1814 * will receive a remove callback for each IB device still registered.
1815 *
1816 * This is a full fence, once it returns no client callbacks will be called,
1817 * or are running in another thread.
1818 */
1819void ib_unregister_client(struct ib_client *client)
1820{
1821	struct ib_device *device;
1822	unsigned long index;
1823
1824	down_write(&clients_rwsem);
1825	ib_client_put(client);
1826	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1827	up_write(&clients_rwsem);
1828
1829	/* We do not want to have locks while calling client->remove() */
1830	rcu_read_lock();
1831	xa_for_each (&devices, index, device) {
1832		if (!ib_device_try_get(device))
1833			continue;
1834		rcu_read_unlock();
1835
1836		remove_client_context(device, client->client_id);
1837
1838		ib_device_put(device);
1839		rcu_read_lock();
1840	}
1841	rcu_read_unlock();
1842
1843	/*
1844	 * remove_client_context() is not a fence, it can return even though a
1845	 * removal is ongoing. Wait until all removals are completed.
1846	 */
1847	wait_for_completion(&client->uses_zero);
1848	remove_client_id(client);
1849}
1850EXPORT_SYMBOL(ib_unregister_client);
1851
1852static int __ib_get_global_client_nl_info(const char *client_name,
1853					  struct ib_client_nl_info *res)
1854{
1855	struct ib_client *client;
1856	unsigned long index;
1857	int ret = -ENOENT;
1858
1859	down_read(&clients_rwsem);
1860	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1861		if (strcmp(client->name, client_name) != 0)
1862			continue;
1863		if (!client->get_global_nl_info) {
1864			ret = -EOPNOTSUPP;
1865			break;
1866		}
1867		ret = client->get_global_nl_info(res);
1868		if (WARN_ON(ret == -ENOENT))
1869			ret = -EINVAL;
1870		if (!ret && res->cdev)
1871			get_device(res->cdev);
1872		break;
1873	}
1874	up_read(&clients_rwsem);
1875	return ret;
1876}
1877
1878static int __ib_get_client_nl_info(struct ib_device *ibdev,
1879				   const char *client_name,
1880				   struct ib_client_nl_info *res)
1881{
1882	unsigned long index;
1883	void *client_data;
1884	int ret = -ENOENT;
1885
1886	down_read(&ibdev->client_data_rwsem);
1887	xan_for_each_marked (&ibdev->client_data, index, client_data,
1888			     CLIENT_DATA_REGISTERED) {
1889		struct ib_client *client = xa_load(&clients, index);
1890
1891		if (!client || strcmp(client->name, client_name) != 0)
1892			continue;
1893		if (!client->get_nl_info) {
1894			ret = -EOPNOTSUPP;
1895			break;
1896		}
1897		ret = client->get_nl_info(ibdev, client_data, res);
1898		if (WARN_ON(ret == -ENOENT))
1899			ret = -EINVAL;
1900
1901		/*
1902		 * The cdev is guaranteed valid as long as we are inside the
1903		 * client_data_rwsem as remove_one can't be called. Keep it
1904		 * valid for the caller.
1905		 */
1906		if (!ret && res->cdev)
1907			get_device(res->cdev);
1908		break;
1909	}
1910	up_read(&ibdev->client_data_rwsem);
1911
1912	return ret;
1913}
1914
1915/**
1916 * ib_get_client_nl_info - Fetch the nl_info from a client
1917 * @ibdev: IB device
1918 * @client_name: Name of the client
1919 * @res: Result of the query
1920 */
1921int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1922			  struct ib_client_nl_info *res)
1923{
1924	int ret;
1925
1926	if (ibdev)
1927		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928	else
1929		ret = __ib_get_global_client_nl_info(client_name, res);
1930#ifdef CONFIG_MODULES
1931	if (ret == -ENOENT) {
1932		request_module("rdma-client-%s", client_name);
1933		if (ibdev)
1934			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1935		else
1936			ret = __ib_get_global_client_nl_info(client_name, res);
1937	}
1938#endif
1939	if (ret) {
1940		if (ret == -ENOENT)
1941			return -EOPNOTSUPP;
1942		return ret;
1943	}
1944
1945	if (WARN_ON(!res->cdev))
1946		return -EINVAL;
1947	return 0;
1948}
1949
1950/**
1951 * ib_set_client_data - Set IB client context
1952 * @device:Device to set context for
1953 * @client:Client to set context for
1954 * @data:Context to set
1955 *
1956 * ib_set_client_data() sets client context data that can be retrieved with
1957 * ib_get_client_data(). This can only be called while the client is
1958 * registered to the device, once the ib_client remove() callback returns this
1959 * cannot be called.
1960 */
1961void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1962			void *data)
1963{
1964	void *rc;
1965
1966	if (WARN_ON(IS_ERR(data)))
1967		data = NULL;
1968
1969	rc = xa_store(&device->client_data, client->client_id, data,
1970		      GFP_KERNEL);
1971	WARN_ON(xa_is_err(rc));
1972}
1973EXPORT_SYMBOL(ib_set_client_data);
1974
1975/**
1976 * ib_register_event_handler - Register an IB event handler
1977 * @event_handler:Handler to register
1978 *
1979 * ib_register_event_handler() registers an event handler that will be
1980 * called back when asynchronous IB events occur (as defined in
1981 * chapter 11 of the InfiniBand Architecture Specification). This
1982 * callback occurs in workqueue context.
1983 */
1984void ib_register_event_handler(struct ib_event_handler *event_handler)
1985{
1986	down_write(&event_handler->device->event_handler_rwsem);
1987	list_add_tail(&event_handler->list,
1988		      &event_handler->device->event_handler_list);
1989	up_write(&event_handler->device->event_handler_rwsem);
1990}
1991EXPORT_SYMBOL(ib_register_event_handler);
1992
1993/**
1994 * ib_unregister_event_handler - Unregister an event handler
1995 * @event_handler:Handler to unregister
1996 *
1997 * Unregister an event handler registered with
1998 * ib_register_event_handler().
1999 */
2000void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2001{
2002	down_write(&event_handler->device->event_handler_rwsem);
2003	list_del(&event_handler->list);
2004	up_write(&event_handler->device->event_handler_rwsem);
2005}
2006EXPORT_SYMBOL(ib_unregister_event_handler);
2007
2008void ib_dispatch_event_clients(struct ib_event *event)
2009{
2010	struct ib_event_handler *handler;
2011
2012	down_read(&event->device->event_handler_rwsem);
2013
2014	list_for_each_entry(handler, &event->device->event_handler_list, list)
2015		handler->handler(handler, event);
2016
2017	up_read(&event->device->event_handler_rwsem);
2018}
2019
2020static int iw_query_port(struct ib_device *device,
2021			   u32 port_num,
2022			   struct ib_port_attr *port_attr)
2023{
2024	struct in_device *inetdev;
2025	struct net_device *netdev;
2026
2027	memset(port_attr, 0, sizeof(*port_attr));
2028
2029	netdev = ib_device_get_netdev(device, port_num);
2030	if (!netdev)
2031		return -ENODEV;
2032
2033	port_attr->max_mtu = IB_MTU_4096;
2034	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2035
2036	if (!netif_carrier_ok(netdev)) {
2037		port_attr->state = IB_PORT_DOWN;
2038		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2039	} else {
2040		rcu_read_lock();
2041		inetdev = __in_dev_get_rcu(netdev);
2042
2043		if (inetdev && inetdev->ifa_list) {
2044			port_attr->state = IB_PORT_ACTIVE;
2045			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2046		} else {
2047			port_attr->state = IB_PORT_INIT;
2048			port_attr->phys_state =
2049				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2050		}
2051
2052		rcu_read_unlock();
2053	}
2054
2055	dev_put(netdev);
2056	return device->ops.query_port(device, port_num, port_attr);
2057}
2058
2059static int __ib_query_port(struct ib_device *device,
2060			   u32 port_num,
2061			   struct ib_port_attr *port_attr)
2062{
2063	int err;
2064
2065	memset(port_attr, 0, sizeof(*port_attr));
2066
2067	err = device->ops.query_port(device, port_num, port_attr);
2068	if (err || port_attr->subnet_prefix)
2069		return err;
2070
2071	if (rdma_port_get_link_layer(device, port_num) !=
2072	    IB_LINK_LAYER_INFINIBAND)
2073		return 0;
2074
2075	ib_get_cached_subnet_prefix(device, port_num,
2076				    &port_attr->subnet_prefix);
2077	return 0;
2078}
2079
2080/**
2081 * ib_query_port - Query IB port attributes
2082 * @device:Device to query
2083 * @port_num:Port number to query
2084 * @port_attr:Port attributes
2085 *
2086 * ib_query_port() returns the attributes of a port through the
2087 * @port_attr pointer.
2088 */
2089int ib_query_port(struct ib_device *device,
2090		  u32 port_num,
2091		  struct ib_port_attr *port_attr)
2092{
2093	if (!rdma_is_port_valid(device, port_num))
2094		return -EINVAL;
2095
2096	if (rdma_protocol_iwarp(device, port_num))
2097		return iw_query_port(device, port_num, port_attr);
2098	else
2099		return __ib_query_port(device, port_num, port_attr);
2100}
2101EXPORT_SYMBOL(ib_query_port);
2102
2103static void add_ndev_hash(struct ib_port_data *pdata)
2104{
2105	unsigned long flags;
2106
2107	might_sleep();
2108
2109	spin_lock_irqsave(&ndev_hash_lock, flags);
2110	if (hash_hashed(&pdata->ndev_hash_link)) {
2111		hash_del_rcu(&pdata->ndev_hash_link);
2112		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2113		/*
2114		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2115		 * grace period
2116		 */
2117		synchronize_rcu();
2118		spin_lock_irqsave(&ndev_hash_lock, flags);
2119	}
2120	if (pdata->netdev)
2121		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2122			     (uintptr_t)pdata->netdev);
2123	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2124}
2125
2126/**
2127 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2128 * @ib_dev: Device to modify
2129 * @ndev: net_device to affiliate, may be NULL
2130 * @port: IB port the net_device is connected to
2131 *
2132 * Drivers should use this to link the ib_device to a netdev so the netdev
2133 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2134 * affiliated with any port.
2135 *
2136 * The caller must ensure that the given ndev is not unregistered or
2137 * unregistering, and that either the ib_device is unregistered or
2138 * ib_device_set_netdev() is called with NULL when the ndev sends a
2139 * NETDEV_UNREGISTER event.
2140 */
2141int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2142			 u32 port)
2143{
2144	struct net_device *old_ndev;
2145	struct ib_port_data *pdata;
2146	unsigned long flags;
2147	int ret;
2148
2149	/*
2150	 * Drivers wish to call this before ib_register_driver, so we have to
2151	 * setup the port data early.
2152	 */
2153	ret = alloc_port_data(ib_dev);
2154	if (ret)
2155		return ret;
2156
2157	if (!rdma_is_port_valid(ib_dev, port))
2158		return -EINVAL;
2159
2160	pdata = &ib_dev->port_data[port];
2161	spin_lock_irqsave(&pdata->netdev_lock, flags);
2162	old_ndev = rcu_dereference_protected(
2163		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2164	if (old_ndev == ndev) {
2165		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2166		return 0;
2167	}
2168
2169	if (old_ndev)
2170		netdev_tracker_free(ndev, &pdata->netdev_tracker);
2171	if (ndev)
2172		netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2173	rcu_assign_pointer(pdata->netdev, ndev);
2174	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2175
2176	add_ndev_hash(pdata);
2177	if (old_ndev)
2178		__dev_put(old_ndev);
2179
2180	return 0;
2181}
2182EXPORT_SYMBOL(ib_device_set_netdev);
2183
2184static void free_netdevs(struct ib_device *ib_dev)
2185{
2186	unsigned long flags;
2187	u32 port;
2188
2189	if (!ib_dev->port_data)
2190		return;
2191
2192	rdma_for_each_port (ib_dev, port) {
2193		struct ib_port_data *pdata = &ib_dev->port_data[port];
2194		struct net_device *ndev;
2195
2196		spin_lock_irqsave(&pdata->netdev_lock, flags);
2197		ndev = rcu_dereference_protected(
2198			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2199		if (ndev) {
2200			spin_lock(&ndev_hash_lock);
2201			hash_del_rcu(&pdata->ndev_hash_link);
2202			spin_unlock(&ndev_hash_lock);
2203
2204			/*
2205			 * If this is the last dev_put there is still a
2206			 * synchronize_rcu before the netdev is kfreed, so we
2207			 * can continue to rely on unlocked pointer
2208			 * comparisons after the put
2209			 */
2210			rcu_assign_pointer(pdata->netdev, NULL);
2211			netdev_put(ndev, &pdata->netdev_tracker);
2212		}
2213		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2214	}
2215}
2216
2217struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2218					u32 port)
2219{
2220	struct ib_port_data *pdata;
2221	struct net_device *res;
2222
2223	if (!rdma_is_port_valid(ib_dev, port))
2224		return NULL;
2225
2226	pdata = &ib_dev->port_data[port];
2227
2228	/*
2229	 * New drivers should use ib_device_set_netdev() not the legacy
2230	 * get_netdev().
2231	 */
2232	if (ib_dev->ops.get_netdev)
2233		res = ib_dev->ops.get_netdev(ib_dev, port);
2234	else {
2235		spin_lock(&pdata->netdev_lock);
2236		res = rcu_dereference_protected(
2237			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2238		if (res)
2239			dev_hold(res);
2240		spin_unlock(&pdata->netdev_lock);
2241	}
2242
2243	/*
2244	 * If we are starting to unregister expedite things by preventing
2245	 * propagation of an unregistering netdev.
2246	 */
2247	if (res && res->reg_state != NETREG_REGISTERED) {
2248		dev_put(res);
2249		return NULL;
2250	}
2251
2252	return res;
2253}
2254
2255/**
2256 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2257 * @ndev: netdev to locate
2258 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2259 *
2260 * Find and hold an ib_device that is associated with a netdev via
2261 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2262 * returned pointer.
2263 */
2264struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2265					  enum rdma_driver_id driver_id)
2266{
2267	struct ib_device *res = NULL;
2268	struct ib_port_data *cur;
2269
2270	rcu_read_lock();
2271	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2272				    (uintptr_t)ndev) {
2273		if (rcu_access_pointer(cur->netdev) == ndev &&
2274		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2275		     cur->ib_dev->ops.driver_id == driver_id) &&
2276		    ib_device_try_get(cur->ib_dev)) {
2277			res = cur->ib_dev;
2278			break;
2279		}
2280	}
2281	rcu_read_unlock();
2282
2283	return res;
2284}
2285EXPORT_SYMBOL(ib_device_get_by_netdev);
2286
2287/**
2288 * ib_enum_roce_netdev - enumerate all RoCE ports
2289 * @ib_dev : IB device we want to query
2290 * @filter: Should we call the callback?
2291 * @filter_cookie: Cookie passed to filter
2292 * @cb: Callback to call for each found RoCE ports
2293 * @cookie: Cookie passed back to the callback
2294 *
2295 * Enumerates all of the physical RoCE ports of ib_dev
2296 * which are related to netdevice and calls callback() on each
2297 * device for which filter() function returns non zero.
2298 */
2299void ib_enum_roce_netdev(struct ib_device *ib_dev,
2300			 roce_netdev_filter filter,
2301			 void *filter_cookie,
2302			 roce_netdev_callback cb,
2303			 void *cookie)
2304{
2305	u32 port;
2306
2307	rdma_for_each_port (ib_dev, port)
2308		if (rdma_protocol_roce(ib_dev, port)) {
2309			struct net_device *idev =
2310				ib_device_get_netdev(ib_dev, port);
2311
2312			if (filter(ib_dev, port, idev, filter_cookie))
2313				cb(ib_dev, port, idev, cookie);
2314
2315			if (idev)
2316				dev_put(idev);
2317		}
2318}
2319
2320/**
2321 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2322 * @filter: Should we call the callback?
2323 * @filter_cookie: Cookie passed to filter
2324 * @cb: Callback to call for each found RoCE ports
2325 * @cookie: Cookie passed back to the callback
2326 *
2327 * Enumerates all RoCE devices' physical ports which are related
2328 * to netdevices and calls callback() on each device for which
2329 * filter() function returns non zero.
2330 */
2331void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2332			      void *filter_cookie,
2333			      roce_netdev_callback cb,
2334			      void *cookie)
2335{
2336	struct ib_device *dev;
2337	unsigned long index;
2338
2339	down_read(&devices_rwsem);
2340	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2341		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2342	up_read(&devices_rwsem);
2343}
2344
2345/*
2346 * ib_enum_all_devs - enumerate all ib_devices
2347 * @cb: Callback to call for each found ib_device
2348 *
2349 * Enumerates all ib_devices and calls callback() on each device.
2350 */
2351int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2352		     struct netlink_callback *cb)
2353{
2354	unsigned long index;
2355	struct ib_device *dev;
2356	unsigned int idx = 0;
2357	int ret = 0;
2358
2359	down_read(&devices_rwsem);
2360	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2361		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2362			continue;
2363
2364		ret = nldev_cb(dev, skb, cb, idx);
2365		if (ret)
2366			break;
2367		idx++;
2368	}
2369	up_read(&devices_rwsem);
2370	return ret;
2371}
2372
2373/**
2374 * ib_query_pkey - Get P_Key table entry
2375 * @device:Device to query
2376 * @port_num:Port number to query
2377 * @index:P_Key table index to query
2378 * @pkey:Returned P_Key
2379 *
2380 * ib_query_pkey() fetches the specified P_Key table entry.
2381 */
2382int ib_query_pkey(struct ib_device *device,
2383		  u32 port_num, u16 index, u16 *pkey)
2384{
2385	if (!rdma_is_port_valid(device, port_num))
2386		return -EINVAL;
2387
2388	if (!device->ops.query_pkey)
2389		return -EOPNOTSUPP;
2390
2391	return device->ops.query_pkey(device, port_num, index, pkey);
2392}
2393EXPORT_SYMBOL(ib_query_pkey);
2394
2395/**
2396 * ib_modify_device - Change IB device attributes
2397 * @device:Device to modify
2398 * @device_modify_mask:Mask of attributes to change
2399 * @device_modify:New attribute values
2400 *
2401 * ib_modify_device() changes a device's attributes as specified by
2402 * the @device_modify_mask and @device_modify structure.
2403 */
2404int ib_modify_device(struct ib_device *device,
2405		     int device_modify_mask,
2406		     struct ib_device_modify *device_modify)
2407{
2408	if (!device->ops.modify_device)
2409		return -EOPNOTSUPP;
2410
2411	return device->ops.modify_device(device, device_modify_mask,
2412					 device_modify);
2413}
2414EXPORT_SYMBOL(ib_modify_device);
2415
2416/**
2417 * ib_modify_port - Modifies the attributes for the specified port.
2418 * @device: The device to modify.
2419 * @port_num: The number of the port to modify.
2420 * @port_modify_mask: Mask used to specify which attributes of the port
2421 *   to change.
2422 * @port_modify: New attribute values for the port.
2423 *
2424 * ib_modify_port() changes a port's attributes as specified by the
2425 * @port_modify_mask and @port_modify structure.
2426 */
2427int ib_modify_port(struct ib_device *device,
2428		   u32 port_num, int port_modify_mask,
2429		   struct ib_port_modify *port_modify)
2430{
2431	int rc;
2432
2433	if (!rdma_is_port_valid(device, port_num))
2434		return -EINVAL;
2435
2436	if (device->ops.modify_port)
2437		rc = device->ops.modify_port(device, port_num,
2438					     port_modify_mask,
2439					     port_modify);
2440	else if (rdma_protocol_roce(device, port_num) &&
2441		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2442		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2443		rc = 0;
2444	else
2445		rc = -EOPNOTSUPP;
2446	return rc;
2447}
2448EXPORT_SYMBOL(ib_modify_port);
2449
2450/**
2451 * ib_find_gid - Returns the port number and GID table index where
2452 *   a specified GID value occurs. Its searches only for IB link layer.
2453 * @device: The device to query.
2454 * @gid: The GID value to search for.
2455 * @port_num: The port number of the device where the GID value was found.
2456 * @index: The index into the GID table where the GID was found.  This
2457 *   parameter may be NULL.
2458 */
2459int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2460		u32 *port_num, u16 *index)
2461{
2462	union ib_gid tmp_gid;
2463	u32 port;
2464	int ret, i;
2465
2466	rdma_for_each_port (device, port) {
2467		if (!rdma_protocol_ib(device, port))
2468			continue;
2469
2470		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2471		     ++i) {
2472			ret = rdma_query_gid(device, port, i, &tmp_gid);
2473			if (ret)
2474				continue;
2475
2476			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2477				*port_num = port;
2478				if (index)
2479					*index = i;
2480				return 0;
2481			}
2482		}
2483	}
2484
2485	return -ENOENT;
2486}
2487EXPORT_SYMBOL(ib_find_gid);
2488
2489/**
2490 * ib_find_pkey - Returns the PKey table index where a specified
2491 *   PKey value occurs.
2492 * @device: The device to query.
2493 * @port_num: The port number of the device to search for the PKey.
2494 * @pkey: The PKey value to search for.
2495 * @index: The index into the PKey table where the PKey was found.
2496 */
2497int ib_find_pkey(struct ib_device *device,
2498		 u32 port_num, u16 pkey, u16 *index)
2499{
2500	int ret, i;
2501	u16 tmp_pkey;
2502	int partial_ix = -1;
2503
2504	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2505	     ++i) {
2506		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2507		if (ret)
2508			return ret;
2509		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2510			/* if there is full-member pkey take it.*/
2511			if (tmp_pkey & 0x8000) {
2512				*index = i;
2513				return 0;
2514			}
2515			if (partial_ix < 0)
2516				partial_ix = i;
2517		}
2518	}
2519
2520	/*no full-member, if exists take the limited*/
2521	if (partial_ix >= 0) {
2522		*index = partial_ix;
2523		return 0;
2524	}
2525	return -ENOENT;
2526}
2527EXPORT_SYMBOL(ib_find_pkey);
2528
2529/**
2530 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2531 * for a received CM request
2532 * @dev:	An RDMA device on which the request has been received.
2533 * @port:	Port number on the RDMA device.
2534 * @pkey:	The Pkey the request came on.
2535 * @gid:	A GID that the net_dev uses to communicate.
2536 * @addr:	Contains the IP address that the request specified as its
2537 *		destination.
2538 *
2539 */
2540struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2541					    u32 port,
2542					    u16 pkey,
2543					    const union ib_gid *gid,
2544					    const struct sockaddr *addr)
2545{
2546	struct net_device *net_dev = NULL;
2547	unsigned long index;
2548	void *client_data;
2549
2550	if (!rdma_protocol_ib(dev, port))
2551		return NULL;
2552
2553	/*
2554	 * Holding the read side guarantees that the client will not become
2555	 * unregistered while we are calling get_net_dev_by_params()
2556	 */
2557	down_read(&dev->client_data_rwsem);
2558	xan_for_each_marked (&dev->client_data, index, client_data,
2559			     CLIENT_DATA_REGISTERED) {
2560		struct ib_client *client = xa_load(&clients, index);
2561
2562		if (!client || !client->get_net_dev_by_params)
2563			continue;
2564
2565		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2566							addr, client_data);
2567		if (net_dev)
2568			break;
2569	}
2570	up_read(&dev->client_data_rwsem);
2571
2572	return net_dev;
2573}
2574EXPORT_SYMBOL(ib_get_net_dev_by_params);
2575
2576void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2577{
2578	struct ib_device_ops *dev_ops = &dev->ops;
2579#define SET_DEVICE_OP(ptr, name)                                               \
2580	do {                                                                   \
2581		if (ops->name)                                                 \
2582			if (!((ptr)->name))				       \
2583				(ptr)->name = ops->name;                       \
2584	} while (0)
2585
2586#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2587
2588	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2589		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2590			dev_ops->driver_id != ops->driver_id);
2591		dev_ops->driver_id = ops->driver_id;
2592	}
2593	if (ops->owner) {
2594		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2595		dev_ops->owner = ops->owner;
2596	}
2597	if (ops->uverbs_abi_ver)
2598		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2599
2600	dev_ops->uverbs_no_driver_id_binding |=
2601		ops->uverbs_no_driver_id_binding;
2602
2603	SET_DEVICE_OP(dev_ops, add_gid);
2604	SET_DEVICE_OP(dev_ops, advise_mr);
2605	SET_DEVICE_OP(dev_ops, alloc_dm);
2606	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2607	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2608	SET_DEVICE_OP(dev_ops, alloc_mr);
2609	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2610	SET_DEVICE_OP(dev_ops, alloc_mw);
2611	SET_DEVICE_OP(dev_ops, alloc_pd);
2612	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2613	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2614	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2615	SET_DEVICE_OP(dev_ops, attach_mcast);
2616	SET_DEVICE_OP(dev_ops, check_mr_status);
2617	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2618	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2619	SET_DEVICE_OP(dev_ops, counter_dealloc);
2620	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2621	SET_DEVICE_OP(dev_ops, counter_update_stats);
2622	SET_DEVICE_OP(dev_ops, create_ah);
2623	SET_DEVICE_OP(dev_ops, create_counters);
2624	SET_DEVICE_OP(dev_ops, create_cq);
2625	SET_DEVICE_OP(dev_ops, create_flow);
2626	SET_DEVICE_OP(dev_ops, create_qp);
2627	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2628	SET_DEVICE_OP(dev_ops, create_srq);
2629	SET_DEVICE_OP(dev_ops, create_user_ah);
2630	SET_DEVICE_OP(dev_ops, create_wq);
2631	SET_DEVICE_OP(dev_ops, dealloc_dm);
2632	SET_DEVICE_OP(dev_ops, dealloc_driver);
2633	SET_DEVICE_OP(dev_ops, dealloc_mw);
2634	SET_DEVICE_OP(dev_ops, dealloc_pd);
2635	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2636	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2637	SET_DEVICE_OP(dev_ops, del_gid);
2638	SET_DEVICE_OP(dev_ops, dereg_mr);
2639	SET_DEVICE_OP(dev_ops, destroy_ah);
2640	SET_DEVICE_OP(dev_ops, destroy_counters);
2641	SET_DEVICE_OP(dev_ops, destroy_cq);
2642	SET_DEVICE_OP(dev_ops, destroy_flow);
2643	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2644	SET_DEVICE_OP(dev_ops, destroy_qp);
2645	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2646	SET_DEVICE_OP(dev_ops, destroy_srq);
2647	SET_DEVICE_OP(dev_ops, destroy_wq);
2648	SET_DEVICE_OP(dev_ops, device_group);
2649	SET_DEVICE_OP(dev_ops, detach_mcast);
2650	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2651	SET_DEVICE_OP(dev_ops, drain_rq);
2652	SET_DEVICE_OP(dev_ops, drain_sq);
2653	SET_DEVICE_OP(dev_ops, enable_driver);
2654	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2655	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2656	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2657	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2658	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2659	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2660	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2661	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2662	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2663	SET_DEVICE_OP(dev_ops, get_dma_mr);
2664	SET_DEVICE_OP(dev_ops, get_hw_stats);
2665	SET_DEVICE_OP(dev_ops, get_link_layer);
2666	SET_DEVICE_OP(dev_ops, get_netdev);
2667	SET_DEVICE_OP(dev_ops, get_numa_node);
2668	SET_DEVICE_OP(dev_ops, get_port_immutable);
2669	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2670	SET_DEVICE_OP(dev_ops, get_vf_config);
2671	SET_DEVICE_OP(dev_ops, get_vf_guid);
2672	SET_DEVICE_OP(dev_ops, get_vf_stats);
2673	SET_DEVICE_OP(dev_ops, iw_accept);
2674	SET_DEVICE_OP(dev_ops, iw_add_ref);
2675	SET_DEVICE_OP(dev_ops, iw_connect);
2676	SET_DEVICE_OP(dev_ops, iw_create_listen);
2677	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2678	SET_DEVICE_OP(dev_ops, iw_get_qp);
2679	SET_DEVICE_OP(dev_ops, iw_reject);
2680	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2681	SET_DEVICE_OP(dev_ops, map_mr_sg);
2682	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2683	SET_DEVICE_OP(dev_ops, mmap);
2684	SET_DEVICE_OP(dev_ops, mmap_free);
2685	SET_DEVICE_OP(dev_ops, modify_ah);
2686	SET_DEVICE_OP(dev_ops, modify_cq);
2687	SET_DEVICE_OP(dev_ops, modify_device);
2688	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2689	SET_DEVICE_OP(dev_ops, modify_port);
2690	SET_DEVICE_OP(dev_ops, modify_qp);
2691	SET_DEVICE_OP(dev_ops, modify_srq);
2692	SET_DEVICE_OP(dev_ops, modify_wq);
2693	SET_DEVICE_OP(dev_ops, peek_cq);
2694	SET_DEVICE_OP(dev_ops, poll_cq);
2695	SET_DEVICE_OP(dev_ops, port_groups);
2696	SET_DEVICE_OP(dev_ops, post_recv);
2697	SET_DEVICE_OP(dev_ops, post_send);
2698	SET_DEVICE_OP(dev_ops, post_srq_recv);
2699	SET_DEVICE_OP(dev_ops, process_mad);
2700	SET_DEVICE_OP(dev_ops, query_ah);
2701	SET_DEVICE_OP(dev_ops, query_device);
2702	SET_DEVICE_OP(dev_ops, query_gid);
2703	SET_DEVICE_OP(dev_ops, query_pkey);
2704	SET_DEVICE_OP(dev_ops, query_port);
2705	SET_DEVICE_OP(dev_ops, query_qp);
2706	SET_DEVICE_OP(dev_ops, query_srq);
2707	SET_DEVICE_OP(dev_ops, query_ucontext);
2708	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2709	SET_DEVICE_OP(dev_ops, read_counters);
2710	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2711	SET_DEVICE_OP(dev_ops, reg_user_mr);
2712	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2713	SET_DEVICE_OP(dev_ops, req_notify_cq);
2714	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2715	SET_DEVICE_OP(dev_ops, resize_cq);
2716	SET_DEVICE_OP(dev_ops, set_vf_guid);
2717	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2718
2719	SET_OBJ_SIZE(dev_ops, ib_ah);
2720	SET_OBJ_SIZE(dev_ops, ib_counters);
2721	SET_OBJ_SIZE(dev_ops, ib_cq);
2722	SET_OBJ_SIZE(dev_ops, ib_mw);
2723	SET_OBJ_SIZE(dev_ops, ib_pd);
2724	SET_OBJ_SIZE(dev_ops, ib_qp);
2725	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2726	SET_OBJ_SIZE(dev_ops, ib_srq);
2727	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2728	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2729}
2730EXPORT_SYMBOL(ib_set_device_ops);
2731
2732#ifdef CONFIG_INFINIBAND_VIRT_DMA
2733int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2734{
2735	struct scatterlist *s;
2736	int i;
2737
2738	for_each_sg(sg, s, nents, i) {
2739		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2740		sg_dma_len(s) = s->length;
2741	}
2742	return nents;
2743}
2744EXPORT_SYMBOL(ib_dma_virt_map_sg);
2745#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2746
2747static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2748	[RDMA_NL_LS_OP_RESOLVE] = {
2749		.doit = ib_nl_handle_resolve_resp,
2750		.flags = RDMA_NL_ADMIN_PERM,
2751	},
2752	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2753		.doit = ib_nl_handle_set_timeout,
2754		.flags = RDMA_NL_ADMIN_PERM,
2755	},
2756	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2757		.doit = ib_nl_handle_ip_res_resp,
2758		.flags = RDMA_NL_ADMIN_PERM,
2759	},
2760};
2761
2762static int __init ib_core_init(void)
2763{
2764	int ret = -ENOMEM;
2765
2766	ib_wq = alloc_workqueue("infiniband", 0, 0);
2767	if (!ib_wq)
2768		return -ENOMEM;
2769
2770	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2771				      WQ_UNBOUND_MAX_ACTIVE);
2772	if (!ib_unreg_wq)
2773		goto err;
2774
2775	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2776			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2777	if (!ib_comp_wq)
2778		goto err_unbound;
2779
2780	ib_comp_unbound_wq =
2781		alloc_workqueue("ib-comp-unb-wq",
2782				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2783				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2784	if (!ib_comp_unbound_wq)
2785		goto err_comp;
2786
2787	ret = class_register(&ib_class);
2788	if (ret) {
2789		pr_warn("Couldn't create InfiniBand device class\n");
2790		goto err_comp_unbound;
2791	}
2792
2793	rdma_nl_init();
2794
2795	ret = addr_init();
2796	if (ret) {
2797		pr_warn("Couldn't init IB address resolution\n");
2798		goto err_ibnl;
2799	}
2800
2801	ret = ib_mad_init();
2802	if (ret) {
2803		pr_warn("Couldn't init IB MAD\n");
2804		goto err_addr;
2805	}
2806
2807	ret = ib_sa_init();
2808	if (ret) {
2809		pr_warn("Couldn't init SA\n");
2810		goto err_mad;
2811	}
2812
2813	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2814	if (ret) {
2815		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2816		goto err_sa;
2817	}
2818
2819	ret = register_pernet_device(&rdma_dev_net_ops);
2820	if (ret) {
2821		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2822		goto err_compat;
2823	}
2824
2825	nldev_init();
2826	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2827	ret = roce_gid_mgmt_init();
2828	if (ret) {
2829		pr_warn("Couldn't init RoCE GID management\n");
2830		goto err_parent;
2831	}
2832
2833	return 0;
2834
2835err_parent:
2836	rdma_nl_unregister(RDMA_NL_LS);
2837	nldev_exit();
2838	unregister_pernet_device(&rdma_dev_net_ops);
2839err_compat:
2840	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2841err_sa:
2842	ib_sa_cleanup();
2843err_mad:
2844	ib_mad_cleanup();
2845err_addr:
2846	addr_cleanup();
2847err_ibnl:
2848	class_unregister(&ib_class);
2849err_comp_unbound:
2850	destroy_workqueue(ib_comp_unbound_wq);
2851err_comp:
2852	destroy_workqueue(ib_comp_wq);
2853err_unbound:
2854	destroy_workqueue(ib_unreg_wq);
2855err:
2856	destroy_workqueue(ib_wq);
2857	return ret;
2858}
2859
2860static void __exit ib_core_cleanup(void)
2861{
2862	roce_gid_mgmt_cleanup();
2863	rdma_nl_unregister(RDMA_NL_LS);
2864	nldev_exit();
2865	unregister_pernet_device(&rdma_dev_net_ops);
2866	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2867	ib_sa_cleanup();
2868	ib_mad_cleanup();
2869	addr_cleanup();
2870	rdma_nl_exit();
2871	class_unregister(&ib_class);
2872	destroy_workqueue(ib_comp_unbound_wq);
2873	destroy_workqueue(ib_comp_wq);
2874	/* Make sure that any pending umem accounting work is done. */
2875	destroy_workqueue(ib_wq);
2876	destroy_workqueue(ib_unreg_wq);
2877	WARN_ON(!xa_empty(&clients));
2878	WARN_ON(!xa_empty(&devices));
2879}
2880
2881MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2882
2883/* ib core relies on netdev stack to first register net_ns_type_operations
2884 * ns kobject type before ib_core initialization.
2885 */
2886fs_initcall(ib_core_init);
2887module_exit(ib_core_cleanup);
2888