1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PNI RM3100 3-axis geomagnetic sensor driver core.
4 *
5 * Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
6 *
7 * User Manual available at
8 * <https://www.pnicorp.com/download/rm3100-user-manual/>
9 *
10 * TODO: event generation, pm.
11 */
12
13#include <linux/delay.h>
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17
18#include <linux/iio/buffer.h>
19#include <linux/iio/iio.h>
20#include <linux/iio/sysfs.h>
21#include <linux/iio/trigger.h>
22#include <linux/iio/triggered_buffer.h>
23#include <linux/iio/trigger_consumer.h>
24
25#include <asm/unaligned.h>
26
27#include "rm3100.h"
28
29/* Cycle Count Registers. */
30#define RM3100_REG_CC_X			0x05
31#define RM3100_REG_CC_Y			0x07
32#define RM3100_REG_CC_Z			0x09
33
34/* Poll Measurement Mode register. */
35#define RM3100_REG_POLL			0x00
36#define		RM3100_POLL_X		BIT(4)
37#define		RM3100_POLL_Y		BIT(5)
38#define		RM3100_POLL_Z		BIT(6)
39
40/* Continuous Measurement Mode register. */
41#define RM3100_REG_CMM			0x01
42#define		RM3100_CMM_START	BIT(0)
43#define		RM3100_CMM_X		BIT(4)
44#define		RM3100_CMM_Y		BIT(5)
45#define		RM3100_CMM_Z		BIT(6)
46
47/* TiMe Rate Configuration register. */
48#define RM3100_REG_TMRC			0x0B
49#define RM3100_TMRC_OFFSET		0x92
50
51/* Result Status register. */
52#define RM3100_REG_STATUS		0x34
53#define		RM3100_STATUS_DRDY	BIT(7)
54
55/* Measurement result registers. */
56#define RM3100_REG_MX2			0x24
57#define RM3100_REG_MY2			0x27
58#define RM3100_REG_MZ2			0x2a
59
60#define RM3100_W_REG_START		RM3100_REG_POLL
61#define RM3100_W_REG_END		RM3100_REG_TMRC
62#define RM3100_R_REG_START		RM3100_REG_POLL
63#define RM3100_R_REG_END		RM3100_REG_STATUS
64#define RM3100_V_REG_START		RM3100_REG_POLL
65#define RM3100_V_REG_END		RM3100_REG_STATUS
66
67/*
68 * This is computed by hand, is the sum of channel storage bits and padding
69 * bits, which is 4+4+4+12=24 in here.
70 */
71#define RM3100_SCAN_BYTES		24
72
73#define RM3100_CMM_AXIS_SHIFT		4
74
75struct rm3100_data {
76	struct regmap *regmap;
77	struct completion measuring_done;
78	bool use_interrupt;
79	int conversion_time;
80	int scale;
81	/* Ensure naturally aligned timestamp */
82	u8 buffer[RM3100_SCAN_BYTES] __aligned(8);
83	struct iio_trigger *drdy_trig;
84
85	/*
86	 * This lock is for protecting the consistency of series of i2c
87	 * operations, that is, to make sure a measurement process will
88	 * not be interrupted by a set frequency operation, which should
89	 * be taken where a series of i2c operation starts, released where
90	 * the operation ends.
91	 */
92	struct mutex lock;
93};
94
95static const struct regmap_range rm3100_readable_ranges[] = {
96	regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
97};
98
99const struct regmap_access_table rm3100_readable_table = {
100	.yes_ranges = rm3100_readable_ranges,
101	.n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
102};
103EXPORT_SYMBOL_NS_GPL(rm3100_readable_table, IIO_RM3100);
104
105static const struct regmap_range rm3100_writable_ranges[] = {
106	regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
107};
108
109const struct regmap_access_table rm3100_writable_table = {
110	.yes_ranges = rm3100_writable_ranges,
111	.n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
112};
113EXPORT_SYMBOL_NS_GPL(rm3100_writable_table, IIO_RM3100);
114
115static const struct regmap_range rm3100_volatile_ranges[] = {
116	regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
117};
118
119const struct regmap_access_table rm3100_volatile_table = {
120	.yes_ranges = rm3100_volatile_ranges,
121	.n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
122};
123EXPORT_SYMBOL_NS_GPL(rm3100_volatile_table, IIO_RM3100);
124
125static irqreturn_t rm3100_thread_fn(int irq, void *d)
126{
127	struct iio_dev *indio_dev = d;
128	struct rm3100_data *data = iio_priv(indio_dev);
129
130	/*
131	 * Write operation to any register or read operation
132	 * to first byte of results will clear the interrupt.
133	 */
134	regmap_write(data->regmap, RM3100_REG_POLL, 0);
135
136	return IRQ_HANDLED;
137}
138
139static irqreturn_t rm3100_irq_handler(int irq, void *d)
140{
141	struct iio_dev *indio_dev = d;
142	struct rm3100_data *data = iio_priv(indio_dev);
143
144	if (!iio_buffer_enabled(indio_dev))
145		complete(&data->measuring_done);
146	else
147		iio_trigger_poll(data->drdy_trig);
148
149	return IRQ_WAKE_THREAD;
150}
151
152static int rm3100_wait_measurement(struct rm3100_data *data)
153{
154	struct regmap *regmap = data->regmap;
155	unsigned int val;
156	int tries = 20;
157	int ret;
158
159	/*
160	 * A read cycle of 400kbits i2c bus is about 20us, plus the time
161	 * used for scheduling, a read cycle of fast mode of this device
162	 * can reach 1.7ms, it may be possible for data to arrive just
163	 * after we check the RM3100_REG_STATUS. In this case, irq_handler is
164	 * called before measuring_done is reinitialized, it will wait
165	 * forever for data that has already been ready.
166	 * Reinitialize measuring_done before looking up makes sure we
167	 * will always capture interrupt no matter when it happens.
168	 */
169	if (data->use_interrupt)
170		reinit_completion(&data->measuring_done);
171
172	ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
173	if (ret < 0)
174		return ret;
175
176	if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
177		if (data->use_interrupt) {
178			ret = wait_for_completion_timeout(&data->measuring_done,
179				msecs_to_jiffies(data->conversion_time));
180			if (!ret)
181				return -ETIMEDOUT;
182		} else {
183			do {
184				usleep_range(1000, 5000);
185
186				ret = regmap_read(regmap, RM3100_REG_STATUS,
187						  &val);
188				if (ret < 0)
189					return ret;
190
191				if (val & RM3100_STATUS_DRDY)
192					break;
193			} while (--tries);
194			if (!tries)
195				return -ETIMEDOUT;
196		}
197	}
198	return 0;
199}
200
201static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
202{
203	struct regmap *regmap = data->regmap;
204	u8 buffer[3];
205	int ret;
206
207	mutex_lock(&data->lock);
208	ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
209	if (ret < 0)
210		goto unlock_return;
211
212	ret = rm3100_wait_measurement(data);
213	if (ret < 0)
214		goto unlock_return;
215
216	ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
217	if (ret < 0)
218		goto unlock_return;
219	mutex_unlock(&data->lock);
220
221	*val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
222
223	return IIO_VAL_INT;
224
225unlock_return:
226	mutex_unlock(&data->lock);
227	return ret;
228}
229
230#define RM3100_CHANNEL(axis, idx)					\
231	{								\
232		.type = IIO_MAGN,					\
233		.modified = 1,						\
234		.channel2 = IIO_MOD_##axis,				\
235		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
236		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
237			BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
238		.scan_index = idx,					\
239		.scan_type = {						\
240			.sign = 's',					\
241			.realbits = 24,					\
242			.storagebits = 32,				\
243			.shift = 8,					\
244			.endianness = IIO_BE,				\
245		},							\
246	}
247
248static const struct iio_chan_spec rm3100_channels[] = {
249	RM3100_CHANNEL(X, 0),
250	RM3100_CHANNEL(Y, 1),
251	RM3100_CHANNEL(Z, 2),
252	IIO_CHAN_SOFT_TIMESTAMP(3),
253};
254
255static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
256	"600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
257);
258
259static struct attribute *rm3100_attributes[] = {
260	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
261	NULL,
262};
263
264static const struct attribute_group rm3100_attribute_group = {
265	.attrs = rm3100_attributes,
266};
267
268#define RM3100_SAMP_NUM			14
269
270/*
271 * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
272 * Time between reading: rm3100_sam_rates[][2]ms.
273 * The first one is actually 1.7ms.
274 */
275static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
276	{600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
277	{18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
278	{1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
279	{0, 15000, 6700},  {0, 75000, 13000}
280};
281
282static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
283{
284	unsigned int tmp;
285	int ret;
286
287	mutex_lock(&data->lock);
288	ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
289	mutex_unlock(&data->lock);
290	if (ret < 0)
291		return ret;
292	*val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
293	*val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
294
295	return IIO_VAL_INT_PLUS_MICRO;
296}
297
298static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
299{
300	int ret;
301	u8 i;
302
303	for (i = 0; i < 3; i++) {
304		ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
305		if (ret < 0)
306			return ret;
307	}
308
309	/*
310	 * The scale of this sensor depends on the cycle count value, these
311	 * three values are corresponding to the cycle count value 50, 100,
312	 * 200. scale = output / gain * 10^4.
313	 */
314	switch (val) {
315	case 50:
316		data->scale = 500;
317		break;
318	case 100:
319		data->scale = 263;
320		break;
321	/*
322	 * case 200:
323	 * This function will never be called by users' code, so here we
324	 * assume that it will never get a wrong parameter.
325	 */
326	default:
327		data->scale = 133;
328	}
329
330	return 0;
331}
332
333static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
334{
335	struct rm3100_data *data = iio_priv(indio_dev);
336	struct regmap *regmap = data->regmap;
337	unsigned int cycle_count;
338	int ret;
339	int i;
340
341	mutex_lock(&data->lock);
342	/* All cycle count registers use the same value. */
343	ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
344	if (ret < 0)
345		goto unlock_return;
346
347	for (i = 0; i < RM3100_SAMP_NUM; i++) {
348		if (val == rm3100_samp_rates[i][0] &&
349		    val2 == rm3100_samp_rates[i][1])
350			break;
351	}
352	if (i == RM3100_SAMP_NUM) {
353		ret = -EINVAL;
354		goto unlock_return;
355	}
356
357	ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
358	if (ret < 0)
359		goto unlock_return;
360
361	/* Checking if cycle count registers need changing. */
362	if (val == 600 && cycle_count == 200) {
363		ret = rm3100_set_cycle_count(data, 100);
364		if (ret < 0)
365			goto unlock_return;
366	} else if (val != 600 && cycle_count == 100) {
367		ret = rm3100_set_cycle_count(data, 200);
368		if (ret < 0)
369			goto unlock_return;
370	}
371
372	if (iio_buffer_enabled(indio_dev)) {
373		/* Writing TMRC registers requires CMM reset. */
374		ret = regmap_write(regmap, RM3100_REG_CMM, 0);
375		if (ret < 0)
376			goto unlock_return;
377		ret = regmap_write(data->regmap, RM3100_REG_CMM,
378			(*indio_dev->active_scan_mask & 0x7) <<
379			RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
380		if (ret < 0)
381			goto unlock_return;
382	}
383	mutex_unlock(&data->lock);
384
385	data->conversion_time = rm3100_samp_rates[i][2] * 2;
386	return 0;
387
388unlock_return:
389	mutex_unlock(&data->lock);
390	return ret;
391}
392
393static int rm3100_read_raw(struct iio_dev *indio_dev,
394			   const struct iio_chan_spec *chan,
395			   int *val, int *val2, long mask)
396{
397	struct rm3100_data *data = iio_priv(indio_dev);
398	int ret;
399
400	switch (mask) {
401	case IIO_CHAN_INFO_RAW:
402		ret = iio_device_claim_direct_mode(indio_dev);
403		if (ret < 0)
404			return ret;
405
406		ret = rm3100_read_mag(data, chan->scan_index, val);
407		iio_device_release_direct_mode(indio_dev);
408
409		return ret;
410	case IIO_CHAN_INFO_SCALE:
411		*val = 0;
412		*val2 = data->scale;
413
414		return IIO_VAL_INT_PLUS_MICRO;
415	case IIO_CHAN_INFO_SAMP_FREQ:
416		return rm3100_get_samp_freq(data, val, val2);
417	default:
418		return -EINVAL;
419	}
420}
421
422static int rm3100_write_raw(struct iio_dev *indio_dev,
423			    struct iio_chan_spec const *chan,
424			    int val, int val2, long mask)
425{
426	switch (mask) {
427	case IIO_CHAN_INFO_SAMP_FREQ:
428		return rm3100_set_samp_freq(indio_dev, val, val2);
429	default:
430		return -EINVAL;
431	}
432}
433
434static const struct iio_info rm3100_info = {
435	.attrs = &rm3100_attribute_group,
436	.read_raw = rm3100_read_raw,
437	.write_raw = rm3100_write_raw,
438};
439
440static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
441{
442	struct rm3100_data *data = iio_priv(indio_dev);
443
444	/* Starting channels enabled. */
445	return regmap_write(data->regmap, RM3100_REG_CMM,
446		(*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
447		RM3100_CMM_START);
448}
449
450static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
451{
452	struct rm3100_data *data = iio_priv(indio_dev);
453
454	return regmap_write(data->regmap, RM3100_REG_CMM, 0);
455}
456
457static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
458	.preenable = rm3100_buffer_preenable,
459	.postdisable = rm3100_buffer_postdisable,
460};
461
462static irqreturn_t rm3100_trigger_handler(int irq, void *p)
463{
464	struct iio_poll_func *pf = p;
465	struct iio_dev *indio_dev = pf->indio_dev;
466	unsigned long scan_mask = *indio_dev->active_scan_mask;
467	unsigned int mask_len = indio_dev->masklength;
468	struct rm3100_data *data = iio_priv(indio_dev);
469	struct regmap *regmap = data->regmap;
470	int ret, i, bit;
471
472	mutex_lock(&data->lock);
473	switch (scan_mask) {
474	case BIT(0) | BIT(1) | BIT(2):
475		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
476		mutex_unlock(&data->lock);
477		if (ret < 0)
478			goto done;
479		/* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
480		for (i = 2; i > 0; i--)
481			memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
482		break;
483	case BIT(0) | BIT(1):
484		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
485		mutex_unlock(&data->lock);
486		if (ret < 0)
487			goto done;
488		memmove(data->buffer + 4, data->buffer + 3, 3);
489		break;
490	case BIT(1) | BIT(2):
491		ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
492		mutex_unlock(&data->lock);
493		if (ret < 0)
494			goto done;
495		memmove(data->buffer + 4, data->buffer + 3, 3);
496		break;
497	case BIT(0) | BIT(2):
498		ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
499		mutex_unlock(&data->lock);
500		if (ret < 0)
501			goto done;
502		memmove(data->buffer + 4, data->buffer + 6, 3);
503		break;
504	default:
505		for_each_set_bit(bit, &scan_mask, mask_len) {
506			ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
507					       data->buffer, 3);
508			if (ret < 0) {
509				mutex_unlock(&data->lock);
510				goto done;
511			}
512		}
513		mutex_unlock(&data->lock);
514	}
515	/*
516	 * Always using the same buffer so that we wouldn't need to set the
517	 * paddings to 0 in case of leaking any data.
518	 */
519	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
520					   pf->timestamp);
521done:
522	iio_trigger_notify_done(indio_dev->trig);
523
524	return IRQ_HANDLED;
525}
526
527int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
528{
529	struct iio_dev *indio_dev;
530	struct rm3100_data *data;
531	unsigned int tmp;
532	int ret;
533	int samp_rate_index;
534
535	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
536	if (!indio_dev)
537		return -ENOMEM;
538
539	data = iio_priv(indio_dev);
540	data->regmap = regmap;
541
542	mutex_init(&data->lock);
543
544	indio_dev->name = "rm3100";
545	indio_dev->info = &rm3100_info;
546	indio_dev->channels = rm3100_channels;
547	indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
548	indio_dev->modes = INDIO_DIRECT_MODE;
549
550	if (!irq)
551		data->use_interrupt = false;
552	else {
553		data->use_interrupt = true;
554
555		init_completion(&data->measuring_done);
556		ret = devm_request_threaded_irq(dev,
557						irq,
558						rm3100_irq_handler,
559						rm3100_thread_fn,
560						IRQF_TRIGGER_HIGH |
561						IRQF_ONESHOT,
562						indio_dev->name,
563						indio_dev);
564		if (ret < 0) {
565			dev_err(dev, "request irq line failed.\n");
566			return ret;
567		}
568
569		data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
570							 indio_dev->name,
571							 iio_device_id(indio_dev));
572		if (!data->drdy_trig)
573			return -ENOMEM;
574
575		ret = devm_iio_trigger_register(dev, data->drdy_trig);
576		if (ret < 0)
577			return ret;
578	}
579
580	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
581					      &iio_pollfunc_store_time,
582					      rm3100_trigger_handler,
583					      &rm3100_buffer_ops);
584	if (ret < 0)
585		return ret;
586
587	ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
588	if (ret < 0)
589		return ret;
590
591	samp_rate_index = tmp - RM3100_TMRC_OFFSET;
592	if (samp_rate_index < 0 || samp_rate_index >=  RM3100_SAMP_NUM) {
593		dev_err(dev, "The value read from RM3100_REG_TMRC is invalid!\n");
594		return -EINVAL;
595	}
596	/* Initializing max wait time, which is double conversion time. */
597	data->conversion_time = rm3100_samp_rates[samp_rate_index][2] * 2;
598
599	/* Cycle count values may not be what we want. */
600	if ((tmp - RM3100_TMRC_OFFSET) == 0)
601		rm3100_set_cycle_count(data, 100);
602	else
603		rm3100_set_cycle_count(data, 200);
604
605	return devm_iio_device_register(dev, indio_dev);
606}
607EXPORT_SYMBOL_NS_GPL(rm3100_common_probe, IIO_RM3100);
608
609MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
610MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
611MODULE_LICENSE("GPL v2");
612