1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * MPU3050 gyroscope driver
4 *
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
7 *
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 *
13 * TODO: add support for setting up the low pass 3dB frequency.
14 */
15
16#include <linux/bitfield.h>
17#include <linux/bitops.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/iio/buffer.h>
21#include <linux/iio/iio.h>
22#include <linux/iio/sysfs.h>
23#include <linux/iio/trigger.h>
24#include <linux/iio/trigger_consumer.h>
25#include <linux/iio/triggered_buffer.h>
26#include <linux/interrupt.h>
27#include <linux/module.h>
28#include <linux/pm_runtime.h>
29#include <linux/property.h>
30#include <linux/random.h>
31#include <linux/slab.h>
32
33#include "mpu3050.h"
34
35#define MPU3050_CHIP_ID		0x68
36#define MPU3050_CHIP_ID_MASK	0x7E
37
38/*
39 * Register map: anything suffixed *_H is a big-endian high byte and always
40 * followed by the corresponding low byte (*_L) even though these are not
41 * explicitly included in the register definitions.
42 */
43#define MPU3050_CHIP_ID_REG	0x00
44#define MPU3050_PRODUCT_ID_REG	0x01
45#define MPU3050_XG_OFFS_TC	0x05
46#define MPU3050_YG_OFFS_TC	0x08
47#define MPU3050_ZG_OFFS_TC	0x0B
48#define MPU3050_X_OFFS_USR_H	0x0C
49#define MPU3050_Y_OFFS_USR_H	0x0E
50#define MPU3050_Z_OFFS_USR_H	0x10
51#define MPU3050_FIFO_EN		0x12
52#define MPU3050_AUX_VDDIO	0x13
53#define MPU3050_SLV_ADDR	0x14
54#define MPU3050_SMPLRT_DIV	0x15
55#define MPU3050_DLPF_FS_SYNC	0x16
56#define MPU3050_INT_CFG		0x17
57#define MPU3050_AUX_ADDR	0x18
58#define MPU3050_INT_STATUS	0x1A
59#define MPU3050_TEMP_H		0x1B
60#define MPU3050_XOUT_H		0x1D
61#define MPU3050_YOUT_H		0x1F
62#define MPU3050_ZOUT_H		0x21
63#define MPU3050_DMP_CFG1	0x35
64#define MPU3050_DMP_CFG2	0x36
65#define MPU3050_BANK_SEL	0x37
66#define MPU3050_MEM_START_ADDR	0x38
67#define MPU3050_MEM_R_W		0x39
68#define MPU3050_FIFO_COUNT_H	0x3A
69#define MPU3050_FIFO_R		0x3C
70#define MPU3050_USR_CTRL	0x3D
71#define MPU3050_PWR_MGM		0x3E
72
73/* MPU memory bank read options */
74#define MPU3050_MEM_PRFTCH	BIT(5)
75#define MPU3050_MEM_USER_BANK	BIT(4)
76/* Bits 8-11 select memory bank */
77#define MPU3050_MEM_RAM_BANK_0	0
78#define MPU3050_MEM_RAM_BANK_1	1
79#define MPU3050_MEM_RAM_BANK_2	2
80#define MPU3050_MEM_RAM_BANK_3	3
81#define MPU3050_MEM_OTP_BANK_0	4
82
83#define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
84
85/* Register bits */
86
87/* FIFO Enable */
88#define MPU3050_FIFO_EN_FOOTER		BIT(0)
89#define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
90#define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
91#define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
92#define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
93#define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
94#define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
95#define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
96
97/*
98 * Digital Low Pass filter (DLPF)
99 * Full Scale (FS)
100 * and Synchronization
101 */
102#define MPU3050_EXT_SYNC_NONE		0x00
103#define MPU3050_EXT_SYNC_TEMP		0x20
104#define MPU3050_EXT_SYNC_GYROX		0x40
105#define MPU3050_EXT_SYNC_GYROY		0x60
106#define MPU3050_EXT_SYNC_GYROZ		0x80
107#define MPU3050_EXT_SYNC_ACCELX	0xA0
108#define MPU3050_EXT_SYNC_ACCELY	0xC0
109#define MPU3050_EXT_SYNC_ACCELZ	0xE0
110#define MPU3050_EXT_SYNC_MASK		0xE0
111#define MPU3050_EXT_SYNC_SHIFT		5
112
113#define MPU3050_FS_250DPS		0x00
114#define MPU3050_FS_500DPS		0x08
115#define MPU3050_FS_1000DPS		0x10
116#define MPU3050_FS_2000DPS		0x18
117#define MPU3050_FS_MASK			0x18
118#define MPU3050_FS_SHIFT		3
119
120#define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
121#define MPU3050_DLPF_CFG_188HZ		0x01
122#define MPU3050_DLPF_CFG_98HZ		0x02
123#define MPU3050_DLPF_CFG_42HZ		0x03
124#define MPU3050_DLPF_CFG_20HZ		0x04
125#define MPU3050_DLPF_CFG_10HZ		0x05
126#define MPU3050_DLPF_CFG_5HZ		0x06
127#define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
128#define MPU3050_DLPF_CFG_MASK		0x07
129#define MPU3050_DLPF_CFG_SHIFT		0
130
131/* Interrupt config */
132#define MPU3050_INT_RAW_RDY_EN		BIT(0)
133#define MPU3050_INT_DMP_DONE_EN		BIT(1)
134#define MPU3050_INT_MPU_RDY_EN		BIT(2)
135#define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
136#define MPU3050_INT_LATCH_EN		BIT(5)
137#define MPU3050_INT_OPEN		BIT(6)
138#define MPU3050_INT_ACTL		BIT(7)
139/* Interrupt status */
140#define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
141#define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
142#define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
143#define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
144/* USR_CTRL */
145#define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
146#define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
147#define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
148#define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
149#define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
150/* PWR_MGM */
151#define MPU3050_PWR_MGM_PLL_X		0x01
152#define MPU3050_PWR_MGM_PLL_Y		0x02
153#define MPU3050_PWR_MGM_PLL_Z		0x03
154#define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
155#define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
156#define MPU3050_PWR_MGM_STBY_YG		BIT(4)
157#define MPU3050_PWR_MGM_STBY_XG		BIT(5)
158#define MPU3050_PWR_MGM_SLEEP		BIT(6)
159#define MPU3050_PWR_MGM_RESET		BIT(7)
160#define MPU3050_PWR_MGM_MASK		0xff
161
162/*
163 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
164 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
165 * in two's complement.
166 */
167static unsigned int mpu3050_fs_precision[] = {
168	IIO_DEGREE_TO_RAD(250),
169	IIO_DEGREE_TO_RAD(500),
170	IIO_DEGREE_TO_RAD(1000),
171	IIO_DEGREE_TO_RAD(2000)
172};
173
174/*
175 * Regulator names
176 */
177static const char mpu3050_reg_vdd[] = "vdd";
178static const char mpu3050_reg_vlogic[] = "vlogic";
179
180static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
181{
182	unsigned int freq;
183
184	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
185		freq = 8000;
186	else
187		freq = 1000;
188	freq /= (mpu3050->divisor + 1);
189
190	return freq;
191}
192
193static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
194{
195	__be16 raw_val[3];
196	int ret;
197	int i;
198
199	/* Reset */
200	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
201				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
202	if (ret)
203		return ret;
204
205	/* Turn on the Z-axis PLL */
206	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
207				 MPU3050_PWR_MGM_CLKSEL_MASK,
208				 MPU3050_PWR_MGM_PLL_Z);
209	if (ret)
210		return ret;
211
212	/* Write calibration offset registers */
213	for (i = 0; i < 3; i++)
214		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
215
216	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
217				sizeof(raw_val));
218	if (ret)
219		return ret;
220
221	/* Set low pass filter (sample rate), sync and full scale */
222	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
223			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
224			   mpu3050->fullscale << MPU3050_FS_SHIFT |
225			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
226	if (ret)
227		return ret;
228
229	/* Set up sampling frequency */
230	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
231	if (ret)
232		return ret;
233
234	/*
235	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
236	 * according to the data sheet, then wait for the next sample
237	 * at this frequency T = 1000/f ms.
238	 */
239	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
240
241	return 0;
242}
243
244static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
245{
246	int ret;
247	u8 divisor;
248	enum mpu3050_lpf lpf;
249
250	lpf = mpu3050->lpf;
251	divisor = mpu3050->divisor;
252
253	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
254	mpu3050->divisor = 0; /* Divide by 1 */
255	ret = mpu3050_start_sampling(mpu3050);
256
257	mpu3050->lpf = lpf;
258	mpu3050->divisor = divisor;
259
260	return ret;
261}
262
263static int mpu3050_read_raw(struct iio_dev *indio_dev,
264			    struct iio_chan_spec const *chan,
265			    int *val, int *val2,
266			    long mask)
267{
268	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
269	int ret;
270	__be16 raw_val;
271
272	switch (mask) {
273	case IIO_CHAN_INFO_OFFSET:
274		switch (chan->type) {
275		case IIO_TEMP:
276			/*
277			 * The temperature scaling is (x+23000)/280 Celsius
278			 * for the "best fit straight line" temperature range
279			 * of -30C..85C.  The 23000 includes room temperature
280			 * offset of +35C, 280 is the precision scale and x is
281			 * the 16-bit signed integer reported by hardware.
282			 *
283			 * Temperature value itself represents temperature of
284			 * the sensor die.
285			 */
286			*val = 23000;
287			return IIO_VAL_INT;
288		default:
289			return -EINVAL;
290		}
291	case IIO_CHAN_INFO_CALIBBIAS:
292		switch (chan->type) {
293		case IIO_ANGL_VEL:
294			*val = mpu3050->calibration[chan->scan_index-1];
295			return IIO_VAL_INT;
296		default:
297			return -EINVAL;
298		}
299	case IIO_CHAN_INFO_SAMP_FREQ:
300		*val = mpu3050_get_freq(mpu3050);
301		return IIO_VAL_INT;
302	case IIO_CHAN_INFO_SCALE:
303		switch (chan->type) {
304		case IIO_TEMP:
305			/* Millidegrees, see about temperature scaling above */
306			*val = 1000;
307			*val2 = 280;
308			return IIO_VAL_FRACTIONAL;
309		case IIO_ANGL_VEL:
310			/*
311			 * Convert to the corresponding full scale in
312			 * radians. All 16 bits are used with sign to
313			 * span the available scale: to account for the one
314			 * missing value if we multiply by 1/S16_MAX, instead
315			 * multiply with 2/U16_MAX.
316			 */
317			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
318			*val2 = U16_MAX;
319			return IIO_VAL_FRACTIONAL;
320		default:
321			return -EINVAL;
322		}
323	case IIO_CHAN_INFO_RAW:
324		/* Resume device */
325		pm_runtime_get_sync(mpu3050->dev);
326		mutex_lock(&mpu3050->lock);
327
328		ret = mpu3050_set_8khz_samplerate(mpu3050);
329		if (ret)
330			goto out_read_raw_unlock;
331
332		switch (chan->type) {
333		case IIO_TEMP:
334			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
335					       &raw_val, sizeof(raw_val));
336			if (ret) {
337				dev_err(mpu3050->dev,
338					"error reading temperature\n");
339				goto out_read_raw_unlock;
340			}
341
342			*val = (s16)be16_to_cpu(raw_val);
343			ret = IIO_VAL_INT;
344
345			goto out_read_raw_unlock;
346		case IIO_ANGL_VEL:
347			ret = regmap_bulk_read(mpu3050->map,
348				       MPU3050_AXIS_REGS(chan->scan_index-1),
349				       &raw_val,
350				       sizeof(raw_val));
351			if (ret) {
352				dev_err(mpu3050->dev,
353					"error reading axis data\n");
354				goto out_read_raw_unlock;
355			}
356
357			*val = be16_to_cpu(raw_val);
358			ret = IIO_VAL_INT;
359
360			goto out_read_raw_unlock;
361		default:
362			ret = -EINVAL;
363			goto out_read_raw_unlock;
364		}
365	default:
366		break;
367	}
368
369	return -EINVAL;
370
371out_read_raw_unlock:
372	mutex_unlock(&mpu3050->lock);
373	pm_runtime_mark_last_busy(mpu3050->dev);
374	pm_runtime_put_autosuspend(mpu3050->dev);
375
376	return ret;
377}
378
379static int mpu3050_write_raw(struct iio_dev *indio_dev,
380			     const struct iio_chan_spec *chan,
381			     int val, int val2, long mask)
382{
383	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
384	/*
385	 * Couldn't figure out a way to precalculate these at compile time.
386	 */
387	unsigned int fs250 =
388		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
389				  U16_MAX);
390	unsigned int fs500 =
391		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
392				  U16_MAX);
393	unsigned int fs1000 =
394		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
395				  U16_MAX);
396	unsigned int fs2000 =
397		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
398				  U16_MAX);
399
400	switch (mask) {
401	case IIO_CHAN_INFO_CALIBBIAS:
402		if (chan->type != IIO_ANGL_VEL)
403			return -EINVAL;
404		mpu3050->calibration[chan->scan_index-1] = val;
405		return 0;
406	case IIO_CHAN_INFO_SAMP_FREQ:
407		/*
408		 * The max samplerate is 8000 Hz, the minimum
409		 * 1000 / 256 ~= 4 Hz
410		 */
411		if (val < 4 || val > 8000)
412			return -EINVAL;
413
414		/*
415		 * Above 1000 Hz we must turn off the digital low pass filter
416		 * so we get a base frequency of 8kHz to the divider
417		 */
418		if (val > 1000) {
419			mpu3050->lpf = LPF_256_HZ_NOLPF;
420			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
421			return 0;
422		}
423
424		mpu3050->lpf = LPF_188_HZ;
425		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
426		return 0;
427	case IIO_CHAN_INFO_SCALE:
428		if (chan->type != IIO_ANGL_VEL)
429			return -EINVAL;
430		/*
431		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
432		 * which means we need to round to the closest radians
433		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
434		 * rad/s. The scale is then for the 16 bits used to cover
435		 * it 2/(2^16) of that.
436		 */
437
438		/* Just too large, set the max range */
439		if (val != 0) {
440			mpu3050->fullscale = FS_2000_DPS;
441			return 0;
442		}
443
444		/*
445		 * Now we're dealing with fractions below zero in millirad/s
446		 * do some integer interpolation and match with the closest
447		 * fullscale in the table.
448		 */
449		if (val2 <= fs250 ||
450		    val2 < ((fs500 + fs250) / 2))
451			mpu3050->fullscale = FS_250_DPS;
452		else if (val2 <= fs500 ||
453			 val2 < ((fs1000 + fs500) / 2))
454			mpu3050->fullscale = FS_500_DPS;
455		else if (val2 <= fs1000 ||
456			 val2 < ((fs2000 + fs1000) / 2))
457			mpu3050->fullscale = FS_1000_DPS;
458		else
459			/* Catch-all */
460			mpu3050->fullscale = FS_2000_DPS;
461		return 0;
462	default:
463		break;
464	}
465
466	return -EINVAL;
467}
468
469static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
470{
471	const struct iio_poll_func *pf = p;
472	struct iio_dev *indio_dev = pf->indio_dev;
473	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
474	int ret;
475	struct {
476		__be16 chans[4];
477		s64 timestamp __aligned(8);
478	} scan;
479	s64 timestamp;
480	unsigned int datums_from_fifo = 0;
481
482	/*
483	 * If we're using the hardware trigger, get the precise timestamp from
484	 * the top half of the threaded IRQ handler. Otherwise get the
485	 * timestamp here so it will be close in time to the actual values
486	 * read from the registers.
487	 */
488	if (iio_trigger_using_own(indio_dev))
489		timestamp = mpu3050->hw_timestamp;
490	else
491		timestamp = iio_get_time_ns(indio_dev);
492
493	mutex_lock(&mpu3050->lock);
494
495	/* Using the hardware IRQ trigger? Check the buffer then. */
496	if (mpu3050->hw_irq_trigger) {
497		__be16 raw_fifocnt;
498		u16 fifocnt;
499		/* X, Y, Z + temperature */
500		unsigned int bytes_per_datum = 8;
501		bool fifo_overflow = false;
502
503		ret = regmap_bulk_read(mpu3050->map,
504				       MPU3050_FIFO_COUNT_H,
505				       &raw_fifocnt,
506				       sizeof(raw_fifocnt));
507		if (ret)
508			goto out_trigger_unlock;
509		fifocnt = be16_to_cpu(raw_fifocnt);
510
511		if (fifocnt == 512) {
512			dev_info(mpu3050->dev,
513				 "FIFO overflow! Emptying and resetting FIFO\n");
514			fifo_overflow = true;
515			/* Reset and enable the FIFO */
516			ret = regmap_update_bits(mpu3050->map,
517						 MPU3050_USR_CTRL,
518						 MPU3050_USR_CTRL_FIFO_EN |
519						 MPU3050_USR_CTRL_FIFO_RST,
520						 MPU3050_USR_CTRL_FIFO_EN |
521						 MPU3050_USR_CTRL_FIFO_RST);
522			if (ret) {
523				dev_info(mpu3050->dev, "error resetting FIFO\n");
524				goto out_trigger_unlock;
525			}
526			mpu3050->pending_fifo_footer = false;
527		}
528
529		if (fifocnt)
530			dev_dbg(mpu3050->dev,
531				"%d bytes in the FIFO\n",
532				fifocnt);
533
534		while (!fifo_overflow && fifocnt > bytes_per_datum) {
535			unsigned int toread;
536			unsigned int offset;
537			__be16 fifo_values[5];
538
539			/*
540			 * If there is a FIFO footer in the pipe, first clear
541			 * that out. This follows the complex algorithm in the
542			 * datasheet that states that you may never leave the
543			 * FIFO empty after the first reading: you have to
544			 * always leave two footer bytes in it. The footer is
545			 * in practice just two zero bytes.
546			 */
547			if (mpu3050->pending_fifo_footer) {
548				toread = bytes_per_datum + 2;
549				offset = 0;
550			} else {
551				toread = bytes_per_datum;
552				offset = 1;
553				/* Put in some dummy value */
554				fifo_values[0] = cpu_to_be16(0xAAAA);
555			}
556
557			ret = regmap_bulk_read(mpu3050->map,
558					       MPU3050_FIFO_R,
559					       &fifo_values[offset],
560					       toread);
561			if (ret)
562				goto out_trigger_unlock;
563
564			dev_dbg(mpu3050->dev,
565				"%04x %04x %04x %04x %04x\n",
566				fifo_values[0],
567				fifo_values[1],
568				fifo_values[2],
569				fifo_values[3],
570				fifo_values[4]);
571
572			/* Index past the footer (fifo_values[0]) and push */
573			iio_push_to_buffers_with_ts_unaligned(indio_dev,
574							      &fifo_values[1],
575							      sizeof(__be16) * 4,
576							      timestamp);
577
578			fifocnt -= toread;
579			datums_from_fifo++;
580			mpu3050->pending_fifo_footer = true;
581
582			/*
583			 * If we're emptying the FIFO, just make sure to
584			 * check if something new appeared.
585			 */
586			if (fifocnt < bytes_per_datum) {
587				ret = regmap_bulk_read(mpu3050->map,
588						       MPU3050_FIFO_COUNT_H,
589						       &raw_fifocnt,
590						       sizeof(raw_fifocnt));
591				if (ret)
592					goto out_trigger_unlock;
593				fifocnt = be16_to_cpu(raw_fifocnt);
594			}
595
596			if (fifocnt < bytes_per_datum)
597				dev_dbg(mpu3050->dev,
598					"%d bytes left in the FIFO\n",
599					fifocnt);
600
601			/*
602			 * At this point, the timestamp that triggered the
603			 * hardware interrupt is no longer valid for what
604			 * we are reading (the interrupt likely fired for
605			 * the value on the top of the FIFO), so set the
606			 * timestamp to zero and let userspace deal with it.
607			 */
608			timestamp = 0;
609		}
610	}
611
612	/*
613	 * If we picked some datums from the FIFO that's enough, else
614	 * fall through and just read from the current value registers.
615	 * This happens in two cases:
616	 *
617	 * - We are using some other trigger (external, like an HRTimer)
618	 *   than the sensor's own sample generator. In this case the
619	 *   sensor is just set to the max sampling frequency and we give
620	 *   the trigger a copy of the latest value every time we get here.
621	 *
622	 * - The hardware trigger is active but unused and we actually use
623	 *   another trigger which calls here with a frequency higher
624	 *   than what the device provides data. We will then just read
625	 *   duplicate values directly from the hardware registers.
626	 */
627	if (datums_from_fifo) {
628		dev_dbg(mpu3050->dev,
629			"read %d datums from the FIFO\n",
630			datums_from_fifo);
631		goto out_trigger_unlock;
632	}
633
634	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, scan.chans,
635			       sizeof(scan.chans));
636	if (ret) {
637		dev_err(mpu3050->dev,
638			"error reading axis data\n");
639		goto out_trigger_unlock;
640	}
641
642	iio_push_to_buffers_with_timestamp(indio_dev, &scan, timestamp);
643
644out_trigger_unlock:
645	mutex_unlock(&mpu3050->lock);
646	iio_trigger_notify_done(indio_dev->trig);
647
648	return IRQ_HANDLED;
649}
650
651static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
652{
653	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654
655	pm_runtime_get_sync(mpu3050->dev);
656
657	/* Unless we have OUR trigger active, run at full speed */
658	if (!mpu3050->hw_irq_trigger)
659		return mpu3050_set_8khz_samplerate(mpu3050);
660
661	return 0;
662}
663
664static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
665{
666	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
667
668	pm_runtime_mark_last_busy(mpu3050->dev);
669	pm_runtime_put_autosuspend(mpu3050->dev);
670
671	return 0;
672}
673
674static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
675	.preenable = mpu3050_buffer_preenable,
676	.postdisable = mpu3050_buffer_postdisable,
677};
678
679static const struct iio_mount_matrix *
680mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
681			 const struct iio_chan_spec *chan)
682{
683	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
684
685	return &mpu3050->orientation;
686}
687
688static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
689	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
690	{ },
691};
692
693#define MPU3050_AXIS_CHANNEL(axis, index)				\
694	{								\
695		.type = IIO_ANGL_VEL,					\
696		.modified = 1,						\
697		.channel2 = IIO_MOD_##axis,				\
698		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
699			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
700		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
701		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
702		.ext_info = mpu3050_ext_info,				\
703		.scan_index = index,					\
704		.scan_type = {						\
705			.sign = 's',					\
706			.realbits = 16,					\
707			.storagebits = 16,				\
708			.endianness = IIO_BE,				\
709		},							\
710	}
711
712static const struct iio_chan_spec mpu3050_channels[] = {
713	{
714		.type = IIO_TEMP,
715		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
716				      BIT(IIO_CHAN_INFO_SCALE) |
717				      BIT(IIO_CHAN_INFO_OFFSET),
718		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
719		.scan_index = 0,
720		.scan_type = {
721			.sign = 's',
722			.realbits = 16,
723			.storagebits = 16,
724			.endianness = IIO_BE,
725		},
726	},
727	MPU3050_AXIS_CHANNEL(X, 1),
728	MPU3050_AXIS_CHANNEL(Y, 2),
729	MPU3050_AXIS_CHANNEL(Z, 3),
730	IIO_CHAN_SOFT_TIMESTAMP(4),
731};
732
733/* Four channels apart from timestamp, scan mask = 0x0f */
734static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
735
736/*
737 * These are just the hardcoded factors resulting from the more elaborate
738 * calculations done with fractions in the scale raw get/set functions.
739 */
740static IIO_CONST_ATTR(anglevel_scale_available,
741		      "0.000122070 "
742		      "0.000274658 "
743		      "0.000518798 "
744		      "0.001068115");
745
746static struct attribute *mpu3050_attributes[] = {
747	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
748	NULL,
749};
750
751static const struct attribute_group mpu3050_attribute_group = {
752	.attrs = mpu3050_attributes,
753};
754
755static const struct iio_info mpu3050_info = {
756	.read_raw = mpu3050_read_raw,
757	.write_raw = mpu3050_write_raw,
758	.attrs = &mpu3050_attribute_group,
759};
760
761/**
762 * mpu3050_read_mem() - read MPU-3050 internal memory
763 * @mpu3050: device to read from
764 * @bank: target bank
765 * @addr: target address
766 * @len: number of bytes
767 * @buf: the buffer to store the read bytes in
768 */
769static int mpu3050_read_mem(struct mpu3050 *mpu3050,
770			    u8 bank,
771			    u8 addr,
772			    u8 len,
773			    u8 *buf)
774{
775	int ret;
776
777	ret = regmap_write(mpu3050->map,
778			   MPU3050_BANK_SEL,
779			   bank);
780	if (ret)
781		return ret;
782
783	ret = regmap_write(mpu3050->map,
784			   MPU3050_MEM_START_ADDR,
785			   addr);
786	if (ret)
787		return ret;
788
789	return regmap_bulk_read(mpu3050->map,
790				MPU3050_MEM_R_W,
791				buf,
792				len);
793}
794
795static int mpu3050_hw_init(struct mpu3050 *mpu3050)
796{
797	int ret;
798	__le64 otp_le;
799	u64 otp;
800
801	/* Reset */
802	ret = regmap_update_bits(mpu3050->map,
803				 MPU3050_PWR_MGM,
804				 MPU3050_PWR_MGM_RESET,
805				 MPU3050_PWR_MGM_RESET);
806	if (ret)
807		return ret;
808
809	/* Turn on the PLL */
810	ret = regmap_update_bits(mpu3050->map,
811				 MPU3050_PWR_MGM,
812				 MPU3050_PWR_MGM_CLKSEL_MASK,
813				 MPU3050_PWR_MGM_PLL_Z);
814	if (ret)
815		return ret;
816
817	/* Disable IRQs */
818	ret = regmap_write(mpu3050->map,
819			   MPU3050_INT_CFG,
820			   0);
821	if (ret)
822		return ret;
823
824	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
825	ret = mpu3050_read_mem(mpu3050,
826			       (MPU3050_MEM_PRFTCH |
827				MPU3050_MEM_USER_BANK |
828				MPU3050_MEM_OTP_BANK_0),
829			       0,
830			       sizeof(otp_le),
831			       (u8 *)&otp_le);
832	if (ret)
833		return ret;
834
835	/* This is device-unique data so it goes into the entropy pool */
836	add_device_randomness(&otp_le, sizeof(otp_le));
837
838	otp = le64_to_cpu(otp_le);
839
840	dev_info(mpu3050->dev,
841		 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
842		 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
843		 /* Die ID, bits 0-12 */
844		 FIELD_GET(GENMASK_ULL(12, 0), otp),
845		 /* Wafer ID, bits 13-17 */
846		 FIELD_GET(GENMASK_ULL(17, 13), otp),
847		 /* A lot ID, bits 18-33 */
848		 FIELD_GET(GENMASK_ULL(33, 18), otp),
849		 /* W lot ID, bits 34-45 */
850		 FIELD_GET(GENMASK_ULL(45, 34), otp),
851		 /* WP ID, bits 47-49 */
852		 FIELD_GET(GENMASK_ULL(49, 47), otp),
853		 /* rev ID, bits 50-55 */
854		 FIELD_GET(GENMASK_ULL(55, 50), otp));
855
856	return 0;
857}
858
859static int mpu3050_power_up(struct mpu3050 *mpu3050)
860{
861	int ret;
862
863	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
864	if (ret) {
865		dev_err(mpu3050->dev, "cannot enable regulators\n");
866		return ret;
867	}
868	/*
869	 * 20-100 ms start-up time for register read/write according to
870	 * the datasheet, be on the safe side and wait 200 ms.
871	 */
872	msleep(200);
873
874	/* Take device out of sleep mode */
875	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
876				 MPU3050_PWR_MGM_SLEEP, 0);
877	if (ret) {
878		regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
879		dev_err(mpu3050->dev, "error setting power mode\n");
880		return ret;
881	}
882	usleep_range(10000, 20000);
883
884	return 0;
885}
886
887static int mpu3050_power_down(struct mpu3050 *mpu3050)
888{
889	int ret;
890
891	/*
892	 * Put MPU-3050 into sleep mode before cutting regulators.
893	 * This is important, because we may not be the sole user
894	 * of the regulator so the power may stay on after this, and
895	 * then we would be wasting power unless we go to sleep mode
896	 * first.
897	 */
898	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
899				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
900	if (ret)
901		dev_err(mpu3050->dev, "error putting to sleep\n");
902
903	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
904	if (ret)
905		dev_err(mpu3050->dev, "error disabling regulators\n");
906
907	return 0;
908}
909
910static irqreturn_t mpu3050_irq_handler(int irq, void *p)
911{
912	struct iio_trigger *trig = p;
913	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
914	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
915
916	if (!mpu3050->hw_irq_trigger)
917		return IRQ_NONE;
918
919	/* Get the time stamp as close in time as possible */
920	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
921
922	return IRQ_WAKE_THREAD;
923}
924
925static irqreturn_t mpu3050_irq_thread(int irq, void *p)
926{
927	struct iio_trigger *trig = p;
928	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
929	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
930	unsigned int val;
931	int ret;
932
933	/* ACK IRQ and check if it was from us */
934	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
935	if (ret) {
936		dev_err(mpu3050->dev, "error reading IRQ status\n");
937		return IRQ_HANDLED;
938	}
939	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
940		return IRQ_NONE;
941
942	iio_trigger_poll_nested(p);
943
944	return IRQ_HANDLED;
945}
946
947/**
948 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
949 * @trig: trigger instance
950 * @enable: true if trigger should be enabled, false to disable
951 */
952static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
953					  bool enable)
954{
955	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
956	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
957	unsigned int val;
958	int ret;
959
960	/* Disabling trigger: disable interrupt and return */
961	if (!enable) {
962		/* Disable all interrupts */
963		ret = regmap_write(mpu3050->map,
964				   MPU3050_INT_CFG,
965				   0);
966		if (ret)
967			dev_err(mpu3050->dev, "error disabling IRQ\n");
968
969		/* Clear IRQ flag */
970		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
971		if (ret)
972			dev_err(mpu3050->dev, "error clearing IRQ status\n");
973
974		/* Disable all things in the FIFO and reset it */
975		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
976		if (ret)
977			dev_err(mpu3050->dev, "error disabling FIFO\n");
978
979		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
980				   MPU3050_USR_CTRL_FIFO_RST);
981		if (ret)
982			dev_err(mpu3050->dev, "error resetting FIFO\n");
983
984		pm_runtime_mark_last_busy(mpu3050->dev);
985		pm_runtime_put_autosuspend(mpu3050->dev);
986		mpu3050->hw_irq_trigger = false;
987
988		return 0;
989	} else {
990		/* Else we're enabling the trigger from this point */
991		pm_runtime_get_sync(mpu3050->dev);
992		mpu3050->hw_irq_trigger = true;
993
994		/* Disable all things in the FIFO */
995		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
996		if (ret)
997			return ret;
998
999		/* Reset and enable the FIFO */
1000		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
1001					 MPU3050_USR_CTRL_FIFO_EN |
1002					 MPU3050_USR_CTRL_FIFO_RST,
1003					 MPU3050_USR_CTRL_FIFO_EN |
1004					 MPU3050_USR_CTRL_FIFO_RST);
1005		if (ret)
1006			return ret;
1007
1008		mpu3050->pending_fifo_footer = false;
1009
1010		/* Turn on the FIFO for temp+X+Y+Z */
1011		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1012				   MPU3050_FIFO_EN_TEMP_OUT |
1013				   MPU3050_FIFO_EN_GYRO_XOUT |
1014				   MPU3050_FIFO_EN_GYRO_YOUT |
1015				   MPU3050_FIFO_EN_GYRO_ZOUT |
1016				   MPU3050_FIFO_EN_FOOTER);
1017		if (ret)
1018			return ret;
1019
1020		/* Configure the sample engine */
1021		ret = mpu3050_start_sampling(mpu3050);
1022		if (ret)
1023			return ret;
1024
1025		/* Clear IRQ flag */
1026		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1027		if (ret)
1028			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1029
1030		/* Give us interrupts whenever there is new data ready */
1031		val = MPU3050_INT_RAW_RDY_EN;
1032
1033		if (mpu3050->irq_actl)
1034			val |= MPU3050_INT_ACTL;
1035		if (mpu3050->irq_latch)
1036			val |= MPU3050_INT_LATCH_EN;
1037		if (mpu3050->irq_opendrain)
1038			val |= MPU3050_INT_OPEN;
1039
1040		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1041		if (ret)
1042			return ret;
1043	}
1044
1045	return 0;
1046}
1047
1048static const struct iio_trigger_ops mpu3050_trigger_ops = {
1049	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1050};
1051
1052static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1053{
1054	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1055	struct device *dev = mpu3050->dev;
1056	unsigned long irq_trig;
1057	int ret;
1058
1059	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1060					       "%s-dev%d",
1061					       indio_dev->name,
1062					       iio_device_id(indio_dev));
1063	if (!mpu3050->trig)
1064		return -ENOMEM;
1065
1066	/* Check if IRQ is open drain */
1067	mpu3050->irq_opendrain = device_property_read_bool(dev, "drive-open-drain");
1068
1069	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1070	/*
1071	 * Configure the interrupt generator hardware to supply whatever
1072	 * the interrupt is configured for, edges low/high level low/high,
1073	 * we can provide it all.
1074	 */
1075	switch (irq_trig) {
1076	case IRQF_TRIGGER_RISING:
1077		dev_info(&indio_dev->dev,
1078			 "pulse interrupts on the rising edge\n");
1079		break;
1080	case IRQF_TRIGGER_FALLING:
1081		mpu3050->irq_actl = true;
1082		dev_info(&indio_dev->dev,
1083			 "pulse interrupts on the falling edge\n");
1084		break;
1085	case IRQF_TRIGGER_HIGH:
1086		mpu3050->irq_latch = true;
1087		dev_info(&indio_dev->dev,
1088			 "interrupts active high level\n");
1089		/*
1090		 * With level IRQs, we mask the IRQ until it is processed,
1091		 * but with edge IRQs (pulses) we can queue several interrupts
1092		 * in the top half.
1093		 */
1094		irq_trig |= IRQF_ONESHOT;
1095		break;
1096	case IRQF_TRIGGER_LOW:
1097		mpu3050->irq_latch = true;
1098		mpu3050->irq_actl = true;
1099		irq_trig |= IRQF_ONESHOT;
1100		dev_info(&indio_dev->dev,
1101			 "interrupts active low level\n");
1102		break;
1103	default:
1104		/* This is the most preferred mode, if possible */
1105		dev_err(&indio_dev->dev,
1106			"unsupported IRQ trigger specified (%lx), enforce "
1107			"rising edge\n", irq_trig);
1108		irq_trig = IRQF_TRIGGER_RISING;
1109		break;
1110	}
1111
1112	/* An open drain line can be shared with several devices */
1113	if (mpu3050->irq_opendrain)
1114		irq_trig |= IRQF_SHARED;
1115
1116	ret = request_threaded_irq(irq,
1117				   mpu3050_irq_handler,
1118				   mpu3050_irq_thread,
1119				   irq_trig,
1120				   mpu3050->trig->name,
1121				   mpu3050->trig);
1122	if (ret) {
1123		dev_err(dev, "can't get IRQ %d, error %d\n", irq, ret);
1124		return ret;
1125	}
1126
1127	mpu3050->irq = irq;
1128	mpu3050->trig->dev.parent = dev;
1129	mpu3050->trig->ops = &mpu3050_trigger_ops;
1130	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1131
1132	ret = iio_trigger_register(mpu3050->trig);
1133	if (ret)
1134		return ret;
1135
1136	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1137
1138	return 0;
1139}
1140
1141int mpu3050_common_probe(struct device *dev,
1142			 struct regmap *map,
1143			 int irq,
1144			 const char *name)
1145{
1146	struct iio_dev *indio_dev;
1147	struct mpu3050 *mpu3050;
1148	unsigned int val;
1149	int ret;
1150
1151	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1152	if (!indio_dev)
1153		return -ENOMEM;
1154	mpu3050 = iio_priv(indio_dev);
1155
1156	mpu3050->dev = dev;
1157	mpu3050->map = map;
1158	mutex_init(&mpu3050->lock);
1159	/* Default fullscale: 2000 degrees per second */
1160	mpu3050->fullscale = FS_2000_DPS;
1161	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1162	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1163	mpu3050->divisor = 99;
1164
1165	/* Read the mounting matrix, if present */
1166	ret = iio_read_mount_matrix(dev, &mpu3050->orientation);
1167	if (ret)
1168		return ret;
1169
1170	/* Fetch and turn on regulators */
1171	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1172	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1173	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1174				      mpu3050->regs);
1175	if (ret) {
1176		dev_err(dev, "Cannot get regulators\n");
1177		return ret;
1178	}
1179
1180	ret = mpu3050_power_up(mpu3050);
1181	if (ret)
1182		return ret;
1183
1184	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1185	if (ret) {
1186		dev_err(dev, "could not read device ID\n");
1187		ret = -ENODEV;
1188
1189		goto err_power_down;
1190	}
1191
1192	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1193		dev_err(dev, "unsupported chip id %02x\n",
1194				(u8)(val & MPU3050_CHIP_ID_MASK));
1195		ret = -ENODEV;
1196		goto err_power_down;
1197	}
1198
1199	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1200	if (ret) {
1201		dev_err(dev, "could not read device ID\n");
1202		ret = -ENODEV;
1203
1204		goto err_power_down;
1205	}
1206	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1207		 ((val >> 4) & 0xf), (val & 0xf));
1208
1209	ret = mpu3050_hw_init(mpu3050);
1210	if (ret)
1211		goto err_power_down;
1212
1213	indio_dev->channels = mpu3050_channels;
1214	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1215	indio_dev->info = &mpu3050_info;
1216	indio_dev->available_scan_masks = mpu3050_scan_masks;
1217	indio_dev->modes = INDIO_DIRECT_MODE;
1218	indio_dev->name = name;
1219
1220	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1221					 mpu3050_trigger_handler,
1222					 &mpu3050_buffer_setup_ops);
1223	if (ret) {
1224		dev_err(dev, "triggered buffer setup failed\n");
1225		goto err_power_down;
1226	}
1227
1228	ret = iio_device_register(indio_dev);
1229	if (ret) {
1230		dev_err(dev, "device register failed\n");
1231		goto err_cleanup_buffer;
1232	}
1233
1234	dev_set_drvdata(dev, indio_dev);
1235
1236	/* Check if we have an assigned IRQ to use as trigger */
1237	if (irq) {
1238		ret = mpu3050_trigger_probe(indio_dev, irq);
1239		if (ret)
1240			dev_err(dev, "failed to register trigger\n");
1241	}
1242
1243	/* Enable runtime PM */
1244	pm_runtime_get_noresume(dev);
1245	pm_runtime_set_active(dev);
1246	pm_runtime_enable(dev);
1247	/*
1248	 * Set autosuspend to two orders of magnitude larger than the
1249	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1250	 * i.e. 10 seconds.
1251	 */
1252	pm_runtime_set_autosuspend_delay(dev, 10000);
1253	pm_runtime_use_autosuspend(dev);
1254	pm_runtime_put(dev);
1255
1256	return 0;
1257
1258err_cleanup_buffer:
1259	iio_triggered_buffer_cleanup(indio_dev);
1260err_power_down:
1261	mpu3050_power_down(mpu3050);
1262
1263	return ret;
1264}
1265
1266void mpu3050_common_remove(struct device *dev)
1267{
1268	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1269	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1270
1271	pm_runtime_get_sync(dev);
1272	pm_runtime_put_noidle(dev);
1273	pm_runtime_disable(dev);
1274	iio_triggered_buffer_cleanup(indio_dev);
1275	if (mpu3050->irq)
1276		free_irq(mpu3050->irq, mpu3050);
1277	iio_device_unregister(indio_dev);
1278	mpu3050_power_down(mpu3050);
1279}
1280
1281static int mpu3050_runtime_suspend(struct device *dev)
1282{
1283	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1284}
1285
1286static int mpu3050_runtime_resume(struct device *dev)
1287{
1288	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1289}
1290
1291DEFINE_RUNTIME_DEV_PM_OPS(mpu3050_dev_pm_ops, mpu3050_runtime_suspend,
1292			  mpu3050_runtime_resume, NULL);
1293MODULE_AUTHOR("Linus Walleij");
1294MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1295MODULE_LICENSE("GPL");
1296