1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Bosch BMC150 three-axis magnetic field sensor driver
4 *
5 * Copyright (c) 2015, Intel Corporation.
6 *
7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
8 *
9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
10 */
11
12#include <linux/module.h>
13#include <linux/i2c.h>
14#include <linux/interrupt.h>
15#include <linux/delay.h>
16#include <linux/slab.h>
17#include <linux/acpi.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/iio/iio.h>
21#include <linux/iio/sysfs.h>
22#include <linux/iio/buffer.h>
23#include <linux/iio/events.h>
24#include <linux/iio/trigger.h>
25#include <linux/iio/trigger_consumer.h>
26#include <linux/iio/triggered_buffer.h>
27#include <linux/regmap.h>
28#include <linux/regulator/consumer.h>
29
30#include "bmc150_magn.h"
31
32#define BMC150_MAGN_DRV_NAME			"bmc150_magn"
33#define BMC150_MAGN_IRQ_NAME			"bmc150_magn_event"
34
35#define BMC150_MAGN_REG_CHIP_ID			0x40
36#define BMC150_MAGN_CHIP_ID_VAL			0x32
37
38#define BMC150_MAGN_REG_X_L			0x42
39#define BMC150_MAGN_REG_X_M			0x43
40#define BMC150_MAGN_REG_Y_L			0x44
41#define BMC150_MAGN_REG_Y_M			0x45
42#define BMC150_MAGN_SHIFT_XY_L			3
43#define BMC150_MAGN_REG_Z_L			0x46
44#define BMC150_MAGN_REG_Z_M			0x47
45#define BMC150_MAGN_SHIFT_Z_L			1
46#define BMC150_MAGN_REG_RHALL_L			0x48
47#define BMC150_MAGN_REG_RHALL_M			0x49
48#define BMC150_MAGN_SHIFT_RHALL_L		2
49
50#define BMC150_MAGN_REG_INT_STATUS		0x4A
51
52#define BMC150_MAGN_REG_POWER			0x4B
53#define BMC150_MAGN_MASK_POWER_CTL		BIT(0)
54
55#define BMC150_MAGN_REG_OPMODE_ODR		0x4C
56#define BMC150_MAGN_MASK_OPMODE			GENMASK(2, 1)
57#define BMC150_MAGN_SHIFT_OPMODE		1
58#define BMC150_MAGN_MODE_NORMAL			0x00
59#define BMC150_MAGN_MODE_FORCED			0x01
60#define BMC150_MAGN_MODE_SLEEP			0x03
61#define BMC150_MAGN_MASK_ODR			GENMASK(5, 3)
62#define BMC150_MAGN_SHIFT_ODR			3
63
64#define BMC150_MAGN_REG_INT			0x4D
65
66#define BMC150_MAGN_REG_INT_DRDY		0x4E
67#define BMC150_MAGN_MASK_DRDY_EN		BIT(7)
68#define BMC150_MAGN_SHIFT_DRDY_EN		7
69#define BMC150_MAGN_MASK_DRDY_INT3		BIT(6)
70#define BMC150_MAGN_MASK_DRDY_Z_EN		BIT(5)
71#define BMC150_MAGN_MASK_DRDY_Y_EN		BIT(4)
72#define BMC150_MAGN_MASK_DRDY_X_EN		BIT(3)
73#define BMC150_MAGN_MASK_DRDY_DR_POLARITY	BIT(2)
74#define BMC150_MAGN_MASK_DRDY_LATCHING		BIT(1)
75#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY	BIT(0)
76
77#define BMC150_MAGN_REG_LOW_THRESH		0x4F
78#define BMC150_MAGN_REG_HIGH_THRESH		0x50
79#define BMC150_MAGN_REG_REP_XY			0x51
80#define BMC150_MAGN_REG_REP_Z			0x52
81#define BMC150_MAGN_REG_REP_DATAMASK		GENMASK(7, 0)
82
83#define BMC150_MAGN_REG_TRIM_START		0x5D
84#define BMC150_MAGN_REG_TRIM_END		0x71
85
86#define BMC150_MAGN_XY_OVERFLOW_VAL		-4096
87#define BMC150_MAGN_Z_OVERFLOW_VAL		-16384
88
89/* Time from SUSPEND to SLEEP */
90#define BMC150_MAGN_START_UP_TIME_MS		3
91
92#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS	2000
93
94#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
95#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
96#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
97#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
98
99enum bmc150_magn_axis {
100	AXIS_X,
101	AXIS_Y,
102	AXIS_Z,
103	RHALL,
104	AXIS_XYZ_MAX = RHALL,
105	AXIS_XYZR_MAX,
106};
107
108enum bmc150_magn_power_modes {
109	BMC150_MAGN_POWER_MODE_SUSPEND,
110	BMC150_MAGN_POWER_MODE_SLEEP,
111	BMC150_MAGN_POWER_MODE_NORMAL,
112};
113
114struct bmc150_magn_trim_regs {
115	s8 x1;
116	s8 y1;
117	__le16 reserved1;
118	u8 reserved2;
119	__le16 z4;
120	s8 x2;
121	s8 y2;
122	__le16 reserved3;
123	__le16 z2;
124	__le16 z1;
125	__le16 xyz1;
126	__le16 z3;
127	s8 xy2;
128	u8 xy1;
129} __packed;
130
131struct bmc150_magn_data {
132	struct device *dev;
133	/*
134	 * 1. Protect this structure.
135	 * 2. Serialize sequences that power on/off the device and access HW.
136	 */
137	struct mutex mutex;
138	struct regmap *regmap;
139	struct regulator_bulk_data regulators[2];
140	struct iio_mount_matrix orientation;
141	/* Ensure timestamp is naturally aligned */
142	struct {
143		s32 chans[3];
144		s64 timestamp __aligned(8);
145	} scan;
146	struct iio_trigger *dready_trig;
147	bool dready_trigger_on;
148	int max_odr;
149	int irq;
150};
151
152static const struct {
153	int freq;
154	u8 reg_val;
155} bmc150_magn_samp_freq_table[] = { {2, 0x01},
156				    {6, 0x02},
157				    {8, 0x03},
158				    {10, 0x00},
159				    {15, 0x04},
160				    {20, 0x05},
161				    {25, 0x06},
162				    {30, 0x07} };
163
164enum bmc150_magn_presets {
165	LOW_POWER_PRESET,
166	REGULAR_PRESET,
167	ENHANCED_REGULAR_PRESET,
168	HIGH_ACCURACY_PRESET
169};
170
171static const struct bmc150_magn_preset {
172	u8 rep_xy;
173	u8 rep_z;
174	u8 odr;
175} bmc150_magn_presets_table[] = {
176	[LOW_POWER_PRESET] = {3, 3, 10},
177	[REGULAR_PRESET] =  {9, 15, 10},
178	[ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
179	[HIGH_ACCURACY_PRESET] =  {47, 83, 20},
180};
181
182#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
183
184static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
185{
186	switch (reg) {
187	case BMC150_MAGN_REG_POWER:
188	case BMC150_MAGN_REG_OPMODE_ODR:
189	case BMC150_MAGN_REG_INT:
190	case BMC150_MAGN_REG_INT_DRDY:
191	case BMC150_MAGN_REG_LOW_THRESH:
192	case BMC150_MAGN_REG_HIGH_THRESH:
193	case BMC150_MAGN_REG_REP_XY:
194	case BMC150_MAGN_REG_REP_Z:
195		return true;
196	default:
197		return false;
198	}
199}
200
201static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
202{
203	switch (reg) {
204	case BMC150_MAGN_REG_X_L:
205	case BMC150_MAGN_REG_X_M:
206	case BMC150_MAGN_REG_Y_L:
207	case BMC150_MAGN_REG_Y_M:
208	case BMC150_MAGN_REG_Z_L:
209	case BMC150_MAGN_REG_Z_M:
210	case BMC150_MAGN_REG_RHALL_L:
211	case BMC150_MAGN_REG_RHALL_M:
212	case BMC150_MAGN_REG_INT_STATUS:
213		return true;
214	default:
215		return false;
216	}
217}
218
219const struct regmap_config bmc150_magn_regmap_config = {
220	.reg_bits = 8,
221	.val_bits = 8,
222
223	.max_register = BMC150_MAGN_REG_TRIM_END,
224	.cache_type = REGCACHE_RBTREE,
225
226	.writeable_reg = bmc150_magn_is_writeable_reg,
227	.volatile_reg = bmc150_magn_is_volatile_reg,
228};
229EXPORT_SYMBOL_NS(bmc150_magn_regmap_config, IIO_BMC150_MAGN);
230
231static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
232				      enum bmc150_magn_power_modes mode,
233				      bool state)
234{
235	int ret;
236
237	switch (mode) {
238	case BMC150_MAGN_POWER_MODE_SUSPEND:
239		ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
240					 BMC150_MAGN_MASK_POWER_CTL, !state);
241		if (ret < 0)
242			return ret;
243		usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
244		return 0;
245	case BMC150_MAGN_POWER_MODE_SLEEP:
246		return regmap_update_bits(data->regmap,
247					  BMC150_MAGN_REG_OPMODE_ODR,
248					  BMC150_MAGN_MASK_OPMODE,
249					  BMC150_MAGN_MODE_SLEEP <<
250					  BMC150_MAGN_SHIFT_OPMODE);
251	case BMC150_MAGN_POWER_MODE_NORMAL:
252		return regmap_update_bits(data->regmap,
253					  BMC150_MAGN_REG_OPMODE_ODR,
254					  BMC150_MAGN_MASK_OPMODE,
255					  BMC150_MAGN_MODE_NORMAL <<
256					  BMC150_MAGN_SHIFT_OPMODE);
257	}
258
259	return -EINVAL;
260}
261
262static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
263{
264#ifdef CONFIG_PM
265	int ret;
266
267	if (on) {
268		ret = pm_runtime_resume_and_get(data->dev);
269	} else {
270		pm_runtime_mark_last_busy(data->dev);
271		ret = pm_runtime_put_autosuspend(data->dev);
272	}
273
274	if (ret < 0) {
275		dev_err(data->dev,
276			"failed to change power state to %d\n", on);
277		return ret;
278	}
279#endif
280
281	return 0;
282}
283
284static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
285{
286	int ret, reg_val;
287	u8 i, odr_val;
288
289	ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
290	if (ret < 0)
291		return ret;
292	odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
293
294	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
295		if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
296			*val = bmc150_magn_samp_freq_table[i].freq;
297			return 0;
298		}
299
300	return -EINVAL;
301}
302
303static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
304{
305	int ret;
306	u8 i;
307
308	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
309		if (bmc150_magn_samp_freq_table[i].freq == val) {
310			ret = regmap_update_bits(data->regmap,
311						 BMC150_MAGN_REG_OPMODE_ODR,
312						 BMC150_MAGN_MASK_ODR,
313						 bmc150_magn_samp_freq_table[i].
314						 reg_val <<
315						 BMC150_MAGN_SHIFT_ODR);
316			if (ret < 0)
317				return ret;
318			return 0;
319		}
320	}
321
322	return -EINVAL;
323}
324
325static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
326				   int rep_z, int odr)
327{
328	int ret, reg_val, max_odr;
329
330	if (rep_xy <= 0) {
331		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
332				  &reg_val);
333		if (ret < 0)
334			return ret;
335		rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
336	}
337	if (rep_z <= 0) {
338		ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
339				  &reg_val);
340		if (ret < 0)
341			return ret;
342		rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
343	}
344	if (odr <= 0) {
345		ret = bmc150_magn_get_odr(data, &odr);
346		if (ret < 0)
347			return ret;
348	}
349	/* the maximum selectable read-out frequency from datasheet */
350	max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
351	if (odr > max_odr) {
352		dev_err(data->dev,
353			"Can't set oversampling with sampling freq %d\n",
354			odr);
355		return -EINVAL;
356	}
357	data->max_odr = max_odr;
358
359	return 0;
360}
361
362static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
363				    u16 rhall)
364{
365	s16 val;
366	u16 xyz1 = le16_to_cpu(tregs->xyz1);
367
368	if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
369		return S32_MIN;
370
371	if (!rhall)
372		rhall = xyz1;
373
374	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
375	val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
376	      ((s32)val)) >> 7)) + (((s32)val) *
377	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
378	      ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
379	      (((s16)tregs->x1) << 3);
380
381	return (s32)val;
382}
383
384static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
385				    u16 rhall)
386{
387	s16 val;
388	u16 xyz1 = le16_to_cpu(tregs->xyz1);
389
390	if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
391		return S32_MIN;
392
393	if (!rhall)
394		rhall = xyz1;
395
396	val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
397	val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
398	      ((s32)val)) >> 7)) + (((s32)val) *
399	      ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
400	      ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
401	      (((s16)tregs->y1) << 3);
402
403	return (s32)val;
404}
405
406static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
407				    u16 rhall)
408{
409	s32 val;
410	u16 xyz1 = le16_to_cpu(tregs->xyz1);
411	u16 z1 = le16_to_cpu(tregs->z1);
412	s16 z2 = le16_to_cpu(tregs->z2);
413	s16 z3 = le16_to_cpu(tregs->z3);
414	s16 z4 = le16_to_cpu(tregs->z4);
415
416	if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
417		return S32_MIN;
418
419	val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
420	      ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
421	      ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
422
423	return val;
424}
425
426static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
427{
428	int ret;
429	__le16 values[AXIS_XYZR_MAX];
430	s16 raw_x, raw_y, raw_z;
431	u16 rhall;
432	struct bmc150_magn_trim_regs tregs;
433
434	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
435			       values, sizeof(values));
436	if (ret < 0)
437		return ret;
438
439	raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
440	raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
441	raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
442	rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
443
444	ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
445			       &tregs, sizeof(tregs));
446	if (ret < 0)
447		return ret;
448
449	buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
450	buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
451	buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
452
453	return 0;
454}
455
456static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
457				struct iio_chan_spec const *chan,
458				int *val, int *val2, long mask)
459{
460	struct bmc150_magn_data *data = iio_priv(indio_dev);
461	int ret, tmp;
462	s32 values[AXIS_XYZ_MAX];
463
464	switch (mask) {
465	case IIO_CHAN_INFO_RAW:
466		if (iio_buffer_enabled(indio_dev))
467			return -EBUSY;
468		mutex_lock(&data->mutex);
469
470		ret = bmc150_magn_set_power_state(data, true);
471		if (ret < 0) {
472			mutex_unlock(&data->mutex);
473			return ret;
474		}
475
476		ret = bmc150_magn_read_xyz(data, values);
477		if (ret < 0) {
478			bmc150_magn_set_power_state(data, false);
479			mutex_unlock(&data->mutex);
480			return ret;
481		}
482		*val = values[chan->scan_index];
483
484		ret = bmc150_magn_set_power_state(data, false);
485		if (ret < 0) {
486			mutex_unlock(&data->mutex);
487			return ret;
488		}
489
490		mutex_unlock(&data->mutex);
491		return IIO_VAL_INT;
492	case IIO_CHAN_INFO_SCALE:
493		/*
494		 * The API/driver performs an off-chip temperature
495		 * compensation and outputs x/y/z magnetic field data in
496		 * 16 LSB/uT to the upper application layer.
497		 */
498		*val = 0;
499		*val2 = 625;
500		return IIO_VAL_INT_PLUS_MICRO;
501	case IIO_CHAN_INFO_SAMP_FREQ:
502		ret = bmc150_magn_get_odr(data, val);
503		if (ret < 0)
504			return ret;
505		return IIO_VAL_INT;
506	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
507		switch (chan->channel2) {
508		case IIO_MOD_X:
509		case IIO_MOD_Y:
510			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
511					  &tmp);
512			if (ret < 0)
513				return ret;
514			*val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
515			return IIO_VAL_INT;
516		case IIO_MOD_Z:
517			ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
518					  &tmp);
519			if (ret < 0)
520				return ret;
521			*val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
522			return IIO_VAL_INT;
523		default:
524			return -EINVAL;
525		}
526	default:
527		return -EINVAL;
528	}
529}
530
531static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
532				 struct iio_chan_spec const *chan,
533				 int val, int val2, long mask)
534{
535	struct bmc150_magn_data *data = iio_priv(indio_dev);
536	int ret;
537
538	switch (mask) {
539	case IIO_CHAN_INFO_SAMP_FREQ:
540		if (val > data->max_odr)
541			return -EINVAL;
542		mutex_lock(&data->mutex);
543		ret = bmc150_magn_set_odr(data, val);
544		mutex_unlock(&data->mutex);
545		return ret;
546	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
547		switch (chan->channel2) {
548		case IIO_MOD_X:
549		case IIO_MOD_Y:
550			if (val < 1 || val > 511)
551				return -EINVAL;
552			mutex_lock(&data->mutex);
553			ret = bmc150_magn_set_max_odr(data, val, 0, 0);
554			if (ret < 0) {
555				mutex_unlock(&data->mutex);
556				return ret;
557			}
558			ret = regmap_update_bits(data->regmap,
559						 BMC150_MAGN_REG_REP_XY,
560						 BMC150_MAGN_REG_REP_DATAMASK,
561						 BMC150_MAGN_REPXY_TO_REGVAL
562						 (val));
563			mutex_unlock(&data->mutex);
564			return ret;
565		case IIO_MOD_Z:
566			if (val < 1 || val > 256)
567				return -EINVAL;
568			mutex_lock(&data->mutex);
569			ret = bmc150_magn_set_max_odr(data, 0, val, 0);
570			if (ret < 0) {
571				mutex_unlock(&data->mutex);
572				return ret;
573			}
574			ret = regmap_update_bits(data->regmap,
575						 BMC150_MAGN_REG_REP_Z,
576						 BMC150_MAGN_REG_REP_DATAMASK,
577						 BMC150_MAGN_REPZ_TO_REGVAL
578						 (val));
579			mutex_unlock(&data->mutex);
580			return ret;
581		default:
582			return -EINVAL;
583		}
584	default:
585		return -EINVAL;
586	}
587}
588
589static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
590						struct device_attribute *attr,
591						char *buf)
592{
593	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
594	struct bmc150_magn_data *data = iio_priv(indio_dev);
595	size_t len = 0;
596	u8 i;
597
598	for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
599		if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
600			break;
601		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
602				 bmc150_magn_samp_freq_table[i].freq);
603	}
604	/* replace last space with a newline */
605	buf[len - 1] = '\n';
606
607	return len;
608}
609
610static const struct iio_mount_matrix *
611bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
612			      const struct iio_chan_spec *chan)
613{
614	struct bmc150_magn_data *data = iio_priv(indio_dev);
615
616	return &data->orientation;
617}
618
619static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
620	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
621	{ }
622};
623
624static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
625
626static struct attribute *bmc150_magn_attributes[] = {
627	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
628	NULL,
629};
630
631static const struct attribute_group bmc150_magn_attrs_group = {
632	.attrs = bmc150_magn_attributes,
633};
634
635#define BMC150_MAGN_CHANNEL(_axis) {					\
636	.type = IIO_MAGN,						\
637	.modified = 1,							\
638	.channel2 = IIO_MOD_##_axis,					\
639	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
640			      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
641	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
642				    BIT(IIO_CHAN_INFO_SCALE),		\
643	.scan_index = AXIS_##_axis,					\
644	.scan_type = {							\
645		.sign = 's',						\
646		.realbits = 32,						\
647		.storagebits = 32,					\
648		.endianness = IIO_LE					\
649	},								\
650	.ext_info = bmc150_magn_ext_info,				\
651}
652
653static const struct iio_chan_spec bmc150_magn_channels[] = {
654	BMC150_MAGN_CHANNEL(X),
655	BMC150_MAGN_CHANNEL(Y),
656	BMC150_MAGN_CHANNEL(Z),
657	IIO_CHAN_SOFT_TIMESTAMP(3),
658};
659
660static const struct iio_info bmc150_magn_info = {
661	.attrs = &bmc150_magn_attrs_group,
662	.read_raw = bmc150_magn_read_raw,
663	.write_raw = bmc150_magn_write_raw,
664};
665
666static const unsigned long bmc150_magn_scan_masks[] = {
667					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
668					0};
669
670static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
671{
672	struct iio_poll_func *pf = p;
673	struct iio_dev *indio_dev = pf->indio_dev;
674	struct bmc150_magn_data *data = iio_priv(indio_dev);
675	int ret;
676
677	mutex_lock(&data->mutex);
678	ret = bmc150_magn_read_xyz(data, data->scan.chans);
679	if (ret < 0)
680		goto err;
681
682	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
683					   pf->timestamp);
684
685err:
686	mutex_unlock(&data->mutex);
687	iio_trigger_notify_done(indio_dev->trig);
688
689	return IRQ_HANDLED;
690}
691
692static int bmc150_magn_init(struct bmc150_magn_data *data)
693{
694	int ret, chip_id;
695	struct bmc150_magn_preset preset;
696
697	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
698				    data->regulators);
699	if (ret < 0) {
700		dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
701		return ret;
702	}
703	/*
704	 * 3ms power-on time according to datasheet, let's better
705	 * be safe than sorry and set this delay to 5ms.
706	 */
707	msleep(5);
708
709	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
710					 false);
711	if (ret < 0) {
712		dev_err(data->dev,
713			"Failed to bring up device from suspend mode\n");
714		goto err_regulator_disable;
715	}
716
717	ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
718	if (ret < 0) {
719		dev_err(data->dev, "Failed reading chip id\n");
720		goto err_poweroff;
721	}
722	if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
723		dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
724		ret = -ENODEV;
725		goto err_poweroff;
726	}
727	dev_dbg(data->dev, "Chip id %x\n", chip_id);
728
729	preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
730	ret = bmc150_magn_set_odr(data, preset.odr);
731	if (ret < 0) {
732		dev_err(data->dev, "Failed to set ODR to %d\n",
733			preset.odr);
734		goto err_poweroff;
735	}
736
737	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
738			   BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
739	if (ret < 0) {
740		dev_err(data->dev, "Failed to set REP XY to %d\n",
741			preset.rep_xy);
742		goto err_poweroff;
743	}
744
745	ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
746			   BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
747	if (ret < 0) {
748		dev_err(data->dev, "Failed to set REP Z to %d\n",
749			preset.rep_z);
750		goto err_poweroff;
751	}
752
753	ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
754				      preset.odr);
755	if (ret < 0)
756		goto err_poweroff;
757
758	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
759					 true);
760	if (ret < 0) {
761		dev_err(data->dev, "Failed to power on device\n");
762		goto err_poweroff;
763	}
764
765	return 0;
766
767err_poweroff:
768	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
769err_regulator_disable:
770	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
771	return ret;
772}
773
774static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
775{
776	int tmp;
777
778	/*
779	 * Data Ready (DRDY) is always cleared after
780	 * readout of data registers ends.
781	 */
782	return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
783}
784
785static void bmc150_magn_trig_reen(struct iio_trigger *trig)
786{
787	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
788	struct bmc150_magn_data *data = iio_priv(indio_dev);
789	int ret;
790
791	if (!data->dready_trigger_on)
792		return;
793
794	mutex_lock(&data->mutex);
795	ret = bmc150_magn_reset_intr(data);
796	mutex_unlock(&data->mutex);
797	if (ret)
798		dev_err(data->dev, "Failed to reset interrupt\n");
799}
800
801static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
802						  bool state)
803{
804	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
805	struct bmc150_magn_data *data = iio_priv(indio_dev);
806	int ret = 0;
807
808	mutex_lock(&data->mutex);
809	if (state == data->dready_trigger_on)
810		goto err_unlock;
811
812	ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
813				 BMC150_MAGN_MASK_DRDY_EN,
814				 state << BMC150_MAGN_SHIFT_DRDY_EN);
815	if (ret < 0)
816		goto err_unlock;
817
818	data->dready_trigger_on = state;
819
820	if (state) {
821		ret = bmc150_magn_reset_intr(data);
822		if (ret < 0)
823			goto err_unlock;
824	}
825	mutex_unlock(&data->mutex);
826
827	return 0;
828
829err_unlock:
830	mutex_unlock(&data->mutex);
831	return ret;
832}
833
834static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
835	.set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
836	.reenable = bmc150_magn_trig_reen,
837};
838
839static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
840{
841	struct bmc150_magn_data *data = iio_priv(indio_dev);
842
843	return bmc150_magn_set_power_state(data, true);
844}
845
846static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
847{
848	struct bmc150_magn_data *data = iio_priv(indio_dev);
849
850	return bmc150_magn_set_power_state(data, false);
851}
852
853static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
854	.preenable = bmc150_magn_buffer_preenable,
855	.postdisable = bmc150_magn_buffer_postdisable,
856};
857
858static const char *bmc150_magn_match_acpi_device(struct device *dev)
859{
860	const struct acpi_device_id *id;
861
862	id = acpi_match_device(dev->driver->acpi_match_table, dev);
863	if (!id)
864		return NULL;
865
866	return dev_name(dev);
867}
868
869int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
870		      int irq, const char *name)
871{
872	struct bmc150_magn_data *data;
873	struct iio_dev *indio_dev;
874	int ret;
875
876	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
877	if (!indio_dev)
878		return -ENOMEM;
879
880	data = iio_priv(indio_dev);
881	dev_set_drvdata(dev, indio_dev);
882	data->regmap = regmap;
883	data->irq = irq;
884	data->dev = dev;
885
886	data->regulators[0].supply = "vdd";
887	data->regulators[1].supply = "vddio";
888	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
889				      data->regulators);
890	if (ret)
891		return dev_err_probe(dev, ret, "failed to get regulators\n");
892
893	ret = iio_read_mount_matrix(dev, &data->orientation);
894	if (ret)
895		return ret;
896
897	if (!name && ACPI_HANDLE(dev))
898		name = bmc150_magn_match_acpi_device(dev);
899
900	mutex_init(&data->mutex);
901
902	ret = bmc150_magn_init(data);
903	if (ret < 0)
904		return ret;
905
906	indio_dev->channels = bmc150_magn_channels;
907	indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
908	indio_dev->available_scan_masks = bmc150_magn_scan_masks;
909	indio_dev->name = name;
910	indio_dev->modes = INDIO_DIRECT_MODE;
911	indio_dev->info = &bmc150_magn_info;
912
913	if (irq > 0) {
914		data->dready_trig = devm_iio_trigger_alloc(dev,
915							   "%s-dev%d",
916							   indio_dev->name,
917							   iio_device_id(indio_dev));
918		if (!data->dready_trig) {
919			ret = -ENOMEM;
920			dev_err(dev, "iio trigger alloc failed\n");
921			goto err_poweroff;
922		}
923
924		data->dready_trig->ops = &bmc150_magn_trigger_ops;
925		iio_trigger_set_drvdata(data->dready_trig, indio_dev);
926		ret = iio_trigger_register(data->dready_trig);
927		if (ret) {
928			dev_err(dev, "iio trigger register failed\n");
929			goto err_poweroff;
930		}
931
932		ret = request_threaded_irq(irq,
933					   iio_trigger_generic_data_rdy_poll,
934					   NULL,
935					   IRQF_TRIGGER_RISING | IRQF_ONESHOT,
936					   BMC150_MAGN_IRQ_NAME,
937					   data->dready_trig);
938		if (ret < 0) {
939			dev_err(dev, "request irq %d failed\n", irq);
940			goto err_trigger_unregister;
941		}
942	}
943
944	ret = iio_triggered_buffer_setup(indio_dev,
945					 iio_pollfunc_store_time,
946					 bmc150_magn_trigger_handler,
947					 &bmc150_magn_buffer_setup_ops);
948	if (ret < 0) {
949		dev_err(dev, "iio triggered buffer setup failed\n");
950		goto err_free_irq;
951	}
952
953	ret = pm_runtime_set_active(dev);
954	if (ret)
955		goto err_buffer_cleanup;
956
957	pm_runtime_enable(dev);
958	pm_runtime_set_autosuspend_delay(dev,
959					 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
960	pm_runtime_use_autosuspend(dev);
961
962	ret = iio_device_register(indio_dev);
963	if (ret < 0) {
964		dev_err(dev, "unable to register iio device\n");
965		goto err_pm_cleanup;
966	}
967
968	dev_dbg(dev, "Registered device %s\n", name);
969	return 0;
970
971err_pm_cleanup:
972	pm_runtime_dont_use_autosuspend(dev);
973	pm_runtime_disable(dev);
974err_buffer_cleanup:
975	iio_triggered_buffer_cleanup(indio_dev);
976err_free_irq:
977	if (irq > 0)
978		free_irq(irq, data->dready_trig);
979err_trigger_unregister:
980	if (data->dready_trig)
981		iio_trigger_unregister(data->dready_trig);
982err_poweroff:
983	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
984	return ret;
985}
986EXPORT_SYMBOL_NS(bmc150_magn_probe, IIO_BMC150_MAGN);
987
988void bmc150_magn_remove(struct device *dev)
989{
990	struct iio_dev *indio_dev = dev_get_drvdata(dev);
991	struct bmc150_magn_data *data = iio_priv(indio_dev);
992
993	iio_device_unregister(indio_dev);
994
995	pm_runtime_disable(dev);
996	pm_runtime_set_suspended(dev);
997
998	iio_triggered_buffer_cleanup(indio_dev);
999
1000	if (data->irq > 0)
1001		free_irq(data->irq, data->dready_trig);
1002
1003	if (data->dready_trig)
1004		iio_trigger_unregister(data->dready_trig);
1005
1006	mutex_lock(&data->mutex);
1007	bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
1008	mutex_unlock(&data->mutex);
1009
1010	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
1011}
1012EXPORT_SYMBOL_NS(bmc150_magn_remove, IIO_BMC150_MAGN);
1013
1014#ifdef CONFIG_PM
1015static int bmc150_magn_runtime_suspend(struct device *dev)
1016{
1017	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1018	struct bmc150_magn_data *data = iio_priv(indio_dev);
1019	int ret;
1020
1021	mutex_lock(&data->mutex);
1022	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1023					 true);
1024	mutex_unlock(&data->mutex);
1025	if (ret < 0) {
1026		dev_err(dev, "powering off device failed\n");
1027		return ret;
1028	}
1029	return 0;
1030}
1031
1032/*
1033 * Should be called with data->mutex held.
1034 */
1035static int bmc150_magn_runtime_resume(struct device *dev)
1036{
1037	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1038	struct bmc150_magn_data *data = iio_priv(indio_dev);
1039
1040	return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1041					  true);
1042}
1043#endif
1044
1045#ifdef CONFIG_PM_SLEEP
1046static int bmc150_magn_suspend(struct device *dev)
1047{
1048	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1049	struct bmc150_magn_data *data = iio_priv(indio_dev);
1050	int ret;
1051
1052	mutex_lock(&data->mutex);
1053	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1054					 true);
1055	mutex_unlock(&data->mutex);
1056
1057	return ret;
1058}
1059
1060static int bmc150_magn_resume(struct device *dev)
1061{
1062	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1063	struct bmc150_magn_data *data = iio_priv(indio_dev);
1064	int ret;
1065
1066	mutex_lock(&data->mutex);
1067	ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1068					 true);
1069	mutex_unlock(&data->mutex);
1070
1071	return ret;
1072}
1073#endif
1074
1075const struct dev_pm_ops bmc150_magn_pm_ops = {
1076	SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1077	SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1078			   bmc150_magn_runtime_resume, NULL)
1079};
1080EXPORT_SYMBOL_NS(bmc150_magn_pm_ops, IIO_BMC150_MAGN);
1081
1082MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1083MODULE_LICENSE("GPL v2");
1084MODULE_DESCRIPTION("BMC150 magnetometer core driver");
1085