1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * adux1020.c - Support for Analog Devices ADUX1020 photometric sensor
4 *
5 * Copyright (C) 2019 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 *
8 * TODO: Triggered buffer support
9 */
10
11#include <linux/bitfield.h>
12#include <linux/delay.h>
13#include <linux/err.h>
14#include <linux/i2c.h>
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/regmap.h>
21
22#include <linux/iio/iio.h>
23#include <linux/iio/sysfs.h>
24#include <linux/iio/events.h>
25
26#define ADUX1020_REGMAP_NAME		"adux1020_regmap"
27#define ADUX1020_DRV_NAME		"adux1020"
28
29/* System registers */
30#define ADUX1020_REG_CHIP_ID		0x08
31#define ADUX1020_REG_SLAVE_ADDRESS	0x09
32
33#define ADUX1020_REG_SW_RESET		0x0f
34#define ADUX1020_REG_INT_ENABLE		0x1c
35#define ADUX1020_REG_INT_POLARITY	0x1d
36#define ADUX1020_REG_PROX_TH_ON1	0x2a
37#define ADUX1020_REG_PROX_TH_OFF1	0x2b
38#define	ADUX1020_REG_PROX_TYPE		0x2f
39#define	ADUX1020_REG_TEST_MODES_3	0x32
40#define	ADUX1020_REG_FORCE_MODE		0x33
41#define	ADUX1020_REG_FREQUENCY		0x40
42#define ADUX1020_REG_LED_CURRENT	0x41
43#define	ADUX1020_REG_OP_MODE		0x45
44#define	ADUX1020_REG_INT_MASK		0x48
45#define	ADUX1020_REG_INT_STATUS		0x49
46#define	ADUX1020_REG_DATA_BUFFER	0x60
47
48/* Chip ID bits */
49#define ADUX1020_CHIP_ID_MASK		GENMASK(11, 0)
50#define ADUX1020_CHIP_ID		0x03fc
51
52#define ADUX1020_SW_RESET		BIT(1)
53#define ADUX1020_FIFO_FLUSH		BIT(15)
54#define ADUX1020_OP_MODE_MASK		GENMASK(3, 0)
55#define ADUX1020_DATA_OUT_MODE_MASK	GENMASK(7, 4)
56#define ADUX1020_DATA_OUT_PROX_I	FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1)
57
58#define ADUX1020_MODE_INT_MASK		GENMASK(7, 0)
59#define ADUX1020_INT_ENABLE		0x2094
60#define ADUX1020_INT_DISABLE		0x2090
61#define ADUX1020_PROX_INT_ENABLE	0x00f0
62#define ADUX1020_PROX_ON1_INT		BIT(0)
63#define ADUX1020_PROX_OFF1_INT		BIT(1)
64#define ADUX1020_FIFO_INT_ENABLE	0x7f
65#define ADUX1020_MODE_INT_DISABLE	0xff
66#define ADUX1020_MODE_INT_STATUS_MASK	GENMASK(7, 0)
67#define ADUX1020_FIFO_STATUS_MASK	GENMASK(15, 8)
68#define ADUX1020_INT_CLEAR		0xff
69#define ADUX1020_PROX_TYPE		BIT(15)
70
71#define ADUX1020_INT_PROX_ON1		BIT(0)
72#define ADUX1020_INT_PROX_OFF1		BIT(1)
73
74#define ADUX1020_FORCE_CLOCK_ON		0x0f4f
75#define ADUX1020_FORCE_CLOCK_RESET	0x0040
76#define ADUX1020_ACTIVE_4_STATE		0x0008
77
78#define ADUX1020_PROX_FREQ_MASK		GENMASK(7, 4)
79#define ADUX1020_PROX_FREQ(x)		FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x)
80
81#define ADUX1020_LED_CURRENT_MASK	GENMASK(3, 0)
82#define ADUX1020_LED_PIREF_EN		BIT(12)
83
84/* Operating modes */
85enum adux1020_op_modes {
86	ADUX1020_MODE_STANDBY,
87	ADUX1020_MODE_PROX_I,
88	ADUX1020_MODE_PROX_XY,
89	ADUX1020_MODE_GEST,
90	ADUX1020_MODE_SAMPLE,
91	ADUX1020_MODE_FORCE = 0x0e,
92	ADUX1020_MODE_IDLE = 0x0f,
93};
94
95struct adux1020_data {
96	struct i2c_client *client;
97	struct iio_dev *indio_dev;
98	struct mutex lock;
99	struct regmap *regmap;
100};
101
102struct adux1020_mode_data {
103	u8 bytes;
104	u8 buf_len;
105	u16 int_en;
106};
107
108static const struct adux1020_mode_data adux1020_modes[] = {
109	[ADUX1020_MODE_PROX_I] = {
110		.bytes = 2,
111		.buf_len = 1,
112		.int_en = ADUX1020_PROX_INT_ENABLE,
113	},
114};
115
116static const struct regmap_config adux1020_regmap_config = {
117	.name = ADUX1020_REGMAP_NAME,
118	.reg_bits = 8,
119	.val_bits = 16,
120	.max_register = 0x6F,
121	.cache_type = REGCACHE_NONE,
122};
123
124static const struct reg_sequence adux1020_def_conf[] = {
125	{ 0x000c, 0x000f },
126	{ 0x0010, 0x1010 },
127	{ 0x0011, 0x004c },
128	{ 0x0012, 0x5f0c },
129	{ 0x0013, 0xada5 },
130	{ 0x0014, 0x0080 },
131	{ 0x0015, 0x0000 },
132	{ 0x0016, 0x0600 },
133	{ 0x0017, 0x0000 },
134	{ 0x0018, 0x2693 },
135	{ 0x0019, 0x0004 },
136	{ 0x001a, 0x4280 },
137	{ 0x001b, 0x0060 },
138	{ 0x001c, 0x2094 },
139	{ 0x001d, 0x0020 },
140	{ 0x001e, 0x0001 },
141	{ 0x001f, 0x0100 },
142	{ 0x0020, 0x0320 },
143	{ 0x0021, 0x0A13 },
144	{ 0x0022, 0x0320 },
145	{ 0x0023, 0x0113 },
146	{ 0x0024, 0x0000 },
147	{ 0x0025, 0x2412 },
148	{ 0x0026, 0x2412 },
149	{ 0x0027, 0x0022 },
150	{ 0x0028, 0x0000 },
151	{ 0x0029, 0x0300 },
152	{ 0x002a, 0x0700 },
153	{ 0x002b, 0x0600 },
154	{ 0x002c, 0x6000 },
155	{ 0x002d, 0x4000 },
156	{ 0x002e, 0x0000 },
157	{ 0x002f, 0x0000 },
158	{ 0x0030, 0x0000 },
159	{ 0x0031, 0x0000 },
160	{ 0x0032, 0x0040 },
161	{ 0x0033, 0x0008 },
162	{ 0x0034, 0xE400 },
163	{ 0x0038, 0x8080 },
164	{ 0x0039, 0x8080 },
165	{ 0x003a, 0x2000 },
166	{ 0x003b, 0x1f00 },
167	{ 0x003c, 0x2000 },
168	{ 0x003d, 0x2000 },
169	{ 0x003e, 0x0000 },
170	{ 0x0040, 0x8069 },
171	{ 0x0041, 0x1f2f },
172	{ 0x0042, 0x4000 },
173	{ 0x0043, 0x0000 },
174	{ 0x0044, 0x0008 },
175	{ 0x0046, 0x0000 },
176	{ 0x0048, 0x00ef },
177	{ 0x0049, 0x0000 },
178	{ 0x0045, 0x0000 },
179};
180
181static const int adux1020_rates[][2] = {
182	{ 0, 100000 },
183	{ 0, 200000 },
184	{ 0, 500000 },
185	{ 1, 0 },
186	{ 2, 0 },
187	{ 5, 0 },
188	{ 10, 0 },
189	{ 20, 0 },
190	{ 50, 0 },
191	{ 100, 0 },
192	{ 190, 0 },
193	{ 450, 0 },
194	{ 820, 0 },
195	{ 1400, 0 },
196};
197
198static const int adux1020_led_currents[][2] = {
199	{ 0, 25000 },
200	{ 0, 40000 },
201	{ 0, 55000 },
202	{ 0, 70000 },
203	{ 0, 85000 },
204	{ 0, 100000 },
205	{ 0, 115000 },
206	{ 0, 130000 },
207	{ 0, 145000 },
208	{ 0, 160000 },
209	{ 0, 175000 },
210	{ 0, 190000 },
211	{ 0, 205000 },
212	{ 0, 220000 },
213	{ 0, 235000 },
214	{ 0, 250000 },
215};
216
217static int adux1020_flush_fifo(struct adux1020_data *data)
218{
219	int ret;
220
221	/* Force Idle mode */
222	ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE,
223			   ADUX1020_ACTIVE_4_STATE);
224	if (ret < 0)
225		return ret;
226
227	ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
228				 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE);
229	if (ret < 0)
230		return ret;
231
232	ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
233				 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE);
234	if (ret < 0)
235		return ret;
236
237	/* Flush FIFO */
238	ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
239			   ADUX1020_FORCE_CLOCK_ON);
240	if (ret < 0)
241		return ret;
242
243	ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
244			   ADUX1020_FIFO_FLUSH);
245	if (ret < 0)
246		return ret;
247
248	return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
249			    ADUX1020_FORCE_CLOCK_RESET);
250}
251
252static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len)
253{
254	unsigned int regval;
255	int i, ret;
256
257	/* Enable 32MHz clock */
258	ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
259			   ADUX1020_FORCE_CLOCK_ON);
260	if (ret < 0)
261		return ret;
262
263	for (i = 0; i < buf_len; i++) {
264		ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER,
265				  &regval);
266		if (ret < 0)
267			return ret;
268
269		buf[i] = regval;
270	}
271
272	/* Set 32MHz clock to be controlled by internal state machine */
273	return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3,
274			    ADUX1020_FORCE_CLOCK_RESET);
275}
276
277static int adux1020_set_mode(struct adux1020_data *data,
278			     enum adux1020_op_modes mode)
279{
280	int ret;
281
282	/* Switch to standby mode before changing the mode */
283	ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE,
284			   ADUX1020_MODE_STANDBY);
285	if (ret < 0)
286		return ret;
287
288	/* Set data out and switch to the desired mode */
289	switch (mode) {
290	case ADUX1020_MODE_PROX_I:
291		ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
292					 ADUX1020_DATA_OUT_MODE_MASK,
293					 ADUX1020_DATA_OUT_PROX_I);
294		if (ret < 0)
295			return ret;
296
297		ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE,
298					 ADUX1020_OP_MODE_MASK,
299					 ADUX1020_MODE_PROX_I);
300		if (ret < 0)
301			return ret;
302		break;
303	default:
304		return -EINVAL;
305	}
306
307	return 0;
308}
309
310static int adux1020_measure(struct adux1020_data *data,
311			    enum adux1020_op_modes mode,
312			    u16 *val)
313{
314	unsigned int status;
315	int ret, tries = 50;
316
317	/* Disable INT pin as polling is going to be used */
318	ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
319			   ADUX1020_INT_DISABLE);
320	if (ret < 0)
321		return ret;
322
323	/* Enable mode interrupt */
324	ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
325				 ADUX1020_MODE_INT_MASK,
326				 adux1020_modes[mode].int_en);
327	if (ret < 0)
328		return ret;
329
330	while (tries--) {
331		ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS,
332				  &status);
333		if (ret < 0)
334			return ret;
335
336		status &= ADUX1020_FIFO_STATUS_MASK;
337		if (status >= adux1020_modes[mode].bytes)
338			break;
339		msleep(20);
340	}
341
342	if (tries < 0)
343		return -EIO;
344
345	ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len);
346	if (ret < 0)
347		return ret;
348
349	/* Clear mode interrupt */
350	ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS,
351			   (~adux1020_modes[mode].int_en));
352	if (ret < 0)
353		return ret;
354
355	/* Disable mode interrupts */
356	return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
357				  ADUX1020_MODE_INT_MASK,
358				  ADUX1020_MODE_INT_DISABLE);
359}
360
361static int adux1020_read_raw(struct iio_dev *indio_dev,
362			     struct iio_chan_spec const *chan,
363			     int *val, int *val2, long mask)
364{
365	struct adux1020_data *data = iio_priv(indio_dev);
366	u16 buf[3];
367	int ret = -EINVAL;
368	unsigned int regval;
369
370	mutex_lock(&data->lock);
371
372	switch (mask) {
373	case IIO_CHAN_INFO_RAW:
374		switch (chan->type) {
375		case IIO_PROXIMITY:
376			ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
377			if (ret < 0)
378				goto fail;
379
380			ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf);
381			if (ret < 0)
382				goto fail;
383
384			*val = buf[0];
385			ret = IIO_VAL_INT;
386			break;
387		default:
388			break;
389		}
390		break;
391	case IIO_CHAN_INFO_PROCESSED:
392		switch (chan->type) {
393		case IIO_CURRENT:
394			ret = regmap_read(data->regmap,
395					  ADUX1020_REG_LED_CURRENT, &regval);
396			if (ret < 0)
397				goto fail;
398
399			regval = regval & ADUX1020_LED_CURRENT_MASK;
400
401			*val = adux1020_led_currents[regval][0];
402			*val2 = adux1020_led_currents[regval][1];
403
404			ret = IIO_VAL_INT_PLUS_MICRO;
405			break;
406		default:
407			break;
408		}
409		break;
410	case IIO_CHAN_INFO_SAMP_FREQ:
411		switch (chan->type) {
412		case IIO_PROXIMITY:
413			ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY,
414					  &regval);
415			if (ret < 0)
416				goto fail;
417
418			regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval);
419
420			*val = adux1020_rates[regval][0];
421			*val2 = adux1020_rates[regval][1];
422
423			ret = IIO_VAL_INT_PLUS_MICRO;
424			break;
425		default:
426			break;
427		}
428		break;
429	default:
430		break;
431	}
432
433fail:
434	mutex_unlock(&data->lock);
435
436	return ret;
437};
438
439static inline int adux1020_find_index(const int array[][2], int count, int val,
440				      int val2)
441{
442	int i;
443
444	for (i = 0; i < count; i++)
445		if (val == array[i][0] && val2 == array[i][1])
446			return i;
447
448	return -EINVAL;
449}
450
451static int adux1020_write_raw(struct iio_dev *indio_dev,
452			      struct iio_chan_spec const *chan,
453			      int val, int val2, long mask)
454{
455	struct adux1020_data *data = iio_priv(indio_dev);
456	int i, ret = -EINVAL;
457
458	mutex_lock(&data->lock);
459
460	switch (mask) {
461	case IIO_CHAN_INFO_SAMP_FREQ:
462		if (chan->type == IIO_PROXIMITY) {
463			i = adux1020_find_index(adux1020_rates,
464						ARRAY_SIZE(adux1020_rates),
465						val, val2);
466			if (i < 0) {
467				ret = i;
468				goto fail;
469			}
470
471			ret = regmap_update_bits(data->regmap,
472						 ADUX1020_REG_FREQUENCY,
473						 ADUX1020_PROX_FREQ_MASK,
474						 ADUX1020_PROX_FREQ(i));
475		}
476		break;
477	case IIO_CHAN_INFO_PROCESSED:
478		if (chan->type == IIO_CURRENT) {
479			i = adux1020_find_index(adux1020_led_currents,
480					ARRAY_SIZE(adux1020_led_currents),
481					val, val2);
482			if (i < 0) {
483				ret = i;
484				goto fail;
485			}
486
487			ret = regmap_update_bits(data->regmap,
488						 ADUX1020_REG_LED_CURRENT,
489						 ADUX1020_LED_CURRENT_MASK, i);
490		}
491		break;
492	default:
493		break;
494	}
495
496fail:
497	mutex_unlock(&data->lock);
498
499	return ret;
500}
501
502static int adux1020_write_event_config(struct iio_dev *indio_dev,
503				       const struct iio_chan_spec *chan,
504				       enum iio_event_type type,
505				       enum iio_event_direction dir, int state)
506{
507	struct adux1020_data *data = iio_priv(indio_dev);
508	int ret, mask;
509
510	mutex_lock(&data->lock);
511
512	ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE,
513			   ADUX1020_INT_ENABLE);
514	if (ret < 0)
515		goto fail;
516
517	ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0);
518	if (ret < 0)
519		goto fail;
520
521	switch (chan->type) {
522	case IIO_PROXIMITY:
523		if (dir == IIO_EV_DIR_RISING)
524			mask = ADUX1020_PROX_ON1_INT;
525		else
526			mask = ADUX1020_PROX_OFF1_INT;
527
528		if (state)
529			state = 0;
530		else
531			state = mask;
532
533		ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
534					 mask, state);
535		if (ret < 0)
536			goto fail;
537
538		/*
539		 * Trigger proximity interrupt when the intensity is above
540		 * or below threshold
541		 */
542		ret = regmap_update_bits(data->regmap, ADUX1020_REG_PROX_TYPE,
543					 ADUX1020_PROX_TYPE,
544					 ADUX1020_PROX_TYPE);
545		if (ret < 0)
546			goto fail;
547
548		/* Set proximity mode */
549		ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I);
550		break;
551	default:
552		ret = -EINVAL;
553		break;
554	}
555
556fail:
557	mutex_unlock(&data->lock);
558
559	return ret;
560}
561
562static int adux1020_read_event_config(struct iio_dev *indio_dev,
563				      const struct iio_chan_spec *chan,
564				      enum iio_event_type type,
565				      enum iio_event_direction dir)
566{
567	struct adux1020_data *data = iio_priv(indio_dev);
568	int ret, mask;
569	unsigned int regval;
570
571	switch (chan->type) {
572	case IIO_PROXIMITY:
573		if (dir == IIO_EV_DIR_RISING)
574			mask = ADUX1020_PROX_ON1_INT;
575		else
576			mask = ADUX1020_PROX_OFF1_INT;
577		break;
578	default:
579		return -EINVAL;
580	}
581
582	ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, &regval);
583	if (ret < 0)
584		return ret;
585
586	return !(regval & mask);
587}
588
589static int adux1020_read_thresh(struct iio_dev *indio_dev,
590				const struct iio_chan_spec *chan,
591				enum iio_event_type type,
592				enum iio_event_direction dir,
593				enum iio_event_info info, int *val, int *val2)
594{
595	struct adux1020_data *data = iio_priv(indio_dev);
596	u8 reg;
597	int ret;
598	unsigned int regval;
599
600	switch (chan->type) {
601	case IIO_PROXIMITY:
602		if (dir == IIO_EV_DIR_RISING)
603			reg = ADUX1020_REG_PROX_TH_ON1;
604		else
605			reg = ADUX1020_REG_PROX_TH_OFF1;
606		break;
607	default:
608		return -EINVAL;
609	}
610
611	ret = regmap_read(data->regmap, reg, &regval);
612	if (ret < 0)
613		return ret;
614
615	*val = regval;
616
617	return IIO_VAL_INT;
618}
619
620static int adux1020_write_thresh(struct iio_dev *indio_dev,
621				 const struct iio_chan_spec *chan,
622				 enum iio_event_type type,
623				 enum iio_event_direction dir,
624				 enum iio_event_info info, int val, int val2)
625{
626	struct adux1020_data *data = iio_priv(indio_dev);
627	u8 reg;
628
629	switch (chan->type) {
630	case IIO_PROXIMITY:
631		if (dir == IIO_EV_DIR_RISING)
632			reg = ADUX1020_REG_PROX_TH_ON1;
633		else
634			reg = ADUX1020_REG_PROX_TH_OFF1;
635		break;
636	default:
637		return -EINVAL;
638	}
639
640	/* Full scale threshold value is 0-65535  */
641	if (val < 0 || val > 65535)
642		return -EINVAL;
643
644	return regmap_write(data->regmap, reg, val);
645}
646
647static const struct iio_event_spec adux1020_proximity_event[] = {
648	{
649		.type = IIO_EV_TYPE_THRESH,
650		.dir = IIO_EV_DIR_RISING,
651		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
652			BIT(IIO_EV_INFO_ENABLE),
653	},
654	{
655		.type = IIO_EV_TYPE_THRESH,
656		.dir = IIO_EV_DIR_FALLING,
657		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
658			BIT(IIO_EV_INFO_ENABLE),
659	},
660};
661
662static const struct iio_chan_spec adux1020_channels[] = {
663	{
664		.type = IIO_PROXIMITY,
665		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
666				      BIT(IIO_CHAN_INFO_SAMP_FREQ),
667		.event_spec = adux1020_proximity_event,
668		.num_event_specs = ARRAY_SIZE(adux1020_proximity_event),
669	},
670	{
671		.type = IIO_CURRENT,
672		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
673		.extend_name = "led",
674		.output = 1,
675	},
676};
677
678static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
679		      "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400");
680
681static struct attribute *adux1020_attributes[] = {
682	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
683	NULL
684};
685
686static const struct attribute_group adux1020_attribute_group = {
687	.attrs = adux1020_attributes,
688};
689
690static const struct iio_info adux1020_info = {
691	.attrs = &adux1020_attribute_group,
692	.read_raw = adux1020_read_raw,
693	.write_raw = adux1020_write_raw,
694	.read_event_config = adux1020_read_event_config,
695	.write_event_config = adux1020_write_event_config,
696	.read_event_value = adux1020_read_thresh,
697	.write_event_value = adux1020_write_thresh,
698};
699
700static irqreturn_t adux1020_interrupt_handler(int irq, void *private)
701{
702	struct iio_dev *indio_dev = private;
703	struct adux1020_data *data = iio_priv(indio_dev);
704	int ret, status;
705
706	ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status);
707	if (ret < 0)
708		return IRQ_HANDLED;
709
710	status &= ADUX1020_MODE_INT_STATUS_MASK;
711
712	if (status & ADUX1020_INT_PROX_ON1) {
713		iio_push_event(indio_dev,
714			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
715						    IIO_EV_TYPE_THRESH,
716						    IIO_EV_DIR_RISING),
717			       iio_get_time_ns(indio_dev));
718	}
719
720	if (status & ADUX1020_INT_PROX_OFF1) {
721		iio_push_event(indio_dev,
722			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
723						    IIO_EV_TYPE_THRESH,
724						    IIO_EV_DIR_FALLING),
725			       iio_get_time_ns(indio_dev));
726	}
727
728	regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS,
729			   ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR);
730
731	return IRQ_HANDLED;
732}
733
734static int adux1020_chip_init(struct adux1020_data *data)
735{
736	struct i2c_client *client = data->client;
737	int ret;
738	unsigned int val;
739
740	ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val);
741	if (ret < 0)
742		return ret;
743
744	if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) {
745		dev_err(&client->dev, "invalid chip id 0x%04x\n", val);
746		return -ENODEV;
747	}
748
749	dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val);
750
751	ret = regmap_update_bits(data->regmap, ADUX1020_REG_SW_RESET,
752				 ADUX1020_SW_RESET, ADUX1020_SW_RESET);
753	if (ret < 0)
754		return ret;
755
756	/* Load default configuration */
757	ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf,
758				     ARRAY_SIZE(adux1020_def_conf));
759	if (ret < 0)
760		return ret;
761
762	ret = adux1020_flush_fifo(data);
763	if (ret < 0)
764		return ret;
765
766	/* Use LED_IREF for proximity mode */
767	ret = regmap_update_bits(data->regmap, ADUX1020_REG_LED_CURRENT,
768				 ADUX1020_LED_PIREF_EN, 0);
769	if (ret < 0)
770		return ret;
771
772	/* Mask all interrupts */
773	return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK,
774			   ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE);
775}
776
777static int adux1020_probe(struct i2c_client *client)
778{
779	struct adux1020_data *data;
780	struct iio_dev *indio_dev;
781	int ret;
782
783	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
784	if (!indio_dev)
785		return -ENOMEM;
786
787	indio_dev->info = &adux1020_info;
788	indio_dev->name = ADUX1020_DRV_NAME;
789	indio_dev->channels = adux1020_channels;
790	indio_dev->num_channels = ARRAY_SIZE(adux1020_channels);
791	indio_dev->modes = INDIO_DIRECT_MODE;
792
793	data = iio_priv(indio_dev);
794
795	data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config);
796	if (IS_ERR(data->regmap)) {
797		dev_err(&client->dev, "regmap initialization failed.\n");
798		return PTR_ERR(data->regmap);
799	}
800
801	data->client = client;
802	data->indio_dev = indio_dev;
803	mutex_init(&data->lock);
804
805	ret = adux1020_chip_init(data);
806	if (ret)
807		return ret;
808
809	if (client->irq) {
810		ret = devm_request_threaded_irq(&client->dev, client->irq,
811					NULL, adux1020_interrupt_handler,
812					IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
813					ADUX1020_DRV_NAME, indio_dev);
814		if (ret) {
815			dev_err(&client->dev, "irq request error %d\n", -ret);
816			return ret;
817		}
818	}
819
820	return devm_iio_device_register(&client->dev, indio_dev);
821}
822
823static const struct i2c_device_id adux1020_id[] = {
824	{ "adux1020", 0 },
825	{}
826};
827MODULE_DEVICE_TABLE(i2c, adux1020_id);
828
829static const struct of_device_id adux1020_of_match[] = {
830	{ .compatible = "adi,adux1020" },
831	{ }
832};
833MODULE_DEVICE_TABLE(of, adux1020_of_match);
834
835static struct i2c_driver adux1020_driver = {
836	.driver = {
837		.name	= ADUX1020_DRV_NAME,
838		.of_match_table = adux1020_of_match,
839	},
840	.probe		= adux1020_probe,
841	.id_table	= adux1020_id,
842};
843module_i2c_driver(adux1020_driver);
844
845MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
846MODULE_DESCRIPTION("ADUX1020 photometric sensor");
847MODULE_LICENSE("GPL");
848