162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * ROHM Colour Sensor driver for 462306a36Sopenharmony_ci * - BU27008 RGBC sensor 562306a36Sopenharmony_ci * - BU27010 RGBC + Flickering sensor 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Copyright (c) 2023, ROHM Semiconductor. 862306a36Sopenharmony_ci */ 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci#include <linux/bitfield.h> 1162306a36Sopenharmony_ci#include <linux/bitops.h> 1262306a36Sopenharmony_ci#include <linux/device.h> 1362306a36Sopenharmony_ci#include <linux/i2c.h> 1462306a36Sopenharmony_ci#include <linux/interrupt.h> 1562306a36Sopenharmony_ci#include <linux/module.h> 1662306a36Sopenharmony_ci#include <linux/property.h> 1762306a36Sopenharmony_ci#include <linux/regmap.h> 1862306a36Sopenharmony_ci#include <linux/regulator/consumer.h> 1962306a36Sopenharmony_ci#include <linux/units.h> 2062306a36Sopenharmony_ci 2162306a36Sopenharmony_ci#include <linux/iio/iio.h> 2262306a36Sopenharmony_ci#include <linux/iio/iio-gts-helper.h> 2362306a36Sopenharmony_ci#include <linux/iio/trigger.h> 2462306a36Sopenharmony_ci#include <linux/iio/trigger_consumer.h> 2562306a36Sopenharmony_ci#include <linux/iio/triggered_buffer.h> 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci/* 2862306a36Sopenharmony_ci * A word about register address and mask definitions. 2962306a36Sopenharmony_ci * 3062306a36Sopenharmony_ci * At a quick glance to the data-sheet register tables, the BU27010 has all the 3162306a36Sopenharmony_ci * registers that the BU27008 has. On top of that the BU27010 adds couple of new 3262306a36Sopenharmony_ci * ones. 3362306a36Sopenharmony_ci * 3462306a36Sopenharmony_ci * So, all definitions BU27008_REG_* are there also for BU27010 but none of the 3562306a36Sopenharmony_ci * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds 3662306a36Sopenharmony_ci * some features (Flicker FIFO, more power control) on top of the BU27008. 3762306a36Sopenharmony_ci * 3862306a36Sopenharmony_ci * Unfortunately, some of the wheel has been re-invented. Even though the names 3962306a36Sopenharmony_ci * of the registers have stayed the same, pretty much all of the functionality 4062306a36Sopenharmony_ci * provided by the registers has changed place. Contents of all MODE_CONTROL 4162306a36Sopenharmony_ci * registers on BU27008 and BU27010 are different. 4262306a36Sopenharmony_ci * 4362306a36Sopenharmony_ci * Chip-specific mapping from register addresses/bits to functionality is done 4462306a36Sopenharmony_ci * in bu27_chip_data structures. 4562306a36Sopenharmony_ci */ 4662306a36Sopenharmony_ci#define BU27008_REG_SYSTEM_CONTROL 0x40 4762306a36Sopenharmony_ci#define BU27008_MASK_SW_RESET BIT(7) 4862306a36Sopenharmony_ci#define BU27008_MASK_PART_ID GENMASK(5, 0) 4962306a36Sopenharmony_ci#define BU27008_ID 0x1a 5062306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL1 0x41 5162306a36Sopenharmony_ci#define BU27008_MASK_MEAS_MODE GENMASK(2, 0) 5262306a36Sopenharmony_ci#define BU27008_MASK_CHAN_SEL GENMASK(3, 2) 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL2 0x42 5562306a36Sopenharmony_ci#define BU27008_MASK_RGBC_GAIN GENMASK(7, 3) 5662306a36Sopenharmony_ci#define BU27008_MASK_IR_GAIN_LO GENMASK(2, 0) 5762306a36Sopenharmony_ci#define BU27008_SHIFT_IR_GAIN 3 5862306a36Sopenharmony_ci 5962306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL3 0x43 6062306a36Sopenharmony_ci#define BU27008_MASK_VALID BIT(7) 6162306a36Sopenharmony_ci#define BU27008_MASK_INT_EN BIT(1) 6262306a36Sopenharmony_ci#define BU27008_INT_EN BU27008_MASK_INT_EN 6362306a36Sopenharmony_ci#define BU27008_INT_DIS 0 6462306a36Sopenharmony_ci#define BU27008_MASK_MEAS_EN BIT(0) 6562306a36Sopenharmony_ci#define BU27008_MEAS_EN BIT(0) 6662306a36Sopenharmony_ci#define BU27008_MEAS_DIS 0 6762306a36Sopenharmony_ci 6862306a36Sopenharmony_ci#define BU27008_REG_DATA0_LO 0x50 6962306a36Sopenharmony_ci#define BU27008_REG_DATA1_LO 0x52 7062306a36Sopenharmony_ci#define BU27008_REG_DATA2_LO 0x54 7162306a36Sopenharmony_ci#define BU27008_REG_DATA3_LO 0x56 7262306a36Sopenharmony_ci#define BU27008_REG_DATA3_HI 0x57 7362306a36Sopenharmony_ci#define BU27008_REG_MANUFACTURER_ID 0x92 7462306a36Sopenharmony_ci#define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID 7562306a36Sopenharmony_ci 7662306a36Sopenharmony_ci/* BU27010 specific definitions */ 7762306a36Sopenharmony_ci 7862306a36Sopenharmony_ci#define BU27010_MASK_SW_RESET BIT(7) 7962306a36Sopenharmony_ci#define BU27010_ID 0x1b 8062306a36Sopenharmony_ci#define BU27010_REG_POWER 0x3e 8162306a36Sopenharmony_ci#define BU27010_MASK_POWER BIT(0) 8262306a36Sopenharmony_ci 8362306a36Sopenharmony_ci#define BU27010_REG_RESET 0x3f 8462306a36Sopenharmony_ci#define BU27010_MASK_RESET BIT(0) 8562306a36Sopenharmony_ci#define BU27010_RESET_RELEASE BU27010_MASK_RESET 8662306a36Sopenharmony_ci 8762306a36Sopenharmony_ci#define BU27010_MASK_MEAS_EN BIT(1) 8862306a36Sopenharmony_ci 8962306a36Sopenharmony_ci#define BU27010_MASK_CHAN_SEL GENMASK(7, 6) 9062306a36Sopenharmony_ci#define BU27010_MASK_MEAS_MODE GENMASK(5, 4) 9162306a36Sopenharmony_ci#define BU27010_MASK_RGBC_GAIN GENMASK(3, 0) 9262306a36Sopenharmony_ci 9362306a36Sopenharmony_ci#define BU27010_MASK_DATA3_GAIN GENMASK(7, 6) 9462306a36Sopenharmony_ci#define BU27010_MASK_DATA2_GAIN GENMASK(5, 4) 9562306a36Sopenharmony_ci#define BU27010_MASK_DATA1_GAIN GENMASK(3, 2) 9662306a36Sopenharmony_ci#define BU27010_MASK_DATA0_GAIN GENMASK(1, 0) 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci#define BU27010_MASK_FLC_MODE BIT(7) 9962306a36Sopenharmony_ci#define BU27010_MASK_FLC_GAIN GENMASK(4, 0) 10062306a36Sopenharmony_ci 10162306a36Sopenharmony_ci#define BU27010_REG_MODE_CONTROL4 0x44 10262306a36Sopenharmony_ci/* If flicker is ever to be supported the IRQ must be handled as a field */ 10362306a36Sopenharmony_ci#define BU27010_IRQ_DIS_ALL GENMASK(1, 0) 10462306a36Sopenharmony_ci#define BU27010_DRDY_EN BIT(0) 10562306a36Sopenharmony_ci#define BU27010_MASK_INT_SEL GENMASK(1, 0) 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci#define BU27010_REG_MODE_CONTROL5 0x45 10862306a36Sopenharmony_ci#define BU27010_MASK_RGB_VALID BIT(7) 10962306a36Sopenharmony_ci#define BU27010_MASK_FLC_VALID BIT(6) 11062306a36Sopenharmony_ci#define BU27010_MASK_WAIT_EN BIT(3) 11162306a36Sopenharmony_ci#define BU27010_MASK_FIFO_EN BIT(2) 11262306a36Sopenharmony_ci#define BU27010_MASK_RGB_EN BIT(1) 11362306a36Sopenharmony_ci#define BU27010_MASK_FLC_EN BIT(0) 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci#define BU27010_REG_DATA_FLICKER_LO 0x56 11662306a36Sopenharmony_ci#define BU27010_MASK_DATA_FLICKER_HI GENMASK(2, 0) 11762306a36Sopenharmony_ci#define BU27010_REG_FLICKER_COUNT 0x5a 11862306a36Sopenharmony_ci#define BU27010_REG_FIFO_LEVEL_LO 0x5b 11962306a36Sopenharmony_ci#define BU27010_MASK_FIFO_LEVEL_HI BIT(0) 12062306a36Sopenharmony_ci#define BU27010_REG_FIFO_DATA_LO 0x5d 12162306a36Sopenharmony_ci#define BU27010_REG_FIFO_DATA_HI 0x5e 12262306a36Sopenharmony_ci#define BU27010_MASK_FIFO_DATA_HI GENMASK(2, 0) 12362306a36Sopenharmony_ci#define BU27010_REG_MANUFACTURER_ID 0x92 12462306a36Sopenharmony_ci#define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci/** 12762306a36Sopenharmony_ci * enum bu27008_chan_type - BU27008 channel types 12862306a36Sopenharmony_ci * @BU27008_RED: Red channel. Always via data0. 12962306a36Sopenharmony_ci * @BU27008_GREEN: Green channel. Always via data1. 13062306a36Sopenharmony_ci * @BU27008_BLUE: Blue channel. Via data2 (when used). 13162306a36Sopenharmony_ci * @BU27008_CLEAR: Clear channel. Via data2 or data3 (when used). 13262306a36Sopenharmony_ci * @BU27008_IR: IR channel. Via data3 (when used). 13362306a36Sopenharmony_ci * @BU27008_NUM_CHANS: Number of channel types. 13462306a36Sopenharmony_ci */ 13562306a36Sopenharmony_cienum bu27008_chan_type { 13662306a36Sopenharmony_ci BU27008_RED, 13762306a36Sopenharmony_ci BU27008_GREEN, 13862306a36Sopenharmony_ci BU27008_BLUE, 13962306a36Sopenharmony_ci BU27008_CLEAR, 14062306a36Sopenharmony_ci BU27008_IR, 14162306a36Sopenharmony_ci BU27008_NUM_CHANS 14262306a36Sopenharmony_ci}; 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci/** 14562306a36Sopenharmony_ci * enum bu27008_chan - BU27008 physical data channel 14662306a36Sopenharmony_ci * @BU27008_DATA0: Always red. 14762306a36Sopenharmony_ci * @BU27008_DATA1: Always green. 14862306a36Sopenharmony_ci * @BU27008_DATA2: Blue or clear. 14962306a36Sopenharmony_ci * @BU27008_DATA3: IR or clear. 15062306a36Sopenharmony_ci * @BU27008_NUM_HW_CHANS: Number of physical channels 15162306a36Sopenharmony_ci */ 15262306a36Sopenharmony_cienum bu27008_chan { 15362306a36Sopenharmony_ci BU27008_DATA0, 15462306a36Sopenharmony_ci BU27008_DATA1, 15562306a36Sopenharmony_ci BU27008_DATA2, 15662306a36Sopenharmony_ci BU27008_DATA3, 15762306a36Sopenharmony_ci BU27008_NUM_HW_CHANS 15862306a36Sopenharmony_ci}; 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_ci/* We can always measure red and green at same time */ 16162306a36Sopenharmony_ci#define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN)) 16262306a36Sopenharmony_ci 16362306a36Sopenharmony_ci/* We use these data channel configs. Ensure scan_masks below follow them too */ 16462306a36Sopenharmony_ci#define BU27008_BLUE2_CLEAR3 0x0 /* buffer is R, G, B, C */ 16562306a36Sopenharmony_ci#define BU27008_CLEAR2_IR3 0x1 /* buffer is R, G, C, IR */ 16662306a36Sopenharmony_ci#define BU27008_BLUE2_IR3 0x2 /* buffer is R, G, B, IR */ 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_cistatic const unsigned long bu27008_scan_masks[] = { 16962306a36Sopenharmony_ci /* buffer is R, G, B, C */ 17062306a36Sopenharmony_ci ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR), 17162306a36Sopenharmony_ci /* buffer is R, G, C, IR */ 17262306a36Sopenharmony_ci ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR), 17362306a36Sopenharmony_ci /* buffer is R, G, B, IR */ 17462306a36Sopenharmony_ci ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR), 17562306a36Sopenharmony_ci 0 17662306a36Sopenharmony_ci}; 17762306a36Sopenharmony_ci 17862306a36Sopenharmony_ci/* 17962306a36Sopenharmony_ci * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS 18062306a36Sopenharmony_ci * Time impacts to gain: 1x, 2x, 4x, 8x. 18162306a36Sopenharmony_ci * 18262306a36Sopenharmony_ci * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192 18362306a36Sopenharmony_ci * 18462306a36Sopenharmony_ci * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8 18562306a36Sopenharmony_ci * = 8192. With NANO scale we get rid of accuracy loss when we start with the 18662306a36Sopenharmony_ci * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX 18762306a36Sopenharmony_ci * total gain 8192 will be 1953125 18862306a36Sopenharmony_ci */ 18962306a36Sopenharmony_ci#define BU27008_SCALE_1X 16 19062306a36Sopenharmony_ci 19162306a36Sopenharmony_ci/* 19262306a36Sopenharmony_ci * On BU27010 available scales with gain 1x - 4096x, 19362306a36Sopenharmony_ci * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x. 19462306a36Sopenharmony_ci * 19562306a36Sopenharmony_ci * => Max total gain is HWGAIN * gain by integration time (8 * 4096) 19662306a36Sopenharmony_ci * 19762306a36Sopenharmony_ci * Using NANO precision for scale we must use scale 64x corresponding gain 1x 19862306a36Sopenharmony_ci * to avoid precision loss. 19962306a36Sopenharmony_ci */ 20062306a36Sopenharmony_ci#define BU27010_SCALE_1X 64 20162306a36Sopenharmony_ci 20262306a36Sopenharmony_ci/* See the data sheet for the "Gain Setting" table */ 20362306a36Sopenharmony_ci#define BU27008_GSEL_1X 0x00 20462306a36Sopenharmony_ci#define BU27008_GSEL_4X 0x08 20562306a36Sopenharmony_ci#define BU27008_GSEL_8X 0x09 20662306a36Sopenharmony_ci#define BU27008_GSEL_16X 0x0a 20762306a36Sopenharmony_ci#define BU27008_GSEL_32X 0x0b 20862306a36Sopenharmony_ci#define BU27008_GSEL_64X 0x0c 20962306a36Sopenharmony_ci#define BU27008_GSEL_256X 0x18 21062306a36Sopenharmony_ci#define BU27008_GSEL_512X 0x19 21162306a36Sopenharmony_ci#define BU27008_GSEL_1024X 0x1a 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27008_gains[] = { 21462306a36Sopenharmony_ci GAIN_SCALE_GAIN(1, BU27008_GSEL_1X), 21562306a36Sopenharmony_ci GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), 21662306a36Sopenharmony_ci GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), 21762306a36Sopenharmony_ci GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), 21862306a36Sopenharmony_ci GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), 21962306a36Sopenharmony_ci GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), 22062306a36Sopenharmony_ci GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), 22162306a36Sopenharmony_ci GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), 22262306a36Sopenharmony_ci GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), 22362306a36Sopenharmony_ci}; 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27008_gains_ir[] = { 22662306a36Sopenharmony_ci GAIN_SCALE_GAIN(2, BU27008_GSEL_1X), 22762306a36Sopenharmony_ci GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), 22862306a36Sopenharmony_ci GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), 22962306a36Sopenharmony_ci GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), 23062306a36Sopenharmony_ci GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), 23162306a36Sopenharmony_ci GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), 23262306a36Sopenharmony_ci GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), 23362306a36Sopenharmony_ci GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), 23462306a36Sopenharmony_ci GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), 23562306a36Sopenharmony_ci}; 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci#define BU27010_GSEL_1X 0x00 /* 000000 */ 23862306a36Sopenharmony_ci#define BU27010_GSEL_4X 0x08 /* 001000 */ 23962306a36Sopenharmony_ci#define BU27010_GSEL_16X 0x09 /* 001001 */ 24062306a36Sopenharmony_ci#define BU27010_GSEL_64X 0x0e /* 001110 */ 24162306a36Sopenharmony_ci#define BU27010_GSEL_256X 0x1e /* 011110 */ 24262306a36Sopenharmony_ci#define BU27010_GSEL_1024X 0x2e /* 101110 */ 24362306a36Sopenharmony_ci#define BU27010_GSEL_4096X 0x3f /* 111111 */ 24462306a36Sopenharmony_ci 24562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27010_gains[] = { 24662306a36Sopenharmony_ci GAIN_SCALE_GAIN(1, BU27010_GSEL_1X), 24762306a36Sopenharmony_ci GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), 24862306a36Sopenharmony_ci GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), 24962306a36Sopenharmony_ci GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), 25062306a36Sopenharmony_ci GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), 25162306a36Sopenharmony_ci GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), 25262306a36Sopenharmony_ci GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), 25362306a36Sopenharmony_ci}; 25462306a36Sopenharmony_ci 25562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27010_gains_ir[] = { 25662306a36Sopenharmony_ci GAIN_SCALE_GAIN(2, BU27010_GSEL_1X), 25762306a36Sopenharmony_ci GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), 25862306a36Sopenharmony_ci GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), 25962306a36Sopenharmony_ci GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), 26062306a36Sopenharmony_ci GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), 26162306a36Sopenharmony_ci GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), 26262306a36Sopenharmony_ci GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), 26362306a36Sopenharmony_ci}; 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ci#define BU27008_MEAS_MODE_100MS 0x00 26662306a36Sopenharmony_ci#define BU27008_MEAS_MODE_55MS 0x01 26762306a36Sopenharmony_ci#define BU27008_MEAS_MODE_200MS 0x02 26862306a36Sopenharmony_ci#define BU27008_MEAS_MODE_400MS 0x04 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_ci#define BU27010_MEAS_MODE_100MS 0x00 27162306a36Sopenharmony_ci#define BU27010_MEAS_MODE_55MS 0x03 27262306a36Sopenharmony_ci#define BU27010_MEAS_MODE_200MS 0x01 27362306a36Sopenharmony_ci#define BU27010_MEAS_MODE_400MS 0x02 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_ci#define BU27008_MEAS_TIME_MAX_MS 400 27662306a36Sopenharmony_ci 27762306a36Sopenharmony_cistatic const struct iio_itime_sel_mul bu27008_itimes[] = { 27862306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8), 27962306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4), 28062306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2), 28162306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1), 28262306a36Sopenharmony_ci}; 28362306a36Sopenharmony_ci 28462306a36Sopenharmony_cistatic const struct iio_itime_sel_mul bu27010_itimes[] = { 28562306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8), 28662306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4), 28762306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2), 28862306a36Sopenharmony_ci GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1), 28962306a36Sopenharmony_ci}; 29062306a36Sopenharmony_ci 29162306a36Sopenharmony_ci/* 29262306a36Sopenharmony_ci * All the RGBC channels share the same gain. 29362306a36Sopenharmony_ci * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this 29462306a36Sopenharmony_ci * would yield quite complex gain setting. Especially since not all bit 29562306a36Sopenharmony_ci * compinations are supported. And in any case setting GAIN for RGBC will 29662306a36Sopenharmony_ci * always also change the IR-gain. 29762306a36Sopenharmony_ci * 29862306a36Sopenharmony_ci * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC, 29962306a36Sopenharmony_ci * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains 30062306a36Sopenharmony_ci * though. This, however, makes it not possible to use shared gain for all 30162306a36Sopenharmony_ci * RGBC and IR settings even though they are all changed at the one go. 30262306a36Sopenharmony_ci */ 30362306a36Sopenharmony_ci#define BU27008_CHAN(color, data, separate_avail) \ 30462306a36Sopenharmony_ci{ \ 30562306a36Sopenharmony_ci .type = IIO_INTENSITY, \ 30662306a36Sopenharmony_ci .modified = 1, \ 30762306a36Sopenharmony_ci .channel2 = IIO_MOD_LIGHT_##color, \ 30862306a36Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 30962306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_SCALE), \ 31062306a36Sopenharmony_ci .info_mask_separate_available = (separate_avail), \ 31162306a36Sopenharmony_ci .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ 31262306a36Sopenharmony_ci .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \ 31362306a36Sopenharmony_ci .address = BU27008_REG_##data##_LO, \ 31462306a36Sopenharmony_ci .scan_index = BU27008_##color, \ 31562306a36Sopenharmony_ci .scan_type = { \ 31662306a36Sopenharmony_ci .sign = 'u', \ 31762306a36Sopenharmony_ci .realbits = 16, \ 31862306a36Sopenharmony_ci .storagebits = 16, \ 31962306a36Sopenharmony_ci .endianness = IIO_LE, \ 32062306a36Sopenharmony_ci }, \ 32162306a36Sopenharmony_ci} 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci/* For raw reads we always configure DATA3 for CLEAR */ 32462306a36Sopenharmony_cistatic const struct iio_chan_spec bu27008_channels[] = { 32562306a36Sopenharmony_ci BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)), 32662306a36Sopenharmony_ci BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)), 32762306a36Sopenharmony_ci BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)), 32862306a36Sopenharmony_ci BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)), 32962306a36Sopenharmony_ci /* 33062306a36Sopenharmony_ci * We don't allow setting scale for IR (because of shared gain bits). 33162306a36Sopenharmony_ci * Hence we don't advertise available ones either. 33262306a36Sopenharmony_ci */ 33362306a36Sopenharmony_ci BU27008_CHAN(IR, DATA3, 0), 33462306a36Sopenharmony_ci IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS), 33562306a36Sopenharmony_ci}; 33662306a36Sopenharmony_ci 33762306a36Sopenharmony_cistruct bu27008_data; 33862306a36Sopenharmony_ci 33962306a36Sopenharmony_cistruct bu27_chip_data { 34062306a36Sopenharmony_ci const char *name; 34162306a36Sopenharmony_ci int (*chip_init)(struct bu27008_data *data); 34262306a36Sopenharmony_ci int (*get_gain_sel)(struct bu27008_data *data, int *sel); 34362306a36Sopenharmony_ci int (*write_gain_sel)(struct bu27008_data *data, int sel); 34462306a36Sopenharmony_ci const struct regmap_config *regmap_cfg; 34562306a36Sopenharmony_ci const struct iio_gain_sel_pair *gains; 34662306a36Sopenharmony_ci const struct iio_gain_sel_pair *gains_ir; 34762306a36Sopenharmony_ci const struct iio_itime_sel_mul *itimes; 34862306a36Sopenharmony_ci int num_gains; 34962306a36Sopenharmony_ci int num_gains_ir; 35062306a36Sopenharmony_ci int num_itimes; 35162306a36Sopenharmony_ci int scale1x; 35262306a36Sopenharmony_ci 35362306a36Sopenharmony_ci int drdy_en_reg; 35462306a36Sopenharmony_ci int drdy_en_mask; 35562306a36Sopenharmony_ci int meas_en_reg; 35662306a36Sopenharmony_ci int meas_en_mask; 35762306a36Sopenharmony_ci int valid_reg; 35862306a36Sopenharmony_ci int chan_sel_reg; 35962306a36Sopenharmony_ci int chan_sel_mask; 36062306a36Sopenharmony_ci int int_time_mask; 36162306a36Sopenharmony_ci u8 part_id; 36262306a36Sopenharmony_ci}; 36362306a36Sopenharmony_ci 36462306a36Sopenharmony_cistruct bu27008_data { 36562306a36Sopenharmony_ci const struct bu27_chip_data *cd; 36662306a36Sopenharmony_ci struct regmap *regmap; 36762306a36Sopenharmony_ci struct iio_trigger *trig; 36862306a36Sopenharmony_ci struct device *dev; 36962306a36Sopenharmony_ci struct iio_gts gts; 37062306a36Sopenharmony_ci struct iio_gts gts_ir; 37162306a36Sopenharmony_ci int irq; 37262306a36Sopenharmony_ci 37362306a36Sopenharmony_ci /* 37462306a36Sopenharmony_ci * Prevent changing gain/time config when scale is read/written. 37562306a36Sopenharmony_ci * Similarly, protect the integration_time read/change sequence. 37662306a36Sopenharmony_ci * Prevent changing gain/time when data is read. 37762306a36Sopenharmony_ci */ 37862306a36Sopenharmony_ci struct mutex mutex; 37962306a36Sopenharmony_ci}; 38062306a36Sopenharmony_ci 38162306a36Sopenharmony_cistatic const struct regmap_range bu27008_volatile_ranges[] = { 38262306a36Sopenharmony_ci { 38362306a36Sopenharmony_ci .range_min = BU27008_REG_SYSTEM_CONTROL, /* SWRESET */ 38462306a36Sopenharmony_ci .range_max = BU27008_REG_SYSTEM_CONTROL, 38562306a36Sopenharmony_ci }, { 38662306a36Sopenharmony_ci .range_min = BU27008_REG_MODE_CONTROL3, /* VALID */ 38762306a36Sopenharmony_ci .range_max = BU27008_REG_MODE_CONTROL3, 38862306a36Sopenharmony_ci }, { 38962306a36Sopenharmony_ci .range_min = BU27008_REG_DATA0_LO, /* DATA */ 39062306a36Sopenharmony_ci .range_max = BU27008_REG_DATA3_HI, 39162306a36Sopenharmony_ci }, 39262306a36Sopenharmony_ci}; 39362306a36Sopenharmony_ci 39462306a36Sopenharmony_cistatic const struct regmap_range bu27010_volatile_ranges[] = { 39562306a36Sopenharmony_ci { 39662306a36Sopenharmony_ci .range_min = BU27010_REG_RESET, /* RSTB */ 39762306a36Sopenharmony_ci .range_max = BU27008_REG_SYSTEM_CONTROL, /* RESET */ 39862306a36Sopenharmony_ci }, { 39962306a36Sopenharmony_ci .range_min = BU27010_REG_MODE_CONTROL5, /* VALID bits */ 40062306a36Sopenharmony_ci .range_max = BU27010_REG_MODE_CONTROL5, 40162306a36Sopenharmony_ci }, { 40262306a36Sopenharmony_ci .range_min = BU27008_REG_DATA0_LO, 40362306a36Sopenharmony_ci .range_max = BU27010_REG_FIFO_DATA_HI, 40462306a36Sopenharmony_ci }, 40562306a36Sopenharmony_ci}; 40662306a36Sopenharmony_ci 40762306a36Sopenharmony_cistatic const struct regmap_access_table bu27008_volatile_regs = { 40862306a36Sopenharmony_ci .yes_ranges = &bu27008_volatile_ranges[0], 40962306a36Sopenharmony_ci .n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges), 41062306a36Sopenharmony_ci}; 41162306a36Sopenharmony_ci 41262306a36Sopenharmony_cistatic const struct regmap_access_table bu27010_volatile_regs = { 41362306a36Sopenharmony_ci .yes_ranges = &bu27010_volatile_ranges[0], 41462306a36Sopenharmony_ci .n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges), 41562306a36Sopenharmony_ci}; 41662306a36Sopenharmony_ci 41762306a36Sopenharmony_cistatic const struct regmap_range bu27008_read_only_ranges[] = { 41862306a36Sopenharmony_ci { 41962306a36Sopenharmony_ci .range_min = BU27008_REG_DATA0_LO, 42062306a36Sopenharmony_ci .range_max = BU27008_REG_DATA3_HI, 42162306a36Sopenharmony_ci }, { 42262306a36Sopenharmony_ci .range_min = BU27008_REG_MANUFACTURER_ID, 42362306a36Sopenharmony_ci .range_max = BU27008_REG_MANUFACTURER_ID, 42462306a36Sopenharmony_ci }, 42562306a36Sopenharmony_ci}; 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_cistatic const struct regmap_range bu27010_read_only_ranges[] = { 42862306a36Sopenharmony_ci { 42962306a36Sopenharmony_ci .range_min = BU27008_REG_DATA0_LO, 43062306a36Sopenharmony_ci .range_max = BU27010_REG_FIFO_DATA_HI, 43162306a36Sopenharmony_ci }, { 43262306a36Sopenharmony_ci .range_min = BU27010_REG_MANUFACTURER_ID, 43362306a36Sopenharmony_ci .range_max = BU27010_REG_MANUFACTURER_ID, 43462306a36Sopenharmony_ci } 43562306a36Sopenharmony_ci}; 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_cistatic const struct regmap_access_table bu27008_ro_regs = { 43862306a36Sopenharmony_ci .no_ranges = &bu27008_read_only_ranges[0], 43962306a36Sopenharmony_ci .n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges), 44062306a36Sopenharmony_ci}; 44162306a36Sopenharmony_ci 44262306a36Sopenharmony_cistatic const struct regmap_access_table bu27010_ro_regs = { 44362306a36Sopenharmony_ci .no_ranges = &bu27010_read_only_ranges[0], 44462306a36Sopenharmony_ci .n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges), 44562306a36Sopenharmony_ci}; 44662306a36Sopenharmony_ci 44762306a36Sopenharmony_cistatic const struct regmap_config bu27008_regmap = { 44862306a36Sopenharmony_ci .reg_bits = 8, 44962306a36Sopenharmony_ci .val_bits = 8, 45062306a36Sopenharmony_ci .max_register = BU27008_REG_MAX, 45162306a36Sopenharmony_ci .cache_type = REGCACHE_RBTREE, 45262306a36Sopenharmony_ci .volatile_table = &bu27008_volatile_regs, 45362306a36Sopenharmony_ci .wr_table = &bu27008_ro_regs, 45462306a36Sopenharmony_ci /* 45562306a36Sopenharmony_ci * All register writes are serialized by the mutex which protects the 45662306a36Sopenharmony_ci * scale setting/getting. This is needed because scale is combined by 45762306a36Sopenharmony_ci * gain and integration time settings and we need to ensure those are 45862306a36Sopenharmony_ci * not read / written when scale is being computed. 45962306a36Sopenharmony_ci * 46062306a36Sopenharmony_ci * As a result of this serializing, we don't need regmap locking. Note, 46162306a36Sopenharmony_ci * this is not true if we add any configurations which are not 46262306a36Sopenharmony_ci * serialized by the mutex and which may need for example a protected 46362306a36Sopenharmony_ci * read-modify-write cycle (eg. regmap_update_bits()). Please, revise 46462306a36Sopenharmony_ci * this when adding features to the driver. 46562306a36Sopenharmony_ci */ 46662306a36Sopenharmony_ci .disable_locking = true, 46762306a36Sopenharmony_ci}; 46862306a36Sopenharmony_ci 46962306a36Sopenharmony_cistatic const struct regmap_config bu27010_regmap = { 47062306a36Sopenharmony_ci .reg_bits = 8, 47162306a36Sopenharmony_ci .val_bits = 8, 47262306a36Sopenharmony_ci 47362306a36Sopenharmony_ci .max_register = BU27010_REG_MAX, 47462306a36Sopenharmony_ci .cache_type = REGCACHE_RBTREE, 47562306a36Sopenharmony_ci .volatile_table = &bu27010_volatile_regs, 47662306a36Sopenharmony_ci .wr_table = &bu27010_ro_regs, 47762306a36Sopenharmony_ci .disable_locking = true, 47862306a36Sopenharmony_ci}; 47962306a36Sopenharmony_ci 48062306a36Sopenharmony_cistatic int bu27008_write_gain_sel(struct bu27008_data *data, int sel) 48162306a36Sopenharmony_ci{ 48262306a36Sopenharmony_ci int regval; 48362306a36Sopenharmony_ci 48462306a36Sopenharmony_ci regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel); 48562306a36Sopenharmony_ci 48662306a36Sopenharmony_ci /* 48762306a36Sopenharmony_ci * We do always set also the LOW bits of IR-gain because othervice we 48862306a36Sopenharmony_ci * would risk resulting an invalid GAIN register value. 48962306a36Sopenharmony_ci * 49062306a36Sopenharmony_ci * We could allow setting separate gains for RGBC and IR when the 49162306a36Sopenharmony_ci * values were such that HW could support both gain settings. 49262306a36Sopenharmony_ci * Eg, when the shared bits were same for both gain values. 49362306a36Sopenharmony_ci * 49462306a36Sopenharmony_ci * This, however, has a negligible benefit compared to the increased 49562306a36Sopenharmony_ci * software complexity when we would need to go through the gains 49662306a36Sopenharmony_ci * for both channels separately when the integration time changes. 49762306a36Sopenharmony_ci * This would end up with nasty logic for computing gain values for 49862306a36Sopenharmony_ci * both channels - and rejecting them if shared bits changed. 49962306a36Sopenharmony_ci * 50062306a36Sopenharmony_ci * We should then build the logic by guessing what a user prefers. 50162306a36Sopenharmony_ci * RGBC or IR gains correctly set while other jumps to odd value? 50262306a36Sopenharmony_ci * Maybe look-up a value where both gains are somehow optimized 50362306a36Sopenharmony_ci * <what this somehow is, is ATM unknown to us>. Or maybe user would 50462306a36Sopenharmony_ci * expect us to reject changes when optimal gains can't be set to both 50562306a36Sopenharmony_ci * channels w/given integration time. At best that would result 50662306a36Sopenharmony_ci * solution that works well for a very specific subset of 50762306a36Sopenharmony_ci * configurations but causes unexpected corner-cases. 50862306a36Sopenharmony_ci * 50962306a36Sopenharmony_ci * So, we keep it simple. Always set same selector to IR and RGBC. 51062306a36Sopenharmony_ci * We disallow setting IR (as I expect that most of the users are 51162306a36Sopenharmony_ci * interested in RGBC). This way we can show the user that the scales 51262306a36Sopenharmony_ci * for RGBC and IR channels are different (1X Vs 2X with sel 0) while 51362306a36Sopenharmony_ci * still keeping the operation deterministic. 51462306a36Sopenharmony_ci */ 51562306a36Sopenharmony_ci regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel); 51662306a36Sopenharmony_ci 51762306a36Sopenharmony_ci return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2, 51862306a36Sopenharmony_ci BU27008_MASK_RGBC_GAIN, regval); 51962306a36Sopenharmony_ci} 52062306a36Sopenharmony_ci 52162306a36Sopenharmony_cistatic int bu27010_write_gain_sel(struct bu27008_data *data, int sel) 52262306a36Sopenharmony_ci{ 52362306a36Sopenharmony_ci unsigned int regval; 52462306a36Sopenharmony_ci int ret, chan_selector; 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_ci /* 52762306a36Sopenharmony_ci * Gain 'selector' is composed of two registers. Selector is 6bit value, 52862306a36Sopenharmony_ci * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and 52962306a36Sopenharmony_ci * two low bits being the channel specific gain in MODE_CONTROL2. 53062306a36Sopenharmony_ci * 53162306a36Sopenharmony_ci * Let's take the 4 high bits of whole 6 bit selector, and prepare 53262306a36Sopenharmony_ci * the MODE_CONTROL1 value (RGBC gain part). 53362306a36Sopenharmony_ci */ 53462306a36Sopenharmony_ci regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2)); 53562306a36Sopenharmony_ci 53662306a36Sopenharmony_ci ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, 53762306a36Sopenharmony_ci BU27010_MASK_RGBC_GAIN, regval); 53862306a36Sopenharmony_ci if (ret) 53962306a36Sopenharmony_ci return ret; 54062306a36Sopenharmony_ci 54162306a36Sopenharmony_ci /* 54262306a36Sopenharmony_ci * Two low two bits of the selector must be written for all 4 54362306a36Sopenharmony_ci * channels in the MODE_CONTROL2 register. Copy these two bits for 54462306a36Sopenharmony_ci * all channels. 54562306a36Sopenharmony_ci */ 54662306a36Sopenharmony_ci chan_selector = sel & GENMASK(1, 0); 54762306a36Sopenharmony_ci 54862306a36Sopenharmony_ci regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector); 54962306a36Sopenharmony_ci regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector); 55062306a36Sopenharmony_ci regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector); 55162306a36Sopenharmony_ci regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector); 55262306a36Sopenharmony_ci 55362306a36Sopenharmony_ci return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval); 55462306a36Sopenharmony_ci} 55562306a36Sopenharmony_ci 55662306a36Sopenharmony_cistatic int bu27008_get_gain_sel(struct bu27008_data *data, int *sel) 55762306a36Sopenharmony_ci{ 55862306a36Sopenharmony_ci int ret; 55962306a36Sopenharmony_ci 56062306a36Sopenharmony_ci /* 56162306a36Sopenharmony_ci * If we always "lock" the gain selectors for all channels to prevent 56262306a36Sopenharmony_ci * unsupported configs, then it does not matter which channel is used 56362306a36Sopenharmony_ci * we can just return selector from any of them. 56462306a36Sopenharmony_ci * 56562306a36Sopenharmony_ci * This, however is not true if we decide to support only 4X and 16X 56662306a36Sopenharmony_ci * and then individual gains for channels. Currently this is not the 56762306a36Sopenharmony_ci * case. 56862306a36Sopenharmony_ci * 56962306a36Sopenharmony_ci * If we some day decide to support individual gains, then we need to 57062306a36Sopenharmony_ci * have channel information here. 57162306a36Sopenharmony_ci */ 57262306a36Sopenharmony_ci 57362306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); 57462306a36Sopenharmony_ci if (ret) 57562306a36Sopenharmony_ci return ret; 57662306a36Sopenharmony_ci 57762306a36Sopenharmony_ci *sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel); 57862306a36Sopenharmony_ci 57962306a36Sopenharmony_ci return 0; 58062306a36Sopenharmony_ci} 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_cistatic int bu27010_get_gain_sel(struct bu27008_data *data, int *sel) 58362306a36Sopenharmony_ci{ 58462306a36Sopenharmony_ci int ret, tmp; 58562306a36Sopenharmony_ci 58662306a36Sopenharmony_ci /* 58762306a36Sopenharmony_ci * We always "lock" the gain selectors for all channels to prevent 58862306a36Sopenharmony_ci * unsupported configs. It does not matter which channel is used 58962306a36Sopenharmony_ci * we can just return selector from any of them. 59062306a36Sopenharmony_ci * 59162306a36Sopenharmony_ci * Read the channel0 gain. 59262306a36Sopenharmony_ci */ 59362306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); 59462306a36Sopenharmony_ci if (ret) 59562306a36Sopenharmony_ci return ret; 59662306a36Sopenharmony_ci 59762306a36Sopenharmony_ci *sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel); 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_ci /* Read the shared gain */ 60062306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp); 60162306a36Sopenharmony_ci if (ret) 60262306a36Sopenharmony_ci return ret; 60362306a36Sopenharmony_ci 60462306a36Sopenharmony_ci /* 60562306a36Sopenharmony_ci * The gain selector is made as a combination of common RGBC gain and 60662306a36Sopenharmony_ci * the channel specific gain. The channel specific gain forms the low 60762306a36Sopenharmony_ci * bits of selector and RGBC gain is appended right after it. 60862306a36Sopenharmony_ci * 60962306a36Sopenharmony_ci * Compose the selector from channel0 gain and shared RGBC gain. 61062306a36Sopenharmony_ci */ 61162306a36Sopenharmony_ci *sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN); 61262306a36Sopenharmony_ci 61362306a36Sopenharmony_ci return ret; 61462306a36Sopenharmony_ci} 61562306a36Sopenharmony_ci 61662306a36Sopenharmony_cistatic int bu27008_chip_init(struct bu27008_data *data) 61762306a36Sopenharmony_ci{ 61862306a36Sopenharmony_ci int ret; 61962306a36Sopenharmony_ci 62062306a36Sopenharmony_ci ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, 62162306a36Sopenharmony_ci BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET); 62262306a36Sopenharmony_ci if (ret) 62362306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); 62462306a36Sopenharmony_ci 62562306a36Sopenharmony_ci /* 62662306a36Sopenharmony_ci * The data-sheet does not tell how long performing the IC reset takes. 62762306a36Sopenharmony_ci * However, the data-sheet says the minimum time it takes the IC to be 62862306a36Sopenharmony_ci * able to take inputs after power is applied, is 100 uS. I'd assume 62962306a36Sopenharmony_ci * > 1 mS is enough. 63062306a36Sopenharmony_ci */ 63162306a36Sopenharmony_ci msleep(1); 63262306a36Sopenharmony_ci 63362306a36Sopenharmony_ci ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg); 63462306a36Sopenharmony_ci if (ret) 63562306a36Sopenharmony_ci dev_err(data->dev, "Failed to reinit reg cache\n"); 63662306a36Sopenharmony_ci 63762306a36Sopenharmony_ci return ret; 63862306a36Sopenharmony_ci} 63962306a36Sopenharmony_ci 64062306a36Sopenharmony_cistatic int bu27010_chip_init(struct bu27008_data *data) 64162306a36Sopenharmony_ci{ 64262306a36Sopenharmony_ci int ret; 64362306a36Sopenharmony_ci 64462306a36Sopenharmony_ci ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, 64562306a36Sopenharmony_ci BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET); 64662306a36Sopenharmony_ci if (ret) 64762306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); 64862306a36Sopenharmony_ci 64962306a36Sopenharmony_ci msleep(1); 65062306a36Sopenharmony_ci 65162306a36Sopenharmony_ci /* Power ON*/ 65262306a36Sopenharmony_ci ret = regmap_write_bits(data->regmap, BU27010_REG_POWER, 65362306a36Sopenharmony_ci BU27010_MASK_POWER, BU27010_MASK_POWER); 65462306a36Sopenharmony_ci if (ret) 65562306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Sensor power-on failed\n"); 65662306a36Sopenharmony_ci 65762306a36Sopenharmony_ci msleep(1); 65862306a36Sopenharmony_ci 65962306a36Sopenharmony_ci /* Release blocks from reset */ 66062306a36Sopenharmony_ci ret = regmap_write_bits(data->regmap, BU27010_REG_RESET, 66162306a36Sopenharmony_ci BU27010_MASK_RESET, BU27010_RESET_RELEASE); 66262306a36Sopenharmony_ci if (ret) 66362306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Sensor powering failed\n"); 66462306a36Sopenharmony_ci 66562306a36Sopenharmony_ci msleep(1); 66662306a36Sopenharmony_ci 66762306a36Sopenharmony_ci /* 66862306a36Sopenharmony_ci * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ 66962306a36Sopenharmony_ci * enabling is not a bit mask where individual IRQs could be enabled but 67062306a36Sopenharmony_ci * a field which values are: 67162306a36Sopenharmony_ci * 00 => IRQs disabled 67262306a36Sopenharmony_ci * 01 => Data-ready (RGBC/IR) 67362306a36Sopenharmony_ci * 10 => Data-ready (flicker) 67462306a36Sopenharmony_ci * 11 => Flicker FIFO 67562306a36Sopenharmony_ci * 67662306a36Sopenharmony_ci * So, only one IRQ can be enabled at a time and enabling for example 67762306a36Sopenharmony_ci * flicker FIFO would automagically disable data-ready IRQ. 67862306a36Sopenharmony_ci * 67962306a36Sopenharmony_ci * Currently the driver does not support the flicker. Hence, we can 68062306a36Sopenharmony_ci * just treat the RGBC data-ready as single bit which can be enabled / 68162306a36Sopenharmony_ci * disabled. This works for as long as the second bit in the field 68262306a36Sopenharmony_ci * stays zero. Here we ensure it gets zeroed. 68362306a36Sopenharmony_ci */ 68462306a36Sopenharmony_ci return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4, 68562306a36Sopenharmony_ci BU27010_IRQ_DIS_ALL); 68662306a36Sopenharmony_ci} 68762306a36Sopenharmony_ci 68862306a36Sopenharmony_cistatic const struct bu27_chip_data bu27010_chip = { 68962306a36Sopenharmony_ci .name = "bu27010", 69062306a36Sopenharmony_ci .chip_init = bu27010_chip_init, 69162306a36Sopenharmony_ci .get_gain_sel = bu27010_get_gain_sel, 69262306a36Sopenharmony_ci .write_gain_sel = bu27010_write_gain_sel, 69362306a36Sopenharmony_ci .regmap_cfg = &bu27010_regmap, 69462306a36Sopenharmony_ci .gains = &bu27010_gains[0], 69562306a36Sopenharmony_ci .gains_ir = &bu27010_gains_ir[0], 69662306a36Sopenharmony_ci .itimes = &bu27010_itimes[0], 69762306a36Sopenharmony_ci .num_gains = ARRAY_SIZE(bu27010_gains), 69862306a36Sopenharmony_ci .num_gains_ir = ARRAY_SIZE(bu27010_gains_ir), 69962306a36Sopenharmony_ci .num_itimes = ARRAY_SIZE(bu27010_itimes), 70062306a36Sopenharmony_ci .scale1x = BU27010_SCALE_1X, 70162306a36Sopenharmony_ci .drdy_en_reg = BU27010_REG_MODE_CONTROL4, 70262306a36Sopenharmony_ci .drdy_en_mask = BU27010_DRDY_EN, 70362306a36Sopenharmony_ci .meas_en_reg = BU27010_REG_MODE_CONTROL5, 70462306a36Sopenharmony_ci .meas_en_mask = BU27010_MASK_MEAS_EN, 70562306a36Sopenharmony_ci .valid_reg = BU27010_REG_MODE_CONTROL5, 70662306a36Sopenharmony_ci .chan_sel_reg = BU27008_REG_MODE_CONTROL1, 70762306a36Sopenharmony_ci .chan_sel_mask = BU27010_MASK_CHAN_SEL, 70862306a36Sopenharmony_ci .int_time_mask = BU27010_MASK_MEAS_MODE, 70962306a36Sopenharmony_ci .part_id = BU27010_ID, 71062306a36Sopenharmony_ci}; 71162306a36Sopenharmony_ci 71262306a36Sopenharmony_cistatic const struct bu27_chip_data bu27008_chip = { 71362306a36Sopenharmony_ci .name = "bu27008", 71462306a36Sopenharmony_ci .chip_init = bu27008_chip_init, 71562306a36Sopenharmony_ci .get_gain_sel = bu27008_get_gain_sel, 71662306a36Sopenharmony_ci .write_gain_sel = bu27008_write_gain_sel, 71762306a36Sopenharmony_ci .regmap_cfg = &bu27008_regmap, 71862306a36Sopenharmony_ci .gains = &bu27008_gains[0], 71962306a36Sopenharmony_ci .gains_ir = &bu27008_gains_ir[0], 72062306a36Sopenharmony_ci .itimes = &bu27008_itimes[0], 72162306a36Sopenharmony_ci .num_gains = ARRAY_SIZE(bu27008_gains), 72262306a36Sopenharmony_ci .num_gains_ir = ARRAY_SIZE(bu27008_gains_ir), 72362306a36Sopenharmony_ci .num_itimes = ARRAY_SIZE(bu27008_itimes), 72462306a36Sopenharmony_ci .scale1x = BU27008_SCALE_1X, 72562306a36Sopenharmony_ci .drdy_en_reg = BU27008_REG_MODE_CONTROL3, 72662306a36Sopenharmony_ci .drdy_en_mask = BU27008_MASK_INT_EN, 72762306a36Sopenharmony_ci .valid_reg = BU27008_REG_MODE_CONTROL3, 72862306a36Sopenharmony_ci .meas_en_reg = BU27008_REG_MODE_CONTROL3, 72962306a36Sopenharmony_ci .meas_en_mask = BU27008_MASK_MEAS_EN, 73062306a36Sopenharmony_ci .chan_sel_reg = BU27008_REG_MODE_CONTROL3, 73162306a36Sopenharmony_ci .chan_sel_mask = BU27008_MASK_CHAN_SEL, 73262306a36Sopenharmony_ci .int_time_mask = BU27008_MASK_MEAS_MODE, 73362306a36Sopenharmony_ci .part_id = BU27008_ID, 73462306a36Sopenharmony_ci}; 73562306a36Sopenharmony_ci 73662306a36Sopenharmony_ci#define BU27008_MAX_VALID_RESULT_WAIT_US 50000 73762306a36Sopenharmony_ci#define BU27008_VALID_RESULT_WAIT_QUANTA_US 1000 73862306a36Sopenharmony_ci 73962306a36Sopenharmony_cistatic int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val) 74062306a36Sopenharmony_ci{ 74162306a36Sopenharmony_ci int ret, valid; 74262306a36Sopenharmony_ci __le16 tmp; 74362306a36Sopenharmony_ci 74462306a36Sopenharmony_ci ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg, 74562306a36Sopenharmony_ci valid, (valid & BU27008_MASK_VALID), 74662306a36Sopenharmony_ci BU27008_VALID_RESULT_WAIT_QUANTA_US, 74762306a36Sopenharmony_ci BU27008_MAX_VALID_RESULT_WAIT_US); 74862306a36Sopenharmony_ci if (ret) 74962306a36Sopenharmony_ci return ret; 75062306a36Sopenharmony_ci 75162306a36Sopenharmony_ci ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp)); 75262306a36Sopenharmony_ci if (ret) 75362306a36Sopenharmony_ci dev_err(data->dev, "Reading channel data failed\n"); 75462306a36Sopenharmony_ci 75562306a36Sopenharmony_ci *val = le16_to_cpu(tmp); 75662306a36Sopenharmony_ci 75762306a36Sopenharmony_ci return ret; 75862306a36Sopenharmony_ci} 75962306a36Sopenharmony_ci 76062306a36Sopenharmony_cistatic int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain) 76162306a36Sopenharmony_ci{ 76262306a36Sopenharmony_ci int ret, sel; 76362306a36Sopenharmony_ci 76462306a36Sopenharmony_ci ret = data->cd->get_gain_sel(data, &sel); 76562306a36Sopenharmony_ci if (ret) 76662306a36Sopenharmony_ci return ret; 76762306a36Sopenharmony_ci 76862306a36Sopenharmony_ci ret = iio_gts_find_gain_by_sel(gts, sel); 76962306a36Sopenharmony_ci if (ret < 0) { 77062306a36Sopenharmony_ci dev_err(data->dev, "unknown gain value 0x%x\n", sel); 77162306a36Sopenharmony_ci return ret; 77262306a36Sopenharmony_ci } 77362306a36Sopenharmony_ci 77462306a36Sopenharmony_ci *gain = ret; 77562306a36Sopenharmony_ci 77662306a36Sopenharmony_ci return 0; 77762306a36Sopenharmony_ci} 77862306a36Sopenharmony_ci 77962306a36Sopenharmony_cistatic int bu27008_set_gain(struct bu27008_data *data, int gain) 78062306a36Sopenharmony_ci{ 78162306a36Sopenharmony_ci int ret; 78262306a36Sopenharmony_ci 78362306a36Sopenharmony_ci ret = iio_gts_find_sel_by_gain(&data->gts, gain); 78462306a36Sopenharmony_ci if (ret < 0) 78562306a36Sopenharmony_ci return ret; 78662306a36Sopenharmony_ci 78762306a36Sopenharmony_ci return data->cd->write_gain_sel(data, ret); 78862306a36Sopenharmony_ci} 78962306a36Sopenharmony_ci 79062306a36Sopenharmony_cistatic int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel) 79162306a36Sopenharmony_ci{ 79262306a36Sopenharmony_ci int ret, val; 79362306a36Sopenharmony_ci 79462306a36Sopenharmony_ci ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val); 79562306a36Sopenharmony_ci if (ret) 79662306a36Sopenharmony_ci return ret; 79762306a36Sopenharmony_ci 79862306a36Sopenharmony_ci val &= data->cd->int_time_mask; 79962306a36Sopenharmony_ci val >>= ffs(data->cd->int_time_mask) - 1; 80062306a36Sopenharmony_ci 80162306a36Sopenharmony_ci *sel = val; 80262306a36Sopenharmony_ci 80362306a36Sopenharmony_ci return 0; 80462306a36Sopenharmony_ci} 80562306a36Sopenharmony_ci 80662306a36Sopenharmony_cistatic int bu27008_set_int_time_sel(struct bu27008_data *data, int sel) 80762306a36Sopenharmony_ci{ 80862306a36Sopenharmony_ci sel <<= ffs(data->cd->int_time_mask) - 1; 80962306a36Sopenharmony_ci 81062306a36Sopenharmony_ci return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, 81162306a36Sopenharmony_ci data->cd->int_time_mask, sel); 81262306a36Sopenharmony_ci} 81362306a36Sopenharmony_ci 81462306a36Sopenharmony_cistatic int bu27008_get_int_time_us(struct bu27008_data *data) 81562306a36Sopenharmony_ci{ 81662306a36Sopenharmony_ci int ret, sel; 81762306a36Sopenharmony_ci 81862306a36Sopenharmony_ci ret = bu27008_get_int_time_sel(data, &sel); 81962306a36Sopenharmony_ci if (ret) 82062306a36Sopenharmony_ci return ret; 82162306a36Sopenharmony_ci 82262306a36Sopenharmony_ci return iio_gts_find_int_time_by_sel(&data->gts, sel); 82362306a36Sopenharmony_ci} 82462306a36Sopenharmony_ci 82562306a36Sopenharmony_cistatic int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, 82662306a36Sopenharmony_ci int *val2) 82762306a36Sopenharmony_ci{ 82862306a36Sopenharmony_ci struct iio_gts *gts; 82962306a36Sopenharmony_ci int gain, ret; 83062306a36Sopenharmony_ci 83162306a36Sopenharmony_ci if (ir) 83262306a36Sopenharmony_ci gts = &data->gts_ir; 83362306a36Sopenharmony_ci else 83462306a36Sopenharmony_ci gts = &data->gts; 83562306a36Sopenharmony_ci 83662306a36Sopenharmony_ci ret = bu27008_get_gain(data, gts, &gain); 83762306a36Sopenharmony_ci if (ret) 83862306a36Sopenharmony_ci return ret; 83962306a36Sopenharmony_ci 84062306a36Sopenharmony_ci ret = bu27008_get_int_time_us(data); 84162306a36Sopenharmony_ci if (ret < 0) 84262306a36Sopenharmony_ci return ret; 84362306a36Sopenharmony_ci 84462306a36Sopenharmony_ci return iio_gts_get_scale(gts, gain, ret, val, val2); 84562306a36Sopenharmony_ci} 84662306a36Sopenharmony_ci 84762306a36Sopenharmony_cistatic int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, 84862306a36Sopenharmony_ci int *val2) 84962306a36Sopenharmony_ci{ 85062306a36Sopenharmony_ci int ret; 85162306a36Sopenharmony_ci 85262306a36Sopenharmony_ci mutex_lock(&data->mutex); 85362306a36Sopenharmony_ci ret = _bu27008_get_scale(data, ir, val, val2); 85462306a36Sopenharmony_ci mutex_unlock(&data->mutex); 85562306a36Sopenharmony_ci 85662306a36Sopenharmony_ci return ret; 85762306a36Sopenharmony_ci} 85862306a36Sopenharmony_ci 85962306a36Sopenharmony_cistatic int bu27008_set_int_time(struct bu27008_data *data, int time) 86062306a36Sopenharmony_ci{ 86162306a36Sopenharmony_ci int ret; 86262306a36Sopenharmony_ci 86362306a36Sopenharmony_ci ret = iio_gts_find_sel_by_int_time(&data->gts, time); 86462306a36Sopenharmony_ci if (ret < 0) 86562306a36Sopenharmony_ci return ret; 86662306a36Sopenharmony_ci 86762306a36Sopenharmony_ci return bu27008_set_int_time_sel(data, ret); 86862306a36Sopenharmony_ci} 86962306a36Sopenharmony_ci 87062306a36Sopenharmony_ci/* Try to change the time so that the scale is maintained */ 87162306a36Sopenharmony_cistatic int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new) 87262306a36Sopenharmony_ci{ 87362306a36Sopenharmony_ci int ret, old_time_sel, new_time_sel, old_gain, new_gain; 87462306a36Sopenharmony_ci 87562306a36Sopenharmony_ci mutex_lock(&data->mutex); 87662306a36Sopenharmony_ci 87762306a36Sopenharmony_ci ret = bu27008_get_int_time_sel(data, &old_time_sel); 87862306a36Sopenharmony_ci if (ret < 0) 87962306a36Sopenharmony_ci goto unlock_out; 88062306a36Sopenharmony_ci 88162306a36Sopenharmony_ci if (!iio_gts_valid_time(&data->gts, int_time_new)) { 88262306a36Sopenharmony_ci dev_dbg(data->dev, "Unsupported integration time %u\n", 88362306a36Sopenharmony_ci int_time_new); 88462306a36Sopenharmony_ci 88562306a36Sopenharmony_ci ret = -EINVAL; 88662306a36Sopenharmony_ci goto unlock_out; 88762306a36Sopenharmony_ci } 88862306a36Sopenharmony_ci 88962306a36Sopenharmony_ci /* If we already use requested time, then we're done */ 89062306a36Sopenharmony_ci new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new); 89162306a36Sopenharmony_ci if (new_time_sel == old_time_sel) 89262306a36Sopenharmony_ci goto unlock_out; 89362306a36Sopenharmony_ci 89462306a36Sopenharmony_ci ret = bu27008_get_gain(data, &data->gts, &old_gain); 89562306a36Sopenharmony_ci if (ret) 89662306a36Sopenharmony_ci goto unlock_out; 89762306a36Sopenharmony_ci 89862306a36Sopenharmony_ci ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain, 89962306a36Sopenharmony_ci old_time_sel, new_time_sel, &new_gain); 90062306a36Sopenharmony_ci if (ret) { 90162306a36Sopenharmony_ci int scale1, scale2; 90262306a36Sopenharmony_ci bool ok; 90362306a36Sopenharmony_ci 90462306a36Sopenharmony_ci _bu27008_get_scale(data, false, &scale1, &scale2); 90562306a36Sopenharmony_ci dev_dbg(data->dev, 90662306a36Sopenharmony_ci "Can't support time %u with current scale %u %u\n", 90762306a36Sopenharmony_ci int_time_new, scale1, scale2); 90862306a36Sopenharmony_ci 90962306a36Sopenharmony_ci if (new_gain < 0) 91062306a36Sopenharmony_ci goto unlock_out; 91162306a36Sopenharmony_ci 91262306a36Sopenharmony_ci /* 91362306a36Sopenharmony_ci * If caller requests for integration time change and we 91462306a36Sopenharmony_ci * can't support the scale - then the caller should be 91562306a36Sopenharmony_ci * prepared to 'pick up the pieces and deal with the 91662306a36Sopenharmony_ci * fact that the scale changed'. 91762306a36Sopenharmony_ci */ 91862306a36Sopenharmony_ci ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok); 91962306a36Sopenharmony_ci if (!ok) 92062306a36Sopenharmony_ci dev_dbg(data->dev, "optimal gain out of range\n"); 92162306a36Sopenharmony_ci 92262306a36Sopenharmony_ci if (ret < 0) { 92362306a36Sopenharmony_ci dev_dbg(data->dev, 92462306a36Sopenharmony_ci "Total gain increase. Risk of saturation"); 92562306a36Sopenharmony_ci ret = iio_gts_get_min_gain(&data->gts); 92662306a36Sopenharmony_ci if (ret < 0) 92762306a36Sopenharmony_ci goto unlock_out; 92862306a36Sopenharmony_ci } 92962306a36Sopenharmony_ci new_gain = ret; 93062306a36Sopenharmony_ci dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain); 93162306a36Sopenharmony_ci } 93262306a36Sopenharmony_ci 93362306a36Sopenharmony_ci ret = bu27008_set_gain(data, new_gain); 93462306a36Sopenharmony_ci if (ret) 93562306a36Sopenharmony_ci goto unlock_out; 93662306a36Sopenharmony_ci 93762306a36Sopenharmony_ci ret = bu27008_set_int_time(data, int_time_new); 93862306a36Sopenharmony_ci 93962306a36Sopenharmony_ciunlock_out: 94062306a36Sopenharmony_ci mutex_unlock(&data->mutex); 94162306a36Sopenharmony_ci 94262306a36Sopenharmony_ci return ret; 94362306a36Sopenharmony_ci} 94462306a36Sopenharmony_ci 94562306a36Sopenharmony_cistatic int bu27008_meas_set(struct bu27008_data *data, bool enable) 94662306a36Sopenharmony_ci{ 94762306a36Sopenharmony_ci if (enable) 94862306a36Sopenharmony_ci return regmap_set_bits(data->regmap, data->cd->meas_en_reg, 94962306a36Sopenharmony_ci data->cd->meas_en_mask); 95062306a36Sopenharmony_ci return regmap_clear_bits(data->regmap, data->cd->meas_en_reg, 95162306a36Sopenharmony_ci data->cd->meas_en_mask); 95262306a36Sopenharmony_ci} 95362306a36Sopenharmony_ci 95462306a36Sopenharmony_cistatic int bu27008_chan_cfg(struct bu27008_data *data, 95562306a36Sopenharmony_ci struct iio_chan_spec const *chan) 95662306a36Sopenharmony_ci{ 95762306a36Sopenharmony_ci int chan_sel; 95862306a36Sopenharmony_ci 95962306a36Sopenharmony_ci if (chan->scan_index == BU27008_BLUE) 96062306a36Sopenharmony_ci chan_sel = BU27008_BLUE2_CLEAR3; 96162306a36Sopenharmony_ci else 96262306a36Sopenharmony_ci chan_sel = BU27008_CLEAR2_IR3; 96362306a36Sopenharmony_ci 96462306a36Sopenharmony_ci /* 96562306a36Sopenharmony_ci * prepare bitfield for channel sel. The FIELD_PREP works only when 96662306a36Sopenharmony_ci * mask is constant. In our case the mask is assigned based on the 96762306a36Sopenharmony_ci * chip type. Hence the open-coded FIELD_PREP here. We don't bother 96862306a36Sopenharmony_ci * zeroing the irrelevant bits though - update_bits takes care of that. 96962306a36Sopenharmony_ci */ 97062306a36Sopenharmony_ci chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_ci return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, 97362306a36Sopenharmony_ci BU27008_MASK_CHAN_SEL, chan_sel); 97462306a36Sopenharmony_ci} 97562306a36Sopenharmony_ci 97662306a36Sopenharmony_cistatic int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev, 97762306a36Sopenharmony_ci struct iio_chan_spec const *chan, int *val, int *val2) 97862306a36Sopenharmony_ci{ 97962306a36Sopenharmony_ci int ret, int_time; 98062306a36Sopenharmony_ci 98162306a36Sopenharmony_ci ret = bu27008_chan_cfg(data, chan); 98262306a36Sopenharmony_ci if (ret) 98362306a36Sopenharmony_ci return ret; 98462306a36Sopenharmony_ci 98562306a36Sopenharmony_ci ret = bu27008_meas_set(data, true); 98662306a36Sopenharmony_ci if (ret) 98762306a36Sopenharmony_ci return ret; 98862306a36Sopenharmony_ci 98962306a36Sopenharmony_ci ret = bu27008_get_int_time_us(data); 99062306a36Sopenharmony_ci if (ret < 0) 99162306a36Sopenharmony_ci int_time = BU27008_MEAS_TIME_MAX_MS; 99262306a36Sopenharmony_ci else 99362306a36Sopenharmony_ci int_time = ret / USEC_PER_MSEC; 99462306a36Sopenharmony_ci 99562306a36Sopenharmony_ci msleep(int_time); 99662306a36Sopenharmony_ci 99762306a36Sopenharmony_ci ret = bu27008_chan_read_data(data, chan->address, val); 99862306a36Sopenharmony_ci if (!ret) 99962306a36Sopenharmony_ci ret = IIO_VAL_INT; 100062306a36Sopenharmony_ci 100162306a36Sopenharmony_ci if (bu27008_meas_set(data, false)) 100262306a36Sopenharmony_ci dev_warn(data->dev, "measurement disabling failed\n"); 100362306a36Sopenharmony_ci 100462306a36Sopenharmony_ci return ret; 100562306a36Sopenharmony_ci} 100662306a36Sopenharmony_ci 100762306a36Sopenharmony_cistatic int bu27008_read_raw(struct iio_dev *idev, 100862306a36Sopenharmony_ci struct iio_chan_spec const *chan, 100962306a36Sopenharmony_ci int *val, int *val2, long mask) 101062306a36Sopenharmony_ci{ 101162306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 101262306a36Sopenharmony_ci int busy, ret; 101362306a36Sopenharmony_ci 101462306a36Sopenharmony_ci switch (mask) { 101562306a36Sopenharmony_ci case IIO_CHAN_INFO_RAW: 101662306a36Sopenharmony_ci busy = iio_device_claim_direct_mode(idev); 101762306a36Sopenharmony_ci if (busy) 101862306a36Sopenharmony_ci return -EBUSY; 101962306a36Sopenharmony_ci 102062306a36Sopenharmony_ci mutex_lock(&data->mutex); 102162306a36Sopenharmony_ci ret = bu27008_read_one(data, idev, chan, val, val2); 102262306a36Sopenharmony_ci mutex_unlock(&data->mutex); 102362306a36Sopenharmony_ci 102462306a36Sopenharmony_ci iio_device_release_direct_mode(idev); 102562306a36Sopenharmony_ci 102662306a36Sopenharmony_ci return ret; 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 102962306a36Sopenharmony_ci ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR, 103062306a36Sopenharmony_ci val, val2); 103162306a36Sopenharmony_ci if (ret) 103262306a36Sopenharmony_ci return ret; 103362306a36Sopenharmony_ci 103462306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_NANO; 103562306a36Sopenharmony_ci 103662306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 103762306a36Sopenharmony_ci ret = bu27008_get_int_time_us(data); 103862306a36Sopenharmony_ci if (ret < 0) 103962306a36Sopenharmony_ci return ret; 104062306a36Sopenharmony_ci 104162306a36Sopenharmony_ci *val = 0; 104262306a36Sopenharmony_ci *val2 = ret; 104362306a36Sopenharmony_ci 104462306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_MICRO; 104562306a36Sopenharmony_ci 104662306a36Sopenharmony_ci default: 104762306a36Sopenharmony_ci return -EINVAL; 104862306a36Sopenharmony_ci } 104962306a36Sopenharmony_ci} 105062306a36Sopenharmony_ci 105162306a36Sopenharmony_ci/* Called if the new scale could not be supported with existing int-time */ 105262306a36Sopenharmony_cistatic int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val, 105362306a36Sopenharmony_ci int val2, int *gain_sel) 105462306a36Sopenharmony_ci{ 105562306a36Sopenharmony_ci int i, ret, new_time_sel; 105662306a36Sopenharmony_ci 105762306a36Sopenharmony_ci for (i = 0; i < data->gts.num_itime; i++) { 105862306a36Sopenharmony_ci new_time_sel = data->gts.itime_table[i].sel; 105962306a36Sopenharmony_ci ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, 106062306a36Sopenharmony_ci new_time_sel, val, val2, gain_sel); 106162306a36Sopenharmony_ci if (!ret) 106262306a36Sopenharmony_ci break; 106362306a36Sopenharmony_ci } 106462306a36Sopenharmony_ci if (i == data->gts.num_itime) { 106562306a36Sopenharmony_ci dev_err(data->dev, "Can't support scale %u %u\n", val, val2); 106662306a36Sopenharmony_ci 106762306a36Sopenharmony_ci return -EINVAL; 106862306a36Sopenharmony_ci } 106962306a36Sopenharmony_ci 107062306a36Sopenharmony_ci return bu27008_set_int_time_sel(data, new_time_sel); 107162306a36Sopenharmony_ci} 107262306a36Sopenharmony_ci 107362306a36Sopenharmony_cistatic int bu27008_set_scale(struct bu27008_data *data, 107462306a36Sopenharmony_ci struct iio_chan_spec const *chan, 107562306a36Sopenharmony_ci int val, int val2) 107662306a36Sopenharmony_ci{ 107762306a36Sopenharmony_ci int ret, gain_sel, time_sel; 107862306a36Sopenharmony_ci 107962306a36Sopenharmony_ci if (chan->scan_index == BU27008_IR) 108062306a36Sopenharmony_ci return -EINVAL; 108162306a36Sopenharmony_ci 108262306a36Sopenharmony_ci mutex_lock(&data->mutex); 108362306a36Sopenharmony_ci 108462306a36Sopenharmony_ci ret = bu27008_get_int_time_sel(data, &time_sel); 108562306a36Sopenharmony_ci if (ret < 0) 108662306a36Sopenharmony_ci goto unlock_out; 108762306a36Sopenharmony_ci 108862306a36Sopenharmony_ci ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, 108962306a36Sopenharmony_ci val, val2, &gain_sel); 109062306a36Sopenharmony_ci if (ret) { 109162306a36Sopenharmony_ci ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel); 109262306a36Sopenharmony_ci if (ret) 109362306a36Sopenharmony_ci goto unlock_out; 109462306a36Sopenharmony_ci 109562306a36Sopenharmony_ci } 109662306a36Sopenharmony_ci ret = data->cd->write_gain_sel(data, gain_sel); 109762306a36Sopenharmony_ci 109862306a36Sopenharmony_ciunlock_out: 109962306a36Sopenharmony_ci mutex_unlock(&data->mutex); 110062306a36Sopenharmony_ci 110162306a36Sopenharmony_ci return ret; 110262306a36Sopenharmony_ci} 110362306a36Sopenharmony_ci 110462306a36Sopenharmony_cistatic int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev, 110562306a36Sopenharmony_ci struct iio_chan_spec const *chan, 110662306a36Sopenharmony_ci long mask) 110762306a36Sopenharmony_ci{ 110862306a36Sopenharmony_ci 110962306a36Sopenharmony_ci switch (mask) { 111062306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 111162306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_NANO; 111262306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 111362306a36Sopenharmony_ci return IIO_VAL_INT_PLUS_MICRO; 111462306a36Sopenharmony_ci default: 111562306a36Sopenharmony_ci return -EINVAL; 111662306a36Sopenharmony_ci } 111762306a36Sopenharmony_ci} 111862306a36Sopenharmony_ci 111962306a36Sopenharmony_cistatic int bu27008_write_raw(struct iio_dev *idev, 112062306a36Sopenharmony_ci struct iio_chan_spec const *chan, 112162306a36Sopenharmony_ci int val, int val2, long mask) 112262306a36Sopenharmony_ci{ 112362306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 112462306a36Sopenharmony_ci int ret; 112562306a36Sopenharmony_ci 112662306a36Sopenharmony_ci /* 112762306a36Sopenharmony_ci * Do not allow changing scale when measurement is ongoing as doing so 112862306a36Sopenharmony_ci * could make values in the buffer inconsistent. 112962306a36Sopenharmony_ci */ 113062306a36Sopenharmony_ci ret = iio_device_claim_direct_mode(idev); 113162306a36Sopenharmony_ci if (ret) 113262306a36Sopenharmony_ci return ret; 113362306a36Sopenharmony_ci 113462306a36Sopenharmony_ci switch (mask) { 113562306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 113662306a36Sopenharmony_ci ret = bu27008_set_scale(data, chan, val, val2); 113762306a36Sopenharmony_ci break; 113862306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 113962306a36Sopenharmony_ci if (val) { 114062306a36Sopenharmony_ci ret = -EINVAL; 114162306a36Sopenharmony_ci break; 114262306a36Sopenharmony_ci } 114362306a36Sopenharmony_ci ret = bu27008_try_set_int_time(data, val2); 114462306a36Sopenharmony_ci break; 114562306a36Sopenharmony_ci default: 114662306a36Sopenharmony_ci ret = -EINVAL; 114762306a36Sopenharmony_ci break; 114862306a36Sopenharmony_ci } 114962306a36Sopenharmony_ci iio_device_release_direct_mode(idev); 115062306a36Sopenharmony_ci 115162306a36Sopenharmony_ci return ret; 115262306a36Sopenharmony_ci} 115362306a36Sopenharmony_ci 115462306a36Sopenharmony_cistatic int bu27008_read_avail(struct iio_dev *idev, 115562306a36Sopenharmony_ci struct iio_chan_spec const *chan, const int **vals, 115662306a36Sopenharmony_ci int *type, int *length, long mask) 115762306a36Sopenharmony_ci{ 115862306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 115962306a36Sopenharmony_ci 116062306a36Sopenharmony_ci switch (mask) { 116162306a36Sopenharmony_ci case IIO_CHAN_INFO_INT_TIME: 116262306a36Sopenharmony_ci return iio_gts_avail_times(&data->gts, vals, type, length); 116362306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 116462306a36Sopenharmony_ci if (chan->channel2 == IIO_MOD_LIGHT_IR) 116562306a36Sopenharmony_ci return iio_gts_all_avail_scales(&data->gts_ir, vals, 116662306a36Sopenharmony_ci type, length); 116762306a36Sopenharmony_ci return iio_gts_all_avail_scales(&data->gts, vals, type, length); 116862306a36Sopenharmony_ci default: 116962306a36Sopenharmony_ci return -EINVAL; 117062306a36Sopenharmony_ci } 117162306a36Sopenharmony_ci} 117262306a36Sopenharmony_ci 117362306a36Sopenharmony_cistatic int bu27008_update_scan_mode(struct iio_dev *idev, 117462306a36Sopenharmony_ci const unsigned long *scan_mask) 117562306a36Sopenharmony_ci{ 117662306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 117762306a36Sopenharmony_ci int chan_sel; 117862306a36Sopenharmony_ci 117962306a36Sopenharmony_ci /* Configure channel selection */ 118062306a36Sopenharmony_ci if (test_bit(BU27008_BLUE, idev->active_scan_mask)) { 118162306a36Sopenharmony_ci if (test_bit(BU27008_CLEAR, idev->active_scan_mask)) 118262306a36Sopenharmony_ci chan_sel = BU27008_BLUE2_CLEAR3; 118362306a36Sopenharmony_ci else 118462306a36Sopenharmony_ci chan_sel = BU27008_BLUE2_IR3; 118562306a36Sopenharmony_ci } else { 118662306a36Sopenharmony_ci chan_sel = BU27008_CLEAR2_IR3; 118762306a36Sopenharmony_ci } 118862306a36Sopenharmony_ci 118962306a36Sopenharmony_ci chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; 119062306a36Sopenharmony_ci 119162306a36Sopenharmony_ci return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, 119262306a36Sopenharmony_ci data->cd->chan_sel_mask, chan_sel); 119362306a36Sopenharmony_ci} 119462306a36Sopenharmony_ci 119562306a36Sopenharmony_cistatic const struct iio_info bu27008_info = { 119662306a36Sopenharmony_ci .read_raw = &bu27008_read_raw, 119762306a36Sopenharmony_ci .write_raw = &bu27008_write_raw, 119862306a36Sopenharmony_ci .write_raw_get_fmt = &bu27008_write_raw_get_fmt, 119962306a36Sopenharmony_ci .read_avail = &bu27008_read_avail, 120062306a36Sopenharmony_ci .update_scan_mode = bu27008_update_scan_mode, 120162306a36Sopenharmony_ci .validate_trigger = iio_validate_own_trigger, 120262306a36Sopenharmony_ci}; 120362306a36Sopenharmony_ci 120462306a36Sopenharmony_cistatic int bu27008_trigger_set_state(struct iio_trigger *trig, bool state) 120562306a36Sopenharmony_ci{ 120662306a36Sopenharmony_ci struct bu27008_data *data = iio_trigger_get_drvdata(trig); 120762306a36Sopenharmony_ci int ret; 120862306a36Sopenharmony_ci 120962306a36Sopenharmony_ci 121062306a36Sopenharmony_ci if (state) 121162306a36Sopenharmony_ci ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg, 121262306a36Sopenharmony_ci data->cd->drdy_en_mask); 121362306a36Sopenharmony_ci else 121462306a36Sopenharmony_ci ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg, 121562306a36Sopenharmony_ci data->cd->drdy_en_mask); 121662306a36Sopenharmony_ci if (ret) 121762306a36Sopenharmony_ci dev_err(data->dev, "Failed to set trigger state\n"); 121862306a36Sopenharmony_ci 121962306a36Sopenharmony_ci return ret; 122062306a36Sopenharmony_ci} 122162306a36Sopenharmony_ci 122262306a36Sopenharmony_cistatic void bu27008_trigger_reenable(struct iio_trigger *trig) 122362306a36Sopenharmony_ci{ 122462306a36Sopenharmony_ci struct bu27008_data *data = iio_trigger_get_drvdata(trig); 122562306a36Sopenharmony_ci 122662306a36Sopenharmony_ci enable_irq(data->irq); 122762306a36Sopenharmony_ci} 122862306a36Sopenharmony_ci 122962306a36Sopenharmony_cistatic const struct iio_trigger_ops bu27008_trigger_ops = { 123062306a36Sopenharmony_ci .set_trigger_state = bu27008_trigger_set_state, 123162306a36Sopenharmony_ci .reenable = bu27008_trigger_reenable, 123262306a36Sopenharmony_ci}; 123362306a36Sopenharmony_ci 123462306a36Sopenharmony_cistatic irqreturn_t bu27008_trigger_handler(int irq, void *p) 123562306a36Sopenharmony_ci{ 123662306a36Sopenharmony_ci struct iio_poll_func *pf = p; 123762306a36Sopenharmony_ci struct iio_dev *idev = pf->indio_dev; 123862306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 123962306a36Sopenharmony_ci struct { 124062306a36Sopenharmony_ci __le16 chan[BU27008_NUM_HW_CHANS]; 124162306a36Sopenharmony_ci s64 ts __aligned(8); 124262306a36Sopenharmony_ci } raw; 124362306a36Sopenharmony_ci int ret, dummy; 124462306a36Sopenharmony_ci 124562306a36Sopenharmony_ci memset(&raw, 0, sizeof(raw)); 124662306a36Sopenharmony_ci 124762306a36Sopenharmony_ci /* 124862306a36Sopenharmony_ci * After some measurements, it seems reading the 124962306a36Sopenharmony_ci * BU27008_REG_MODE_CONTROL3 debounces the IRQ line 125062306a36Sopenharmony_ci */ 125162306a36Sopenharmony_ci ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy); 125262306a36Sopenharmony_ci if (ret < 0) 125362306a36Sopenharmony_ci goto err_read; 125462306a36Sopenharmony_ci 125562306a36Sopenharmony_ci ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan, 125662306a36Sopenharmony_ci sizeof(raw.chan)); 125762306a36Sopenharmony_ci if (ret < 0) 125862306a36Sopenharmony_ci goto err_read; 125962306a36Sopenharmony_ci 126062306a36Sopenharmony_ci iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp); 126162306a36Sopenharmony_cierr_read: 126262306a36Sopenharmony_ci iio_trigger_notify_done(idev->trig); 126362306a36Sopenharmony_ci 126462306a36Sopenharmony_ci return IRQ_HANDLED; 126562306a36Sopenharmony_ci} 126662306a36Sopenharmony_ci 126762306a36Sopenharmony_cistatic int bu27008_buffer_preenable(struct iio_dev *idev) 126862306a36Sopenharmony_ci{ 126962306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 127062306a36Sopenharmony_ci 127162306a36Sopenharmony_ci return bu27008_meas_set(data, true); 127262306a36Sopenharmony_ci} 127362306a36Sopenharmony_ci 127462306a36Sopenharmony_cistatic int bu27008_buffer_postdisable(struct iio_dev *idev) 127562306a36Sopenharmony_ci{ 127662306a36Sopenharmony_ci struct bu27008_data *data = iio_priv(idev); 127762306a36Sopenharmony_ci 127862306a36Sopenharmony_ci return bu27008_meas_set(data, false); 127962306a36Sopenharmony_ci} 128062306a36Sopenharmony_ci 128162306a36Sopenharmony_cistatic const struct iio_buffer_setup_ops bu27008_buffer_ops = { 128262306a36Sopenharmony_ci .preenable = bu27008_buffer_preenable, 128362306a36Sopenharmony_ci .postdisable = bu27008_buffer_postdisable, 128462306a36Sopenharmony_ci}; 128562306a36Sopenharmony_ci 128662306a36Sopenharmony_cistatic irqreturn_t bu27008_data_rdy_poll(int irq, void *private) 128762306a36Sopenharmony_ci{ 128862306a36Sopenharmony_ci /* 128962306a36Sopenharmony_ci * The BU27008 keeps IRQ asserted until we read the VALID bit from 129062306a36Sopenharmony_ci * a register. We need to keep the IRQ disabled until then. 129162306a36Sopenharmony_ci */ 129262306a36Sopenharmony_ci disable_irq_nosync(irq); 129362306a36Sopenharmony_ci iio_trigger_poll(private); 129462306a36Sopenharmony_ci 129562306a36Sopenharmony_ci return IRQ_HANDLED; 129662306a36Sopenharmony_ci} 129762306a36Sopenharmony_ci 129862306a36Sopenharmony_cistatic int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev) 129962306a36Sopenharmony_ci{ 130062306a36Sopenharmony_ci struct iio_trigger *itrig; 130162306a36Sopenharmony_ci char *name; 130262306a36Sopenharmony_ci int ret; 130362306a36Sopenharmony_ci 130462306a36Sopenharmony_ci ret = devm_iio_triggered_buffer_setup(data->dev, idev, 130562306a36Sopenharmony_ci &iio_pollfunc_store_time, 130662306a36Sopenharmony_ci bu27008_trigger_handler, 130762306a36Sopenharmony_ci &bu27008_buffer_ops); 130862306a36Sopenharmony_ci if (ret) 130962306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, 131062306a36Sopenharmony_ci "iio_triggered_buffer_setup_ext FAIL\n"); 131162306a36Sopenharmony_ci 131262306a36Sopenharmony_ci itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d", 131362306a36Sopenharmony_ci idev->name, iio_device_id(idev)); 131462306a36Sopenharmony_ci if (!itrig) 131562306a36Sopenharmony_ci return -ENOMEM; 131662306a36Sopenharmony_ci 131762306a36Sopenharmony_ci data->trig = itrig; 131862306a36Sopenharmony_ci 131962306a36Sopenharmony_ci itrig->ops = &bu27008_trigger_ops; 132062306a36Sopenharmony_ci iio_trigger_set_drvdata(itrig, data); 132162306a36Sopenharmony_ci 132262306a36Sopenharmony_ci name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008", 132362306a36Sopenharmony_ci dev_name(data->dev)); 132462306a36Sopenharmony_ci 132562306a36Sopenharmony_ci ret = devm_request_irq(data->dev, data->irq, 132662306a36Sopenharmony_ci &bu27008_data_rdy_poll, 132762306a36Sopenharmony_ci 0, name, itrig); 132862306a36Sopenharmony_ci if (ret) 132962306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); 133062306a36Sopenharmony_ci 133162306a36Sopenharmony_ci ret = devm_iio_trigger_register(data->dev, itrig); 133262306a36Sopenharmony_ci if (ret) 133362306a36Sopenharmony_ci return dev_err_probe(data->dev, ret, 133462306a36Sopenharmony_ci "Trigger registration failed\n"); 133562306a36Sopenharmony_ci 133662306a36Sopenharmony_ci /* set default trigger */ 133762306a36Sopenharmony_ci idev->trig = iio_trigger_get(itrig); 133862306a36Sopenharmony_ci 133962306a36Sopenharmony_ci return 0; 134062306a36Sopenharmony_ci} 134162306a36Sopenharmony_ci 134262306a36Sopenharmony_cistatic int bu27008_probe(struct i2c_client *i2c) 134362306a36Sopenharmony_ci{ 134462306a36Sopenharmony_ci struct device *dev = &i2c->dev; 134562306a36Sopenharmony_ci struct bu27008_data *data; 134662306a36Sopenharmony_ci struct regmap *regmap; 134762306a36Sopenharmony_ci unsigned int part_id, reg; 134862306a36Sopenharmony_ci struct iio_dev *idev; 134962306a36Sopenharmony_ci int ret; 135062306a36Sopenharmony_ci 135162306a36Sopenharmony_ci idev = devm_iio_device_alloc(dev, sizeof(*data)); 135262306a36Sopenharmony_ci if (!idev) 135362306a36Sopenharmony_ci return -ENOMEM; 135462306a36Sopenharmony_ci 135562306a36Sopenharmony_ci ret = devm_regulator_get_enable(dev, "vdd"); 135662306a36Sopenharmony_ci if (ret) 135762306a36Sopenharmony_ci return dev_err_probe(dev, ret, "Failed to get regulator\n"); 135862306a36Sopenharmony_ci 135962306a36Sopenharmony_ci data = iio_priv(idev); 136062306a36Sopenharmony_ci 136162306a36Sopenharmony_ci data->cd = device_get_match_data(&i2c->dev); 136262306a36Sopenharmony_ci if (!data->cd) 136362306a36Sopenharmony_ci return -ENODEV; 136462306a36Sopenharmony_ci 136562306a36Sopenharmony_ci regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg); 136662306a36Sopenharmony_ci if (IS_ERR(regmap)) 136762306a36Sopenharmony_ci return dev_err_probe(dev, PTR_ERR(regmap), 136862306a36Sopenharmony_ci "Failed to initialize Regmap\n"); 136962306a36Sopenharmony_ci 137062306a36Sopenharmony_ci 137162306a36Sopenharmony_ci ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, ®); 137262306a36Sopenharmony_ci if (ret) 137362306a36Sopenharmony_ci return dev_err_probe(dev, ret, "Failed to access sensor\n"); 137462306a36Sopenharmony_ci 137562306a36Sopenharmony_ci part_id = FIELD_GET(BU27008_MASK_PART_ID, reg); 137662306a36Sopenharmony_ci 137762306a36Sopenharmony_ci if (part_id != data->cd->part_id) 137862306a36Sopenharmony_ci dev_warn(dev, "unknown device 0x%x\n", part_id); 137962306a36Sopenharmony_ci 138062306a36Sopenharmony_ci ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains, 138162306a36Sopenharmony_ci data->cd->num_gains, data->cd->itimes, 138262306a36Sopenharmony_ci data->cd->num_itimes, &data->gts); 138362306a36Sopenharmony_ci if (ret) 138462306a36Sopenharmony_ci return ret; 138562306a36Sopenharmony_ci 138662306a36Sopenharmony_ci ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir, 138762306a36Sopenharmony_ci data->cd->num_gains_ir, data->cd->itimes, 138862306a36Sopenharmony_ci data->cd->num_itimes, &data->gts_ir); 138962306a36Sopenharmony_ci if (ret) 139062306a36Sopenharmony_ci return ret; 139162306a36Sopenharmony_ci 139262306a36Sopenharmony_ci mutex_init(&data->mutex); 139362306a36Sopenharmony_ci data->regmap = regmap; 139462306a36Sopenharmony_ci data->dev = dev; 139562306a36Sopenharmony_ci data->irq = i2c->irq; 139662306a36Sopenharmony_ci 139762306a36Sopenharmony_ci idev->channels = bu27008_channels; 139862306a36Sopenharmony_ci idev->num_channels = ARRAY_SIZE(bu27008_channels); 139962306a36Sopenharmony_ci idev->name = data->cd->name; 140062306a36Sopenharmony_ci idev->info = &bu27008_info; 140162306a36Sopenharmony_ci idev->modes = INDIO_DIRECT_MODE; 140262306a36Sopenharmony_ci idev->available_scan_masks = bu27008_scan_masks; 140362306a36Sopenharmony_ci 140462306a36Sopenharmony_ci ret = data->cd->chip_init(data); 140562306a36Sopenharmony_ci if (ret) 140662306a36Sopenharmony_ci return ret; 140762306a36Sopenharmony_ci 140862306a36Sopenharmony_ci if (i2c->irq) { 140962306a36Sopenharmony_ci ret = bu27008_setup_trigger(data, idev); 141062306a36Sopenharmony_ci if (ret) 141162306a36Sopenharmony_ci return ret; 141262306a36Sopenharmony_ci } else { 141362306a36Sopenharmony_ci dev_info(dev, "No IRQ, buffered mode disabled\n"); 141462306a36Sopenharmony_ci } 141562306a36Sopenharmony_ci 141662306a36Sopenharmony_ci ret = devm_iio_device_register(dev, idev); 141762306a36Sopenharmony_ci if (ret) 141862306a36Sopenharmony_ci return dev_err_probe(dev, ret, 141962306a36Sopenharmony_ci "Unable to register iio device\n"); 142062306a36Sopenharmony_ci 142162306a36Sopenharmony_ci return 0; 142262306a36Sopenharmony_ci} 142362306a36Sopenharmony_ci 142462306a36Sopenharmony_cistatic const struct of_device_id bu27008_of_match[] = { 142562306a36Sopenharmony_ci { .compatible = "rohm,bu27008", .data = &bu27008_chip }, 142662306a36Sopenharmony_ci { .compatible = "rohm,bu27010", .data = &bu27010_chip }, 142762306a36Sopenharmony_ci { } 142862306a36Sopenharmony_ci}; 142962306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, bu27008_of_match); 143062306a36Sopenharmony_ci 143162306a36Sopenharmony_cistatic struct i2c_driver bu27008_i2c_driver = { 143262306a36Sopenharmony_ci .driver = { 143362306a36Sopenharmony_ci .name = "bu27008", 143462306a36Sopenharmony_ci .of_match_table = bu27008_of_match, 143562306a36Sopenharmony_ci .probe_type = PROBE_PREFER_ASYNCHRONOUS, 143662306a36Sopenharmony_ci }, 143762306a36Sopenharmony_ci .probe = bu27008_probe, 143862306a36Sopenharmony_ci}; 143962306a36Sopenharmony_cimodule_i2c_driver(bu27008_i2c_driver); 144062306a36Sopenharmony_ci 144162306a36Sopenharmony_ciMODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver"); 144262306a36Sopenharmony_ciMODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); 144362306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 144462306a36Sopenharmony_ciMODULE_IMPORT_NS(IIO_GTS_HELPER); 1445