1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ADXRS290 SPI Gyroscope Driver
4 *
5 * Copyright (C) 2020 Nishant Malpani <nish.malpani25@gmail.com>
6 * Copyright (C) 2020 Analog Devices, Inc.
7 */
8
9#include <linux/bitfield.h>
10#include <linux/bitops.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/spi/spi.h>
16
17#include <linux/iio/buffer.h>
18#include <linux/iio/iio.h>
19#include <linux/iio/sysfs.h>
20#include <linux/iio/trigger.h>
21#include <linux/iio/triggered_buffer.h>
22#include <linux/iio/trigger_consumer.h>
23
24#define ADXRS290_ADI_ID		0xAD
25#define ADXRS290_MEMS_ID	0x1D
26#define ADXRS290_DEV_ID		0x92
27
28#define ADXRS290_REG_ADI_ID	0x00
29#define ADXRS290_REG_MEMS_ID	0x01
30#define ADXRS290_REG_DEV_ID	0x02
31#define ADXRS290_REG_REV_ID	0x03
32#define ADXRS290_REG_SN0	0x04 /* Serial Number Registers, 4 bytes */
33#define ADXRS290_REG_DATAX0	0x08 /* Roll Rate o/p Data Regs, 2 bytes */
34#define ADXRS290_REG_DATAY0	0x0A /* Pitch Rate o/p Data Regs, 2 bytes */
35#define ADXRS290_REG_TEMP0	0x0C
36#define ADXRS290_REG_POWER_CTL	0x10
37#define ADXRS290_REG_FILTER	0x11
38#define ADXRS290_REG_DATA_RDY	0x12
39
40#define ADXRS290_READ		BIT(7)
41#define ADXRS290_TSM		BIT(0)
42#define ADXRS290_MEASUREMENT	BIT(1)
43#define ADXRS290_DATA_RDY_OUT	BIT(0)
44#define ADXRS290_SYNC_MASK	GENMASK(1, 0)
45#define ADXRS290_SYNC(x)	FIELD_PREP(ADXRS290_SYNC_MASK, x)
46#define ADXRS290_LPF_MASK	GENMASK(2, 0)
47#define ADXRS290_LPF(x)		FIELD_PREP(ADXRS290_LPF_MASK, x)
48#define ADXRS290_HPF_MASK	GENMASK(7, 4)
49#define ADXRS290_HPF(x)		FIELD_PREP(ADXRS290_HPF_MASK, x)
50
51#define ADXRS290_READ_REG(reg)	(ADXRS290_READ | (reg))
52
53#define ADXRS290_MAX_TRANSITION_TIME_MS 100
54
55enum adxrs290_mode {
56	ADXRS290_MODE_STANDBY,
57	ADXRS290_MODE_MEASUREMENT,
58};
59
60enum adxrs290_scan_index {
61	ADXRS290_IDX_X,
62	ADXRS290_IDX_Y,
63	ADXRS290_IDX_TEMP,
64	ADXRS290_IDX_TS,
65};
66
67struct adxrs290_state {
68	struct spi_device	*spi;
69	/* Serialize reads and their subsequent processing */
70	struct mutex		lock;
71	enum adxrs290_mode	mode;
72	unsigned int		lpf_3db_freq_idx;
73	unsigned int		hpf_3db_freq_idx;
74	struct iio_trigger      *dready_trig;
75	/* Ensure correct alignment of timestamp when present */
76	struct {
77		s16 channels[3];
78		s64 ts __aligned(8);
79	} buffer;
80};
81
82/*
83 * Available cut-off frequencies of the low pass filter in Hz.
84 * The integer part and fractional part are represented separately.
85 */
86static const int adxrs290_lpf_3db_freq_hz_table[][2] = {
87	[0] = {480, 0},
88	[1] = {320, 0},
89	[2] = {160, 0},
90	[3] = {80, 0},
91	[4] = {56, 600000},
92	[5] = {40, 0},
93	[6] = {28, 300000},
94	[7] = {20, 0},
95};
96
97/*
98 * Available cut-off frequencies of the high pass filter in Hz.
99 * The integer part and fractional part are represented separately.
100 */
101static const int adxrs290_hpf_3db_freq_hz_table[][2] = {
102	[0] = {0, 0},
103	[1] = {0, 11000},
104	[2] = {0, 22000},
105	[3] = {0, 44000},
106	[4] = {0, 87000},
107	[5] = {0, 175000},
108	[6] = {0, 350000},
109	[7] = {0, 700000},
110	[8] = {1, 400000},
111	[9] = {2, 800000},
112	[10] = {11, 300000},
113};
114
115static int adxrs290_get_rate_data(struct iio_dev *indio_dev, const u8 cmd, int *val)
116{
117	struct adxrs290_state *st = iio_priv(indio_dev);
118	int ret = 0;
119	int temp;
120
121	mutex_lock(&st->lock);
122	temp = spi_w8r16(st->spi, cmd);
123	if (temp < 0) {
124		ret = temp;
125		goto err_unlock;
126	}
127
128	*val = sign_extend32(temp, 15);
129
130err_unlock:
131	mutex_unlock(&st->lock);
132	return ret;
133}
134
135static int adxrs290_get_temp_data(struct iio_dev *indio_dev, int *val)
136{
137	const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_TEMP0);
138	struct adxrs290_state *st = iio_priv(indio_dev);
139	int ret = 0;
140	int temp;
141
142	mutex_lock(&st->lock);
143	temp = spi_w8r16(st->spi, cmd);
144	if (temp < 0) {
145		ret = temp;
146		goto err_unlock;
147	}
148
149	/* extract lower 12 bits temperature reading */
150	*val = sign_extend32(temp, 11);
151
152err_unlock:
153	mutex_unlock(&st->lock);
154	return ret;
155}
156
157static int adxrs290_get_3db_freq(struct iio_dev *indio_dev, u8 *val, u8 *val2)
158{
159	const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_FILTER);
160	struct adxrs290_state *st = iio_priv(indio_dev);
161	int ret = 0;
162	short temp;
163
164	mutex_lock(&st->lock);
165	temp = spi_w8r8(st->spi, cmd);
166	if (temp < 0) {
167		ret = temp;
168		goto err_unlock;
169	}
170
171	*val = FIELD_GET(ADXRS290_LPF_MASK, temp);
172	*val2 = FIELD_GET(ADXRS290_HPF_MASK, temp);
173
174err_unlock:
175	mutex_unlock(&st->lock);
176	return ret;
177}
178
179static int adxrs290_spi_write_reg(struct spi_device *spi, const u8 reg,
180				  const u8 val)
181{
182	u8 buf[2];
183
184	buf[0] = reg;
185	buf[1] = val;
186
187	return spi_write_then_read(spi, buf, ARRAY_SIZE(buf), NULL, 0);
188}
189
190static int adxrs290_find_match(const int (*freq_tbl)[2], const int n,
191			       const int val, const int val2)
192{
193	int i;
194
195	for (i = 0; i < n; i++) {
196		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
197			return i;
198	}
199
200	return -EINVAL;
201}
202
203static int adxrs290_set_filter_freq(struct iio_dev *indio_dev,
204				    const unsigned int lpf_idx,
205				    const unsigned int hpf_idx)
206{
207	struct adxrs290_state *st = iio_priv(indio_dev);
208	u8 val;
209
210	val = ADXRS290_HPF(hpf_idx) | ADXRS290_LPF(lpf_idx);
211
212	return adxrs290_spi_write_reg(st->spi, ADXRS290_REG_FILTER, val);
213}
214
215static int adxrs290_set_mode(struct iio_dev *indio_dev, enum adxrs290_mode mode)
216{
217	struct adxrs290_state *st = iio_priv(indio_dev);
218	int val, ret;
219
220	if (st->mode == mode)
221		return 0;
222
223	mutex_lock(&st->lock);
224
225	ret = spi_w8r8(st->spi, ADXRS290_READ_REG(ADXRS290_REG_POWER_CTL));
226	if (ret < 0)
227		goto out_unlock;
228
229	val = ret;
230
231	switch (mode) {
232	case ADXRS290_MODE_STANDBY:
233		val &= ~ADXRS290_MEASUREMENT;
234		break;
235	case ADXRS290_MODE_MEASUREMENT:
236		val |= ADXRS290_MEASUREMENT;
237		break;
238	default:
239		ret = -EINVAL;
240		goto out_unlock;
241	}
242
243	ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_POWER_CTL, val);
244	if (ret < 0) {
245		dev_err(&st->spi->dev, "unable to set mode: %d\n", ret);
246		goto out_unlock;
247	}
248
249	/* update cached mode */
250	st->mode = mode;
251
252out_unlock:
253	mutex_unlock(&st->lock);
254	return ret;
255}
256
257static void adxrs290_chip_off_action(void *data)
258{
259	struct iio_dev *indio_dev = data;
260
261	adxrs290_set_mode(indio_dev, ADXRS290_MODE_STANDBY);
262}
263
264static int adxrs290_initial_setup(struct iio_dev *indio_dev)
265{
266	struct adxrs290_state *st = iio_priv(indio_dev);
267	struct spi_device *spi = st->spi;
268	int ret;
269
270	ret = adxrs290_spi_write_reg(spi, ADXRS290_REG_POWER_CTL,
271				     ADXRS290_MEASUREMENT | ADXRS290_TSM);
272	if (ret < 0)
273		return ret;
274
275	st->mode = ADXRS290_MODE_MEASUREMENT;
276
277	return devm_add_action_or_reset(&spi->dev, adxrs290_chip_off_action,
278					indio_dev);
279}
280
281static int adxrs290_read_raw(struct iio_dev *indio_dev,
282			     struct iio_chan_spec const *chan,
283			     int *val,
284			     int *val2,
285			     long mask)
286{
287	struct adxrs290_state *st = iio_priv(indio_dev);
288	unsigned int t;
289	int ret;
290
291	switch (mask) {
292	case IIO_CHAN_INFO_RAW:
293		ret = iio_device_claim_direct_mode(indio_dev);
294		if (ret)
295			return ret;
296
297		switch (chan->type) {
298		case IIO_ANGL_VEL:
299			ret = adxrs290_get_rate_data(indio_dev,
300						     ADXRS290_READ_REG(chan->address),
301						     val);
302			if (ret < 0)
303				break;
304
305			ret = IIO_VAL_INT;
306			break;
307		case IIO_TEMP:
308			ret = adxrs290_get_temp_data(indio_dev, val);
309			if (ret < 0)
310				break;
311
312			ret = IIO_VAL_INT;
313			break;
314		default:
315			ret = -EINVAL;
316			break;
317		}
318
319		iio_device_release_direct_mode(indio_dev);
320		return ret;
321	case IIO_CHAN_INFO_SCALE:
322		switch (chan->type) {
323		case IIO_ANGL_VEL:
324			/* 1 LSB = 0.005 degrees/sec */
325			*val = 0;
326			*val2 = 87266;
327			return IIO_VAL_INT_PLUS_NANO;
328		case IIO_TEMP:
329			/* 1 LSB = 0.1 degrees Celsius */
330			*val = 100;
331			return IIO_VAL_INT;
332		default:
333			return -EINVAL;
334		}
335	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
336		switch (chan->type) {
337		case IIO_ANGL_VEL:
338			t = st->lpf_3db_freq_idx;
339			*val = adxrs290_lpf_3db_freq_hz_table[t][0];
340			*val2 = adxrs290_lpf_3db_freq_hz_table[t][1];
341			return IIO_VAL_INT_PLUS_MICRO;
342		default:
343			return -EINVAL;
344		}
345	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
346		switch (chan->type) {
347		case IIO_ANGL_VEL:
348			t = st->hpf_3db_freq_idx;
349			*val = adxrs290_hpf_3db_freq_hz_table[t][0];
350			*val2 = adxrs290_hpf_3db_freq_hz_table[t][1];
351			return IIO_VAL_INT_PLUS_MICRO;
352		default:
353			return -EINVAL;
354		}
355	}
356
357	return -EINVAL;
358}
359
360static int adxrs290_write_raw(struct iio_dev *indio_dev,
361			      struct iio_chan_spec const *chan,
362			      int val,
363			      int val2,
364			      long mask)
365{
366	struct adxrs290_state *st = iio_priv(indio_dev);
367	int ret, lpf_idx, hpf_idx;
368
369	ret = iio_device_claim_direct_mode(indio_dev);
370	if (ret)
371		return ret;
372
373	switch (mask) {
374	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
375		lpf_idx = adxrs290_find_match(adxrs290_lpf_3db_freq_hz_table,
376					      ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table),
377					      val, val2);
378		if (lpf_idx < 0) {
379			ret = -EINVAL;
380			break;
381		}
382
383		/* caching the updated state of the low-pass filter */
384		st->lpf_3db_freq_idx = lpf_idx;
385		/* retrieving the current state of the high-pass filter */
386		hpf_idx = st->hpf_3db_freq_idx;
387		ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
388		break;
389
390	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
391		hpf_idx = adxrs290_find_match(adxrs290_hpf_3db_freq_hz_table,
392					      ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table),
393					      val, val2);
394		if (hpf_idx < 0) {
395			ret = -EINVAL;
396			break;
397		}
398
399		/* caching the updated state of the high-pass filter */
400		st->hpf_3db_freq_idx = hpf_idx;
401		/* retrieving the current state of the low-pass filter */
402		lpf_idx = st->lpf_3db_freq_idx;
403		ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
404		break;
405
406	default:
407		ret = -EINVAL;
408		break;
409	}
410
411	iio_device_release_direct_mode(indio_dev);
412	return ret;
413}
414
415static int adxrs290_read_avail(struct iio_dev *indio_dev,
416			       struct iio_chan_spec const *chan,
417			       const int **vals, int *type, int *length,
418			       long mask)
419{
420	switch (mask) {
421	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
422		*vals = (const int *)adxrs290_lpf_3db_freq_hz_table;
423		*type = IIO_VAL_INT_PLUS_MICRO;
424		/* Values are stored in a 2D matrix */
425		*length = ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table) * 2;
426
427		return IIO_AVAIL_LIST;
428	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
429		*vals = (const int *)adxrs290_hpf_3db_freq_hz_table;
430		*type = IIO_VAL_INT_PLUS_MICRO;
431		/* Values are stored in a 2D matrix */
432		*length = ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table) * 2;
433
434		return IIO_AVAIL_LIST;
435	default:
436		return -EINVAL;
437	}
438}
439
440static int adxrs290_reg_access_rw(struct spi_device *spi, unsigned int reg,
441				  unsigned int *readval)
442{
443	int ret;
444
445	ret = spi_w8r8(spi, ADXRS290_READ_REG(reg));
446	if (ret < 0)
447		return ret;
448
449	*readval = ret;
450
451	return 0;
452}
453
454static int adxrs290_reg_access(struct iio_dev *indio_dev, unsigned int reg,
455			       unsigned int writeval, unsigned int *readval)
456{
457	struct adxrs290_state *st = iio_priv(indio_dev);
458
459	if (readval)
460		return adxrs290_reg_access_rw(st->spi, reg, readval);
461	else
462		return adxrs290_spi_write_reg(st->spi, reg, writeval);
463}
464
465static int adxrs290_data_rdy_trigger_set_state(struct iio_trigger *trig,
466					       bool state)
467{
468	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
469	struct adxrs290_state *st = iio_priv(indio_dev);
470	int ret;
471	u8 val;
472
473	val = state ? ADXRS290_SYNC(ADXRS290_DATA_RDY_OUT) : 0;
474
475	ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_DATA_RDY, val);
476	if (ret < 0)
477		dev_err(&st->spi->dev, "failed to start data rdy interrupt\n");
478
479	return ret;
480}
481
482static void adxrs290_reset_trig(struct iio_trigger *trig)
483{
484	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
485	int val;
486
487	/*
488	 * Data ready interrupt is reset after a read of the data registers.
489	 * Here, we only read the 16b DATAY registers as that marks the end of
490	 * a read of the data registers and initiates a reset for the interrupt
491	 * line.
492	 */
493	adxrs290_get_rate_data(indio_dev,
494			       ADXRS290_READ_REG(ADXRS290_REG_DATAY0), &val);
495}
496
497static const struct iio_trigger_ops adxrs290_trigger_ops = {
498	.set_trigger_state = &adxrs290_data_rdy_trigger_set_state,
499	.validate_device = &iio_trigger_validate_own_device,
500	.reenable = &adxrs290_reset_trig,
501};
502
503static irqreturn_t adxrs290_trigger_handler(int irq, void *p)
504{
505	struct iio_poll_func *pf = p;
506	struct iio_dev *indio_dev = pf->indio_dev;
507	struct adxrs290_state *st = iio_priv(indio_dev);
508	u8 tx = ADXRS290_READ_REG(ADXRS290_REG_DATAX0);
509	int ret;
510
511	mutex_lock(&st->lock);
512
513	/* exercise a bulk data capture starting from reg DATAX0... */
514	ret = spi_write_then_read(st->spi, &tx, sizeof(tx), st->buffer.channels,
515				  sizeof(st->buffer.channels));
516	if (ret < 0)
517		goto out_unlock_notify;
518
519	iio_push_to_buffers_with_timestamp(indio_dev, &st->buffer,
520					   pf->timestamp);
521
522out_unlock_notify:
523	mutex_unlock(&st->lock);
524	iio_trigger_notify_done(indio_dev->trig);
525
526	return IRQ_HANDLED;
527}
528
529#define ADXRS290_ANGL_VEL_CHANNEL(reg, axis) {				\
530	.type = IIO_ANGL_VEL,						\
531	.address = reg,							\
532	.modified = 1,							\
533	.channel2 = IIO_MOD_##axis,					\
534	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
535	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
536	BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |		\
537	BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),		\
538	.info_mask_shared_by_type_available =				\
539	BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |		\
540	BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),		\
541	.scan_index = ADXRS290_IDX_##axis,				\
542	.scan_type = {                                                  \
543		.sign = 's',                                            \
544		.realbits = 16,                                         \
545		.storagebits = 16,                                      \
546		.endianness = IIO_LE,					\
547	},                                                              \
548}
549
550static const struct iio_chan_spec adxrs290_channels[] = {
551	ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAX0, X),
552	ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAY0, Y),
553	{
554		.type = IIO_TEMP,
555		.address = ADXRS290_REG_TEMP0,
556		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
557		BIT(IIO_CHAN_INFO_SCALE),
558		.scan_index = ADXRS290_IDX_TEMP,
559		.scan_type = {
560			.sign = 's',
561			.realbits = 12,
562			.storagebits = 16,
563			.endianness = IIO_LE,
564		},
565	},
566	IIO_CHAN_SOFT_TIMESTAMP(ADXRS290_IDX_TS),
567};
568
569static const unsigned long adxrs290_avail_scan_masks[] = {
570	BIT(ADXRS290_IDX_X) | BIT(ADXRS290_IDX_Y) | BIT(ADXRS290_IDX_TEMP),
571	0
572};
573
574static const struct iio_info adxrs290_info = {
575	.read_raw = &adxrs290_read_raw,
576	.write_raw = &adxrs290_write_raw,
577	.read_avail = &adxrs290_read_avail,
578	.debugfs_reg_access = &adxrs290_reg_access,
579};
580
581static int adxrs290_probe_trigger(struct iio_dev *indio_dev)
582{
583	struct adxrs290_state *st = iio_priv(indio_dev);
584	int ret;
585
586	if (!st->spi->irq) {
587		dev_info(&st->spi->dev, "no irq, using polling\n");
588		return 0;
589	}
590
591	st->dready_trig = devm_iio_trigger_alloc(&st->spi->dev, "%s-dev%d",
592						 indio_dev->name,
593						 iio_device_id(indio_dev));
594	if (!st->dready_trig)
595		return -ENOMEM;
596
597	st->dready_trig->ops = &adxrs290_trigger_ops;
598	iio_trigger_set_drvdata(st->dready_trig, indio_dev);
599
600	ret = devm_request_irq(&st->spi->dev, st->spi->irq,
601			       &iio_trigger_generic_data_rdy_poll,
602			       IRQF_ONESHOT, "adxrs290_irq", st->dready_trig);
603	if (ret < 0)
604		return dev_err_probe(&st->spi->dev, ret,
605				     "request irq %d failed\n", st->spi->irq);
606
607	ret = devm_iio_trigger_register(&st->spi->dev, st->dready_trig);
608	if (ret) {
609		dev_err(&st->spi->dev, "iio trigger register failed\n");
610		return ret;
611	}
612
613	indio_dev->trig = iio_trigger_get(st->dready_trig);
614
615	return 0;
616}
617
618static int adxrs290_probe(struct spi_device *spi)
619{
620	struct iio_dev *indio_dev;
621	struct adxrs290_state *st;
622	u8 val, val2;
623	int ret;
624
625	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
626	if (!indio_dev)
627		return -ENOMEM;
628
629	st = iio_priv(indio_dev);
630	st->spi = spi;
631
632	indio_dev->name = "adxrs290";
633	indio_dev->modes = INDIO_DIRECT_MODE;
634	indio_dev->channels = adxrs290_channels;
635	indio_dev->num_channels = ARRAY_SIZE(adxrs290_channels);
636	indio_dev->info = &adxrs290_info;
637	indio_dev->available_scan_masks = adxrs290_avail_scan_masks;
638
639	mutex_init(&st->lock);
640
641	val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_ADI_ID));
642	if (val != ADXRS290_ADI_ID) {
643		dev_err(&spi->dev, "Wrong ADI ID 0x%02x\n", val);
644		return -ENODEV;
645	}
646
647	val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_MEMS_ID));
648	if (val != ADXRS290_MEMS_ID) {
649		dev_err(&spi->dev, "Wrong MEMS ID 0x%02x\n", val);
650		return -ENODEV;
651	}
652
653	val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_DEV_ID));
654	if (val != ADXRS290_DEV_ID) {
655		dev_err(&spi->dev, "Wrong DEV ID 0x%02x\n", val);
656		return -ENODEV;
657	}
658
659	/* default mode the gyroscope starts in */
660	st->mode = ADXRS290_MODE_STANDBY;
661
662	/* switch to measurement mode and switch on the temperature sensor */
663	ret = adxrs290_initial_setup(indio_dev);
664	if (ret < 0)
665		return ret;
666
667	/* max transition time to measurement mode */
668	msleep(ADXRS290_MAX_TRANSITION_TIME_MS);
669
670	ret = adxrs290_get_3db_freq(indio_dev, &val, &val2);
671	if (ret < 0)
672		return ret;
673
674	st->lpf_3db_freq_idx = val;
675	st->hpf_3db_freq_idx = val2;
676
677	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
678					      &iio_pollfunc_store_time,
679					      &adxrs290_trigger_handler, NULL);
680	if (ret < 0)
681		return dev_err_probe(&spi->dev, ret,
682				     "iio triggered buffer setup failed\n");
683
684	ret = adxrs290_probe_trigger(indio_dev);
685	if (ret < 0)
686		return ret;
687
688	return devm_iio_device_register(&spi->dev, indio_dev);
689}
690
691static const struct of_device_id adxrs290_of_match[] = {
692	{ .compatible = "adi,adxrs290" },
693	{ }
694};
695MODULE_DEVICE_TABLE(of, adxrs290_of_match);
696
697static struct spi_driver adxrs290_driver = {
698	.driver = {
699		.name = "adxrs290",
700		.of_match_table = adxrs290_of_match,
701	},
702	.probe = adxrs290_probe,
703};
704module_spi_driver(adxrs290_driver);
705
706MODULE_AUTHOR("Nishant Malpani <nish.malpani25@gmail.com>");
707MODULE_DESCRIPTION("Analog Devices ADXRS290 Gyroscope SPI driver");
708MODULE_LICENSE("GPL");
709