162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * BU27034 ROHM Ambient Light Sensor 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (c) 2023, ROHM Semiconductor. 662306a36Sopenharmony_ci * https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/light/bu27034nuc-e.pdf 762306a36Sopenharmony_ci */ 862306a36Sopenharmony_ci 962306a36Sopenharmony_ci#include <linux/bitfield.h> 1062306a36Sopenharmony_ci#include <linux/bits.h> 1162306a36Sopenharmony_ci#include <linux/device.h> 1262306a36Sopenharmony_ci#include <linux/i2c.h> 1362306a36Sopenharmony_ci#include <linux/module.h> 1462306a36Sopenharmony_ci#include <linux/property.h> 1562306a36Sopenharmony_ci#include <linux/regmap.h> 1662306a36Sopenharmony_ci#include <linux/regulator/consumer.h> 1762306a36Sopenharmony_ci#include <linux/units.h> 1862306a36Sopenharmony_ci 1962306a36Sopenharmony_ci#include <linux/iio/buffer.h> 2062306a36Sopenharmony_ci#include <linux/iio/iio.h> 2162306a36Sopenharmony_ci#include <linux/iio/iio-gts-helper.h> 2262306a36Sopenharmony_ci#include <linux/iio/kfifo_buf.h> 2362306a36Sopenharmony_ci 2462306a36Sopenharmony_ci#define BU27034_REG_SYSTEM_CONTROL 0x40 2562306a36Sopenharmony_ci#define BU27034_MASK_SW_RESET BIT(7) 2662306a36Sopenharmony_ci#define BU27034_MASK_PART_ID GENMASK(5, 0) 2762306a36Sopenharmony_ci#define BU27034_ID 0x19 2862306a36Sopenharmony_ci#define BU27034_REG_MODE_CONTROL1 0x41 2962306a36Sopenharmony_ci#define BU27034_MASK_MEAS_MODE GENMASK(2, 0) 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci#define BU27034_REG_MODE_CONTROL2 0x42 3262306a36Sopenharmony_ci#define BU27034_MASK_D01_GAIN GENMASK(7, 3) 3362306a36Sopenharmony_ci#define BU27034_MASK_D2_GAIN_HI GENMASK(7, 6) 3462306a36Sopenharmony_ci#define BU27034_MASK_D2_GAIN_LO GENMASK(2, 0) 3562306a36Sopenharmony_ci 3662306a36Sopenharmony_ci#define BU27034_REG_MODE_CONTROL3 0x43 3762306a36Sopenharmony_ci#define BU27034_REG_MODE_CONTROL4 0x44 3862306a36Sopenharmony_ci#define BU27034_MASK_MEAS_EN BIT(0) 3962306a36Sopenharmony_ci#define BU27034_MASK_VALID BIT(7) 4062306a36Sopenharmony_ci#define BU27034_REG_DATA0_LO 0x50 4162306a36Sopenharmony_ci#define BU27034_REG_DATA1_LO 0x52 4262306a36Sopenharmony_ci#define BU27034_REG_DATA2_LO 0x54 4362306a36Sopenharmony_ci#define BU27034_REG_DATA2_HI 0x55 4462306a36Sopenharmony_ci#define BU27034_REG_MANUFACTURER_ID 0x92 4562306a36Sopenharmony_ci#define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci/* 4862306a36Sopenharmony_ci * The BU27034 does not have interrupt to trigger the data read when a 4962306a36Sopenharmony_ci * measurement has finished. Hence we poll the VALID bit in a thread. We will 5062306a36Sopenharmony_ci * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before 5162306a36Sopenharmony_ci * the expected sampling time to prevent the drifting. 5262306a36Sopenharmony_ci * 5362306a36Sopenharmony_ci * If we constantly wake up a bit too late we would eventually skip a sample. 5462306a36Sopenharmony_ci * And because the sleep can't wake up _exactly_ at given time this would be 5562306a36Sopenharmony_ci * inevitable even if the sensor clock would be perfectly phase-locked to CPU 5662306a36Sopenharmony_ci * clock - which we can't say is the case. 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * This is still fragile. No matter how big advance do we have, we will still 5962306a36Sopenharmony_ci * risk of losing a sample because things can in a rainy-day scenario be 6062306a36Sopenharmony_ci * delayed a lot. Yet, more we reserve the time for polling, more we also lose 6162306a36Sopenharmony_ci * the performance by spending cycles polling the register. So, selecting this 6262306a36Sopenharmony_ci * value is a balancing dance between severity of wasting CPU time and severity 6362306a36Sopenharmony_ci * of losing samples. 6462306a36Sopenharmony_ci * 6562306a36Sopenharmony_ci * In most cases losing the samples is not _that_ crucial because light levels 6662306a36Sopenharmony_ci * tend to change slowly. 6762306a36Sopenharmony_ci * 6862306a36Sopenharmony_ci * Other option that was pointed to me would be always sleeping 1/2 of the 6962306a36Sopenharmony_ci * measurement time, checking the VALID bit and just sleeping again if the bit 7062306a36Sopenharmony_ci * was not set. That should be pretty tolerant against missing samples due to 7162306a36Sopenharmony_ci * the scheduling delays while also not wasting much of cycles for polling. 7262306a36Sopenharmony_ci * Downside is that the time-stamps would be very inaccurate as the wake-up 7362306a36Sopenharmony_ci * would not really be tied to the sensor toggling the valid bit. This would also 7462306a36Sopenharmony_ci * result 'jumps' in the time-stamps when the delay drifted so that wake-up was 7562306a36Sopenharmony_ci * performed during the consecutive wake-ups (Or, when sensor and CPU clocks 7662306a36Sopenharmony_ci * were very different and scheduling the wake-ups was very close to given 7762306a36Sopenharmony_ci * timeout - and when the time-outs were very close to the actual sensor 7862306a36Sopenharmony_ci * sampling, Eg. once in a blue moon, two consecutive time-outs would occur 7962306a36Sopenharmony_ci * without having a sample ready). 8062306a36Sopenharmony_ci */ 8162306a36Sopenharmony_ci#define BU27034_MEAS_WAIT_PREMATURE_MS 5 8262306a36Sopenharmony_ci#define BU27034_DATA_WAIT_TIME_US 1000 8362306a36Sopenharmony_ci#define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000) 8462306a36Sopenharmony_ci 8562306a36Sopenharmony_ci#define BU27034_RETRY_LIMIT 18 8662306a36Sopenharmony_ci 8762306a36Sopenharmony_cienum { 8862306a36Sopenharmony_ci BU27034_CHAN_ALS, 8962306a36Sopenharmony_ci BU27034_CHAN_DATA0, 9062306a36Sopenharmony_ci BU27034_CHAN_DATA1, 9162306a36Sopenharmony_ci BU27034_CHAN_DATA2, 9262306a36Sopenharmony_ci BU27034_NUM_CHANS 9362306a36Sopenharmony_ci}; 9462306a36Sopenharmony_ci 9562306a36Sopenharmony_cistatic const unsigned long bu27034_scan_masks[] = { 9662306a36Sopenharmony_ci GENMASK(BU27034_CHAN_DATA2, BU27034_CHAN_ALS), 0 9762306a36Sopenharmony_ci}; 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci/* 10062306a36Sopenharmony_ci * Available scales with gain 1x - 4096x, timings 55, 100, 200, 400 mS 10162306a36Sopenharmony_ci * Time impacts to gain: 1x, 2x, 4x, 8x. 10262306a36Sopenharmony_ci * 10362306a36Sopenharmony_ci * => Max total gain is HWGAIN * gain by integration time (8 * 4096) = 32768 10462306a36Sopenharmony_ci * 10562306a36Sopenharmony_ci * Using NANO precision for scale we must use scale 64x corresponding gain 1x 10662306a36Sopenharmony_ci * to avoid precision loss. (32x would result scale 976 562.5(nanos). 10762306a36Sopenharmony_ci */ 10862306a36Sopenharmony_ci#define BU27034_SCALE_1X 64 10962306a36Sopenharmony_ci 11062306a36Sopenharmony_ci/* See the data sheet for the "Gain Setting" table */ 11162306a36Sopenharmony_ci#define BU27034_GSEL_1X 0x00 /* 00000 */ 11262306a36Sopenharmony_ci#define BU27034_GSEL_4X 0x08 /* 01000 */ 11362306a36Sopenharmony_ci#define BU27034_GSEL_16X 0x0a /* 01010 */ 11462306a36Sopenharmony_ci#define BU27034_GSEL_32X 0x0b /* 01011 */ 11562306a36Sopenharmony_ci#define BU27034_GSEL_64X 0x0c /* 01100 */ 11662306a36Sopenharmony_ci#define BU27034_GSEL_256X 0x18 /* 11000 */ 11762306a36Sopenharmony_ci#define BU27034_GSEL_512X 0x19 /* 11001 */ 11862306a36Sopenharmony_ci#define BU27034_GSEL_1024X 0x1a /* 11010 */ 11962306a36Sopenharmony_ci#define BU27034_GSEL_2048X 0x1b /* 11011 */ 12062306a36Sopenharmony_ci#define BU27034_GSEL_4096X 0x1c /* 11100 */ 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_ci/* Available gain settings */ 12362306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27034_gains[] = { 12462306a36Sopenharmony_ci GAIN_SCALE_GAIN(1, BU27034_GSEL_1X), 12562306a36Sopenharmony_ci GAIN_SCALE_GAIN(4, BU27034_GSEL_4X), 12662306a36Sopenharmony_ci GAIN_SCALE_GAIN(16, BU27034_GSEL_16X), 12762306a36Sopenharmony_ci GAIN_SCALE_GAIN(32, BU27034_GSEL_32X), 12862306a36Sopenharmony_ci GAIN_SCALE_GAIN(64, BU27034_GSEL_64X), 12962306a36Sopenharmony_ci GAIN_SCALE_GAIN(256, BU27034_GSEL_256X), 13062306a36Sopenharmony_ci GAIN_SCALE_GAIN(512, BU27034_GSEL_512X), 13162306a36Sopenharmony_ci GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X), 13262306a36Sopenharmony_ci GAIN_SCALE_GAIN(2048, BU27034_GSEL_2048X), 13362306a36Sopenharmony_ci GAIN_SCALE_GAIN(4096, BU27034_GSEL_4096X), 13462306a36Sopenharmony_ci}; 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ci/* 13762306a36Sopenharmony_ci * The IC has 5 modes for sampling time. 5 mS mode is exceptional as it limits 13862306a36Sopenharmony_ci * the data collection to data0-channel only and cuts the supported range to 13962306a36Sopenharmony_ci * 10 bit. It is not supported by the driver. 14062306a36Sopenharmony_ci * 14162306a36Sopenharmony_ci * "normal" modes are 55, 100, 200 and 400 mS modes - which do have direct 14262306a36Sopenharmony_ci * multiplying impact to the register values (similar to gain). 14362306a36Sopenharmony_ci * 14462306a36Sopenharmony_ci * This means that if meas-mode is changed for example from 400 => 200, 14562306a36Sopenharmony_ci * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8. 14662306a36Sopenharmony_ci */ 14762306a36Sopenharmony_ci#define BU27034_MEAS_MODE_100MS 0 14862306a36Sopenharmony_ci#define BU27034_MEAS_MODE_55MS 1 14962306a36Sopenharmony_ci#define BU27034_MEAS_MODE_200MS 2 15062306a36Sopenharmony_ci#define BU27034_MEAS_MODE_400MS 4 15162306a36Sopenharmony_ci 15262306a36Sopenharmony_cistatic const struct iio_itime_sel_mul bu27034_itimes[] = { 15362306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8), 15462306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4), 15562306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2), 15662306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1), 15762306a36Sopenharmony_ci}; 15862306a36Sopenharmony_ci 15962306a36Sopenharmony_ci#define BU27034_CHAN_DATA(_name, _ch2) \ 16062306a36Sopenharmony_ci{ \ 16162306a36Sopenharmony_ci .type = IIO_INTENSITY, \ 16262306a36Sopenharmony_ci .channel = BU27034_CHAN_##_name, \ 16362306a36Sopenharmony_ci .channel2 = (_ch2), \ 16462306a36Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 16562306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_SCALE), \ 16662306a36Sopenharmony_ci .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE), \ 16762306a36Sopenharmony_ci .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ 16862306a36Sopenharmony_ci .info_mask_shared_by_all_available = \ 16962306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_INT_TIME), \ 17062306a36Sopenharmony_ci .address = BU27034_REG_##_name##_LO, \ 17162306a36Sopenharmony_ci .scan_index = BU27034_CHAN_##_name, \ 17262306a36Sopenharmony_ci .scan_type = { \ 17362306a36Sopenharmony_ci .sign = 'u', \ 17462306a36Sopenharmony_ci .realbits = 16, \ 17562306a36Sopenharmony_ci .storagebits = 16, \ 17662306a36Sopenharmony_ci .endianness = IIO_LE, \ 17762306a36Sopenharmony_ci }, \ 17862306a36Sopenharmony_ci .indexed = 1, \ 17962306a36Sopenharmony_ci} 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_cistatic const struct iio_chan_spec bu27034_channels[] = { 18262306a36Sopenharmony_ci { 18362306a36Sopenharmony_ci .type = IIO_LIGHT, 18462306a36Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 18562306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_SCALE), 18662306a36Sopenharmony_ci .channel = BU27034_CHAN_ALS, 18762306a36Sopenharmony_ci .scan_index = BU27034_CHAN_ALS, 18862306a36Sopenharmony_ci .scan_type = { 18962306a36Sopenharmony_ci .sign = 'u', 19062306a36Sopenharmony_ci .realbits = 32, 19162306a36Sopenharmony_ci .storagebits = 32, 19262306a36Sopenharmony_ci .endianness = IIO_CPU, 19362306a36Sopenharmony_ci }, 19462306a36Sopenharmony_ci }, 19562306a36Sopenharmony_ci /* 19662306a36Sopenharmony_ci * The BU27034 DATA0 and DATA1 channels are both on the visible light 19762306a36Sopenharmony_ci * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm. 19862306a36Sopenharmony_ci * These wave lengths are pretty much on the border of colours making 19962306a36Sopenharmony_ci * these a poor candidates for R/G/B standardization. Hence they're both 20062306a36Sopenharmony_ci * marked as clear channels 20162306a36Sopenharmony_ci */ 20262306a36Sopenharmony_ci BU27034_CHAN_DATA(DATA0, IIO_MOD_LIGHT_CLEAR), 20362306a36Sopenharmony_ci BU27034_CHAN_DATA(DATA1, IIO_MOD_LIGHT_CLEAR), 20462306a36Sopenharmony_ci BU27034_CHAN_DATA(DATA2, IIO_MOD_LIGHT_IR), 20562306a36Sopenharmony_ci IIO_CHAN_SOFT_TIMESTAMP(4), 20662306a36Sopenharmony_ci}; 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_cistruct bu27034_data { 20962306a36Sopenharmony_ci struct regmap *regmap; 21062306a36Sopenharmony_ci struct device *dev; 21162306a36Sopenharmony_ci /* 21262306a36Sopenharmony_ci * Protect gain and time during scale adjustment and data reading. 21362306a36Sopenharmony_ci * Protect measurement enabling/disabling. 21462306a36Sopenharmony_ci */ 21562306a36Sopenharmony_ci struct mutex mutex; 21662306a36Sopenharmony_ci struct iio_gts gts; 21762306a36Sopenharmony_ci struct task_struct *task; 21862306a36Sopenharmony_ci __le16 raw[3]; 21962306a36Sopenharmony_ci struct { 22062306a36Sopenharmony_ci u32 mlux; 22162306a36Sopenharmony_ci __le16 channels[3]; 22262306a36Sopenharmony_ci s64 ts __aligned(8); 22362306a36Sopenharmony_ci } scan; 22462306a36Sopenharmony_ci}; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_cistruct bu27034_result { 22762306a36Sopenharmony_ci u16 ch0; 22862306a36Sopenharmony_ci u16 ch1; 22962306a36Sopenharmony_ci u16 ch2; 23062306a36Sopenharmony_ci}; 23162306a36Sopenharmony_ci 23262306a36Sopenharmony_cistatic const struct regmap_range bu27034_volatile_ranges[] = { 23362306a36Sopenharmony_ci { 23462306a36Sopenharmony_ci .range_min = BU27034_REG_SYSTEM_CONTROL, 23562306a36Sopenharmony_ci .range_max = BU27034_REG_SYSTEM_CONTROL, 23662306a36Sopenharmony_ci }, { 23762306a36Sopenharmony_ci .range_min = BU27034_REG_MODE_CONTROL4, 23862306a36Sopenharmony_ci .range_max = BU27034_REG_MODE_CONTROL4, 23962306a36Sopenharmony_ci }, { 24062306a36Sopenharmony_ci .range_min = BU27034_REG_DATA0_LO, 24162306a36Sopenharmony_ci .range_max = BU27034_REG_DATA2_HI, 24262306a36Sopenharmony_ci }, 24362306a36Sopenharmony_ci}; 24462306a36Sopenharmony_ci 24562306a36Sopenharmony_cistatic const struct regmap_access_table bu27034_volatile_regs = { 24662306a36Sopenharmony_ci .yes_ranges = &bu27034_volatile_ranges[0], 24762306a36Sopenharmony_ci .n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges), 24862306a36Sopenharmony_ci}; 24962306a36Sopenharmony_ci 25062306a36Sopenharmony_cistatic const struct regmap_range bu27034_read_only_ranges[] = { 25162306a36Sopenharmony_ci { 25262306a36Sopenharmony_ci .range_min = BU27034_REG_DATA0_LO, 25362306a36Sopenharmony_ci .range_max = BU27034_REG_DATA2_HI, 25462306a36Sopenharmony_ci }, { 25562306a36Sopenharmony_ci .range_min = BU27034_REG_MANUFACTURER_ID, 25662306a36Sopenharmony_ci .range_max = BU27034_REG_MANUFACTURER_ID, 25762306a36Sopenharmony_ci } 25862306a36Sopenharmony_ci}; 25962306a36Sopenharmony_ci 26062306a36Sopenharmony_cistatic const struct regmap_access_table bu27034_ro_regs = { 26162306a36Sopenharmony_ci .no_ranges = &bu27034_read_only_ranges[0], 26262306a36Sopenharmony_ci .n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges), 26362306a36Sopenharmony_ci}; 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_cistatic const struct regmap_config bu27034_regmap = { 26662306a36Sopenharmony_ci .reg_bits = 8, 26762306a36Sopenharmony_ci .val_bits = 8, 26862306a36Sopenharmony_ci .max_register = BU27034_REG_MAX, 26962306a36Sopenharmony_ci .cache_type = REGCACHE_RBTREE, 27062306a36Sopenharmony_ci .volatile_table = &bu27034_volatile_regs, 27162306a36Sopenharmony_ci .wr_table = &bu27034_ro_regs, 27262306a36Sopenharmony_ci}; 27362306a36Sopenharmony_ci 27462306a36Sopenharmony_cistruct bu27034_gain_check { 27562306a36Sopenharmony_ci int old_gain; 27662306a36Sopenharmony_ci int new_gain; 27762306a36Sopenharmony_ci int chan; 27862306a36Sopenharmony_ci}; 27962306a36Sopenharmony_ci 28062306a36Sopenharmony_cistatic int bu27034_get_gain_sel(struct bu27034_data *data, int chan) 28162306a36Sopenharmony_ci{ 28262306a36Sopenharmony_ci int ret, val; 28362306a36Sopenharmony_ci 28462306a36Sopenharmony_ci switch (chan) { 28562306a36Sopenharmony_ci case BU27034_CHAN_DATA0: 28662306a36Sopenharmony_ci case BU27034_CHAN_DATA1: 28762306a36Sopenharmony_ci { 28862306a36Sopenharmony_ci int reg[] = { 28962306a36Sopenharmony_ci [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, 29062306a36Sopenharmony_ci [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, 29162306a36Sopenharmony_ci }; 29262306a36Sopenharmony_ci ret = regmap_read(data->regmap, reg[chan], &val); 29362306a36Sopenharmony_ci if (ret) 29462306a36Sopenharmony_ci return ret; 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci return FIELD_GET(BU27034_MASK_D01_GAIN, val); 29762306a36Sopenharmony_ci } 29862306a36Sopenharmony_ci case BU27034_CHAN_DATA2: 29962306a36Sopenharmony_ci { 30062306a36Sopenharmony_ci int d2_lo_bits = fls(BU27034_MASK_D2_GAIN_LO); 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL2, &val); 30362306a36Sopenharmony_ci if (ret) 30462306a36Sopenharmony_ci return ret; 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_ci /* 30762306a36Sopenharmony_ci * The data2 channel gain is composed by 5 non continuous bits 30862306a36Sopenharmony_ci * [7:6], [2:0]. Thus when we combine the 5-bit 'selector' 30962306a36Sopenharmony_ci * from register value we must right shift the high bits by 3. 31062306a36Sopenharmony_ci */ 31162306a36Sopenharmony_ci return FIELD_GET(BU27034_MASK_D2_GAIN_HI, val) << d2_lo_bits | 31262306a36Sopenharmony_ci FIELD_GET(BU27034_MASK_D2_GAIN_LO, val); 31362306a36Sopenharmony_ci } 31462306a36Sopenharmony_ci default: 31562306a36Sopenharmony_ci return -EINVAL; 31662306a36Sopenharmony_ci } 31762306a36Sopenharmony_ci} 31862306a36Sopenharmony_ci 31962306a36Sopenharmony_cistatic int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain) 32062306a36Sopenharmony_ci{ 32162306a36Sopenharmony_ci int ret, sel; 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci ret = bu27034_get_gain_sel(data, chan); 32462306a36Sopenharmony_ci if (ret < 0) 32562306a36Sopenharmony_ci return ret; 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci sel = ret; 32862306a36Sopenharmony_ci 32962306a36Sopenharmony_ci ret = iio_gts_find_gain_by_sel(&data->gts, sel); 33062306a36Sopenharmony_ci if (ret < 0) { 33162306a36Sopenharmony_ci dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan, 33262306a36Sopenharmony_ci sel); 33362306a36Sopenharmony_ci 33462306a36Sopenharmony_ci return ret; 33562306a36Sopenharmony_ci } 33662306a36Sopenharmony_ci 33762306a36Sopenharmony_ci *gain = ret; 33862306a36Sopenharmony_ci 33962306a36Sopenharmony_ci return 0; 34062306a36Sopenharmony_ci} 34162306a36Sopenharmony_ci 34262306a36Sopenharmony_cistatic int bu27034_get_int_time(struct bu27034_data *data) 34362306a36Sopenharmony_ci{ 34462306a36Sopenharmony_ci int ret, sel; 34562306a36Sopenharmony_ci 34662306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); 34762306a36Sopenharmony_ci if (ret) 34862306a36Sopenharmony_ci return ret; 34962306a36Sopenharmony_ci 35062306a36Sopenharmony_ci return iio_gts_find_int_time_by_sel(&data->gts, 35162306a36Sopenharmony_ci sel & BU27034_MASK_MEAS_MODE); 35262306a36Sopenharmony_ci} 35362306a36Sopenharmony_ci 35462306a36Sopenharmony_cistatic int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val, 35562306a36Sopenharmony_ci int *val2) 35662306a36Sopenharmony_ci{ 35762306a36Sopenharmony_ci int gain, ret; 35862306a36Sopenharmony_ci 35962306a36Sopenharmony_ci ret = bu27034_get_gain(data, channel, &gain); 36062306a36Sopenharmony_ci if (ret) 36162306a36Sopenharmony_ci return ret; 36262306a36Sopenharmony_ci 36362306a36Sopenharmony_ci ret = bu27034_get_int_time(data); 36462306a36Sopenharmony_ci if (ret < 0) 36562306a36Sopenharmony_ci return ret; 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci return iio_gts_get_scale(&data->gts, gain, ret, val, val2); 36862306a36Sopenharmony_ci} 36962306a36Sopenharmony_ci 37062306a36Sopenharmony_cistatic int bu27034_get_scale(struct bu27034_data *data, int channel, int *val, 37162306a36Sopenharmony_ci int *val2) 37262306a36Sopenharmony_ci{ 37362306a36Sopenharmony_ci int ret; 37462306a36Sopenharmony_ci 37562306a36Sopenharmony_ci if (channel == BU27034_CHAN_ALS) { 37662306a36Sopenharmony_ci *val = 0; 37762306a36Sopenharmony_ci *val2 = 1000; 37862306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_MICRO; 37962306a36Sopenharmony_ci } 38062306a36Sopenharmony_ci 38162306a36Sopenharmony_ci mutex_lock(&data->mutex); 38262306a36Sopenharmony_ci ret = _bu27034_get_scale(data, channel, val, val2); 38362306a36Sopenharmony_ci mutex_unlock(&data->mutex); 38462306a36Sopenharmony_ci if (ret) 38562306a36Sopenharmony_ci return ret; 38662306a36Sopenharmony_ci 38762306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_NANO; 38862306a36Sopenharmony_ci} 38962306a36Sopenharmony_ci 39062306a36Sopenharmony_ci/* Caller should hold the lock to protect lux reading */ 39162306a36Sopenharmony_cistatic int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel) 39262306a36Sopenharmony_ci{ 39362306a36Sopenharmony_ci static const int reg[] = { 39462306a36Sopenharmony_ci [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, 39562306a36Sopenharmony_ci [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, 39662306a36Sopenharmony_ci }; 39762306a36Sopenharmony_ci int mask, val; 39862306a36Sopenharmony_ci 39962306a36Sopenharmony_ci if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) 40062306a36Sopenharmony_ci return -EINVAL; 40162306a36Sopenharmony_ci 40262306a36Sopenharmony_ci val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel); 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_ci mask = BU27034_MASK_D01_GAIN; 40562306a36Sopenharmony_ci 40662306a36Sopenharmony_ci if (chan == BU27034_CHAN_DATA0) { 40762306a36Sopenharmony_ci /* 40862306a36Sopenharmony_ci * We keep the same gain for channel 2 as we set for channel 0 40962306a36Sopenharmony_ci * We can't allow them to be individually controlled because 41062306a36Sopenharmony_ci * setting one will impact also the other. Also, if we don't 41162306a36Sopenharmony_ci * always update both gains we may result unsupported bit 41262306a36Sopenharmony_ci * combinations. 41362306a36Sopenharmony_ci * 41462306a36Sopenharmony_ci * This is not nice but this is yet another place where the 41562306a36Sopenharmony_ci * user space must be prepared to surprizes. Namely, see chan 2 41662306a36Sopenharmony_ci * gain changed when chan 0 gain is changed. 41762306a36Sopenharmony_ci * 41862306a36Sopenharmony_ci * This is not fatal for most users though. I don't expect the 41962306a36Sopenharmony_ci * channel 2 to be used in any generic cases - the intensity 42062306a36Sopenharmony_ci * values provided by the sensor for IR area are not openly 42162306a36Sopenharmony_ci * documented. Also, channel 2 is not used for visible light. 42262306a36Sopenharmony_ci * 42362306a36Sopenharmony_ci * So, if there is application which is written to utilize the 42462306a36Sopenharmony_ci * channel 2 - then it is probably specifically targeted to this 42562306a36Sopenharmony_ci * sensor and knows how to utilize those values. It is safe to 42662306a36Sopenharmony_ci * hope such user can also cope with the gain changes. 42762306a36Sopenharmony_ci */ 42862306a36Sopenharmony_ci mask |= BU27034_MASK_D2_GAIN_LO; 42962306a36Sopenharmony_ci 43062306a36Sopenharmony_ci /* 43162306a36Sopenharmony_ci * The D2 gain bits are directly the lowest bits of selector. 43262306a36Sopenharmony_ci * Just do add those bits to the value 43362306a36Sopenharmony_ci */ 43462306a36Sopenharmony_ci val |= sel & BU27034_MASK_D2_GAIN_LO; 43562306a36Sopenharmony_ci } 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_ci return regmap_update_bits(data->regmap, reg[chan], mask, val); 43862306a36Sopenharmony_ci} 43962306a36Sopenharmony_ci 44062306a36Sopenharmony_cistatic int bu27034_set_gain(struct bu27034_data *data, int chan, int gain) 44162306a36Sopenharmony_ci{ 44262306a36Sopenharmony_ci int ret; 44362306a36Sopenharmony_ci 44462306a36Sopenharmony_ci /* 44562306a36Sopenharmony_ci * We don't allow setting channel 2 gain as it messes up the 44662306a36Sopenharmony_ci * gain for channel 0 - which shares the high bits 44762306a36Sopenharmony_ci */ 44862306a36Sopenharmony_ci if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) 44962306a36Sopenharmony_ci return -EINVAL; 45062306a36Sopenharmony_ci 45162306a36Sopenharmony_ci ret = iio_gts_find_sel_by_gain(&data->gts, gain); 45262306a36Sopenharmony_ci if (ret < 0) 45362306a36Sopenharmony_ci return ret; 45462306a36Sopenharmony_ci 45562306a36Sopenharmony_ci return bu27034_write_gain_sel(data, chan, ret); 45662306a36Sopenharmony_ci} 45762306a36Sopenharmony_ci 45862306a36Sopenharmony_ci/* Caller should hold the lock to protect data->int_time */ 45962306a36Sopenharmony_cistatic int bu27034_set_int_time(struct bu27034_data *data, int time) 46062306a36Sopenharmony_ci{ 46162306a36Sopenharmony_ci int ret; 46262306a36Sopenharmony_ci 46362306a36Sopenharmony_ci ret = iio_gts_find_sel_by_int_time(&data->gts, time); 46462306a36Sopenharmony_ci if (ret < 0) 46562306a36Sopenharmony_ci return ret; 46662306a36Sopenharmony_ci 46762306a36Sopenharmony_ci return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, 46862306a36Sopenharmony_ci BU27034_MASK_MEAS_MODE, ret); 46962306a36Sopenharmony_ci} 47062306a36Sopenharmony_ci 47162306a36Sopenharmony_ci/* 47262306a36Sopenharmony_ci * We try to change the time in such way that the scale is maintained for 47362306a36Sopenharmony_ci * given channels by adjusting gain so that it compensates the time change. 47462306a36Sopenharmony_ci */ 47562306a36Sopenharmony_cistatic int bu27034_try_set_int_time(struct bu27034_data *data, int time_us) 47662306a36Sopenharmony_ci{ 47762306a36Sopenharmony_ci struct bu27034_gain_check gains[] = { 47862306a36Sopenharmony_ci { .chan = BU27034_CHAN_DATA0 }, 47962306a36Sopenharmony_ci { .chan = BU27034_CHAN_DATA1 }, 48062306a36Sopenharmony_ci }; 48162306a36Sopenharmony_ci int numg = ARRAY_SIZE(gains); 48262306a36Sopenharmony_ci int ret, int_time_old, i; 48362306a36Sopenharmony_ci 48462306a36Sopenharmony_ci mutex_lock(&data->mutex); 48562306a36Sopenharmony_ci ret = bu27034_get_int_time(data); 48662306a36Sopenharmony_ci if (ret < 0) 48762306a36Sopenharmony_ci goto unlock_out; 48862306a36Sopenharmony_ci 48962306a36Sopenharmony_ci int_time_old = ret; 49062306a36Sopenharmony_ci 49162306a36Sopenharmony_ci if (!iio_gts_valid_time(&data->gts, time_us)) { 49262306a36Sopenharmony_ci dev_err(data->dev, "Unsupported integration time %u\n", 49362306a36Sopenharmony_ci time_us); 49462306a36Sopenharmony_ci ret = -EINVAL; 49562306a36Sopenharmony_ci 49662306a36Sopenharmony_ci goto unlock_out; 49762306a36Sopenharmony_ci } 49862306a36Sopenharmony_ci 49962306a36Sopenharmony_ci if (time_us == int_time_old) { 50062306a36Sopenharmony_ci ret = 0; 50162306a36Sopenharmony_ci goto unlock_out; 50262306a36Sopenharmony_ci } 50362306a36Sopenharmony_ci 50462306a36Sopenharmony_ci for (i = 0; i < numg; i++) { 50562306a36Sopenharmony_ci ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain); 50662306a36Sopenharmony_ci if (ret) 50762306a36Sopenharmony_ci goto unlock_out; 50862306a36Sopenharmony_ci 50962306a36Sopenharmony_ci ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts, 51062306a36Sopenharmony_ci gains[i].old_gain, 51162306a36Sopenharmony_ci int_time_old, time_us, 51262306a36Sopenharmony_ci &gains[i].new_gain); 51362306a36Sopenharmony_ci if (ret) { 51462306a36Sopenharmony_ci int scale1, scale2; 51562306a36Sopenharmony_ci bool ok; 51662306a36Sopenharmony_ci 51762306a36Sopenharmony_ci _bu27034_get_scale(data, gains[i].chan, &scale1, &scale2); 51862306a36Sopenharmony_ci dev_dbg(data->dev, 51962306a36Sopenharmony_ci "chan %u, can't support time %u with scale %u %u\n", 52062306a36Sopenharmony_ci gains[i].chan, time_us, scale1, scale2); 52162306a36Sopenharmony_ci 52262306a36Sopenharmony_ci if (gains[i].new_gain < 0) 52362306a36Sopenharmony_ci goto unlock_out; 52462306a36Sopenharmony_ci 52562306a36Sopenharmony_ci /* 52662306a36Sopenharmony_ci * If caller requests for integration time change and we 52762306a36Sopenharmony_ci * can't support the scale - then the caller should be 52862306a36Sopenharmony_ci * prepared to 'pick up the pieces and deal with the 52962306a36Sopenharmony_ci * fact that the scale changed'. 53062306a36Sopenharmony_ci */ 53162306a36Sopenharmony_ci ret = iio_find_closest_gain_low(&data->gts, 53262306a36Sopenharmony_ci gains[i].new_gain, &ok); 53362306a36Sopenharmony_ci 53462306a36Sopenharmony_ci if (!ok) 53562306a36Sopenharmony_ci dev_dbg(data->dev, 53662306a36Sopenharmony_ci "optimal gain out of range for chan %u\n", 53762306a36Sopenharmony_ci gains[i].chan); 53862306a36Sopenharmony_ci 53962306a36Sopenharmony_ci if (ret < 0) { 54062306a36Sopenharmony_ci dev_dbg(data->dev, 54162306a36Sopenharmony_ci "Total gain increase. Risk of saturation"); 54262306a36Sopenharmony_ci ret = iio_gts_get_min_gain(&data->gts); 54362306a36Sopenharmony_ci if (ret < 0) 54462306a36Sopenharmony_ci goto unlock_out; 54562306a36Sopenharmony_ci } 54662306a36Sopenharmony_ci dev_dbg(data->dev, "chan %u scale changed\n", 54762306a36Sopenharmony_ci gains[i].chan); 54862306a36Sopenharmony_ci gains[i].new_gain = ret; 54962306a36Sopenharmony_ci dev_dbg(data->dev, "chan %u new gain %u\n", 55062306a36Sopenharmony_ci gains[i].chan, gains[i].new_gain); 55162306a36Sopenharmony_ci } 55262306a36Sopenharmony_ci } 55362306a36Sopenharmony_ci 55462306a36Sopenharmony_ci for (i = 0; i < numg; i++) { 55562306a36Sopenharmony_ci ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain); 55662306a36Sopenharmony_ci if (ret) 55762306a36Sopenharmony_ci goto unlock_out; 55862306a36Sopenharmony_ci } 55962306a36Sopenharmony_ci 56062306a36Sopenharmony_ci ret = bu27034_set_int_time(data, time_us); 56162306a36Sopenharmony_ci 56262306a36Sopenharmony_ciunlock_out: 56362306a36Sopenharmony_ci mutex_unlock(&data->mutex); 56462306a36Sopenharmony_ci 56562306a36Sopenharmony_ci return ret; 56662306a36Sopenharmony_ci} 56762306a36Sopenharmony_ci 56862306a36Sopenharmony_cistatic int bu27034_set_scale(struct bu27034_data *data, int chan, 56962306a36Sopenharmony_ci int val, int val2) 57062306a36Sopenharmony_ci{ 57162306a36Sopenharmony_ci int ret, time_sel, gain_sel, i; 57262306a36Sopenharmony_ci bool found = false; 57362306a36Sopenharmony_ci 57462306a36Sopenharmony_ci if (chan == BU27034_CHAN_DATA2) 57562306a36Sopenharmony_ci return -EINVAL; 57662306a36Sopenharmony_ci 57762306a36Sopenharmony_ci if (chan == BU27034_CHAN_ALS) { 57862306a36Sopenharmony_ci if (val == 0 && val2 == 1000000) 57962306a36Sopenharmony_ci return 0; 58062306a36Sopenharmony_ci 58162306a36Sopenharmony_ci return -EINVAL; 58262306a36Sopenharmony_ci } 58362306a36Sopenharmony_ci 58462306a36Sopenharmony_ci mutex_lock(&data->mutex); 58562306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel); 58662306a36Sopenharmony_ci if (ret) 58762306a36Sopenharmony_ci goto unlock_out; 58862306a36Sopenharmony_ci 58962306a36Sopenharmony_ci ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, 59062306a36Sopenharmony_ci val, val2, &gain_sel); 59162306a36Sopenharmony_ci if (ret) { 59262306a36Sopenharmony_ci /* 59362306a36Sopenharmony_ci * Could not support scale with given time. Need to change time. 59462306a36Sopenharmony_ci * We still want to maintain the scale for all channels 59562306a36Sopenharmony_ci */ 59662306a36Sopenharmony_ci struct bu27034_gain_check gain; 59762306a36Sopenharmony_ci int new_time_sel; 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_ci /* 60062306a36Sopenharmony_ci * Populate information for the other channel which should also 60162306a36Sopenharmony_ci * maintain the scale. (Due to the HW limitations the chan2 60262306a36Sopenharmony_ci * gets the same gain as chan0, so we only need to explicitly 60362306a36Sopenharmony_ci * set the chan 0 and 1). 60462306a36Sopenharmony_ci */ 60562306a36Sopenharmony_ci if (chan == BU27034_CHAN_DATA0) 60662306a36Sopenharmony_ci gain.chan = BU27034_CHAN_DATA1; 60762306a36Sopenharmony_ci else if (chan == BU27034_CHAN_DATA1) 60862306a36Sopenharmony_ci gain.chan = BU27034_CHAN_DATA0; 60962306a36Sopenharmony_ci 61062306a36Sopenharmony_ci ret = bu27034_get_gain(data, gain.chan, &gain.old_gain); 61162306a36Sopenharmony_ci if (ret) 61262306a36Sopenharmony_ci goto unlock_out; 61362306a36Sopenharmony_ci 61462306a36Sopenharmony_ci /* 61562306a36Sopenharmony_ci * Iterate through all the times to see if we find one which 61662306a36Sopenharmony_ci * can support requested scale for requested channel, while 61762306a36Sopenharmony_ci * maintaining the scale for other channels 61862306a36Sopenharmony_ci */ 61962306a36Sopenharmony_ci for (i = 0; i < data->gts.num_itime; i++) { 62062306a36Sopenharmony_ci new_time_sel = data->gts.itime_table[i].sel; 62162306a36Sopenharmony_ci 62262306a36Sopenharmony_ci if (new_time_sel == time_sel) 62362306a36Sopenharmony_ci continue; 62462306a36Sopenharmony_ci 62562306a36Sopenharmony_ci /* Can we provide requested scale with this time? */ 62662306a36Sopenharmony_ci ret = iio_gts_find_gain_sel_for_scale_using_time( 62762306a36Sopenharmony_ci &data->gts, new_time_sel, val, val2, 62862306a36Sopenharmony_ci &gain_sel); 62962306a36Sopenharmony_ci if (ret) 63062306a36Sopenharmony_ci continue; 63162306a36Sopenharmony_ci 63262306a36Sopenharmony_ci /* Can the other channel(s) maintain scale? */ 63362306a36Sopenharmony_ci ret = iio_gts_find_new_gain_sel_by_old_gain_time( 63462306a36Sopenharmony_ci &data->gts, gain.old_gain, time_sel, 63562306a36Sopenharmony_ci new_time_sel, &gain.new_gain); 63662306a36Sopenharmony_ci if (!ret) { 63762306a36Sopenharmony_ci /* Yes - we found suitable time */ 63862306a36Sopenharmony_ci found = true; 63962306a36Sopenharmony_ci break; 64062306a36Sopenharmony_ci } 64162306a36Sopenharmony_ci } 64262306a36Sopenharmony_ci if (!found) { 64362306a36Sopenharmony_ci dev_dbg(data->dev, 64462306a36Sopenharmony_ci "Can't set scale maintaining other channels\n"); 64562306a36Sopenharmony_ci ret = -EINVAL; 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci goto unlock_out; 64862306a36Sopenharmony_ci } 64962306a36Sopenharmony_ci 65062306a36Sopenharmony_ci ret = bu27034_set_gain(data, gain.chan, gain.new_gain); 65162306a36Sopenharmony_ci if (ret) 65262306a36Sopenharmony_ci goto unlock_out; 65362306a36Sopenharmony_ci 65462306a36Sopenharmony_ci ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, 65562306a36Sopenharmony_ci BU27034_MASK_MEAS_MODE, new_time_sel); 65662306a36Sopenharmony_ci if (ret) 65762306a36Sopenharmony_ci goto unlock_out; 65862306a36Sopenharmony_ci } 65962306a36Sopenharmony_ci 66062306a36Sopenharmony_ci ret = bu27034_write_gain_sel(data, chan, gain_sel); 66162306a36Sopenharmony_ciunlock_out: 66262306a36Sopenharmony_ci mutex_unlock(&data->mutex); 66362306a36Sopenharmony_ci 66462306a36Sopenharmony_ci return ret; 66562306a36Sopenharmony_ci} 66662306a36Sopenharmony_ci 66762306a36Sopenharmony_ci/* 66862306a36Sopenharmony_ci * for (D1/D0 < 0.87): 66962306a36Sopenharmony_ci * lx = 0.004521097 * D1 - 0.002663996 * D0 + 67062306a36Sopenharmony_ci * 0.00012213 * D1 * D1 / D0 67162306a36Sopenharmony_ci * 67262306a36Sopenharmony_ci * => 115.7400832 * ch1 / gain1 / mt - 67362306a36Sopenharmony_ci * 68.1982976 * ch0 / gain0 / mt + 67462306a36Sopenharmony_ci * 0.00012213 * 25600 * (ch1 / gain1 / mt) * 25600 * 67562306a36Sopenharmony_ci * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) 67662306a36Sopenharmony_ci * 67762306a36Sopenharmony_ci * A = 0.00012213 * 25600 * (ch1 /gain1 / mt) * 25600 * 67862306a36Sopenharmony_ci * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) 67962306a36Sopenharmony_ci * => 0.00012213 * 25600 * (ch1 /gain1 / mt) * 68062306a36Sopenharmony_ci * (ch1 /gain1 / mt) / (ch0 / gain0 / mt) 68162306a36Sopenharmony_ci * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) / 68262306a36Sopenharmony_ci * (ch0 / gain0) 68362306a36Sopenharmony_ci * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) * 68462306a36Sopenharmony_ci * gain0 / ch0 68562306a36Sopenharmony_ci * => 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /ch0 68662306a36Sopenharmony_ci * 68762306a36Sopenharmony_ci * lx = (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / 68862306a36Sopenharmony_ci * mt + A 68962306a36Sopenharmony_ci * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / 69062306a36Sopenharmony_ci * mt + 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt / 69162306a36Sopenharmony_ci * ch0 69262306a36Sopenharmony_ci * 69362306a36Sopenharmony_ci * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0 + 69462306a36Sopenharmony_ci * 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) / 69562306a36Sopenharmony_ci * mt 69662306a36Sopenharmony_ci * 69762306a36Sopenharmony_ci * For (0.87 <= D1/D0 < 1.00) 69862306a36Sopenharmony_ci * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 0.87) * (0.385) + 1) 69962306a36Sopenharmony_ci * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * 70062306a36Sopenharmony_ci * 100 * ch1 / gain1 / mt) * ((D1/D0 - 0.87) * (0.385) + 1) 70162306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 70262306a36Sopenharmony_ci * ((D1/D0 - 0.87) * (0.385) + 1) 70362306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 70462306a36Sopenharmony_ci * (0.385 * D1/D0 - 0.66505) 70562306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 70662306a36Sopenharmony_ci * (0.385 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) - 0.66505) 70762306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 70862306a36Sopenharmony_ci * (9856 * ch1 / gain1 / mt / (25600 * ch0 / gain0 / mt) + 0.66505) 70962306a36Sopenharmony_ci * => 13.118336 * ch1 / (gain1 * mt) 71062306a36Sopenharmony_ci * + 22.66064768 * ch0 / (gain0 * mt) 71162306a36Sopenharmony_ci * + 8931.90144 * ch1 * ch1 * gain0 / 71262306a36Sopenharmony_ci * (25600 * ch0 * gain1 * gain1 * mt) 71362306a36Sopenharmony_ci * + 0.602694912 * ch1 / (gain1 * mt) 71462306a36Sopenharmony_ci * 71562306a36Sopenharmony_ci * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) 71662306a36Sopenharmony_ci * + 22.66064768 * ch0 / gain0 71762306a36Sopenharmony_ci * + 13.721030912 * ch1 / gain1 71862306a36Sopenharmony_ci * ] / mt 71962306a36Sopenharmony_ci * 72062306a36Sopenharmony_ci * For (D1/D0 >= 1.00) 72162306a36Sopenharmony_ci * 72262306a36Sopenharmony_ci * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 2.0) * (-0.05) + 1) 72362306a36Sopenharmony_ci * => (0.001331* D0 + 0.0000354 * D1) * (-0.05D1/D0 + 1.1) 72462306a36Sopenharmony_ci * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * 72562306a36Sopenharmony_ci * 100 * ch1 / gain1 / mt) * (-0.05D1/D0 + 1.1) 72662306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 72762306a36Sopenharmony_ci * (-0.05 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) + 1.1) 72862306a36Sopenharmony_ci * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * 72962306a36Sopenharmony_ci * (-1280 * ch1 / (gain1 * mt * 25600 * ch0 / gain0 / mt) + 1.1) 73062306a36Sopenharmony_ci * => (34.0736 * ch0 * -1280 * ch1 * gain0 * mt /( gain0 * mt * gain1 * mt * 25600 * ch0) 73162306a36Sopenharmony_ci * + 34.0736 * 1.1 * ch0 / (gain0 * mt) 73262306a36Sopenharmony_ci * + 0.90624 * ch1 * -1280 * ch1 *gain0 * mt / (gain1 * mt *gain1 * mt * 25600 * ch0) 73362306a36Sopenharmony_ci * + 1.1 * 0.90624 * ch1 / (gain1 * mt) 73462306a36Sopenharmony_ci * => -43614.208 * ch1 / (gain1 * mt * 25600) 73562306a36Sopenharmony_ci * + 37.48096 ch0 / (gain0 * mt) 73662306a36Sopenharmony_ci * - 1159.9872 * ch1 * ch1 * gain0 / (gain1 * gain1 * mt * 25600 * ch0) 73762306a36Sopenharmony_ci * + 0.996864 ch1 / (gain1 * mt) 73862306a36Sopenharmony_ci * => [ 73962306a36Sopenharmony_ci * - 0.045312 * ch1 * ch1 * gain0 / (gain1 * gain1 * ch0) 74062306a36Sopenharmony_ci * - 0.706816 * ch1 / gain1 74162306a36Sopenharmony_ci * + 37.48096 ch0 /gain0 74262306a36Sopenharmony_ci * ] * mt 74362306a36Sopenharmony_ci * 74462306a36Sopenharmony_ci * 74562306a36Sopenharmony_ci * So, the first case (D1/D0 < 0.87) can be computed to a form: 74662306a36Sopenharmony_ci * 74762306a36Sopenharmony_ci * lx = (3.126528 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + 74862306a36Sopenharmony_ci * 115.7400832 * ch1 / gain1 + 74962306a36Sopenharmony_ci * -68.1982976 * ch0 / gain0 75062306a36Sopenharmony_ci * / mt 75162306a36Sopenharmony_ci * 75262306a36Sopenharmony_ci * Second case (0.87 <= D1/D0 < 1.00) goes to form: 75362306a36Sopenharmony_ci * 75462306a36Sopenharmony_ci * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + 75562306a36Sopenharmony_ci * 13.721030912 * ch1 / gain1 + 75662306a36Sopenharmony_ci * 22.66064768 * ch0 / gain0 75762306a36Sopenharmony_ci * ] / mt 75862306a36Sopenharmony_ci * 75962306a36Sopenharmony_ci * Third case (D1/D0 >= 1.00) goes to form: 76062306a36Sopenharmony_ci * => [-0.045312 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + 76162306a36Sopenharmony_ci * -0.706816 * ch1 / gain1 + 76262306a36Sopenharmony_ci * 37.48096 ch0 /(gain0 76362306a36Sopenharmony_ci * ] / mt 76462306a36Sopenharmony_ci * 76562306a36Sopenharmony_ci * This can be unified to format: 76662306a36Sopenharmony_ci * lx = [ 76762306a36Sopenharmony_ci * A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + 76862306a36Sopenharmony_ci * B * ch1 / gain1 + 76962306a36Sopenharmony_ci * C * ch0 / gain0 77062306a36Sopenharmony_ci * ] / mt 77162306a36Sopenharmony_ci * 77262306a36Sopenharmony_ci * For case 1: 77362306a36Sopenharmony_ci * A = 3.126528, 77462306a36Sopenharmony_ci * B = 115.7400832 77562306a36Sopenharmony_ci * C = -68.1982976 77662306a36Sopenharmony_ci * 77762306a36Sopenharmony_ci * For case 2: 77862306a36Sopenharmony_ci * A = 0.3489024 77962306a36Sopenharmony_ci * B = 13.721030912 78062306a36Sopenharmony_ci * C = 22.66064768 78162306a36Sopenharmony_ci * 78262306a36Sopenharmony_ci * For case 3: 78362306a36Sopenharmony_ci * A = -0.045312 78462306a36Sopenharmony_ci * B = -0.706816 78562306a36Sopenharmony_ci * C = 37.48096 78662306a36Sopenharmony_ci */ 78762306a36Sopenharmony_ci 78862306a36Sopenharmony_cistruct bu27034_lx_coeff { 78962306a36Sopenharmony_ci unsigned int A; 79062306a36Sopenharmony_ci unsigned int B; 79162306a36Sopenharmony_ci unsigned int C; 79262306a36Sopenharmony_ci /* Indicate which of the coefficients above are negative */ 79362306a36Sopenharmony_ci bool is_neg[3]; 79462306a36Sopenharmony_ci}; 79562306a36Sopenharmony_ci 79662306a36Sopenharmony_cistatic inline u64 gain_mul_div_helper(u64 val, unsigned int gain, 79762306a36Sopenharmony_ci unsigned int div) 79862306a36Sopenharmony_ci{ 79962306a36Sopenharmony_ci /* 80062306a36Sopenharmony_ci * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL) 80162306a36Sopenharmony_ci * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored). 80262306a36Sopenharmony_ci * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply 80362306a36Sopenharmony_ci * with the gain, no matter what gain is set. 80462306a36Sopenharmony_ci * 80562306a36Sopenharmony_ci * So, multiplication with max gain may overflow if val is greater than 80662306a36Sopenharmony_ci * 0xFFFFFFFFFFFFF (52 bits set).. 80762306a36Sopenharmony_ci * 80862306a36Sopenharmony_ci * If this is the case we divide first. 80962306a36Sopenharmony_ci */ 81062306a36Sopenharmony_ci if (val < GENMASK_ULL(51, 0)) { 81162306a36Sopenharmony_ci val *= gain; 81262306a36Sopenharmony_ci do_div(val, div); 81362306a36Sopenharmony_ci } else { 81462306a36Sopenharmony_ci do_div(val, div); 81562306a36Sopenharmony_ci val *= gain; 81662306a36Sopenharmony_ci } 81762306a36Sopenharmony_ci 81862306a36Sopenharmony_ci return val; 81962306a36Sopenharmony_ci} 82062306a36Sopenharmony_ci 82162306a36Sopenharmony_cistatic u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0, 82262306a36Sopenharmony_ci unsigned int ch1, unsigned int gain0, 82362306a36Sopenharmony_ci unsigned int gain1) 82462306a36Sopenharmony_ci{ 82562306a36Sopenharmony_ci unsigned int helper; 82662306a36Sopenharmony_ci u64 helper64; 82762306a36Sopenharmony_ci 82862306a36Sopenharmony_ci helper64 = (u64)coeff * (u64)ch1 * (u64)ch1; 82962306a36Sopenharmony_ci 83062306a36Sopenharmony_ci helper = gain1 * gain1; 83162306a36Sopenharmony_ci if (helper > ch0) { 83262306a36Sopenharmony_ci do_div(helper64, helper); 83362306a36Sopenharmony_ci 83462306a36Sopenharmony_ci return gain_mul_div_helper(helper64, gain0, ch0); 83562306a36Sopenharmony_ci } 83662306a36Sopenharmony_ci 83762306a36Sopenharmony_ci do_div(helper64, ch0); 83862306a36Sopenharmony_ci 83962306a36Sopenharmony_ci return gain_mul_div_helper(helper64, gain0, helper); 84062306a36Sopenharmony_ci 84162306a36Sopenharmony_ci} 84262306a36Sopenharmony_ci 84362306a36Sopenharmony_cistatic u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0, 84462306a36Sopenharmony_ci unsigned int ch1, unsigned int gain0, 84562306a36Sopenharmony_ci unsigned int gain1) 84662306a36Sopenharmony_ci{ 84762306a36Sopenharmony_ci unsigned int helper, tmp; 84862306a36Sopenharmony_ci 84962306a36Sopenharmony_ci /* 85062306a36Sopenharmony_ci * Here we could overflow even the 64bit value. Hence we 85162306a36Sopenharmony_ci * multiply with gain0 only after the divisions - even though 85262306a36Sopenharmony_ci * it may result loss of accuracy 85362306a36Sopenharmony_ci */ 85462306a36Sopenharmony_ci helper = coeff * ch1 * ch1; 85562306a36Sopenharmony_ci tmp = helper * gain0; 85662306a36Sopenharmony_ci 85762306a36Sopenharmony_ci helper = ch1 * ch1; 85862306a36Sopenharmony_ci 85962306a36Sopenharmony_ci if (check_mul_overflow(helper, coeff, &helper)) 86062306a36Sopenharmony_ci return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); 86162306a36Sopenharmony_ci 86262306a36Sopenharmony_ci if (check_mul_overflow(helper, gain0, &tmp)) 86362306a36Sopenharmony_ci return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); 86462306a36Sopenharmony_ci 86562306a36Sopenharmony_ci return tmp / (gain1 * gain1) / ch0; 86662306a36Sopenharmony_ci 86762306a36Sopenharmony_ci} 86862306a36Sopenharmony_ci 86962306a36Sopenharmony_cistatic u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch, 87062306a36Sopenharmony_ci unsigned int gain) 87162306a36Sopenharmony_ci{ 87262306a36Sopenharmony_ci unsigned int helper; 87362306a36Sopenharmony_ci u64 helper64; 87462306a36Sopenharmony_ci 87562306a36Sopenharmony_ci if (!check_mul_overflow(coeff, ch, &helper)) 87662306a36Sopenharmony_ci return helper / gain; 87762306a36Sopenharmony_ci 87862306a36Sopenharmony_ci helper64 = (u64)coeff * (u64)ch; 87962306a36Sopenharmony_ci do_div(helper64, gain); 88062306a36Sopenharmony_ci 88162306a36Sopenharmony_ci return helper64; 88262306a36Sopenharmony_ci} 88362306a36Sopenharmony_ci 88462306a36Sopenharmony_cistatic int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1, 88562306a36Sopenharmony_ci unsigned int gain0, unsigned int gain1, 88662306a36Sopenharmony_ci unsigned int meastime, int coeff_idx) 88762306a36Sopenharmony_ci{ 88862306a36Sopenharmony_ci static const struct bu27034_lx_coeff coeff[] = { 88962306a36Sopenharmony_ci { 89062306a36Sopenharmony_ci .A = 31265280, /* 3.126528 */ 89162306a36Sopenharmony_ci .B = 1157400832, /*115.7400832 */ 89262306a36Sopenharmony_ci .C = 681982976, /* -68.1982976 */ 89362306a36Sopenharmony_ci .is_neg = {false, false, true}, 89462306a36Sopenharmony_ci }, { 89562306a36Sopenharmony_ci .A = 3489024, /* 0.3489024 */ 89662306a36Sopenharmony_ci .B = 137210309, /* 13.721030912 */ 89762306a36Sopenharmony_ci .C = 226606476, /* 22.66064768 */ 89862306a36Sopenharmony_ci /* All terms positive */ 89962306a36Sopenharmony_ci }, { 90062306a36Sopenharmony_ci .A = 453120, /* -0.045312 */ 90162306a36Sopenharmony_ci .B = 7068160, /* -0.706816 */ 90262306a36Sopenharmony_ci .C = 374809600, /* 37.48096 */ 90362306a36Sopenharmony_ci .is_neg = {true, true, false}, 90462306a36Sopenharmony_ci } 90562306a36Sopenharmony_ci }; 90662306a36Sopenharmony_ci const struct bu27034_lx_coeff *c = &coeff[coeff_idx]; 90762306a36Sopenharmony_ci u64 res = 0, terms[3]; 90862306a36Sopenharmony_ci int i; 90962306a36Sopenharmony_ci 91062306a36Sopenharmony_ci if (coeff_idx >= ARRAY_SIZE(coeff)) 91162306a36Sopenharmony_ci return -EINVAL; 91262306a36Sopenharmony_ci 91362306a36Sopenharmony_ci terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1); 91462306a36Sopenharmony_ci terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1); 91562306a36Sopenharmony_ci terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0); 91662306a36Sopenharmony_ci 91762306a36Sopenharmony_ci /* First, add positive terms */ 91862306a36Sopenharmony_ci for (i = 0; i < 3; i++) 91962306a36Sopenharmony_ci if (!c->is_neg[i]) 92062306a36Sopenharmony_ci res += terms[i]; 92162306a36Sopenharmony_ci 92262306a36Sopenharmony_ci /* No positive term => zero lux */ 92362306a36Sopenharmony_ci if (!res) 92462306a36Sopenharmony_ci return 0; 92562306a36Sopenharmony_ci 92662306a36Sopenharmony_ci /* Then, subtract negative terms (if any) */ 92762306a36Sopenharmony_ci for (i = 0; i < 3; i++) 92862306a36Sopenharmony_ci if (c->is_neg[i]) { 92962306a36Sopenharmony_ci /* 93062306a36Sopenharmony_ci * If the negative term is greater than positive - then 93162306a36Sopenharmony_ci * the darkness has taken over and we are all doomed! Eh, 93262306a36Sopenharmony_ci * I mean, then we can just return 0 lx and go out 93362306a36Sopenharmony_ci */ 93462306a36Sopenharmony_ci if (terms[i] >= res) 93562306a36Sopenharmony_ci return 0; 93662306a36Sopenharmony_ci 93762306a36Sopenharmony_ci res -= terms[i]; 93862306a36Sopenharmony_ci } 93962306a36Sopenharmony_ci 94062306a36Sopenharmony_ci meastime *= 10; 94162306a36Sopenharmony_ci do_div(res, meastime); 94262306a36Sopenharmony_ci 94362306a36Sopenharmony_ci return (int) res; 94462306a36Sopenharmony_ci} 94562306a36Sopenharmony_ci 94662306a36Sopenharmony_cistatic bool bu27034_has_valid_sample(struct bu27034_data *data) 94762306a36Sopenharmony_ci{ 94862306a36Sopenharmony_ci int ret, val; 94962306a36Sopenharmony_ci 95062306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val); 95162306a36Sopenharmony_ci if (ret) { 95262306a36Sopenharmony_ci dev_err(data->dev, "Read failed %d\n", ret); 95362306a36Sopenharmony_ci 95462306a36Sopenharmony_ci return false; 95562306a36Sopenharmony_ci } 95662306a36Sopenharmony_ci 95762306a36Sopenharmony_ci return val & BU27034_MASK_VALID; 95862306a36Sopenharmony_ci} 95962306a36Sopenharmony_ci 96062306a36Sopenharmony_ci/* 96162306a36Sopenharmony_ci * Reading the register where VALID bit is clears this bit. (So does changing 96262306a36Sopenharmony_ci * any gain / integration time configuration registers) The bit gets 96362306a36Sopenharmony_ci * set when we have acquired new data. We use this bit to indicate data 96462306a36Sopenharmony_ci * validity. 96562306a36Sopenharmony_ci */ 96662306a36Sopenharmony_cistatic void bu27034_invalidate_read_data(struct bu27034_data *data) 96762306a36Sopenharmony_ci{ 96862306a36Sopenharmony_ci bu27034_has_valid_sample(data); 96962306a36Sopenharmony_ci} 97062306a36Sopenharmony_ci 97162306a36Sopenharmony_cistatic int bu27034_read_result(struct bu27034_data *data, int chan, int *res) 97262306a36Sopenharmony_ci{ 97362306a36Sopenharmony_ci int reg[] = { 97462306a36Sopenharmony_ci [BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO, 97562306a36Sopenharmony_ci [BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO, 97662306a36Sopenharmony_ci [BU27034_CHAN_DATA2] = BU27034_REG_DATA2_LO, 97762306a36Sopenharmony_ci }; 97862306a36Sopenharmony_ci int valid, ret; 97962306a36Sopenharmony_ci __le16 val; 98062306a36Sopenharmony_ci 98162306a36Sopenharmony_ci ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, 98262306a36Sopenharmony_ci valid, (valid & BU27034_MASK_VALID), 98362306a36Sopenharmony_ci BU27034_DATA_WAIT_TIME_US, 0); 98462306a36Sopenharmony_ci if (ret) 98562306a36Sopenharmony_ci return ret; 98662306a36Sopenharmony_ci 98762306a36Sopenharmony_ci ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val)); 98862306a36Sopenharmony_ci if (ret) 98962306a36Sopenharmony_ci return ret; 99062306a36Sopenharmony_ci 99162306a36Sopenharmony_ci *res = le16_to_cpu(val); 99262306a36Sopenharmony_ci 99362306a36Sopenharmony_ci return 0; 99462306a36Sopenharmony_ci} 99562306a36Sopenharmony_ci 99662306a36Sopenharmony_cistatic int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res, 99762306a36Sopenharmony_ci int size) 99862306a36Sopenharmony_ci{ 99962306a36Sopenharmony_ci int ret = 0, retry_cnt = 0; 100062306a36Sopenharmony_ci 100162306a36Sopenharmony_ciretry: 100262306a36Sopenharmony_ci /* Get new value from sensor if data is ready */ 100362306a36Sopenharmony_ci if (bu27034_has_valid_sample(data)) { 100462306a36Sopenharmony_ci ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, 100562306a36Sopenharmony_ci res, size); 100662306a36Sopenharmony_ci if (ret) 100762306a36Sopenharmony_ci return ret; 100862306a36Sopenharmony_ci 100962306a36Sopenharmony_ci bu27034_invalidate_read_data(data); 101062306a36Sopenharmony_ci } else { 101162306a36Sopenharmony_ci /* No new data in sensor. Wait and retry */ 101262306a36Sopenharmony_ci retry_cnt++; 101362306a36Sopenharmony_ci 101462306a36Sopenharmony_ci if (retry_cnt > BU27034_RETRY_LIMIT) { 101562306a36Sopenharmony_ci dev_err(data->dev, "No data from sensor\n"); 101662306a36Sopenharmony_ci 101762306a36Sopenharmony_ci return -ETIMEDOUT; 101862306a36Sopenharmony_ci } 101962306a36Sopenharmony_ci 102062306a36Sopenharmony_ci msleep(25); 102162306a36Sopenharmony_ci 102262306a36Sopenharmony_ci goto retry; 102362306a36Sopenharmony_ci } 102462306a36Sopenharmony_ci 102562306a36Sopenharmony_ci return ret; 102662306a36Sopenharmony_ci} 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_cistatic int bu27034_meas_set(struct bu27034_data *data, bool en) 102962306a36Sopenharmony_ci{ 103062306a36Sopenharmony_ci if (en) 103162306a36Sopenharmony_ci return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4, 103262306a36Sopenharmony_ci BU27034_MASK_MEAS_EN); 103362306a36Sopenharmony_ci 103462306a36Sopenharmony_ci return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4, 103562306a36Sopenharmony_ci BU27034_MASK_MEAS_EN); 103662306a36Sopenharmony_ci} 103762306a36Sopenharmony_ci 103862306a36Sopenharmony_cistatic int bu27034_get_single_result(struct bu27034_data *data, int chan, 103962306a36Sopenharmony_ci int *val) 104062306a36Sopenharmony_ci{ 104162306a36Sopenharmony_ci int ret; 104262306a36Sopenharmony_ci 104362306a36Sopenharmony_ci if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA2) 104462306a36Sopenharmony_ci return -EINVAL; 104562306a36Sopenharmony_ci 104662306a36Sopenharmony_ci ret = bu27034_meas_set(data, true); 104762306a36Sopenharmony_ci if (ret) 104862306a36Sopenharmony_ci return ret; 104962306a36Sopenharmony_ci 105062306a36Sopenharmony_ci ret = bu27034_get_int_time(data); 105162306a36Sopenharmony_ci if (ret < 0) 105262306a36Sopenharmony_ci return ret; 105362306a36Sopenharmony_ci 105462306a36Sopenharmony_ci msleep(ret / 1000); 105562306a36Sopenharmony_ci 105662306a36Sopenharmony_ci return bu27034_read_result(data, chan, val); 105762306a36Sopenharmony_ci} 105862306a36Sopenharmony_ci 105962306a36Sopenharmony_ci/* 106062306a36Sopenharmony_ci * The formula given by vendor for computing luxes out of data0 and data1 106162306a36Sopenharmony_ci * (in open air) is as follows: 106262306a36Sopenharmony_ci * 106362306a36Sopenharmony_ci * Let's mark: 106462306a36Sopenharmony_ci * D0 = data0/ch0_gain/meas_time_ms * 25600 106562306a36Sopenharmony_ci * D1 = data1/ch1_gain/meas_time_ms * 25600 106662306a36Sopenharmony_ci * 106762306a36Sopenharmony_ci * Then: 106862306a36Sopenharmony_ci * if (D1/D0 < 0.87) 106962306a36Sopenharmony_ci * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 3.45 + 1) 107062306a36Sopenharmony_ci * else if (D1/D0 < 1) 107162306a36Sopenharmony_ci * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 0.385 + 1) 107262306a36Sopenharmony_ci * else 107362306a36Sopenharmony_ci * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 2) * -0.05 + 1) 107462306a36Sopenharmony_ci * 107562306a36Sopenharmony_ci * We use it here. Users who have for example some colored lens 107662306a36Sopenharmony_ci * need to modify the calculation but I hope this gives a starting point for 107762306a36Sopenharmony_ci * those working with such devices. 107862306a36Sopenharmony_ci */ 107962306a36Sopenharmony_ci 108062306a36Sopenharmony_cistatic int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val) 108162306a36Sopenharmony_ci{ 108262306a36Sopenharmony_ci unsigned int gain0, gain1, meastime; 108362306a36Sopenharmony_ci unsigned int d1_d0_ratio_scaled; 108462306a36Sopenharmony_ci u16 ch0, ch1; 108562306a36Sopenharmony_ci u64 helper64; 108662306a36Sopenharmony_ci int ret; 108762306a36Sopenharmony_ci 108862306a36Sopenharmony_ci /* 108962306a36Sopenharmony_ci * We return 0 lux if calculation fails. This should be reasonably 109062306a36Sopenharmony_ci * easy to spot from the buffers especially if raw-data channels show 109162306a36Sopenharmony_ci * valid values 109262306a36Sopenharmony_ci */ 109362306a36Sopenharmony_ci *val = 0; 109462306a36Sopenharmony_ci 109562306a36Sopenharmony_ci ch0 = max_t(u16, 1, le16_to_cpu(res[0])); 109662306a36Sopenharmony_ci ch1 = max_t(u16, 1, le16_to_cpu(res[1])); 109762306a36Sopenharmony_ci 109862306a36Sopenharmony_ci ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0); 109962306a36Sopenharmony_ci if (ret) 110062306a36Sopenharmony_ci return ret; 110162306a36Sopenharmony_ci 110262306a36Sopenharmony_ci ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1); 110362306a36Sopenharmony_ci if (ret) 110462306a36Sopenharmony_ci return ret; 110562306a36Sopenharmony_ci 110662306a36Sopenharmony_ci ret = bu27034_get_int_time(data); 110762306a36Sopenharmony_ci if (ret < 0) 110862306a36Sopenharmony_ci return ret; 110962306a36Sopenharmony_ci 111062306a36Sopenharmony_ci meastime = ret; 111162306a36Sopenharmony_ci 111262306a36Sopenharmony_ci d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100; 111362306a36Sopenharmony_ci helper64 = (u64)ch1 * (u64)gain0 * 100LLU; 111462306a36Sopenharmony_ci 111562306a36Sopenharmony_ci if (helper64 != d1_d0_ratio_scaled) { 111662306a36Sopenharmony_ci unsigned int div = (unsigned int)ch0 * gain1; 111762306a36Sopenharmony_ci 111862306a36Sopenharmony_ci do_div(helper64, div); 111962306a36Sopenharmony_ci d1_d0_ratio_scaled = helper64; 112062306a36Sopenharmony_ci } else { 112162306a36Sopenharmony_ci d1_d0_ratio_scaled /= ch0 * gain1; 112262306a36Sopenharmony_ci } 112362306a36Sopenharmony_ci 112462306a36Sopenharmony_ci if (d1_d0_ratio_scaled < 87) 112562306a36Sopenharmony_ci ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0); 112662306a36Sopenharmony_ci else if (d1_d0_ratio_scaled < 100) 112762306a36Sopenharmony_ci ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1); 112862306a36Sopenharmony_ci else 112962306a36Sopenharmony_ci ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 2); 113062306a36Sopenharmony_ci 113162306a36Sopenharmony_ci if (ret < 0) 113262306a36Sopenharmony_ci return ret; 113362306a36Sopenharmony_ci 113462306a36Sopenharmony_ci *val = ret; 113562306a36Sopenharmony_ci 113662306a36Sopenharmony_ci return 0; 113762306a36Sopenharmony_ci 113862306a36Sopenharmony_ci} 113962306a36Sopenharmony_ci 114062306a36Sopenharmony_cistatic int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val) 114162306a36Sopenharmony_ci{ 114262306a36Sopenharmony_ci __le16 res[3]; 114362306a36Sopenharmony_ci int ret; 114462306a36Sopenharmony_ci 114562306a36Sopenharmony_ci ret = bu27034_meas_set(data, true); 114662306a36Sopenharmony_ci if (ret) 114762306a36Sopenharmony_ci return ret; 114862306a36Sopenharmony_ci 114962306a36Sopenharmony_ci ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res)); 115062306a36Sopenharmony_ci if (ret) 115162306a36Sopenharmony_ci return ret; 115262306a36Sopenharmony_ci 115362306a36Sopenharmony_ci ret = bu27034_calc_mlux(data, res, val); 115462306a36Sopenharmony_ci if (ret) 115562306a36Sopenharmony_ci return ret; 115662306a36Sopenharmony_ci 115762306a36Sopenharmony_ci ret = bu27034_meas_set(data, false); 115862306a36Sopenharmony_ci if (ret) 115962306a36Sopenharmony_ci dev_err(data->dev, "failed to disable measurement\n"); 116062306a36Sopenharmony_ci 116162306a36Sopenharmony_ci return 0; 116262306a36Sopenharmony_ci} 116362306a36Sopenharmony_ci 116462306a36Sopenharmony_cistatic int bu27034_read_raw(struct iio_dev *idev, 116562306a36Sopenharmony_ci struct iio_chan_spec const *chan, 116662306a36Sopenharmony_ci int *val, int *val2, long mask) 116762306a36Sopenharmony_ci{ 116862306a36Sopenharmony_ci struct bu27034_data *data = iio_priv(idev); 116962306a36Sopenharmony_ci int ret; 117062306a36Sopenharmony_ci 117162306a36Sopenharmony_ci switch (mask) { 117262306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 117362306a36Sopenharmony_ci *val = 0; 117462306a36Sopenharmony_ci *val2 = bu27034_get_int_time(data); 117562306a36Sopenharmony_ci if (*val2 < 0) 117662306a36Sopenharmony_ci return *val2; 117762306a36Sopenharmony_ci 117862306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_MICRO; 117962306a36Sopenharmony_ci 118062306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 118162306a36Sopenharmony_ci return bu27034_get_scale(data, chan->channel, val, val2); 118262306a36Sopenharmony_ci 118362306a36Sopenharmony_ci case IIO_CHAN_INFO_RAW: 118462306a36Sopenharmony_ci { 118562306a36Sopenharmony_ci int (*result_get)(struct bu27034_data *data, int chan, int *val); 118662306a36Sopenharmony_ci 118762306a36Sopenharmony_ci if (chan->type == IIO_INTENSITY) 118862306a36Sopenharmony_ci result_get = bu27034_get_single_result; 118962306a36Sopenharmony_ci else if (chan->type == IIO_LIGHT) 119062306a36Sopenharmony_ci result_get = bu27034_get_mlux; 119162306a36Sopenharmony_ci else 119262306a36Sopenharmony_ci return -EINVAL; 119362306a36Sopenharmony_ci 119462306a36Sopenharmony_ci /* Don't mess with measurement enabling while buffering */ 119562306a36Sopenharmony_ci ret = iio_device_claim_direct_mode(idev); 119662306a36Sopenharmony_ci if (ret) 119762306a36Sopenharmony_ci return ret; 119862306a36Sopenharmony_ci 119962306a36Sopenharmony_ci mutex_lock(&data->mutex); 120062306a36Sopenharmony_ci /* 120162306a36Sopenharmony_ci * Reading one channel at a time is inefficient but we 120262306a36Sopenharmony_ci * don't care here. Buffered version should be used if 120362306a36Sopenharmony_ci * performance is an issue. 120462306a36Sopenharmony_ci */ 120562306a36Sopenharmony_ci ret = result_get(data, chan->channel, val); 120662306a36Sopenharmony_ci 120762306a36Sopenharmony_ci mutex_unlock(&data->mutex); 120862306a36Sopenharmony_ci iio_device_release_direct_mode(idev); 120962306a36Sopenharmony_ci 121062306a36Sopenharmony_ci if (ret) 121162306a36Sopenharmony_ci return ret; 121262306a36Sopenharmony_ci 121362306a36Sopenharmony_ci return IIO_VAL_INT; 121462306a36Sopenharmony_ci } 121562306a36Sopenharmony_ci default: 121662306a36Sopenharmony_ci return -EINVAL; 121762306a36Sopenharmony_ci } 121862306a36Sopenharmony_ci} 121962306a36Sopenharmony_ci 122062306a36Sopenharmony_cistatic int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev, 122162306a36Sopenharmony_ci struct iio_chan_spec const *chan, 122262306a36Sopenharmony_ci long mask) 122362306a36Sopenharmony_ci{ 122462306a36Sopenharmony_ci 122562306a36Sopenharmony_ci switch (mask) { 122662306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 122762306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_NANO; 122862306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 122962306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_MICRO; 123062306a36Sopenharmony_ci default: 123162306a36Sopenharmony_ci return -EINVAL; 123262306a36Sopenharmony_ci } 123362306a36Sopenharmony_ci} 123462306a36Sopenharmony_ci 123562306a36Sopenharmony_cistatic int bu27034_write_raw(struct iio_dev *idev, 123662306a36Sopenharmony_ci struct iio_chan_spec const *chan, 123762306a36Sopenharmony_ci int val, int val2, long mask) 123862306a36Sopenharmony_ci{ 123962306a36Sopenharmony_ci struct bu27034_data *data = iio_priv(idev); 124062306a36Sopenharmony_ci int ret; 124162306a36Sopenharmony_ci 124262306a36Sopenharmony_ci ret = iio_device_claim_direct_mode(idev); 124362306a36Sopenharmony_ci if (ret) 124462306a36Sopenharmony_ci return ret; 124562306a36Sopenharmony_ci 124662306a36Sopenharmony_ci switch (mask) { 124762306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 124862306a36Sopenharmony_ci ret = bu27034_set_scale(data, chan->channel, val, val2); 124962306a36Sopenharmony_ci break; 125062306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 125162306a36Sopenharmony_ci if (!val) 125262306a36Sopenharmony_ci ret = bu27034_try_set_int_time(data, val2); 125362306a36Sopenharmony_ci else 125462306a36Sopenharmony_ci ret = -EINVAL; 125562306a36Sopenharmony_ci break; 125662306a36Sopenharmony_ci default: 125762306a36Sopenharmony_ci ret = -EINVAL; 125862306a36Sopenharmony_ci break; 125962306a36Sopenharmony_ci } 126062306a36Sopenharmony_ci 126162306a36Sopenharmony_ci iio_device_release_direct_mode(idev); 126262306a36Sopenharmony_ci 126362306a36Sopenharmony_ci return ret; 126462306a36Sopenharmony_ci} 126562306a36Sopenharmony_ci 126662306a36Sopenharmony_cistatic int bu27034_read_avail(struct iio_dev *idev, 126762306a36Sopenharmony_ci struct iio_chan_spec const *chan, const int **vals, 126862306a36Sopenharmony_ci int *type, int *length, long mask) 126962306a36Sopenharmony_ci{ 127062306a36Sopenharmony_ci struct bu27034_data *data = iio_priv(idev); 127162306a36Sopenharmony_ci 127262306a36Sopenharmony_ci switch (mask) { 127362306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 127462306a36Sopenharmony_ci return iio_gts_avail_times(&data->gts, vals, type, length); 127562306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 127662306a36Sopenharmony_ci return iio_gts_all_avail_scales(&data->gts, vals, type, length); 127762306a36Sopenharmony_ci default: 127862306a36Sopenharmony_ci return -EINVAL; 127962306a36Sopenharmony_ci } 128062306a36Sopenharmony_ci} 128162306a36Sopenharmony_ci 128262306a36Sopenharmony_cistatic const struct iio_info bu27034_info = { 128362306a36Sopenharmony_ci .read_raw = &bu27034_read_raw, 128462306a36Sopenharmony_ci .write_raw = &bu27034_write_raw, 128562306a36Sopenharmony_ci .write_raw_get_fmt = &bu27034_write_raw_get_fmt, 128662306a36Sopenharmony_ci .read_avail = &bu27034_read_avail, 128762306a36Sopenharmony_ci}; 128862306a36Sopenharmony_ci 128962306a36Sopenharmony_cistatic int bu27034_chip_init(struct bu27034_data *data) 129062306a36Sopenharmony_ci{ 129162306a36Sopenharmony_ci int ret, sel; 129262306a36Sopenharmony_ci 129362306a36Sopenharmony_ci /* Reset */ 129462306a36Sopenharmony_ci ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL, 129562306a36Sopenharmony_ci BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET); 129662306a36Sopenharmony_ci if (ret) 129762306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); 129862306a36Sopenharmony_ci 129962306a36Sopenharmony_ci msleep(1); 130062306a36Sopenharmony_ci 130162306a36Sopenharmony_ci ret = regmap_reinit_cache(data->regmap, &bu27034_regmap); 130262306a36Sopenharmony_ci if (ret) { 130362306a36Sopenharmony_ci dev_err(data->dev, "Failed to reinit reg cache\n"); 130462306a36Sopenharmony_ci return ret; 130562306a36Sopenharmony_ci } 130662306a36Sopenharmony_ci 130762306a36Sopenharmony_ci /* 130862306a36Sopenharmony_ci * Read integration time here to ensure it is in regmap cache. We do 130962306a36Sopenharmony_ci * this to speed-up the int-time acquisition in the start of the buffer 131062306a36Sopenharmony_ci * handling thread where longer delays could make it more likely we end 131162306a36Sopenharmony_ci * up skipping a sample, and where the longer delays make timestamps 131262306a36Sopenharmony_ci * less accurate. 131362306a36Sopenharmony_ci */ 131462306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); 131562306a36Sopenharmony_ci if (ret) 131662306a36Sopenharmony_ci dev_err(data->dev, "reading integration time failed\n"); 131762306a36Sopenharmony_ci 131862306a36Sopenharmony_ci return 0; 131962306a36Sopenharmony_ci} 132062306a36Sopenharmony_ci 132162306a36Sopenharmony_cistatic int bu27034_wait_for_data(struct bu27034_data *data) 132262306a36Sopenharmony_ci{ 132362306a36Sopenharmony_ci int ret, val; 132462306a36Sopenharmony_ci 132562306a36Sopenharmony_ci ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, 132662306a36Sopenharmony_ci val, val & BU27034_MASK_VALID, 132762306a36Sopenharmony_ci BU27034_DATA_WAIT_TIME_US, 132862306a36Sopenharmony_ci BU27034_TOTAL_DATA_WAIT_TIME_US); 132962306a36Sopenharmony_ci if (ret) { 133062306a36Sopenharmony_ci dev_err(data->dev, "data polling %s\n", 133162306a36Sopenharmony_ci !(val & BU27034_MASK_VALID) ? "timeout" : "fail"); 133262306a36Sopenharmony_ci 133362306a36Sopenharmony_ci return ret; 133462306a36Sopenharmony_ci } 133562306a36Sopenharmony_ci 133662306a36Sopenharmony_ci ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, 133762306a36Sopenharmony_ci &data->scan.channels[0], 133862306a36Sopenharmony_ci sizeof(data->scan.channels)); 133962306a36Sopenharmony_ci if (ret) 134062306a36Sopenharmony_ci return ret; 134162306a36Sopenharmony_ci 134262306a36Sopenharmony_ci bu27034_invalidate_read_data(data); 134362306a36Sopenharmony_ci 134462306a36Sopenharmony_ci return 0; 134562306a36Sopenharmony_ci} 134662306a36Sopenharmony_ci 134762306a36Sopenharmony_cistatic int bu27034_buffer_thread(void *arg) 134862306a36Sopenharmony_ci{ 134962306a36Sopenharmony_ci struct iio_dev *idev = arg; 135062306a36Sopenharmony_ci struct bu27034_data *data; 135162306a36Sopenharmony_ci int wait_ms; 135262306a36Sopenharmony_ci 135362306a36Sopenharmony_ci data = iio_priv(idev); 135462306a36Sopenharmony_ci 135562306a36Sopenharmony_ci wait_ms = bu27034_get_int_time(data); 135662306a36Sopenharmony_ci wait_ms /= 1000; 135762306a36Sopenharmony_ci 135862306a36Sopenharmony_ci wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS; 135962306a36Sopenharmony_ci 136062306a36Sopenharmony_ci while (!kthread_should_stop()) { 136162306a36Sopenharmony_ci int ret; 136262306a36Sopenharmony_ci int64_t tstamp; 136362306a36Sopenharmony_ci 136462306a36Sopenharmony_ci msleep(wait_ms); 136562306a36Sopenharmony_ci ret = bu27034_wait_for_data(data); 136662306a36Sopenharmony_ci if (ret) 136762306a36Sopenharmony_ci continue; 136862306a36Sopenharmony_ci 136962306a36Sopenharmony_ci tstamp = iio_get_time_ns(idev); 137062306a36Sopenharmony_ci 137162306a36Sopenharmony_ci if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) { 137262306a36Sopenharmony_ci int mlux; 137362306a36Sopenharmony_ci 137462306a36Sopenharmony_ci ret = bu27034_calc_mlux(data, &data->scan.channels[0], 137562306a36Sopenharmony_ci &mlux); 137662306a36Sopenharmony_ci if (ret) 137762306a36Sopenharmony_ci dev_err(data->dev, "failed to calculate lux\n"); 137862306a36Sopenharmony_ci 137962306a36Sopenharmony_ci /* 138062306a36Sopenharmony_ci * The maximum Milli lux value we get with gain 1x time 138162306a36Sopenharmony_ci * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits 138262306a36Sopenharmony_ci * so there should be no problem returning int from 138362306a36Sopenharmony_ci * computations and casting it to u32 138462306a36Sopenharmony_ci */ 138562306a36Sopenharmony_ci data->scan.mlux = (u32)mlux; 138662306a36Sopenharmony_ci } 138762306a36Sopenharmony_ci iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); 138862306a36Sopenharmony_ci } 138962306a36Sopenharmony_ci 139062306a36Sopenharmony_ci return 0; 139162306a36Sopenharmony_ci} 139262306a36Sopenharmony_ci 139362306a36Sopenharmony_cistatic int bu27034_buffer_enable(struct iio_dev *idev) 139462306a36Sopenharmony_ci{ 139562306a36Sopenharmony_ci struct bu27034_data *data = iio_priv(idev); 139662306a36Sopenharmony_ci struct task_struct *task; 139762306a36Sopenharmony_ci int ret; 139862306a36Sopenharmony_ci 139962306a36Sopenharmony_ci mutex_lock(&data->mutex); 140062306a36Sopenharmony_ci ret = bu27034_meas_set(data, true); 140162306a36Sopenharmony_ci if (ret) 140262306a36Sopenharmony_ci goto unlock_out; 140362306a36Sopenharmony_ci 140462306a36Sopenharmony_ci task = kthread_run(bu27034_buffer_thread, idev, 140562306a36Sopenharmony_ci "bu27034-buffering-%u", 140662306a36Sopenharmony_ci iio_device_id(idev)); 140762306a36Sopenharmony_ci if (IS_ERR(task)) { 140862306a36Sopenharmony_ci ret = PTR_ERR(task); 140962306a36Sopenharmony_ci goto unlock_out; 141062306a36Sopenharmony_ci } 141162306a36Sopenharmony_ci 141262306a36Sopenharmony_ci data->task = task; 141362306a36Sopenharmony_ci 141462306a36Sopenharmony_ciunlock_out: 141562306a36Sopenharmony_ci mutex_unlock(&data->mutex); 141662306a36Sopenharmony_ci 141762306a36Sopenharmony_ci return ret; 141862306a36Sopenharmony_ci} 141962306a36Sopenharmony_ci 142062306a36Sopenharmony_cistatic int bu27034_buffer_disable(struct iio_dev *idev) 142162306a36Sopenharmony_ci{ 142262306a36Sopenharmony_ci struct bu27034_data *data = iio_priv(idev); 142362306a36Sopenharmony_ci int ret; 142462306a36Sopenharmony_ci 142562306a36Sopenharmony_ci mutex_lock(&data->mutex); 142662306a36Sopenharmony_ci if (data->task) { 142762306a36Sopenharmony_ci kthread_stop(data->task); 142862306a36Sopenharmony_ci data->task = NULL; 142962306a36Sopenharmony_ci } 143062306a36Sopenharmony_ci 143162306a36Sopenharmony_ci ret = bu27034_meas_set(data, false); 143262306a36Sopenharmony_ci mutex_unlock(&data->mutex); 143362306a36Sopenharmony_ci 143462306a36Sopenharmony_ci return ret; 143562306a36Sopenharmony_ci} 143662306a36Sopenharmony_ci 143762306a36Sopenharmony_cistatic const struct iio_buffer_setup_ops bu27034_buffer_ops = { 143862306a36Sopenharmony_ci .postenable = &bu27034_buffer_enable, 143962306a36Sopenharmony_ci .predisable = &bu27034_buffer_disable, 144062306a36Sopenharmony_ci}; 144162306a36Sopenharmony_ci 144262306a36Sopenharmony_cistatic int bu27034_probe(struct i2c_client *i2c) 144362306a36Sopenharmony_ci{ 144462306a36Sopenharmony_ci struct device *dev = &i2c->dev; 144562306a36Sopenharmony_ci struct bu27034_data *data; 144662306a36Sopenharmony_ci struct regmap *regmap; 144762306a36Sopenharmony_ci struct iio_dev *idev; 144862306a36Sopenharmony_ci unsigned int part_id, reg; 144962306a36Sopenharmony_ci int ret; 145062306a36Sopenharmony_ci 145162306a36Sopenharmony_ci regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap); 145262306a36Sopenharmony_ci if (IS_ERR(regmap)) 145362306a36Sopenharmony_ci return dev_err_probe(dev, PTR_ERR(regmap), 145462306a36Sopenharmony_ci "Failed to initialize Regmap\n"); 145562306a36Sopenharmony_ci 145662306a36Sopenharmony_ci idev = devm_iio_device_alloc(dev, sizeof(*data)); 145762306a36Sopenharmony_ci if (!idev) 145862306a36Sopenharmony_ci return -ENOMEM; 145962306a36Sopenharmony_ci 146062306a36Sopenharmony_ci ret = devm_regulator_get_enable(dev, "vdd"); 146162306a36Sopenharmony_ci if (ret) 146262306a36Sopenharmony_ci return dev_err_probe(dev, ret, "Failed to get regulator\n"); 146362306a36Sopenharmony_ci 146462306a36Sopenharmony_ci data = iio_priv(idev); 146562306a36Sopenharmony_ci 146662306a36Sopenharmony_ci ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, ®); 146762306a36Sopenharmony_ci if (ret) 146862306a36Sopenharmony_ci return dev_err_probe(dev, ret, "Failed to access sensor\n"); 146962306a36Sopenharmony_ci 147062306a36Sopenharmony_ci part_id = FIELD_GET(BU27034_MASK_PART_ID, reg); 147162306a36Sopenharmony_ci 147262306a36Sopenharmony_ci if (part_id != BU27034_ID) 147362306a36Sopenharmony_ci dev_warn(dev, "unknown device 0x%x\n", part_id); 147462306a36Sopenharmony_ci 147562306a36Sopenharmony_ci ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains, 147662306a36Sopenharmony_ci ARRAY_SIZE(bu27034_gains), bu27034_itimes, 147762306a36Sopenharmony_ci ARRAY_SIZE(bu27034_itimes), &data->gts); 147862306a36Sopenharmony_ci if (ret) 147962306a36Sopenharmony_ci return ret; 148062306a36Sopenharmony_ci 148162306a36Sopenharmony_ci mutex_init(&data->mutex); 148262306a36Sopenharmony_ci data->regmap = regmap; 148362306a36Sopenharmony_ci data->dev = dev; 148462306a36Sopenharmony_ci 148562306a36Sopenharmony_ci idev->channels = bu27034_channels; 148662306a36Sopenharmony_ci idev->num_channels = ARRAY_SIZE(bu27034_channels); 148762306a36Sopenharmony_ci idev->name = "bu27034"; 148862306a36Sopenharmony_ci idev->info = &bu27034_info; 148962306a36Sopenharmony_ci 149062306a36Sopenharmony_ci idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 149162306a36Sopenharmony_ci idev->available_scan_masks = bu27034_scan_masks; 149262306a36Sopenharmony_ci 149362306a36Sopenharmony_ci ret = bu27034_chip_init(data); 149462306a36Sopenharmony_ci if (ret) 149562306a36Sopenharmony_ci return ret; 149662306a36Sopenharmony_ci 149762306a36Sopenharmony_ci ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops); 149862306a36Sopenharmony_ci if (ret) 149962306a36Sopenharmony_ci return dev_err_probe(dev, ret, "buffer setup failed\n"); 150062306a36Sopenharmony_ci 150162306a36Sopenharmony_ci ret = devm_iio_device_register(dev, idev); 150262306a36Sopenharmony_ci if (ret < 0) 150362306a36Sopenharmony_ci return dev_err_probe(dev, ret, 150462306a36Sopenharmony_ci "Unable to register iio device\n"); 150562306a36Sopenharmony_ci 150662306a36Sopenharmony_ci return ret; 150762306a36Sopenharmony_ci} 150862306a36Sopenharmony_ci 150962306a36Sopenharmony_cistatic const struct of_device_id bu27034_of_match[] = { 151062306a36Sopenharmony_ci { .compatible = "rohm,bu27034" }, 151162306a36Sopenharmony_ci { } 151262306a36Sopenharmony_ci}; 151362306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, bu27034_of_match); 151462306a36Sopenharmony_ci 151562306a36Sopenharmony_cistatic struct i2c_driver bu27034_i2c_driver = { 151662306a36Sopenharmony_ci .driver = { 151762306a36Sopenharmony_ci .name = "bu27034-als", 151862306a36Sopenharmony_ci .of_match_table = bu27034_of_match, 151962306a36Sopenharmony_ci .probe_type = PROBE_PREFER_ASYNCHRONOUS, 152062306a36Sopenharmony_ci }, 152162306a36Sopenharmony_ci .probe = bu27034_probe, 152262306a36Sopenharmony_ci}; 152362306a36Sopenharmony_cimodule_i2c_driver(bu27034_i2c_driver); 152462306a36Sopenharmony_ci 152562306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 152662306a36Sopenharmony_ciMODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); 152762306a36Sopenharmony_ciMODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver"); 152862306a36Sopenharmony_ciMODULE_IMPORT_NS(IIO_GTS_HELPER); 1529