162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * ROHM Colour Sensor driver for
462306a36Sopenharmony_ci * - BU27008 RGBC sensor
562306a36Sopenharmony_ci * - BU27010 RGBC + Flickering sensor
662306a36Sopenharmony_ci *
762306a36Sopenharmony_ci * Copyright (c) 2023, ROHM Semiconductor.
862306a36Sopenharmony_ci */
962306a36Sopenharmony_ci
1062306a36Sopenharmony_ci#include <linux/bitfield.h>
1162306a36Sopenharmony_ci#include <linux/bitops.h>
1262306a36Sopenharmony_ci#include <linux/device.h>
1362306a36Sopenharmony_ci#include <linux/i2c.h>
1462306a36Sopenharmony_ci#include <linux/interrupt.h>
1562306a36Sopenharmony_ci#include <linux/module.h>
1662306a36Sopenharmony_ci#include <linux/property.h>
1762306a36Sopenharmony_ci#include <linux/regmap.h>
1862306a36Sopenharmony_ci#include <linux/regulator/consumer.h>
1962306a36Sopenharmony_ci#include <linux/units.h>
2062306a36Sopenharmony_ci
2162306a36Sopenharmony_ci#include <linux/iio/iio.h>
2262306a36Sopenharmony_ci#include <linux/iio/iio-gts-helper.h>
2362306a36Sopenharmony_ci#include <linux/iio/trigger.h>
2462306a36Sopenharmony_ci#include <linux/iio/trigger_consumer.h>
2562306a36Sopenharmony_ci#include <linux/iio/triggered_buffer.h>
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci/*
2862306a36Sopenharmony_ci * A word about register address and mask definitions.
2962306a36Sopenharmony_ci *
3062306a36Sopenharmony_ci * At a quick glance to the data-sheet register tables, the BU27010 has all the
3162306a36Sopenharmony_ci * registers that the BU27008 has. On top of that the BU27010 adds couple of new
3262306a36Sopenharmony_ci * ones.
3362306a36Sopenharmony_ci *
3462306a36Sopenharmony_ci * So, all definitions BU27008_REG_* are there also for BU27010 but none of the
3562306a36Sopenharmony_ci * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds
3662306a36Sopenharmony_ci * some features (Flicker FIFO, more power control) on top of the BU27008.
3762306a36Sopenharmony_ci *
3862306a36Sopenharmony_ci * Unfortunately, some of the wheel has been re-invented. Even though the names
3962306a36Sopenharmony_ci * of the registers have stayed the same, pretty much all of the functionality
4062306a36Sopenharmony_ci * provided by the registers has changed place. Contents of all MODE_CONTROL
4162306a36Sopenharmony_ci * registers on BU27008 and BU27010 are different.
4262306a36Sopenharmony_ci *
4362306a36Sopenharmony_ci * Chip-specific mapping from register addresses/bits to functionality is done
4462306a36Sopenharmony_ci * in bu27_chip_data structures.
4562306a36Sopenharmony_ci */
4662306a36Sopenharmony_ci#define BU27008_REG_SYSTEM_CONTROL	0x40
4762306a36Sopenharmony_ci#define BU27008_MASK_SW_RESET		BIT(7)
4862306a36Sopenharmony_ci#define BU27008_MASK_PART_ID		GENMASK(5, 0)
4962306a36Sopenharmony_ci#define BU27008_ID			0x1a
5062306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL1	0x41
5162306a36Sopenharmony_ci#define BU27008_MASK_MEAS_MODE		GENMASK(2, 0)
5262306a36Sopenharmony_ci#define BU27008_MASK_CHAN_SEL		GENMASK(3, 2)
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL2	0x42
5562306a36Sopenharmony_ci#define BU27008_MASK_RGBC_GAIN		GENMASK(7, 3)
5662306a36Sopenharmony_ci#define BU27008_MASK_IR_GAIN_LO		GENMASK(2, 0)
5762306a36Sopenharmony_ci#define BU27008_SHIFT_IR_GAIN		3
5862306a36Sopenharmony_ci
5962306a36Sopenharmony_ci#define BU27008_REG_MODE_CONTROL3	0x43
6062306a36Sopenharmony_ci#define BU27008_MASK_VALID		BIT(7)
6162306a36Sopenharmony_ci#define BU27008_MASK_INT_EN		BIT(1)
6262306a36Sopenharmony_ci#define BU27008_INT_EN			BU27008_MASK_INT_EN
6362306a36Sopenharmony_ci#define BU27008_INT_DIS			0
6462306a36Sopenharmony_ci#define BU27008_MASK_MEAS_EN		BIT(0)
6562306a36Sopenharmony_ci#define BU27008_MEAS_EN			BIT(0)
6662306a36Sopenharmony_ci#define BU27008_MEAS_DIS		0
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_ci#define BU27008_REG_DATA0_LO		0x50
6962306a36Sopenharmony_ci#define BU27008_REG_DATA1_LO		0x52
7062306a36Sopenharmony_ci#define BU27008_REG_DATA2_LO		0x54
7162306a36Sopenharmony_ci#define BU27008_REG_DATA3_LO		0x56
7262306a36Sopenharmony_ci#define BU27008_REG_DATA3_HI		0x57
7362306a36Sopenharmony_ci#define BU27008_REG_MANUFACTURER_ID	0x92
7462306a36Sopenharmony_ci#define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci/* BU27010 specific definitions */
7762306a36Sopenharmony_ci
7862306a36Sopenharmony_ci#define BU27010_MASK_SW_RESET		BIT(7)
7962306a36Sopenharmony_ci#define BU27010_ID			0x1b
8062306a36Sopenharmony_ci#define BU27010_REG_POWER		0x3e
8162306a36Sopenharmony_ci#define BU27010_MASK_POWER		BIT(0)
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_ci#define BU27010_REG_RESET		0x3f
8462306a36Sopenharmony_ci#define BU27010_MASK_RESET		BIT(0)
8562306a36Sopenharmony_ci#define BU27010_RESET_RELEASE		BU27010_MASK_RESET
8662306a36Sopenharmony_ci
8762306a36Sopenharmony_ci#define BU27010_MASK_MEAS_EN		BIT(1)
8862306a36Sopenharmony_ci
8962306a36Sopenharmony_ci#define BU27010_MASK_CHAN_SEL		GENMASK(7, 6)
9062306a36Sopenharmony_ci#define BU27010_MASK_MEAS_MODE		GENMASK(5, 4)
9162306a36Sopenharmony_ci#define BU27010_MASK_RGBC_GAIN		GENMASK(3, 0)
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci#define BU27010_MASK_DATA3_GAIN		GENMASK(7, 6)
9462306a36Sopenharmony_ci#define BU27010_MASK_DATA2_GAIN		GENMASK(5, 4)
9562306a36Sopenharmony_ci#define BU27010_MASK_DATA1_GAIN		GENMASK(3, 2)
9662306a36Sopenharmony_ci#define BU27010_MASK_DATA0_GAIN		GENMASK(1, 0)
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci#define BU27010_MASK_FLC_MODE		BIT(7)
9962306a36Sopenharmony_ci#define BU27010_MASK_FLC_GAIN		GENMASK(4, 0)
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_ci#define BU27010_REG_MODE_CONTROL4	0x44
10262306a36Sopenharmony_ci/* If flicker is ever to be supported the IRQ must be handled as a field */
10362306a36Sopenharmony_ci#define BU27010_IRQ_DIS_ALL		GENMASK(1, 0)
10462306a36Sopenharmony_ci#define BU27010_DRDY_EN			BIT(0)
10562306a36Sopenharmony_ci#define BU27010_MASK_INT_SEL		GENMASK(1, 0)
10662306a36Sopenharmony_ci
10762306a36Sopenharmony_ci#define BU27010_REG_MODE_CONTROL5	0x45
10862306a36Sopenharmony_ci#define BU27010_MASK_RGB_VALID		BIT(7)
10962306a36Sopenharmony_ci#define BU27010_MASK_FLC_VALID		BIT(6)
11062306a36Sopenharmony_ci#define BU27010_MASK_WAIT_EN		BIT(3)
11162306a36Sopenharmony_ci#define BU27010_MASK_FIFO_EN		BIT(2)
11262306a36Sopenharmony_ci#define BU27010_MASK_RGB_EN		BIT(1)
11362306a36Sopenharmony_ci#define BU27010_MASK_FLC_EN		BIT(0)
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci#define BU27010_REG_DATA_FLICKER_LO	0x56
11662306a36Sopenharmony_ci#define BU27010_MASK_DATA_FLICKER_HI	GENMASK(2, 0)
11762306a36Sopenharmony_ci#define BU27010_REG_FLICKER_COUNT	0x5a
11862306a36Sopenharmony_ci#define BU27010_REG_FIFO_LEVEL_LO	0x5b
11962306a36Sopenharmony_ci#define BU27010_MASK_FIFO_LEVEL_HI	BIT(0)
12062306a36Sopenharmony_ci#define BU27010_REG_FIFO_DATA_LO	0x5d
12162306a36Sopenharmony_ci#define BU27010_REG_FIFO_DATA_HI	0x5e
12262306a36Sopenharmony_ci#define BU27010_MASK_FIFO_DATA_HI	GENMASK(2, 0)
12362306a36Sopenharmony_ci#define BU27010_REG_MANUFACTURER_ID	0x92
12462306a36Sopenharmony_ci#define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci/**
12762306a36Sopenharmony_ci * enum bu27008_chan_type - BU27008 channel types
12862306a36Sopenharmony_ci * @BU27008_RED:	Red channel. Always via data0.
12962306a36Sopenharmony_ci * @BU27008_GREEN:	Green channel. Always via data1.
13062306a36Sopenharmony_ci * @BU27008_BLUE:	Blue channel. Via data2 (when used).
13162306a36Sopenharmony_ci * @BU27008_CLEAR:	Clear channel. Via data2 or data3 (when used).
13262306a36Sopenharmony_ci * @BU27008_IR:		IR channel. Via data3 (when used).
13362306a36Sopenharmony_ci * @BU27008_NUM_CHANS:	Number of channel types.
13462306a36Sopenharmony_ci */
13562306a36Sopenharmony_cienum bu27008_chan_type {
13662306a36Sopenharmony_ci	BU27008_RED,
13762306a36Sopenharmony_ci	BU27008_GREEN,
13862306a36Sopenharmony_ci	BU27008_BLUE,
13962306a36Sopenharmony_ci	BU27008_CLEAR,
14062306a36Sopenharmony_ci	BU27008_IR,
14162306a36Sopenharmony_ci	BU27008_NUM_CHANS
14262306a36Sopenharmony_ci};
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci/**
14562306a36Sopenharmony_ci * enum bu27008_chan - BU27008 physical data channel
14662306a36Sopenharmony_ci * @BU27008_DATA0:		Always red.
14762306a36Sopenharmony_ci * @BU27008_DATA1:		Always green.
14862306a36Sopenharmony_ci * @BU27008_DATA2:		Blue or clear.
14962306a36Sopenharmony_ci * @BU27008_DATA3:		IR or clear.
15062306a36Sopenharmony_ci * @BU27008_NUM_HW_CHANS:	Number of physical channels
15162306a36Sopenharmony_ci */
15262306a36Sopenharmony_cienum bu27008_chan {
15362306a36Sopenharmony_ci	BU27008_DATA0,
15462306a36Sopenharmony_ci	BU27008_DATA1,
15562306a36Sopenharmony_ci	BU27008_DATA2,
15662306a36Sopenharmony_ci	BU27008_DATA3,
15762306a36Sopenharmony_ci	BU27008_NUM_HW_CHANS
15862306a36Sopenharmony_ci};
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci/* We can always measure red and green at same time */
16162306a36Sopenharmony_ci#define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN))
16262306a36Sopenharmony_ci
16362306a36Sopenharmony_ci/* We use these data channel configs. Ensure scan_masks below follow them too */
16462306a36Sopenharmony_ci#define BU27008_BLUE2_CLEAR3		0x0 /* buffer is R, G, B, C */
16562306a36Sopenharmony_ci#define BU27008_CLEAR2_IR3		0x1 /* buffer is R, G, C, IR */
16662306a36Sopenharmony_ci#define BU27008_BLUE2_IR3		0x2 /* buffer is R, G, B, IR */
16762306a36Sopenharmony_ci
16862306a36Sopenharmony_cistatic const unsigned long bu27008_scan_masks[] = {
16962306a36Sopenharmony_ci	/* buffer is R, G, B, C */
17062306a36Sopenharmony_ci	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR),
17162306a36Sopenharmony_ci	/* buffer is R, G, C, IR */
17262306a36Sopenharmony_ci	ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR),
17362306a36Sopenharmony_ci	/* buffer is R, G, B, IR */
17462306a36Sopenharmony_ci	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR),
17562306a36Sopenharmony_ci	0
17662306a36Sopenharmony_ci};
17762306a36Sopenharmony_ci
17862306a36Sopenharmony_ci/*
17962306a36Sopenharmony_ci * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
18062306a36Sopenharmony_ci * Time impacts to gain: 1x, 2x, 4x, 8x.
18162306a36Sopenharmony_ci *
18262306a36Sopenharmony_ci * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
18362306a36Sopenharmony_ci *
18462306a36Sopenharmony_ci * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8
18562306a36Sopenharmony_ci * = 8192. With NANO scale we get rid of accuracy loss when we start with the
18662306a36Sopenharmony_ci * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX
18762306a36Sopenharmony_ci * total gain 8192 will be 1953125
18862306a36Sopenharmony_ci */
18962306a36Sopenharmony_ci#define BU27008_SCALE_1X 16
19062306a36Sopenharmony_ci
19162306a36Sopenharmony_ci/*
19262306a36Sopenharmony_ci * On BU27010 available scales with gain 1x - 4096x,
19362306a36Sopenharmony_ci * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x.
19462306a36Sopenharmony_ci *
19562306a36Sopenharmony_ci * => Max total gain is HWGAIN * gain by integration time (8 * 4096)
19662306a36Sopenharmony_ci *
19762306a36Sopenharmony_ci * Using NANO precision for scale we must use scale 64x corresponding gain 1x
19862306a36Sopenharmony_ci * to avoid precision loss.
19962306a36Sopenharmony_ci */
20062306a36Sopenharmony_ci#define BU27010_SCALE_1X 64
20162306a36Sopenharmony_ci
20262306a36Sopenharmony_ci/* See the data sheet for the "Gain Setting" table */
20362306a36Sopenharmony_ci#define BU27008_GSEL_1X		0x00
20462306a36Sopenharmony_ci#define BU27008_GSEL_4X		0x08
20562306a36Sopenharmony_ci#define BU27008_GSEL_8X		0x09
20662306a36Sopenharmony_ci#define BU27008_GSEL_16X	0x0a
20762306a36Sopenharmony_ci#define BU27008_GSEL_32X	0x0b
20862306a36Sopenharmony_ci#define BU27008_GSEL_64X	0x0c
20962306a36Sopenharmony_ci#define BU27008_GSEL_256X	0x18
21062306a36Sopenharmony_ci#define BU27008_GSEL_512X	0x19
21162306a36Sopenharmony_ci#define BU27008_GSEL_1024X	0x1a
21262306a36Sopenharmony_ci
21362306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27008_gains[] = {
21462306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1, BU27008_GSEL_1X),
21562306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
21662306a36Sopenharmony_ci	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
21762306a36Sopenharmony_ci	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
21862306a36Sopenharmony_ci	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
21962306a36Sopenharmony_ci	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
22062306a36Sopenharmony_ci	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
22162306a36Sopenharmony_ci	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
22262306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
22362306a36Sopenharmony_ci};
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27008_gains_ir[] = {
22662306a36Sopenharmony_ci	GAIN_SCALE_GAIN(2, BU27008_GSEL_1X),
22762306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
22862306a36Sopenharmony_ci	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
22962306a36Sopenharmony_ci	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
23062306a36Sopenharmony_ci	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
23162306a36Sopenharmony_ci	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
23262306a36Sopenharmony_ci	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
23362306a36Sopenharmony_ci	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
23462306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
23562306a36Sopenharmony_ci};
23662306a36Sopenharmony_ci
23762306a36Sopenharmony_ci#define BU27010_GSEL_1X		0x00	/* 000000 */
23862306a36Sopenharmony_ci#define BU27010_GSEL_4X		0x08	/* 001000 */
23962306a36Sopenharmony_ci#define BU27010_GSEL_16X	0x09	/* 001001 */
24062306a36Sopenharmony_ci#define BU27010_GSEL_64X	0x0e	/* 001110 */
24162306a36Sopenharmony_ci#define BU27010_GSEL_256X	0x1e	/* 011110 */
24262306a36Sopenharmony_ci#define BU27010_GSEL_1024X	0x2e	/* 101110 */
24362306a36Sopenharmony_ci#define BU27010_GSEL_4096X	0x3f	/* 111111 */
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27010_gains[] = {
24662306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1, BU27010_GSEL_1X),
24762306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
24862306a36Sopenharmony_ci	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
24962306a36Sopenharmony_ci	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
25062306a36Sopenharmony_ci	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
25162306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
25262306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
25362306a36Sopenharmony_ci};
25462306a36Sopenharmony_ci
25562306a36Sopenharmony_cistatic const struct iio_gain_sel_pair bu27010_gains_ir[] = {
25662306a36Sopenharmony_ci	GAIN_SCALE_GAIN(2, BU27010_GSEL_1X),
25762306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
25862306a36Sopenharmony_ci	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
25962306a36Sopenharmony_ci	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
26062306a36Sopenharmony_ci	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
26162306a36Sopenharmony_ci	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
26262306a36Sopenharmony_ci	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
26362306a36Sopenharmony_ci};
26462306a36Sopenharmony_ci
26562306a36Sopenharmony_ci#define BU27008_MEAS_MODE_100MS		0x00
26662306a36Sopenharmony_ci#define BU27008_MEAS_MODE_55MS		0x01
26762306a36Sopenharmony_ci#define BU27008_MEAS_MODE_200MS		0x02
26862306a36Sopenharmony_ci#define BU27008_MEAS_MODE_400MS		0x04
26962306a36Sopenharmony_ci
27062306a36Sopenharmony_ci#define BU27010_MEAS_MODE_100MS		0x00
27162306a36Sopenharmony_ci#define BU27010_MEAS_MODE_55MS		0x03
27262306a36Sopenharmony_ci#define BU27010_MEAS_MODE_200MS		0x01
27362306a36Sopenharmony_ci#define BU27010_MEAS_MODE_400MS		0x02
27462306a36Sopenharmony_ci
27562306a36Sopenharmony_ci#define BU27008_MEAS_TIME_MAX_MS	400
27662306a36Sopenharmony_ci
27762306a36Sopenharmony_cistatic const struct iio_itime_sel_mul bu27008_itimes[] = {
27862306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8),
27962306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4),
28062306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2),
28162306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1),
28262306a36Sopenharmony_ci};
28362306a36Sopenharmony_ci
28462306a36Sopenharmony_cistatic const struct iio_itime_sel_mul bu27010_itimes[] = {
28562306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8),
28662306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4),
28762306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2),
28862306a36Sopenharmony_ci	GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1),
28962306a36Sopenharmony_ci};
29062306a36Sopenharmony_ci
29162306a36Sopenharmony_ci/*
29262306a36Sopenharmony_ci * All the RGBC channels share the same gain.
29362306a36Sopenharmony_ci * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this
29462306a36Sopenharmony_ci * would yield quite complex gain setting. Especially since not all bit
29562306a36Sopenharmony_ci * compinations are supported. And in any case setting GAIN for RGBC will
29662306a36Sopenharmony_ci * always also change the IR-gain.
29762306a36Sopenharmony_ci *
29862306a36Sopenharmony_ci * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC,
29962306a36Sopenharmony_ci * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains
30062306a36Sopenharmony_ci * though. This, however, makes it not possible to use shared gain for all
30162306a36Sopenharmony_ci * RGBC and IR settings even though they are all changed at the one go.
30262306a36Sopenharmony_ci */
30362306a36Sopenharmony_ci#define BU27008_CHAN(color, data, separate_avail)				\
30462306a36Sopenharmony_ci{										\
30562306a36Sopenharmony_ci	.type = IIO_INTENSITY,							\
30662306a36Sopenharmony_ci	.modified = 1,								\
30762306a36Sopenharmony_ci	.channel2 = IIO_MOD_LIGHT_##color,					\
30862306a36Sopenharmony_ci	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
30962306a36Sopenharmony_ci			      BIT(IIO_CHAN_INFO_SCALE),				\
31062306a36Sopenharmony_ci	.info_mask_separate_available = (separate_avail),			\
31162306a36Sopenharmony_ci	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),			\
31262306a36Sopenharmony_ci	.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME),	\
31362306a36Sopenharmony_ci	.address = BU27008_REG_##data##_LO,					\
31462306a36Sopenharmony_ci	.scan_index = BU27008_##color,						\
31562306a36Sopenharmony_ci	.scan_type = {								\
31662306a36Sopenharmony_ci		.sign = 'u',							\
31762306a36Sopenharmony_ci		.realbits = 16,							\
31862306a36Sopenharmony_ci		.storagebits = 16,						\
31962306a36Sopenharmony_ci		.endianness = IIO_LE,						\
32062306a36Sopenharmony_ci	},									\
32162306a36Sopenharmony_ci}
32262306a36Sopenharmony_ci
32362306a36Sopenharmony_ci/* For raw reads we always configure DATA3 for CLEAR */
32462306a36Sopenharmony_cistatic const struct iio_chan_spec bu27008_channels[] = {
32562306a36Sopenharmony_ci	BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)),
32662306a36Sopenharmony_ci	BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)),
32762306a36Sopenharmony_ci	BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
32862306a36Sopenharmony_ci	BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
32962306a36Sopenharmony_ci	/*
33062306a36Sopenharmony_ci	 * We don't allow setting scale for IR (because of shared gain bits).
33162306a36Sopenharmony_ci	 * Hence we don't advertise available ones either.
33262306a36Sopenharmony_ci	 */
33362306a36Sopenharmony_ci	BU27008_CHAN(IR, DATA3, 0),
33462306a36Sopenharmony_ci	IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS),
33562306a36Sopenharmony_ci};
33662306a36Sopenharmony_ci
33762306a36Sopenharmony_cistruct bu27008_data;
33862306a36Sopenharmony_ci
33962306a36Sopenharmony_cistruct bu27_chip_data {
34062306a36Sopenharmony_ci	const char *name;
34162306a36Sopenharmony_ci	int (*chip_init)(struct bu27008_data *data);
34262306a36Sopenharmony_ci	int (*get_gain_sel)(struct bu27008_data *data, int *sel);
34362306a36Sopenharmony_ci	int (*write_gain_sel)(struct bu27008_data *data, int sel);
34462306a36Sopenharmony_ci	const struct regmap_config *regmap_cfg;
34562306a36Sopenharmony_ci	const struct iio_gain_sel_pair *gains;
34662306a36Sopenharmony_ci	const struct iio_gain_sel_pair *gains_ir;
34762306a36Sopenharmony_ci	const struct iio_itime_sel_mul *itimes;
34862306a36Sopenharmony_ci	int num_gains;
34962306a36Sopenharmony_ci	int num_gains_ir;
35062306a36Sopenharmony_ci	int num_itimes;
35162306a36Sopenharmony_ci	int scale1x;
35262306a36Sopenharmony_ci
35362306a36Sopenharmony_ci	int drdy_en_reg;
35462306a36Sopenharmony_ci	int drdy_en_mask;
35562306a36Sopenharmony_ci	int meas_en_reg;
35662306a36Sopenharmony_ci	int meas_en_mask;
35762306a36Sopenharmony_ci	int valid_reg;
35862306a36Sopenharmony_ci	int chan_sel_reg;
35962306a36Sopenharmony_ci	int chan_sel_mask;
36062306a36Sopenharmony_ci	int int_time_mask;
36162306a36Sopenharmony_ci	u8 part_id;
36262306a36Sopenharmony_ci};
36362306a36Sopenharmony_ci
36462306a36Sopenharmony_cistruct bu27008_data {
36562306a36Sopenharmony_ci	const struct bu27_chip_data *cd;
36662306a36Sopenharmony_ci	struct regmap *regmap;
36762306a36Sopenharmony_ci	struct iio_trigger *trig;
36862306a36Sopenharmony_ci	struct device *dev;
36962306a36Sopenharmony_ci	struct iio_gts gts;
37062306a36Sopenharmony_ci	struct iio_gts gts_ir;
37162306a36Sopenharmony_ci	int irq;
37262306a36Sopenharmony_ci
37362306a36Sopenharmony_ci	/*
37462306a36Sopenharmony_ci	 * Prevent changing gain/time config when scale is read/written.
37562306a36Sopenharmony_ci	 * Similarly, protect the integration_time read/change sequence.
37662306a36Sopenharmony_ci	 * Prevent changing gain/time when data is read.
37762306a36Sopenharmony_ci	 */
37862306a36Sopenharmony_ci	struct mutex mutex;
37962306a36Sopenharmony_ci};
38062306a36Sopenharmony_ci
38162306a36Sopenharmony_cistatic const struct regmap_range bu27008_volatile_ranges[] = {
38262306a36Sopenharmony_ci	{
38362306a36Sopenharmony_ci		.range_min = BU27008_REG_SYSTEM_CONTROL,	/* SWRESET */
38462306a36Sopenharmony_ci		.range_max = BU27008_REG_SYSTEM_CONTROL,
38562306a36Sopenharmony_ci	}, {
38662306a36Sopenharmony_ci		.range_min = BU27008_REG_MODE_CONTROL3,		/* VALID */
38762306a36Sopenharmony_ci		.range_max = BU27008_REG_MODE_CONTROL3,
38862306a36Sopenharmony_ci	}, {
38962306a36Sopenharmony_ci		.range_min = BU27008_REG_DATA0_LO,		/* DATA */
39062306a36Sopenharmony_ci		.range_max = BU27008_REG_DATA3_HI,
39162306a36Sopenharmony_ci	},
39262306a36Sopenharmony_ci};
39362306a36Sopenharmony_ci
39462306a36Sopenharmony_cistatic const struct regmap_range bu27010_volatile_ranges[] = {
39562306a36Sopenharmony_ci	{
39662306a36Sopenharmony_ci		.range_min = BU27010_REG_RESET,			/* RSTB */
39762306a36Sopenharmony_ci		.range_max = BU27008_REG_SYSTEM_CONTROL,	/* RESET */
39862306a36Sopenharmony_ci	}, {
39962306a36Sopenharmony_ci		.range_min = BU27010_REG_MODE_CONTROL5,		/* VALID bits */
40062306a36Sopenharmony_ci		.range_max = BU27010_REG_MODE_CONTROL5,
40162306a36Sopenharmony_ci	}, {
40262306a36Sopenharmony_ci		.range_min = BU27008_REG_DATA0_LO,
40362306a36Sopenharmony_ci		.range_max = BU27010_REG_FIFO_DATA_HI,
40462306a36Sopenharmony_ci	},
40562306a36Sopenharmony_ci};
40662306a36Sopenharmony_ci
40762306a36Sopenharmony_cistatic const struct regmap_access_table bu27008_volatile_regs = {
40862306a36Sopenharmony_ci	.yes_ranges = &bu27008_volatile_ranges[0],
40962306a36Sopenharmony_ci	.n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges),
41062306a36Sopenharmony_ci};
41162306a36Sopenharmony_ci
41262306a36Sopenharmony_cistatic const struct regmap_access_table bu27010_volatile_regs = {
41362306a36Sopenharmony_ci	.yes_ranges = &bu27010_volatile_ranges[0],
41462306a36Sopenharmony_ci	.n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges),
41562306a36Sopenharmony_ci};
41662306a36Sopenharmony_ci
41762306a36Sopenharmony_cistatic const struct regmap_range bu27008_read_only_ranges[] = {
41862306a36Sopenharmony_ci	{
41962306a36Sopenharmony_ci		.range_min = BU27008_REG_DATA0_LO,
42062306a36Sopenharmony_ci		.range_max = BU27008_REG_DATA3_HI,
42162306a36Sopenharmony_ci	}, {
42262306a36Sopenharmony_ci		.range_min = BU27008_REG_MANUFACTURER_ID,
42362306a36Sopenharmony_ci		.range_max = BU27008_REG_MANUFACTURER_ID,
42462306a36Sopenharmony_ci	},
42562306a36Sopenharmony_ci};
42662306a36Sopenharmony_ci
42762306a36Sopenharmony_cistatic const struct regmap_range bu27010_read_only_ranges[] = {
42862306a36Sopenharmony_ci	{
42962306a36Sopenharmony_ci		.range_min = BU27008_REG_DATA0_LO,
43062306a36Sopenharmony_ci		.range_max = BU27010_REG_FIFO_DATA_HI,
43162306a36Sopenharmony_ci	}, {
43262306a36Sopenharmony_ci		.range_min = BU27010_REG_MANUFACTURER_ID,
43362306a36Sopenharmony_ci		.range_max = BU27010_REG_MANUFACTURER_ID,
43462306a36Sopenharmony_ci	}
43562306a36Sopenharmony_ci};
43662306a36Sopenharmony_ci
43762306a36Sopenharmony_cistatic const struct regmap_access_table bu27008_ro_regs = {
43862306a36Sopenharmony_ci	.no_ranges = &bu27008_read_only_ranges[0],
43962306a36Sopenharmony_ci	.n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges),
44062306a36Sopenharmony_ci};
44162306a36Sopenharmony_ci
44262306a36Sopenharmony_cistatic const struct regmap_access_table bu27010_ro_regs = {
44362306a36Sopenharmony_ci	.no_ranges = &bu27010_read_only_ranges[0],
44462306a36Sopenharmony_ci	.n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges),
44562306a36Sopenharmony_ci};
44662306a36Sopenharmony_ci
44762306a36Sopenharmony_cistatic const struct regmap_config bu27008_regmap = {
44862306a36Sopenharmony_ci	.reg_bits = 8,
44962306a36Sopenharmony_ci	.val_bits = 8,
45062306a36Sopenharmony_ci	.max_register = BU27008_REG_MAX,
45162306a36Sopenharmony_ci	.cache_type = REGCACHE_RBTREE,
45262306a36Sopenharmony_ci	.volatile_table = &bu27008_volatile_regs,
45362306a36Sopenharmony_ci	.wr_table = &bu27008_ro_regs,
45462306a36Sopenharmony_ci	/*
45562306a36Sopenharmony_ci	 * All register writes are serialized by the mutex which protects the
45662306a36Sopenharmony_ci	 * scale setting/getting. This is needed because scale is combined by
45762306a36Sopenharmony_ci	 * gain and integration time settings and we need to ensure those are
45862306a36Sopenharmony_ci	 * not read / written when scale is being computed.
45962306a36Sopenharmony_ci	 *
46062306a36Sopenharmony_ci	 * As a result of this serializing, we don't need regmap locking. Note,
46162306a36Sopenharmony_ci	 * this is not true if we add any configurations which are not
46262306a36Sopenharmony_ci	 * serialized by the mutex and which may need for example a protected
46362306a36Sopenharmony_ci	 * read-modify-write cycle (eg. regmap_update_bits()). Please, revise
46462306a36Sopenharmony_ci	 * this when adding features to the driver.
46562306a36Sopenharmony_ci	 */
46662306a36Sopenharmony_ci	.disable_locking = true,
46762306a36Sopenharmony_ci};
46862306a36Sopenharmony_ci
46962306a36Sopenharmony_cistatic const struct regmap_config bu27010_regmap = {
47062306a36Sopenharmony_ci	.reg_bits	= 8,
47162306a36Sopenharmony_ci	.val_bits	= 8,
47262306a36Sopenharmony_ci
47362306a36Sopenharmony_ci	.max_register	= BU27010_REG_MAX,
47462306a36Sopenharmony_ci	.cache_type	= REGCACHE_RBTREE,
47562306a36Sopenharmony_ci	.volatile_table = &bu27010_volatile_regs,
47662306a36Sopenharmony_ci	.wr_table	= &bu27010_ro_regs,
47762306a36Sopenharmony_ci	.disable_locking = true,
47862306a36Sopenharmony_ci};
47962306a36Sopenharmony_ci
48062306a36Sopenharmony_cistatic int bu27008_write_gain_sel(struct bu27008_data *data, int sel)
48162306a36Sopenharmony_ci{
48262306a36Sopenharmony_ci	int regval;
48362306a36Sopenharmony_ci
48462306a36Sopenharmony_ci	regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel);
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_ci	/*
48762306a36Sopenharmony_ci	 * We do always set also the LOW bits of IR-gain because othervice we
48862306a36Sopenharmony_ci	 * would risk resulting an invalid GAIN register value.
48962306a36Sopenharmony_ci	 *
49062306a36Sopenharmony_ci	 * We could allow setting separate gains for RGBC and IR when the
49162306a36Sopenharmony_ci	 * values were such that HW could support both gain settings.
49262306a36Sopenharmony_ci	 * Eg, when the shared bits were same for both gain values.
49362306a36Sopenharmony_ci	 *
49462306a36Sopenharmony_ci	 * This, however, has a negligible benefit compared to the increased
49562306a36Sopenharmony_ci	 * software complexity when we would need to go through the gains
49662306a36Sopenharmony_ci	 * for both channels separately when the integration time changes.
49762306a36Sopenharmony_ci	 * This would end up with nasty logic for computing gain values for
49862306a36Sopenharmony_ci	 * both channels - and rejecting them if shared bits changed.
49962306a36Sopenharmony_ci	 *
50062306a36Sopenharmony_ci	 * We should then build the logic by guessing what a user prefers.
50162306a36Sopenharmony_ci	 * RGBC or IR gains correctly set while other jumps to odd value?
50262306a36Sopenharmony_ci	 * Maybe look-up a value where both gains are somehow optimized
50362306a36Sopenharmony_ci	 * <what this somehow is, is ATM unknown to us>. Or maybe user would
50462306a36Sopenharmony_ci	 * expect us to reject changes when optimal gains can't be set to both
50562306a36Sopenharmony_ci	 * channels w/given integration time. At best that would result
50662306a36Sopenharmony_ci	 * solution that works well for a very specific subset of
50762306a36Sopenharmony_ci	 * configurations but causes unexpected corner-cases.
50862306a36Sopenharmony_ci	 *
50962306a36Sopenharmony_ci	 * So, we keep it simple. Always set same selector to IR and RGBC.
51062306a36Sopenharmony_ci	 * We disallow setting IR (as I expect that most of the users are
51162306a36Sopenharmony_ci	 * interested in RGBC). This way we can show the user that the scales
51262306a36Sopenharmony_ci	 * for RGBC and IR channels are different (1X Vs 2X with sel 0) while
51362306a36Sopenharmony_ci	 * still keeping the operation deterministic.
51462306a36Sopenharmony_ci	 */
51562306a36Sopenharmony_ci	regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel);
51662306a36Sopenharmony_ci
51762306a36Sopenharmony_ci	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2,
51862306a36Sopenharmony_ci				  BU27008_MASK_RGBC_GAIN, regval);
51962306a36Sopenharmony_ci}
52062306a36Sopenharmony_ci
52162306a36Sopenharmony_cistatic int bu27010_write_gain_sel(struct bu27008_data *data, int sel)
52262306a36Sopenharmony_ci{
52362306a36Sopenharmony_ci	unsigned int regval;
52462306a36Sopenharmony_ci	int ret, chan_selector;
52562306a36Sopenharmony_ci
52662306a36Sopenharmony_ci	/*
52762306a36Sopenharmony_ci	 * Gain 'selector' is composed of two registers. Selector is 6bit value,
52862306a36Sopenharmony_ci	 * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and
52962306a36Sopenharmony_ci	 * two low bits being the channel specific gain in MODE_CONTROL2.
53062306a36Sopenharmony_ci	 *
53162306a36Sopenharmony_ci	 * Let's take the 4 high bits of whole 6 bit selector, and prepare
53262306a36Sopenharmony_ci	 * the MODE_CONTROL1 value (RGBC gain part).
53362306a36Sopenharmony_ci	 */
53462306a36Sopenharmony_ci	regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2));
53562306a36Sopenharmony_ci
53662306a36Sopenharmony_ci	ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
53762306a36Sopenharmony_ci				  BU27010_MASK_RGBC_GAIN, regval);
53862306a36Sopenharmony_ci	if (ret)
53962306a36Sopenharmony_ci		return ret;
54062306a36Sopenharmony_ci
54162306a36Sopenharmony_ci	/*
54262306a36Sopenharmony_ci	 * Two low two bits of the selector must be written for all 4
54362306a36Sopenharmony_ci	 * channels in the MODE_CONTROL2 register. Copy these two bits for
54462306a36Sopenharmony_ci	 * all channels.
54562306a36Sopenharmony_ci	 */
54662306a36Sopenharmony_ci	chan_selector = sel & GENMASK(1, 0);
54762306a36Sopenharmony_ci
54862306a36Sopenharmony_ci	regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector);
54962306a36Sopenharmony_ci	regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector);
55062306a36Sopenharmony_ci	regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector);
55162306a36Sopenharmony_ci	regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector);
55262306a36Sopenharmony_ci
55362306a36Sopenharmony_ci	return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval);
55462306a36Sopenharmony_ci}
55562306a36Sopenharmony_ci
55662306a36Sopenharmony_cistatic int bu27008_get_gain_sel(struct bu27008_data *data, int *sel)
55762306a36Sopenharmony_ci{
55862306a36Sopenharmony_ci	int ret;
55962306a36Sopenharmony_ci
56062306a36Sopenharmony_ci	/*
56162306a36Sopenharmony_ci	 * If we always "lock" the gain selectors for all channels to prevent
56262306a36Sopenharmony_ci	 * unsupported configs, then it does not matter which channel is used
56362306a36Sopenharmony_ci	 * we can just return selector from any of them.
56462306a36Sopenharmony_ci	 *
56562306a36Sopenharmony_ci	 * This, however is not true if we decide to support only 4X and 16X
56662306a36Sopenharmony_ci	 * and then individual gains for channels. Currently this is not the
56762306a36Sopenharmony_ci	 * case.
56862306a36Sopenharmony_ci	 *
56962306a36Sopenharmony_ci	 * If we some day decide to support individual gains, then we need to
57062306a36Sopenharmony_ci	 * have channel information here.
57162306a36Sopenharmony_ci	 */
57262306a36Sopenharmony_ci
57362306a36Sopenharmony_ci	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
57462306a36Sopenharmony_ci	if (ret)
57562306a36Sopenharmony_ci		return ret;
57662306a36Sopenharmony_ci
57762306a36Sopenharmony_ci	*sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel);
57862306a36Sopenharmony_ci
57962306a36Sopenharmony_ci	return 0;
58062306a36Sopenharmony_ci}
58162306a36Sopenharmony_ci
58262306a36Sopenharmony_cistatic int bu27010_get_gain_sel(struct bu27008_data *data, int *sel)
58362306a36Sopenharmony_ci{
58462306a36Sopenharmony_ci	int ret, tmp;
58562306a36Sopenharmony_ci
58662306a36Sopenharmony_ci	/*
58762306a36Sopenharmony_ci	 * We always "lock" the gain selectors for all channels to prevent
58862306a36Sopenharmony_ci	 * unsupported configs. It does not matter which channel is used
58962306a36Sopenharmony_ci	 * we can just return selector from any of them.
59062306a36Sopenharmony_ci	 *
59162306a36Sopenharmony_ci	 * Read the channel0 gain.
59262306a36Sopenharmony_ci	 */
59362306a36Sopenharmony_ci	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
59462306a36Sopenharmony_ci	if (ret)
59562306a36Sopenharmony_ci		return ret;
59662306a36Sopenharmony_ci
59762306a36Sopenharmony_ci	*sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel);
59862306a36Sopenharmony_ci
59962306a36Sopenharmony_ci	/* Read the shared gain */
60062306a36Sopenharmony_ci	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp);
60162306a36Sopenharmony_ci	if (ret)
60262306a36Sopenharmony_ci		return ret;
60362306a36Sopenharmony_ci
60462306a36Sopenharmony_ci	/*
60562306a36Sopenharmony_ci	 * The gain selector is made as a combination of common RGBC gain and
60662306a36Sopenharmony_ci	 * the channel specific gain. The channel specific gain forms the low
60762306a36Sopenharmony_ci	 * bits of selector and RGBC gain is appended right after it.
60862306a36Sopenharmony_ci	 *
60962306a36Sopenharmony_ci	 * Compose the selector from channel0 gain and shared RGBC gain.
61062306a36Sopenharmony_ci	 */
61162306a36Sopenharmony_ci	*sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN);
61262306a36Sopenharmony_ci
61362306a36Sopenharmony_ci	return ret;
61462306a36Sopenharmony_ci}
61562306a36Sopenharmony_ci
61662306a36Sopenharmony_cistatic int bu27008_chip_init(struct bu27008_data *data)
61762306a36Sopenharmony_ci{
61862306a36Sopenharmony_ci	int ret;
61962306a36Sopenharmony_ci
62062306a36Sopenharmony_ci	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
62162306a36Sopenharmony_ci				BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET);
62262306a36Sopenharmony_ci	if (ret)
62362306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
62462306a36Sopenharmony_ci
62562306a36Sopenharmony_ci	/*
62662306a36Sopenharmony_ci	 * The data-sheet does not tell how long performing the IC reset takes.
62762306a36Sopenharmony_ci	 * However, the data-sheet says the minimum time it takes the IC to be
62862306a36Sopenharmony_ci	 * able to take inputs after power is applied, is 100 uS. I'd assume
62962306a36Sopenharmony_ci	 * > 1 mS is enough.
63062306a36Sopenharmony_ci	 */
63162306a36Sopenharmony_ci	msleep(1);
63262306a36Sopenharmony_ci
63362306a36Sopenharmony_ci	ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg);
63462306a36Sopenharmony_ci	if (ret)
63562306a36Sopenharmony_ci		dev_err(data->dev, "Failed to reinit reg cache\n");
63662306a36Sopenharmony_ci
63762306a36Sopenharmony_ci	return ret;
63862306a36Sopenharmony_ci}
63962306a36Sopenharmony_ci
64062306a36Sopenharmony_cistatic int bu27010_chip_init(struct bu27008_data *data)
64162306a36Sopenharmony_ci{
64262306a36Sopenharmony_ci	int ret;
64362306a36Sopenharmony_ci
64462306a36Sopenharmony_ci	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
64562306a36Sopenharmony_ci				BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET);
64662306a36Sopenharmony_ci	if (ret)
64762306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_ci	msleep(1);
65062306a36Sopenharmony_ci
65162306a36Sopenharmony_ci	/* Power ON*/
65262306a36Sopenharmony_ci	ret = regmap_write_bits(data->regmap, BU27010_REG_POWER,
65362306a36Sopenharmony_ci				BU27010_MASK_POWER, BU27010_MASK_POWER);
65462306a36Sopenharmony_ci	if (ret)
65562306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret, "Sensor power-on failed\n");
65662306a36Sopenharmony_ci
65762306a36Sopenharmony_ci	msleep(1);
65862306a36Sopenharmony_ci
65962306a36Sopenharmony_ci	/* Release blocks from reset */
66062306a36Sopenharmony_ci	ret = regmap_write_bits(data->regmap, BU27010_REG_RESET,
66162306a36Sopenharmony_ci				BU27010_MASK_RESET, BU27010_RESET_RELEASE);
66262306a36Sopenharmony_ci	if (ret)
66362306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret, "Sensor powering failed\n");
66462306a36Sopenharmony_ci
66562306a36Sopenharmony_ci	msleep(1);
66662306a36Sopenharmony_ci
66762306a36Sopenharmony_ci	/*
66862306a36Sopenharmony_ci	 * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ
66962306a36Sopenharmony_ci	 * enabling is not a bit mask where individual IRQs could be enabled but
67062306a36Sopenharmony_ci	 * a field which values are:
67162306a36Sopenharmony_ci	 * 00 => IRQs disabled
67262306a36Sopenharmony_ci	 * 01 => Data-ready (RGBC/IR)
67362306a36Sopenharmony_ci	 * 10 => Data-ready (flicker)
67462306a36Sopenharmony_ci	 * 11 => Flicker FIFO
67562306a36Sopenharmony_ci	 *
67662306a36Sopenharmony_ci	 * So, only one IRQ can be enabled at a time and enabling for example
67762306a36Sopenharmony_ci	 * flicker FIFO would automagically disable data-ready IRQ.
67862306a36Sopenharmony_ci	 *
67962306a36Sopenharmony_ci	 * Currently the driver does not support the flicker. Hence, we can
68062306a36Sopenharmony_ci	 * just treat the RGBC data-ready as single bit which can be enabled /
68162306a36Sopenharmony_ci	 * disabled. This works for as long as the second bit in the field
68262306a36Sopenharmony_ci	 * stays zero. Here we ensure it gets zeroed.
68362306a36Sopenharmony_ci	 */
68462306a36Sopenharmony_ci	return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4,
68562306a36Sopenharmony_ci				 BU27010_IRQ_DIS_ALL);
68662306a36Sopenharmony_ci}
68762306a36Sopenharmony_ci
68862306a36Sopenharmony_cistatic const struct bu27_chip_data bu27010_chip = {
68962306a36Sopenharmony_ci	.name = "bu27010",
69062306a36Sopenharmony_ci	.chip_init = bu27010_chip_init,
69162306a36Sopenharmony_ci	.get_gain_sel = bu27010_get_gain_sel,
69262306a36Sopenharmony_ci	.write_gain_sel = bu27010_write_gain_sel,
69362306a36Sopenharmony_ci	.regmap_cfg = &bu27010_regmap,
69462306a36Sopenharmony_ci	.gains = &bu27010_gains[0],
69562306a36Sopenharmony_ci	.gains_ir = &bu27010_gains_ir[0],
69662306a36Sopenharmony_ci	.itimes = &bu27010_itimes[0],
69762306a36Sopenharmony_ci	.num_gains = ARRAY_SIZE(bu27010_gains),
69862306a36Sopenharmony_ci	.num_gains_ir = ARRAY_SIZE(bu27010_gains_ir),
69962306a36Sopenharmony_ci	.num_itimes = ARRAY_SIZE(bu27010_itimes),
70062306a36Sopenharmony_ci	.scale1x = BU27010_SCALE_1X,
70162306a36Sopenharmony_ci	.drdy_en_reg = BU27010_REG_MODE_CONTROL4,
70262306a36Sopenharmony_ci	.drdy_en_mask = BU27010_DRDY_EN,
70362306a36Sopenharmony_ci	.meas_en_reg = BU27010_REG_MODE_CONTROL5,
70462306a36Sopenharmony_ci	.meas_en_mask = BU27010_MASK_MEAS_EN,
70562306a36Sopenharmony_ci	.valid_reg = BU27010_REG_MODE_CONTROL5,
70662306a36Sopenharmony_ci	.chan_sel_reg = BU27008_REG_MODE_CONTROL1,
70762306a36Sopenharmony_ci	.chan_sel_mask = BU27010_MASK_CHAN_SEL,
70862306a36Sopenharmony_ci	.int_time_mask = BU27010_MASK_MEAS_MODE,
70962306a36Sopenharmony_ci	.part_id = BU27010_ID,
71062306a36Sopenharmony_ci};
71162306a36Sopenharmony_ci
71262306a36Sopenharmony_cistatic const struct bu27_chip_data bu27008_chip = {
71362306a36Sopenharmony_ci	.name = "bu27008",
71462306a36Sopenharmony_ci	.chip_init = bu27008_chip_init,
71562306a36Sopenharmony_ci	.get_gain_sel = bu27008_get_gain_sel,
71662306a36Sopenharmony_ci	.write_gain_sel = bu27008_write_gain_sel,
71762306a36Sopenharmony_ci	.regmap_cfg = &bu27008_regmap,
71862306a36Sopenharmony_ci	.gains = &bu27008_gains[0],
71962306a36Sopenharmony_ci	.gains_ir = &bu27008_gains_ir[0],
72062306a36Sopenharmony_ci	.itimes = &bu27008_itimes[0],
72162306a36Sopenharmony_ci	.num_gains = ARRAY_SIZE(bu27008_gains),
72262306a36Sopenharmony_ci	.num_gains_ir = ARRAY_SIZE(bu27008_gains_ir),
72362306a36Sopenharmony_ci	.num_itimes = ARRAY_SIZE(bu27008_itimes),
72462306a36Sopenharmony_ci	.scale1x = BU27008_SCALE_1X,
72562306a36Sopenharmony_ci	.drdy_en_reg = BU27008_REG_MODE_CONTROL3,
72662306a36Sopenharmony_ci	.drdy_en_mask = BU27008_MASK_INT_EN,
72762306a36Sopenharmony_ci	.valid_reg = BU27008_REG_MODE_CONTROL3,
72862306a36Sopenharmony_ci	.meas_en_reg = BU27008_REG_MODE_CONTROL3,
72962306a36Sopenharmony_ci	.meas_en_mask = BU27008_MASK_MEAS_EN,
73062306a36Sopenharmony_ci	.chan_sel_reg = BU27008_REG_MODE_CONTROL3,
73162306a36Sopenharmony_ci	.chan_sel_mask = BU27008_MASK_CHAN_SEL,
73262306a36Sopenharmony_ci	.int_time_mask = BU27008_MASK_MEAS_MODE,
73362306a36Sopenharmony_ci	.part_id = BU27008_ID,
73462306a36Sopenharmony_ci};
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ci#define BU27008_MAX_VALID_RESULT_WAIT_US	50000
73762306a36Sopenharmony_ci#define BU27008_VALID_RESULT_WAIT_QUANTA_US	1000
73862306a36Sopenharmony_ci
73962306a36Sopenharmony_cistatic int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val)
74062306a36Sopenharmony_ci{
74162306a36Sopenharmony_ci	int ret, valid;
74262306a36Sopenharmony_ci	__le16 tmp;
74362306a36Sopenharmony_ci
74462306a36Sopenharmony_ci	ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
74562306a36Sopenharmony_ci				       valid, (valid & BU27008_MASK_VALID),
74662306a36Sopenharmony_ci				       BU27008_VALID_RESULT_WAIT_QUANTA_US,
74762306a36Sopenharmony_ci				       BU27008_MAX_VALID_RESULT_WAIT_US);
74862306a36Sopenharmony_ci	if (ret)
74962306a36Sopenharmony_ci		return ret;
75062306a36Sopenharmony_ci
75162306a36Sopenharmony_ci	ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp));
75262306a36Sopenharmony_ci	if (ret)
75362306a36Sopenharmony_ci		dev_err(data->dev, "Reading channel data failed\n");
75462306a36Sopenharmony_ci
75562306a36Sopenharmony_ci	*val = le16_to_cpu(tmp);
75662306a36Sopenharmony_ci
75762306a36Sopenharmony_ci	return ret;
75862306a36Sopenharmony_ci}
75962306a36Sopenharmony_ci
76062306a36Sopenharmony_cistatic int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain)
76162306a36Sopenharmony_ci{
76262306a36Sopenharmony_ci	int ret, sel;
76362306a36Sopenharmony_ci
76462306a36Sopenharmony_ci	ret = data->cd->get_gain_sel(data, &sel);
76562306a36Sopenharmony_ci	if (ret)
76662306a36Sopenharmony_ci		return ret;
76762306a36Sopenharmony_ci
76862306a36Sopenharmony_ci	ret = iio_gts_find_gain_by_sel(gts, sel);
76962306a36Sopenharmony_ci	if (ret < 0) {
77062306a36Sopenharmony_ci		dev_err(data->dev, "unknown gain value 0x%x\n", sel);
77162306a36Sopenharmony_ci		return ret;
77262306a36Sopenharmony_ci	}
77362306a36Sopenharmony_ci
77462306a36Sopenharmony_ci	*gain = ret;
77562306a36Sopenharmony_ci
77662306a36Sopenharmony_ci	return 0;
77762306a36Sopenharmony_ci}
77862306a36Sopenharmony_ci
77962306a36Sopenharmony_cistatic int bu27008_set_gain(struct bu27008_data *data, int gain)
78062306a36Sopenharmony_ci{
78162306a36Sopenharmony_ci	int ret;
78262306a36Sopenharmony_ci
78362306a36Sopenharmony_ci	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
78462306a36Sopenharmony_ci	if (ret < 0)
78562306a36Sopenharmony_ci		return ret;
78662306a36Sopenharmony_ci
78762306a36Sopenharmony_ci	return data->cd->write_gain_sel(data, ret);
78862306a36Sopenharmony_ci}
78962306a36Sopenharmony_ci
79062306a36Sopenharmony_cistatic int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel)
79162306a36Sopenharmony_ci{
79262306a36Sopenharmony_ci	int ret, val;
79362306a36Sopenharmony_ci
79462306a36Sopenharmony_ci	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val);
79562306a36Sopenharmony_ci	if (ret)
79662306a36Sopenharmony_ci		return ret;
79762306a36Sopenharmony_ci
79862306a36Sopenharmony_ci	val &= data->cd->int_time_mask;
79962306a36Sopenharmony_ci	val >>= ffs(data->cd->int_time_mask) - 1;
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_ci	*sel = val;
80262306a36Sopenharmony_ci
80362306a36Sopenharmony_ci	return 0;
80462306a36Sopenharmony_ci}
80562306a36Sopenharmony_ci
80662306a36Sopenharmony_cistatic int bu27008_set_int_time_sel(struct bu27008_data *data, int sel)
80762306a36Sopenharmony_ci{
80862306a36Sopenharmony_ci	sel <<= ffs(data->cd->int_time_mask) - 1;
80962306a36Sopenharmony_ci
81062306a36Sopenharmony_ci	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
81162306a36Sopenharmony_ci				  data->cd->int_time_mask, sel);
81262306a36Sopenharmony_ci}
81362306a36Sopenharmony_ci
81462306a36Sopenharmony_cistatic int bu27008_get_int_time_us(struct bu27008_data *data)
81562306a36Sopenharmony_ci{
81662306a36Sopenharmony_ci	int ret, sel;
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci	ret = bu27008_get_int_time_sel(data, &sel);
81962306a36Sopenharmony_ci	if (ret)
82062306a36Sopenharmony_ci		return ret;
82162306a36Sopenharmony_ci
82262306a36Sopenharmony_ci	return iio_gts_find_int_time_by_sel(&data->gts, sel);
82362306a36Sopenharmony_ci}
82462306a36Sopenharmony_ci
82562306a36Sopenharmony_cistatic int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
82662306a36Sopenharmony_ci			      int *val2)
82762306a36Sopenharmony_ci{
82862306a36Sopenharmony_ci	struct iio_gts *gts;
82962306a36Sopenharmony_ci	int gain, ret;
83062306a36Sopenharmony_ci
83162306a36Sopenharmony_ci	if (ir)
83262306a36Sopenharmony_ci		gts = &data->gts_ir;
83362306a36Sopenharmony_ci	else
83462306a36Sopenharmony_ci		gts = &data->gts;
83562306a36Sopenharmony_ci
83662306a36Sopenharmony_ci	ret = bu27008_get_gain(data, gts, &gain);
83762306a36Sopenharmony_ci	if (ret)
83862306a36Sopenharmony_ci		return ret;
83962306a36Sopenharmony_ci
84062306a36Sopenharmony_ci	ret = bu27008_get_int_time_us(data);
84162306a36Sopenharmony_ci	if (ret < 0)
84262306a36Sopenharmony_ci		return ret;
84362306a36Sopenharmony_ci
84462306a36Sopenharmony_ci	return iio_gts_get_scale(gts, gain, ret, val, val2);
84562306a36Sopenharmony_ci}
84662306a36Sopenharmony_ci
84762306a36Sopenharmony_cistatic int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
84862306a36Sopenharmony_ci			     int *val2)
84962306a36Sopenharmony_ci{
85062306a36Sopenharmony_ci	int ret;
85162306a36Sopenharmony_ci
85262306a36Sopenharmony_ci	mutex_lock(&data->mutex);
85362306a36Sopenharmony_ci	ret = _bu27008_get_scale(data, ir, val, val2);
85462306a36Sopenharmony_ci	mutex_unlock(&data->mutex);
85562306a36Sopenharmony_ci
85662306a36Sopenharmony_ci	return ret;
85762306a36Sopenharmony_ci}
85862306a36Sopenharmony_ci
85962306a36Sopenharmony_cistatic int bu27008_set_int_time(struct bu27008_data *data, int time)
86062306a36Sopenharmony_ci{
86162306a36Sopenharmony_ci	int ret;
86262306a36Sopenharmony_ci
86362306a36Sopenharmony_ci	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
86462306a36Sopenharmony_ci	if (ret < 0)
86562306a36Sopenharmony_ci		return ret;
86662306a36Sopenharmony_ci
86762306a36Sopenharmony_ci	return bu27008_set_int_time_sel(data, ret);
86862306a36Sopenharmony_ci}
86962306a36Sopenharmony_ci
87062306a36Sopenharmony_ci/* Try to change the time so that the scale is maintained */
87162306a36Sopenharmony_cistatic int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new)
87262306a36Sopenharmony_ci{
87362306a36Sopenharmony_ci	int ret, old_time_sel, new_time_sel,  old_gain, new_gain;
87462306a36Sopenharmony_ci
87562306a36Sopenharmony_ci	mutex_lock(&data->mutex);
87662306a36Sopenharmony_ci
87762306a36Sopenharmony_ci	ret = bu27008_get_int_time_sel(data, &old_time_sel);
87862306a36Sopenharmony_ci	if (ret < 0)
87962306a36Sopenharmony_ci		goto unlock_out;
88062306a36Sopenharmony_ci
88162306a36Sopenharmony_ci	if (!iio_gts_valid_time(&data->gts, int_time_new)) {
88262306a36Sopenharmony_ci		dev_dbg(data->dev, "Unsupported integration time %u\n",
88362306a36Sopenharmony_ci			int_time_new);
88462306a36Sopenharmony_ci
88562306a36Sopenharmony_ci		ret = -EINVAL;
88662306a36Sopenharmony_ci		goto unlock_out;
88762306a36Sopenharmony_ci	}
88862306a36Sopenharmony_ci
88962306a36Sopenharmony_ci	/* If we already use requested time, then we're done */
89062306a36Sopenharmony_ci	new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new);
89162306a36Sopenharmony_ci	if (new_time_sel == old_time_sel)
89262306a36Sopenharmony_ci		goto unlock_out;
89362306a36Sopenharmony_ci
89462306a36Sopenharmony_ci	ret = bu27008_get_gain(data, &data->gts, &old_gain);
89562306a36Sopenharmony_ci	if (ret)
89662306a36Sopenharmony_ci		goto unlock_out;
89762306a36Sopenharmony_ci
89862306a36Sopenharmony_ci	ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain,
89962306a36Sopenharmony_ci				old_time_sel, new_time_sel, &new_gain);
90062306a36Sopenharmony_ci	if (ret) {
90162306a36Sopenharmony_ci		int scale1, scale2;
90262306a36Sopenharmony_ci		bool ok;
90362306a36Sopenharmony_ci
90462306a36Sopenharmony_ci		_bu27008_get_scale(data, false, &scale1, &scale2);
90562306a36Sopenharmony_ci		dev_dbg(data->dev,
90662306a36Sopenharmony_ci			"Can't support time %u with current scale %u %u\n",
90762306a36Sopenharmony_ci			int_time_new, scale1, scale2);
90862306a36Sopenharmony_ci
90962306a36Sopenharmony_ci		if (new_gain < 0)
91062306a36Sopenharmony_ci			goto unlock_out;
91162306a36Sopenharmony_ci
91262306a36Sopenharmony_ci		/*
91362306a36Sopenharmony_ci		 * If caller requests for integration time change and we
91462306a36Sopenharmony_ci		 * can't support the scale - then the caller should be
91562306a36Sopenharmony_ci		 * prepared to 'pick up the pieces and deal with the
91662306a36Sopenharmony_ci		 * fact that the scale changed'.
91762306a36Sopenharmony_ci		 */
91862306a36Sopenharmony_ci		ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok);
91962306a36Sopenharmony_ci		if (!ok)
92062306a36Sopenharmony_ci			dev_dbg(data->dev, "optimal gain out of range\n");
92162306a36Sopenharmony_ci
92262306a36Sopenharmony_ci		if (ret < 0) {
92362306a36Sopenharmony_ci			dev_dbg(data->dev,
92462306a36Sopenharmony_ci				 "Total gain increase. Risk of saturation");
92562306a36Sopenharmony_ci			ret = iio_gts_get_min_gain(&data->gts);
92662306a36Sopenharmony_ci			if (ret < 0)
92762306a36Sopenharmony_ci				goto unlock_out;
92862306a36Sopenharmony_ci		}
92962306a36Sopenharmony_ci		new_gain = ret;
93062306a36Sopenharmony_ci		dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain);
93162306a36Sopenharmony_ci	}
93262306a36Sopenharmony_ci
93362306a36Sopenharmony_ci	ret = bu27008_set_gain(data, new_gain);
93462306a36Sopenharmony_ci	if (ret)
93562306a36Sopenharmony_ci		goto unlock_out;
93662306a36Sopenharmony_ci
93762306a36Sopenharmony_ci	ret = bu27008_set_int_time(data, int_time_new);
93862306a36Sopenharmony_ci
93962306a36Sopenharmony_ciunlock_out:
94062306a36Sopenharmony_ci	mutex_unlock(&data->mutex);
94162306a36Sopenharmony_ci
94262306a36Sopenharmony_ci	return ret;
94362306a36Sopenharmony_ci}
94462306a36Sopenharmony_ci
94562306a36Sopenharmony_cistatic int bu27008_meas_set(struct bu27008_data *data, bool enable)
94662306a36Sopenharmony_ci{
94762306a36Sopenharmony_ci	if (enable)
94862306a36Sopenharmony_ci		return regmap_set_bits(data->regmap, data->cd->meas_en_reg,
94962306a36Sopenharmony_ci				       data->cd->meas_en_mask);
95062306a36Sopenharmony_ci	return regmap_clear_bits(data->regmap, data->cd->meas_en_reg,
95162306a36Sopenharmony_ci				 data->cd->meas_en_mask);
95262306a36Sopenharmony_ci}
95362306a36Sopenharmony_ci
95462306a36Sopenharmony_cistatic int bu27008_chan_cfg(struct bu27008_data *data,
95562306a36Sopenharmony_ci			    struct iio_chan_spec const *chan)
95662306a36Sopenharmony_ci{
95762306a36Sopenharmony_ci	int chan_sel;
95862306a36Sopenharmony_ci
95962306a36Sopenharmony_ci	if (chan->scan_index == BU27008_BLUE)
96062306a36Sopenharmony_ci		chan_sel = BU27008_BLUE2_CLEAR3;
96162306a36Sopenharmony_ci	else
96262306a36Sopenharmony_ci		chan_sel = BU27008_CLEAR2_IR3;
96362306a36Sopenharmony_ci
96462306a36Sopenharmony_ci	/*
96562306a36Sopenharmony_ci	 * prepare bitfield for channel sel. The FIELD_PREP works only when
96662306a36Sopenharmony_ci	 * mask is constant. In our case the mask is assigned based on the
96762306a36Sopenharmony_ci	 * chip type. Hence the open-coded FIELD_PREP here. We don't bother
96862306a36Sopenharmony_ci	 * zeroing the irrelevant bits though - update_bits takes care of that.
96962306a36Sopenharmony_ci	 */
97062306a36Sopenharmony_ci	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
97162306a36Sopenharmony_ci
97262306a36Sopenharmony_ci	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
97362306a36Sopenharmony_ci				  BU27008_MASK_CHAN_SEL, chan_sel);
97462306a36Sopenharmony_ci}
97562306a36Sopenharmony_ci
97662306a36Sopenharmony_cistatic int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev,
97762306a36Sopenharmony_ci			    struct iio_chan_spec const *chan, int *val, int *val2)
97862306a36Sopenharmony_ci{
97962306a36Sopenharmony_ci	int ret, int_time;
98062306a36Sopenharmony_ci
98162306a36Sopenharmony_ci	ret = bu27008_chan_cfg(data, chan);
98262306a36Sopenharmony_ci	if (ret)
98362306a36Sopenharmony_ci		return ret;
98462306a36Sopenharmony_ci
98562306a36Sopenharmony_ci	ret = bu27008_meas_set(data, true);
98662306a36Sopenharmony_ci	if (ret)
98762306a36Sopenharmony_ci		return ret;
98862306a36Sopenharmony_ci
98962306a36Sopenharmony_ci	ret = bu27008_get_int_time_us(data);
99062306a36Sopenharmony_ci	if (ret < 0)
99162306a36Sopenharmony_ci		int_time = BU27008_MEAS_TIME_MAX_MS;
99262306a36Sopenharmony_ci	else
99362306a36Sopenharmony_ci		int_time = ret / USEC_PER_MSEC;
99462306a36Sopenharmony_ci
99562306a36Sopenharmony_ci	msleep(int_time);
99662306a36Sopenharmony_ci
99762306a36Sopenharmony_ci	ret = bu27008_chan_read_data(data, chan->address, val);
99862306a36Sopenharmony_ci	if (!ret)
99962306a36Sopenharmony_ci		ret = IIO_VAL_INT;
100062306a36Sopenharmony_ci
100162306a36Sopenharmony_ci	if (bu27008_meas_set(data, false))
100262306a36Sopenharmony_ci		dev_warn(data->dev, "measurement disabling failed\n");
100362306a36Sopenharmony_ci
100462306a36Sopenharmony_ci	return ret;
100562306a36Sopenharmony_ci}
100662306a36Sopenharmony_ci
100762306a36Sopenharmony_cistatic int bu27008_read_raw(struct iio_dev *idev,
100862306a36Sopenharmony_ci			   struct iio_chan_spec const *chan,
100962306a36Sopenharmony_ci			   int *val, int *val2, long mask)
101062306a36Sopenharmony_ci{
101162306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
101262306a36Sopenharmony_ci	int busy, ret;
101362306a36Sopenharmony_ci
101462306a36Sopenharmony_ci	switch (mask) {
101562306a36Sopenharmony_ci	case IIO_CHAN_INFO_RAW:
101662306a36Sopenharmony_ci		busy = iio_device_claim_direct_mode(idev);
101762306a36Sopenharmony_ci		if (busy)
101862306a36Sopenharmony_ci			return -EBUSY;
101962306a36Sopenharmony_ci
102062306a36Sopenharmony_ci		mutex_lock(&data->mutex);
102162306a36Sopenharmony_ci		ret = bu27008_read_one(data, idev, chan, val, val2);
102262306a36Sopenharmony_ci		mutex_unlock(&data->mutex);
102362306a36Sopenharmony_ci
102462306a36Sopenharmony_ci		iio_device_release_direct_mode(idev);
102562306a36Sopenharmony_ci
102662306a36Sopenharmony_ci		return ret;
102762306a36Sopenharmony_ci
102862306a36Sopenharmony_ci	case IIO_CHAN_INFO_SCALE:
102962306a36Sopenharmony_ci		ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR,
103062306a36Sopenharmony_ci					val, val2);
103162306a36Sopenharmony_ci		if (ret)
103262306a36Sopenharmony_ci			return ret;
103362306a36Sopenharmony_ci
103462306a36Sopenharmony_ci		return IIO_VAL_INT_PLUS_NANO;
103562306a36Sopenharmony_ci
103662306a36Sopenharmony_ci	case IIO_CHAN_INFO_INT_TIME:
103762306a36Sopenharmony_ci		ret = bu27008_get_int_time_us(data);
103862306a36Sopenharmony_ci		if (ret < 0)
103962306a36Sopenharmony_ci			return ret;
104062306a36Sopenharmony_ci
104162306a36Sopenharmony_ci		*val = 0;
104262306a36Sopenharmony_ci		*val2 = ret;
104362306a36Sopenharmony_ci
104462306a36Sopenharmony_ci		return IIO_VAL_INT_PLUS_MICRO;
104562306a36Sopenharmony_ci
104662306a36Sopenharmony_ci	default:
104762306a36Sopenharmony_ci		return -EINVAL;
104862306a36Sopenharmony_ci	}
104962306a36Sopenharmony_ci}
105062306a36Sopenharmony_ci
105162306a36Sopenharmony_ci/* Called if the new scale could not be supported with existing int-time */
105262306a36Sopenharmony_cistatic int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val,
105362306a36Sopenharmony_ci					  int val2, int *gain_sel)
105462306a36Sopenharmony_ci{
105562306a36Sopenharmony_ci	int i, ret, new_time_sel;
105662306a36Sopenharmony_ci
105762306a36Sopenharmony_ci	for (i = 0; i < data->gts.num_itime; i++) {
105862306a36Sopenharmony_ci		new_time_sel = data->gts.itime_table[i].sel;
105962306a36Sopenharmony_ci		ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
106062306a36Sopenharmony_ci					new_time_sel, val, val2, gain_sel);
106162306a36Sopenharmony_ci		if (!ret)
106262306a36Sopenharmony_ci			break;
106362306a36Sopenharmony_ci	}
106462306a36Sopenharmony_ci	if (i == data->gts.num_itime) {
106562306a36Sopenharmony_ci		dev_err(data->dev, "Can't support scale %u %u\n", val, val2);
106662306a36Sopenharmony_ci
106762306a36Sopenharmony_ci		return -EINVAL;
106862306a36Sopenharmony_ci	}
106962306a36Sopenharmony_ci
107062306a36Sopenharmony_ci	return bu27008_set_int_time_sel(data, new_time_sel);
107162306a36Sopenharmony_ci}
107262306a36Sopenharmony_ci
107362306a36Sopenharmony_cistatic int bu27008_set_scale(struct bu27008_data *data,
107462306a36Sopenharmony_ci			     struct iio_chan_spec const *chan,
107562306a36Sopenharmony_ci			     int val, int val2)
107662306a36Sopenharmony_ci{
107762306a36Sopenharmony_ci	int ret, gain_sel, time_sel;
107862306a36Sopenharmony_ci
107962306a36Sopenharmony_ci	if (chan->scan_index == BU27008_IR)
108062306a36Sopenharmony_ci		return -EINVAL;
108162306a36Sopenharmony_ci
108262306a36Sopenharmony_ci	mutex_lock(&data->mutex);
108362306a36Sopenharmony_ci
108462306a36Sopenharmony_ci	ret = bu27008_get_int_time_sel(data, &time_sel);
108562306a36Sopenharmony_ci	if (ret < 0)
108662306a36Sopenharmony_ci		goto unlock_out;
108762306a36Sopenharmony_ci
108862306a36Sopenharmony_ci	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
108962306a36Sopenharmony_ci						val, val2, &gain_sel);
109062306a36Sopenharmony_ci	if (ret) {
109162306a36Sopenharmony_ci		ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel);
109262306a36Sopenharmony_ci		if (ret)
109362306a36Sopenharmony_ci			goto unlock_out;
109462306a36Sopenharmony_ci
109562306a36Sopenharmony_ci	}
109662306a36Sopenharmony_ci	ret = data->cd->write_gain_sel(data, gain_sel);
109762306a36Sopenharmony_ci
109862306a36Sopenharmony_ciunlock_out:
109962306a36Sopenharmony_ci	mutex_unlock(&data->mutex);
110062306a36Sopenharmony_ci
110162306a36Sopenharmony_ci	return ret;
110262306a36Sopenharmony_ci}
110362306a36Sopenharmony_ci
110462306a36Sopenharmony_cistatic int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev,
110562306a36Sopenharmony_ci				     struct iio_chan_spec const *chan,
110662306a36Sopenharmony_ci				     long mask)
110762306a36Sopenharmony_ci{
110862306a36Sopenharmony_ci
110962306a36Sopenharmony_ci	switch (mask) {
111062306a36Sopenharmony_ci	case IIO_CHAN_INFO_SCALE:
111162306a36Sopenharmony_ci		return IIO_VAL_INT_PLUS_NANO;
111262306a36Sopenharmony_ci	case IIO_CHAN_INFO_INT_TIME:
111362306a36Sopenharmony_ci		return IIO_VAL_INT_PLUS_MICRO;
111462306a36Sopenharmony_ci	default:
111562306a36Sopenharmony_ci		return -EINVAL;
111662306a36Sopenharmony_ci	}
111762306a36Sopenharmony_ci}
111862306a36Sopenharmony_ci
111962306a36Sopenharmony_cistatic int bu27008_write_raw(struct iio_dev *idev,
112062306a36Sopenharmony_ci			     struct iio_chan_spec const *chan,
112162306a36Sopenharmony_ci			     int val, int val2, long mask)
112262306a36Sopenharmony_ci{
112362306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
112462306a36Sopenharmony_ci	int ret;
112562306a36Sopenharmony_ci
112662306a36Sopenharmony_ci	/*
112762306a36Sopenharmony_ci	 * Do not allow changing scale when measurement is ongoing as doing so
112862306a36Sopenharmony_ci	 * could make values in the buffer inconsistent.
112962306a36Sopenharmony_ci	 */
113062306a36Sopenharmony_ci	ret = iio_device_claim_direct_mode(idev);
113162306a36Sopenharmony_ci	if (ret)
113262306a36Sopenharmony_ci		return ret;
113362306a36Sopenharmony_ci
113462306a36Sopenharmony_ci	switch (mask) {
113562306a36Sopenharmony_ci	case IIO_CHAN_INFO_SCALE:
113662306a36Sopenharmony_ci		ret = bu27008_set_scale(data, chan, val, val2);
113762306a36Sopenharmony_ci		break;
113862306a36Sopenharmony_ci	case IIO_CHAN_INFO_INT_TIME:
113962306a36Sopenharmony_ci		if (val) {
114062306a36Sopenharmony_ci			ret = -EINVAL;
114162306a36Sopenharmony_ci			break;
114262306a36Sopenharmony_ci		}
114362306a36Sopenharmony_ci		ret = bu27008_try_set_int_time(data, val2);
114462306a36Sopenharmony_ci		break;
114562306a36Sopenharmony_ci	default:
114662306a36Sopenharmony_ci		ret = -EINVAL;
114762306a36Sopenharmony_ci		break;
114862306a36Sopenharmony_ci	}
114962306a36Sopenharmony_ci	iio_device_release_direct_mode(idev);
115062306a36Sopenharmony_ci
115162306a36Sopenharmony_ci	return ret;
115262306a36Sopenharmony_ci}
115362306a36Sopenharmony_ci
115462306a36Sopenharmony_cistatic int bu27008_read_avail(struct iio_dev *idev,
115562306a36Sopenharmony_ci			      struct iio_chan_spec const *chan, const int **vals,
115662306a36Sopenharmony_ci			      int *type, int *length, long mask)
115762306a36Sopenharmony_ci{
115862306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
115962306a36Sopenharmony_ci
116062306a36Sopenharmony_ci	switch (mask) {
116162306a36Sopenharmony_ci	case IIO_CHAN_INFO_INT_TIME:
116262306a36Sopenharmony_ci		return iio_gts_avail_times(&data->gts, vals, type, length);
116362306a36Sopenharmony_ci	case IIO_CHAN_INFO_SCALE:
116462306a36Sopenharmony_ci		if (chan->channel2 == IIO_MOD_LIGHT_IR)
116562306a36Sopenharmony_ci			return iio_gts_all_avail_scales(&data->gts_ir, vals,
116662306a36Sopenharmony_ci							type, length);
116762306a36Sopenharmony_ci		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
116862306a36Sopenharmony_ci	default:
116962306a36Sopenharmony_ci		return -EINVAL;
117062306a36Sopenharmony_ci	}
117162306a36Sopenharmony_ci}
117262306a36Sopenharmony_ci
117362306a36Sopenharmony_cistatic int bu27008_update_scan_mode(struct iio_dev *idev,
117462306a36Sopenharmony_ci				    const unsigned long *scan_mask)
117562306a36Sopenharmony_ci{
117662306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
117762306a36Sopenharmony_ci	int chan_sel;
117862306a36Sopenharmony_ci
117962306a36Sopenharmony_ci	/* Configure channel selection */
118062306a36Sopenharmony_ci	if (test_bit(BU27008_BLUE, idev->active_scan_mask)) {
118162306a36Sopenharmony_ci		if (test_bit(BU27008_CLEAR, idev->active_scan_mask))
118262306a36Sopenharmony_ci			chan_sel = BU27008_BLUE2_CLEAR3;
118362306a36Sopenharmony_ci		else
118462306a36Sopenharmony_ci			chan_sel = BU27008_BLUE2_IR3;
118562306a36Sopenharmony_ci	} else {
118662306a36Sopenharmony_ci		chan_sel = BU27008_CLEAR2_IR3;
118762306a36Sopenharmony_ci	}
118862306a36Sopenharmony_ci
118962306a36Sopenharmony_ci	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
119062306a36Sopenharmony_ci
119162306a36Sopenharmony_ci	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
119262306a36Sopenharmony_ci				  data->cd->chan_sel_mask, chan_sel);
119362306a36Sopenharmony_ci}
119462306a36Sopenharmony_ci
119562306a36Sopenharmony_cistatic const struct iio_info bu27008_info = {
119662306a36Sopenharmony_ci	.read_raw = &bu27008_read_raw,
119762306a36Sopenharmony_ci	.write_raw = &bu27008_write_raw,
119862306a36Sopenharmony_ci	.write_raw_get_fmt = &bu27008_write_raw_get_fmt,
119962306a36Sopenharmony_ci	.read_avail = &bu27008_read_avail,
120062306a36Sopenharmony_ci	.update_scan_mode = bu27008_update_scan_mode,
120162306a36Sopenharmony_ci	.validate_trigger = iio_validate_own_trigger,
120262306a36Sopenharmony_ci};
120362306a36Sopenharmony_ci
120462306a36Sopenharmony_cistatic int bu27008_trigger_set_state(struct iio_trigger *trig, bool state)
120562306a36Sopenharmony_ci{
120662306a36Sopenharmony_ci	struct bu27008_data *data = iio_trigger_get_drvdata(trig);
120762306a36Sopenharmony_ci	int ret;
120862306a36Sopenharmony_ci
120962306a36Sopenharmony_ci
121062306a36Sopenharmony_ci	if (state)
121162306a36Sopenharmony_ci		ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg,
121262306a36Sopenharmony_ci				      data->cd->drdy_en_mask);
121362306a36Sopenharmony_ci	else
121462306a36Sopenharmony_ci		ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg,
121562306a36Sopenharmony_ci					data->cd->drdy_en_mask);
121662306a36Sopenharmony_ci	if (ret)
121762306a36Sopenharmony_ci		dev_err(data->dev, "Failed to set trigger state\n");
121862306a36Sopenharmony_ci
121962306a36Sopenharmony_ci	return ret;
122062306a36Sopenharmony_ci}
122162306a36Sopenharmony_ci
122262306a36Sopenharmony_cistatic void bu27008_trigger_reenable(struct iio_trigger *trig)
122362306a36Sopenharmony_ci{
122462306a36Sopenharmony_ci	struct bu27008_data *data = iio_trigger_get_drvdata(trig);
122562306a36Sopenharmony_ci
122662306a36Sopenharmony_ci	enable_irq(data->irq);
122762306a36Sopenharmony_ci}
122862306a36Sopenharmony_ci
122962306a36Sopenharmony_cistatic const struct iio_trigger_ops bu27008_trigger_ops = {
123062306a36Sopenharmony_ci	.set_trigger_state = bu27008_trigger_set_state,
123162306a36Sopenharmony_ci	.reenable = bu27008_trigger_reenable,
123262306a36Sopenharmony_ci};
123362306a36Sopenharmony_ci
123462306a36Sopenharmony_cistatic irqreturn_t bu27008_trigger_handler(int irq, void *p)
123562306a36Sopenharmony_ci{
123662306a36Sopenharmony_ci	struct iio_poll_func *pf = p;
123762306a36Sopenharmony_ci	struct iio_dev *idev = pf->indio_dev;
123862306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
123962306a36Sopenharmony_ci	struct {
124062306a36Sopenharmony_ci		__le16 chan[BU27008_NUM_HW_CHANS];
124162306a36Sopenharmony_ci		s64 ts __aligned(8);
124262306a36Sopenharmony_ci	} raw;
124362306a36Sopenharmony_ci	int ret, dummy;
124462306a36Sopenharmony_ci
124562306a36Sopenharmony_ci	memset(&raw, 0, sizeof(raw));
124662306a36Sopenharmony_ci
124762306a36Sopenharmony_ci	/*
124862306a36Sopenharmony_ci	 * After some measurements, it seems reading the
124962306a36Sopenharmony_ci	 * BU27008_REG_MODE_CONTROL3 debounces the IRQ line
125062306a36Sopenharmony_ci	 */
125162306a36Sopenharmony_ci	ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy);
125262306a36Sopenharmony_ci	if (ret < 0)
125362306a36Sopenharmony_ci		goto err_read;
125462306a36Sopenharmony_ci
125562306a36Sopenharmony_ci	ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan,
125662306a36Sopenharmony_ci			       sizeof(raw.chan));
125762306a36Sopenharmony_ci	if (ret < 0)
125862306a36Sopenharmony_ci		goto err_read;
125962306a36Sopenharmony_ci
126062306a36Sopenharmony_ci	iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
126162306a36Sopenharmony_cierr_read:
126262306a36Sopenharmony_ci	iio_trigger_notify_done(idev->trig);
126362306a36Sopenharmony_ci
126462306a36Sopenharmony_ci	return IRQ_HANDLED;
126562306a36Sopenharmony_ci}
126662306a36Sopenharmony_ci
126762306a36Sopenharmony_cistatic int bu27008_buffer_preenable(struct iio_dev *idev)
126862306a36Sopenharmony_ci{
126962306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
127062306a36Sopenharmony_ci
127162306a36Sopenharmony_ci	return bu27008_meas_set(data, true);
127262306a36Sopenharmony_ci}
127362306a36Sopenharmony_ci
127462306a36Sopenharmony_cistatic int bu27008_buffer_postdisable(struct iio_dev *idev)
127562306a36Sopenharmony_ci{
127662306a36Sopenharmony_ci	struct bu27008_data *data = iio_priv(idev);
127762306a36Sopenharmony_ci
127862306a36Sopenharmony_ci	return bu27008_meas_set(data, false);
127962306a36Sopenharmony_ci}
128062306a36Sopenharmony_ci
128162306a36Sopenharmony_cistatic const struct iio_buffer_setup_ops bu27008_buffer_ops = {
128262306a36Sopenharmony_ci	.preenable = bu27008_buffer_preenable,
128362306a36Sopenharmony_ci	.postdisable = bu27008_buffer_postdisable,
128462306a36Sopenharmony_ci};
128562306a36Sopenharmony_ci
128662306a36Sopenharmony_cistatic irqreturn_t bu27008_data_rdy_poll(int irq, void *private)
128762306a36Sopenharmony_ci{
128862306a36Sopenharmony_ci	/*
128962306a36Sopenharmony_ci	 * The BU27008 keeps IRQ asserted until we read the VALID bit from
129062306a36Sopenharmony_ci	 * a register. We need to keep the IRQ disabled until then.
129162306a36Sopenharmony_ci	 */
129262306a36Sopenharmony_ci	disable_irq_nosync(irq);
129362306a36Sopenharmony_ci	iio_trigger_poll(private);
129462306a36Sopenharmony_ci
129562306a36Sopenharmony_ci	return IRQ_HANDLED;
129662306a36Sopenharmony_ci}
129762306a36Sopenharmony_ci
129862306a36Sopenharmony_cistatic int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev)
129962306a36Sopenharmony_ci{
130062306a36Sopenharmony_ci	struct iio_trigger *itrig;
130162306a36Sopenharmony_ci	char *name;
130262306a36Sopenharmony_ci	int ret;
130362306a36Sopenharmony_ci
130462306a36Sopenharmony_ci	ret = devm_iio_triggered_buffer_setup(data->dev, idev,
130562306a36Sopenharmony_ci					      &iio_pollfunc_store_time,
130662306a36Sopenharmony_ci					      bu27008_trigger_handler,
130762306a36Sopenharmony_ci					      &bu27008_buffer_ops);
130862306a36Sopenharmony_ci	if (ret)
130962306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret,
131062306a36Sopenharmony_ci			     "iio_triggered_buffer_setup_ext FAIL\n");
131162306a36Sopenharmony_ci
131262306a36Sopenharmony_ci	itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d",
131362306a36Sopenharmony_ci				       idev->name, iio_device_id(idev));
131462306a36Sopenharmony_ci	if (!itrig)
131562306a36Sopenharmony_ci		return -ENOMEM;
131662306a36Sopenharmony_ci
131762306a36Sopenharmony_ci	data->trig = itrig;
131862306a36Sopenharmony_ci
131962306a36Sopenharmony_ci	itrig->ops = &bu27008_trigger_ops;
132062306a36Sopenharmony_ci	iio_trigger_set_drvdata(itrig, data);
132162306a36Sopenharmony_ci
132262306a36Sopenharmony_ci	name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008",
132362306a36Sopenharmony_ci			      dev_name(data->dev));
132462306a36Sopenharmony_ci
132562306a36Sopenharmony_ci	ret = devm_request_irq(data->dev, data->irq,
132662306a36Sopenharmony_ci			       &bu27008_data_rdy_poll,
132762306a36Sopenharmony_ci			       0, name, itrig);
132862306a36Sopenharmony_ci	if (ret)
132962306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
133062306a36Sopenharmony_ci
133162306a36Sopenharmony_ci	ret = devm_iio_trigger_register(data->dev, itrig);
133262306a36Sopenharmony_ci	if (ret)
133362306a36Sopenharmony_ci		return dev_err_probe(data->dev, ret,
133462306a36Sopenharmony_ci				     "Trigger registration failed\n");
133562306a36Sopenharmony_ci
133662306a36Sopenharmony_ci	/* set default trigger */
133762306a36Sopenharmony_ci	idev->trig = iio_trigger_get(itrig);
133862306a36Sopenharmony_ci
133962306a36Sopenharmony_ci	return 0;
134062306a36Sopenharmony_ci}
134162306a36Sopenharmony_ci
134262306a36Sopenharmony_cistatic int bu27008_probe(struct i2c_client *i2c)
134362306a36Sopenharmony_ci{
134462306a36Sopenharmony_ci	struct device *dev = &i2c->dev;
134562306a36Sopenharmony_ci	struct bu27008_data *data;
134662306a36Sopenharmony_ci	struct regmap *regmap;
134762306a36Sopenharmony_ci	unsigned int part_id, reg;
134862306a36Sopenharmony_ci	struct iio_dev *idev;
134962306a36Sopenharmony_ci	int ret;
135062306a36Sopenharmony_ci
135162306a36Sopenharmony_ci	idev = devm_iio_device_alloc(dev, sizeof(*data));
135262306a36Sopenharmony_ci	if (!idev)
135362306a36Sopenharmony_ci		return -ENOMEM;
135462306a36Sopenharmony_ci
135562306a36Sopenharmony_ci	ret = devm_regulator_get_enable(dev, "vdd");
135662306a36Sopenharmony_ci	if (ret)
135762306a36Sopenharmony_ci		return dev_err_probe(dev, ret, "Failed to get regulator\n");
135862306a36Sopenharmony_ci
135962306a36Sopenharmony_ci	data = iio_priv(idev);
136062306a36Sopenharmony_ci
136162306a36Sopenharmony_ci	data->cd = device_get_match_data(&i2c->dev);
136262306a36Sopenharmony_ci	if (!data->cd)
136362306a36Sopenharmony_ci		return -ENODEV;
136462306a36Sopenharmony_ci
136562306a36Sopenharmony_ci	regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg);
136662306a36Sopenharmony_ci	if (IS_ERR(regmap))
136762306a36Sopenharmony_ci		return dev_err_probe(dev, PTR_ERR(regmap),
136862306a36Sopenharmony_ci				     "Failed to initialize Regmap\n");
136962306a36Sopenharmony_ci
137062306a36Sopenharmony_ci
137162306a36Sopenharmony_ci	ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, &reg);
137262306a36Sopenharmony_ci	if (ret)
137362306a36Sopenharmony_ci		return dev_err_probe(dev, ret, "Failed to access sensor\n");
137462306a36Sopenharmony_ci
137562306a36Sopenharmony_ci	part_id = FIELD_GET(BU27008_MASK_PART_ID, reg);
137662306a36Sopenharmony_ci
137762306a36Sopenharmony_ci	if (part_id != data->cd->part_id)
137862306a36Sopenharmony_ci		dev_warn(dev, "unknown device 0x%x\n", part_id);
137962306a36Sopenharmony_ci
138062306a36Sopenharmony_ci	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains,
138162306a36Sopenharmony_ci				    data->cd->num_gains, data->cd->itimes,
138262306a36Sopenharmony_ci				    data->cd->num_itimes, &data->gts);
138362306a36Sopenharmony_ci	if (ret)
138462306a36Sopenharmony_ci		return ret;
138562306a36Sopenharmony_ci
138662306a36Sopenharmony_ci	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir,
138762306a36Sopenharmony_ci				    data->cd->num_gains_ir, data->cd->itimes,
138862306a36Sopenharmony_ci				    data->cd->num_itimes, &data->gts_ir);
138962306a36Sopenharmony_ci	if (ret)
139062306a36Sopenharmony_ci		return ret;
139162306a36Sopenharmony_ci
139262306a36Sopenharmony_ci	mutex_init(&data->mutex);
139362306a36Sopenharmony_ci	data->regmap = regmap;
139462306a36Sopenharmony_ci	data->dev = dev;
139562306a36Sopenharmony_ci	data->irq = i2c->irq;
139662306a36Sopenharmony_ci
139762306a36Sopenharmony_ci	idev->channels = bu27008_channels;
139862306a36Sopenharmony_ci	idev->num_channels = ARRAY_SIZE(bu27008_channels);
139962306a36Sopenharmony_ci	idev->name = data->cd->name;
140062306a36Sopenharmony_ci	idev->info = &bu27008_info;
140162306a36Sopenharmony_ci	idev->modes = INDIO_DIRECT_MODE;
140262306a36Sopenharmony_ci	idev->available_scan_masks = bu27008_scan_masks;
140362306a36Sopenharmony_ci
140462306a36Sopenharmony_ci	ret = data->cd->chip_init(data);
140562306a36Sopenharmony_ci	if (ret)
140662306a36Sopenharmony_ci		return ret;
140762306a36Sopenharmony_ci
140862306a36Sopenharmony_ci	if (i2c->irq) {
140962306a36Sopenharmony_ci		ret = bu27008_setup_trigger(data, idev);
141062306a36Sopenharmony_ci		if (ret)
141162306a36Sopenharmony_ci			return ret;
141262306a36Sopenharmony_ci	} else {
141362306a36Sopenharmony_ci		dev_info(dev, "No IRQ, buffered mode disabled\n");
141462306a36Sopenharmony_ci	}
141562306a36Sopenharmony_ci
141662306a36Sopenharmony_ci	ret = devm_iio_device_register(dev, idev);
141762306a36Sopenharmony_ci	if (ret)
141862306a36Sopenharmony_ci		return dev_err_probe(dev, ret,
141962306a36Sopenharmony_ci				     "Unable to register iio device\n");
142062306a36Sopenharmony_ci
142162306a36Sopenharmony_ci	return 0;
142262306a36Sopenharmony_ci}
142362306a36Sopenharmony_ci
142462306a36Sopenharmony_cistatic const struct of_device_id bu27008_of_match[] = {
142562306a36Sopenharmony_ci	{ .compatible = "rohm,bu27008", .data = &bu27008_chip },
142662306a36Sopenharmony_ci	{ .compatible = "rohm,bu27010", .data = &bu27010_chip },
142762306a36Sopenharmony_ci	{ }
142862306a36Sopenharmony_ci};
142962306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, bu27008_of_match);
143062306a36Sopenharmony_ci
143162306a36Sopenharmony_cistatic struct i2c_driver bu27008_i2c_driver = {
143262306a36Sopenharmony_ci	.driver = {
143362306a36Sopenharmony_ci		.name = "bu27008",
143462306a36Sopenharmony_ci		.of_match_table = bu27008_of_match,
143562306a36Sopenharmony_ci		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
143662306a36Sopenharmony_ci	},
143762306a36Sopenharmony_ci	.probe = bu27008_probe,
143862306a36Sopenharmony_ci};
143962306a36Sopenharmony_cimodule_i2c_driver(bu27008_i2c_driver);
144062306a36Sopenharmony_ci
144162306a36Sopenharmony_ciMODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver");
144262306a36Sopenharmony_ciMODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
144362306a36Sopenharmony_ciMODULE_LICENSE("GPL");
144462306a36Sopenharmony_ciMODULE_IMPORT_NS(IIO_GTS_HELPER);
1445