xref: /kernel/linux/linux-6.6/drivers/iio/dac/ad5755.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AD5755, AD5755-1, AD5757, AD5735, AD5737 Digital to analog converters driver
4 *
5 * Copyright 2012 Analog Devices Inc.
6 */
7
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/spi/spi.h>
13#include <linux/slab.h>
14#include <linux/sysfs.h>
15#include <linux/delay.h>
16#include <linux/property.h>
17
18#include <linux/iio/iio.h>
19#include <linux/iio/sysfs.h>
20
21#define AD5755_NUM_CHANNELS 4
22
23#define AD5755_ADDR(x)			((x) << 16)
24
25#define AD5755_WRITE_REG_DATA(chan)	(chan)
26#define AD5755_WRITE_REG_GAIN(chan)	(0x08 | (chan))
27#define AD5755_WRITE_REG_OFFSET(chan)	(0x10 | (chan))
28#define AD5755_WRITE_REG_CTRL(chan)	(0x1c | (chan))
29
30#define AD5755_READ_REG_DATA(chan)	(chan)
31#define AD5755_READ_REG_CTRL(chan)	(0x4 | (chan))
32#define AD5755_READ_REG_GAIN(chan)	(0x8 | (chan))
33#define AD5755_READ_REG_OFFSET(chan)	(0xc | (chan))
34#define AD5755_READ_REG_CLEAR(chan)	(0x10 | (chan))
35#define AD5755_READ_REG_SLEW(chan)	(0x14 | (chan))
36#define AD5755_READ_REG_STATUS		0x18
37#define AD5755_READ_REG_MAIN		0x19
38#define AD5755_READ_REG_DC_DC		0x1a
39
40#define AD5755_CTRL_REG_SLEW	0x0
41#define AD5755_CTRL_REG_MAIN	0x1
42#define AD5755_CTRL_REG_DAC	0x2
43#define AD5755_CTRL_REG_DC_DC	0x3
44#define AD5755_CTRL_REG_SW	0x4
45
46#define AD5755_READ_FLAG 0x800000
47
48#define AD5755_NOOP 0x1CE000
49
50#define AD5755_DAC_INT_EN			BIT(8)
51#define AD5755_DAC_CLR_EN			BIT(7)
52#define AD5755_DAC_OUT_EN			BIT(6)
53#define AD5755_DAC_INT_CURRENT_SENSE_RESISTOR	BIT(5)
54#define AD5755_DAC_DC_DC_EN			BIT(4)
55#define AD5755_DAC_VOLTAGE_OVERRANGE_EN		BIT(3)
56
57#define AD5755_DC_DC_MAXV			0
58#define AD5755_DC_DC_FREQ_SHIFT			2
59#define AD5755_DC_DC_PHASE_SHIFT		4
60#define AD5755_EXT_DC_DC_COMP_RES		BIT(6)
61
62#define AD5755_SLEW_STEP_SIZE_SHIFT		0
63#define AD5755_SLEW_RATE_SHIFT			3
64#define AD5755_SLEW_ENABLE			BIT(12)
65
66enum ad5755_mode {
67	AD5755_MODE_VOLTAGE_0V_5V		= 0,
68	AD5755_MODE_VOLTAGE_0V_10V		= 1,
69	AD5755_MODE_VOLTAGE_PLUSMINUS_5V	= 2,
70	AD5755_MODE_VOLTAGE_PLUSMINUS_10V	= 3,
71	AD5755_MODE_CURRENT_4mA_20mA		= 4,
72	AD5755_MODE_CURRENT_0mA_20mA		= 5,
73	AD5755_MODE_CURRENT_0mA_24mA		= 6,
74};
75
76enum ad5755_dc_dc_phase {
77	AD5755_DC_DC_PHASE_ALL_SAME_EDGE		= 0,
78	AD5755_DC_DC_PHASE_A_B_SAME_EDGE_C_D_OPP_EDGE	= 1,
79	AD5755_DC_DC_PHASE_A_C_SAME_EDGE_B_D_OPP_EDGE	= 2,
80	AD5755_DC_DC_PHASE_90_DEGREE			= 3,
81};
82
83enum ad5755_dc_dc_freq {
84	AD5755_DC_DC_FREQ_250kHZ = 0,
85	AD5755_DC_DC_FREQ_410kHZ = 1,
86	AD5755_DC_DC_FREQ_650kHZ = 2,
87};
88
89enum ad5755_dc_dc_maxv {
90	AD5755_DC_DC_MAXV_23V	= 0,
91	AD5755_DC_DC_MAXV_24V5	= 1,
92	AD5755_DC_DC_MAXV_27V	= 2,
93	AD5755_DC_DC_MAXV_29V5	= 3,
94};
95
96enum ad5755_slew_rate {
97	AD5755_SLEW_RATE_64k	= 0,
98	AD5755_SLEW_RATE_32k	= 1,
99	AD5755_SLEW_RATE_16k	= 2,
100	AD5755_SLEW_RATE_8k	= 3,
101	AD5755_SLEW_RATE_4k	= 4,
102	AD5755_SLEW_RATE_2k	= 5,
103	AD5755_SLEW_RATE_1k	= 6,
104	AD5755_SLEW_RATE_500	= 7,
105	AD5755_SLEW_RATE_250	= 8,
106	AD5755_SLEW_RATE_125	= 9,
107	AD5755_SLEW_RATE_64	= 10,
108	AD5755_SLEW_RATE_32	= 11,
109	AD5755_SLEW_RATE_16	= 12,
110	AD5755_SLEW_RATE_8	= 13,
111	AD5755_SLEW_RATE_4	= 14,
112	AD5755_SLEW_RATE_0_5	= 15,
113};
114
115enum ad5755_slew_step_size {
116	AD5755_SLEW_STEP_SIZE_1 = 0,
117	AD5755_SLEW_STEP_SIZE_2 = 1,
118	AD5755_SLEW_STEP_SIZE_4 = 2,
119	AD5755_SLEW_STEP_SIZE_8 = 3,
120	AD5755_SLEW_STEP_SIZE_16 = 4,
121	AD5755_SLEW_STEP_SIZE_32 = 5,
122	AD5755_SLEW_STEP_SIZE_64 = 6,
123	AD5755_SLEW_STEP_SIZE_128 = 7,
124	AD5755_SLEW_STEP_SIZE_256 = 8,
125};
126
127/**
128 * struct ad5755_platform_data - AD5755 DAC driver platform data
129 * @ext_dc_dc_compenstation_resistor: Whether an external DC-DC converter
130 * compensation register is used.
131 * @dc_dc_phase: DC-DC converter phase.
132 * @dc_dc_freq: DC-DC converter frequency.
133 * @dc_dc_maxv: DC-DC maximum allowed boost voltage.
134 * @dac: Per DAC instance parameters.
135 * @dac.mode: The mode to be used for the DAC output.
136 * @dac.ext_current_sense_resistor: Whether an external current sense resistor
137 * is used.
138 * @dac.enable_voltage_overrange: Whether to enable 20% voltage output overrange.
139 * @dac.slew.enable: Whether to enable digital slew.
140 * @dac.slew.rate: Slew rate of the digital slew.
141 * @dac.slew.step_size: Slew step size of the digital slew.
142 **/
143struct ad5755_platform_data {
144	bool ext_dc_dc_compenstation_resistor;
145	enum ad5755_dc_dc_phase dc_dc_phase;
146	enum ad5755_dc_dc_freq dc_dc_freq;
147	enum ad5755_dc_dc_maxv dc_dc_maxv;
148
149	struct {
150		enum ad5755_mode mode;
151		bool ext_current_sense_resistor;
152		bool enable_voltage_overrange;
153		struct {
154			bool enable;
155			enum ad5755_slew_rate rate;
156			enum ad5755_slew_step_size step_size;
157		} slew;
158	} dac[4];
159};
160
161/**
162 * struct ad5755_chip_info - chip specific information
163 * @channel_template:	channel specification
164 * @calib_shift:	shift for the calibration data registers
165 * @has_voltage_out:	whether the chip has voltage outputs
166 */
167struct ad5755_chip_info {
168	const struct iio_chan_spec channel_template;
169	unsigned int calib_shift;
170	bool has_voltage_out;
171};
172
173/**
174 * struct ad5755_state - driver instance specific data
175 * @spi:	spi device the driver is attached to
176 * @chip_info:	chip model specific constants, available modes etc
177 * @pwr_down:	bitmask which contains  hether a channel is powered down or not
178 * @ctrl:	software shadow of the channel ctrl registers
179 * @channels:	iio channel spec for the device
180 * @lock:	lock to protect the data buffer during SPI ops
181 * @data:	spi transfer buffers
182 */
183struct ad5755_state {
184	struct spi_device		*spi;
185	const struct ad5755_chip_info	*chip_info;
186	unsigned int			pwr_down;
187	unsigned int			ctrl[AD5755_NUM_CHANNELS];
188	struct iio_chan_spec		channels[AD5755_NUM_CHANNELS];
189	struct mutex			lock;
190
191	/*
192	 * DMA (thus cache coherency maintenance) may require the
193	 * transfer buffers to live in their own cache lines.
194	 */
195
196	union {
197		__be32 d32;
198		u8 d8[4];
199	} data[2] __aligned(IIO_DMA_MINALIGN);
200};
201
202enum ad5755_type {
203	ID_AD5755,
204	ID_AD5757,
205	ID_AD5735,
206	ID_AD5737,
207};
208
209static const int ad5755_dcdc_freq_table[][2] = {
210	{ 250000, AD5755_DC_DC_FREQ_250kHZ },
211	{ 410000, AD5755_DC_DC_FREQ_410kHZ },
212	{ 650000, AD5755_DC_DC_FREQ_650kHZ }
213};
214
215static const int ad5755_dcdc_maxv_table[][2] = {
216	{ 23000000, AD5755_DC_DC_MAXV_23V },
217	{ 24500000, AD5755_DC_DC_MAXV_24V5 },
218	{ 27000000, AD5755_DC_DC_MAXV_27V },
219	{ 29500000, AD5755_DC_DC_MAXV_29V5 },
220};
221
222static const int ad5755_slew_rate_table[][2] = {
223	{ 64000, AD5755_SLEW_RATE_64k },
224	{ 32000, AD5755_SLEW_RATE_32k },
225	{ 16000, AD5755_SLEW_RATE_16k },
226	{ 8000, AD5755_SLEW_RATE_8k },
227	{ 4000, AD5755_SLEW_RATE_4k },
228	{ 2000, AD5755_SLEW_RATE_2k },
229	{ 1000, AD5755_SLEW_RATE_1k },
230	{ 500, AD5755_SLEW_RATE_500 },
231	{ 250, AD5755_SLEW_RATE_250 },
232	{ 125, AD5755_SLEW_RATE_125 },
233	{ 64, AD5755_SLEW_RATE_64 },
234	{ 32, AD5755_SLEW_RATE_32 },
235	{ 16, AD5755_SLEW_RATE_16 },
236	{ 8, AD5755_SLEW_RATE_8 },
237	{ 4, AD5755_SLEW_RATE_4 },
238	{ 0, AD5755_SLEW_RATE_0_5 },
239};
240
241static const int ad5755_slew_step_table[][2] = {
242	{ 256, AD5755_SLEW_STEP_SIZE_256 },
243	{ 128, AD5755_SLEW_STEP_SIZE_128 },
244	{ 64, AD5755_SLEW_STEP_SIZE_64 },
245	{ 32, AD5755_SLEW_STEP_SIZE_32 },
246	{ 16, AD5755_SLEW_STEP_SIZE_16 },
247	{ 4, AD5755_SLEW_STEP_SIZE_4 },
248	{ 2, AD5755_SLEW_STEP_SIZE_2 },
249	{ 1, AD5755_SLEW_STEP_SIZE_1 },
250};
251
252static int ad5755_write_unlocked(struct iio_dev *indio_dev,
253	unsigned int reg, unsigned int val)
254{
255	struct ad5755_state *st = iio_priv(indio_dev);
256
257	st->data[0].d32 = cpu_to_be32((reg << 16) | val);
258
259	return spi_write(st->spi, &st->data[0].d8[1], 3);
260}
261
262static int ad5755_write_ctrl_unlocked(struct iio_dev *indio_dev,
263	unsigned int channel, unsigned int reg, unsigned int val)
264{
265	return ad5755_write_unlocked(indio_dev,
266		AD5755_WRITE_REG_CTRL(channel), (reg << 13) | val);
267}
268
269static int ad5755_write(struct iio_dev *indio_dev, unsigned int reg,
270	unsigned int val)
271{
272	struct ad5755_state *st = iio_priv(indio_dev);
273	int ret;
274
275	mutex_lock(&st->lock);
276	ret = ad5755_write_unlocked(indio_dev, reg, val);
277	mutex_unlock(&st->lock);
278
279	return ret;
280}
281
282static int ad5755_write_ctrl(struct iio_dev *indio_dev, unsigned int channel,
283	unsigned int reg, unsigned int val)
284{
285	struct ad5755_state *st = iio_priv(indio_dev);
286	int ret;
287
288	mutex_lock(&st->lock);
289	ret = ad5755_write_ctrl_unlocked(indio_dev, channel, reg, val);
290	mutex_unlock(&st->lock);
291
292	return ret;
293}
294
295static int ad5755_read(struct iio_dev *indio_dev, unsigned int addr)
296{
297	struct ad5755_state *st = iio_priv(indio_dev);
298	int ret;
299	struct spi_transfer t[] = {
300		{
301			.tx_buf = &st->data[0].d8[1],
302			.len = 3,
303			.cs_change = 1,
304		}, {
305			.tx_buf = &st->data[1].d8[1],
306			.rx_buf = &st->data[1].d8[1],
307			.len = 3,
308		},
309	};
310
311	mutex_lock(&st->lock);
312
313	st->data[0].d32 = cpu_to_be32(AD5755_READ_FLAG | (addr << 16));
314	st->data[1].d32 = cpu_to_be32(AD5755_NOOP);
315
316	ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
317	if (ret >= 0)
318		ret = be32_to_cpu(st->data[1].d32) & 0xffff;
319
320	mutex_unlock(&st->lock);
321
322	return ret;
323}
324
325static int ad5755_update_dac_ctrl(struct iio_dev *indio_dev,
326	unsigned int channel, unsigned int set, unsigned int clr)
327{
328	struct ad5755_state *st = iio_priv(indio_dev);
329	int ret;
330
331	st->ctrl[channel] |= set;
332	st->ctrl[channel] &= ~clr;
333
334	ret = ad5755_write_ctrl_unlocked(indio_dev, channel,
335		AD5755_CTRL_REG_DAC, st->ctrl[channel]);
336
337	return ret;
338}
339
340static int ad5755_set_channel_pwr_down(struct iio_dev *indio_dev,
341	unsigned int channel, bool pwr_down)
342{
343	struct ad5755_state *st = iio_priv(indio_dev);
344	unsigned int mask = BIT(channel);
345
346	mutex_lock(&st->lock);
347
348	if ((bool)(st->pwr_down & mask) == pwr_down)
349		goto out_unlock;
350
351	if (!pwr_down) {
352		st->pwr_down &= ~mask;
353		ad5755_update_dac_ctrl(indio_dev, channel,
354			AD5755_DAC_INT_EN | AD5755_DAC_DC_DC_EN, 0);
355		udelay(200);
356		ad5755_update_dac_ctrl(indio_dev, channel,
357			AD5755_DAC_OUT_EN, 0);
358	} else {
359		st->pwr_down |= mask;
360		ad5755_update_dac_ctrl(indio_dev, channel,
361			0, AD5755_DAC_INT_EN | AD5755_DAC_OUT_EN |
362				AD5755_DAC_DC_DC_EN);
363	}
364
365out_unlock:
366	mutex_unlock(&st->lock);
367
368	return 0;
369}
370
371static const int ad5755_min_max_table[][2] = {
372	[AD5755_MODE_VOLTAGE_0V_5V] = { 0, 5000 },
373	[AD5755_MODE_VOLTAGE_0V_10V] = { 0, 10000 },
374	[AD5755_MODE_VOLTAGE_PLUSMINUS_5V] = { -5000, 5000 },
375	[AD5755_MODE_VOLTAGE_PLUSMINUS_10V] = { -10000, 10000 },
376	[AD5755_MODE_CURRENT_4mA_20mA] = { 4, 20 },
377	[AD5755_MODE_CURRENT_0mA_20mA] = { 0, 20 },
378	[AD5755_MODE_CURRENT_0mA_24mA] = { 0, 24 },
379};
380
381static void ad5755_get_min_max(struct ad5755_state *st,
382	struct iio_chan_spec const *chan, int *min, int *max)
383{
384	enum ad5755_mode mode = st->ctrl[chan->channel] & 7;
385	*min = ad5755_min_max_table[mode][0];
386	*max = ad5755_min_max_table[mode][1];
387}
388
389static inline int ad5755_get_offset(struct ad5755_state *st,
390	struct iio_chan_spec const *chan)
391{
392	int min, max;
393
394	ad5755_get_min_max(st, chan, &min, &max);
395	return (min * (1 << chan->scan_type.realbits)) / (max - min);
396}
397
398static int ad5755_chan_reg_info(struct ad5755_state *st,
399	struct iio_chan_spec const *chan, long info, bool write,
400	unsigned int *reg, unsigned int *shift, unsigned int *offset)
401{
402	switch (info) {
403	case IIO_CHAN_INFO_RAW:
404		if (write)
405			*reg = AD5755_WRITE_REG_DATA(chan->address);
406		else
407			*reg = AD5755_READ_REG_DATA(chan->address);
408		*shift = chan->scan_type.shift;
409		*offset = 0;
410		break;
411	case IIO_CHAN_INFO_CALIBBIAS:
412		if (write)
413			*reg = AD5755_WRITE_REG_OFFSET(chan->address);
414		else
415			*reg = AD5755_READ_REG_OFFSET(chan->address);
416		*shift = st->chip_info->calib_shift;
417		*offset = 32768;
418		break;
419	case IIO_CHAN_INFO_CALIBSCALE:
420		if (write)
421			*reg =  AD5755_WRITE_REG_GAIN(chan->address);
422		else
423			*reg =  AD5755_READ_REG_GAIN(chan->address);
424		*shift = st->chip_info->calib_shift;
425		*offset = 0;
426		break;
427	default:
428		return -EINVAL;
429	}
430
431	return 0;
432}
433
434static int ad5755_read_raw(struct iio_dev *indio_dev,
435	const struct iio_chan_spec *chan, int *val, int *val2, long info)
436{
437	struct ad5755_state *st = iio_priv(indio_dev);
438	unsigned int reg, shift, offset;
439	int min, max;
440	int ret;
441
442	switch (info) {
443	case IIO_CHAN_INFO_SCALE:
444		ad5755_get_min_max(st, chan, &min, &max);
445		*val = max - min;
446		*val2 = chan->scan_type.realbits;
447		return IIO_VAL_FRACTIONAL_LOG2;
448	case IIO_CHAN_INFO_OFFSET:
449		*val = ad5755_get_offset(st, chan);
450		return IIO_VAL_INT;
451	default:
452		ret = ad5755_chan_reg_info(st, chan, info, false,
453						&reg, &shift, &offset);
454		if (ret)
455			return ret;
456
457		ret = ad5755_read(indio_dev, reg);
458		if (ret < 0)
459			return ret;
460
461		*val = (ret - offset) >> shift;
462
463		return IIO_VAL_INT;
464	}
465
466	return -EINVAL;
467}
468
469static int ad5755_write_raw(struct iio_dev *indio_dev,
470	const struct iio_chan_spec *chan, int val, int val2, long info)
471{
472	struct ad5755_state *st = iio_priv(indio_dev);
473	unsigned int shift, reg, offset;
474	int ret;
475
476	ret = ad5755_chan_reg_info(st, chan, info, true,
477					&reg, &shift, &offset);
478	if (ret)
479		return ret;
480
481	val <<= shift;
482	val += offset;
483
484	if (val < 0 || val > 0xffff)
485		return -EINVAL;
486
487	return ad5755_write(indio_dev, reg, val);
488}
489
490static ssize_t ad5755_read_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
491	const struct iio_chan_spec *chan, char *buf)
492{
493	struct ad5755_state *st = iio_priv(indio_dev);
494
495	return sysfs_emit(buf, "%d\n",
496			  (bool)(st->pwr_down & (1 << chan->channel)));
497}
498
499static ssize_t ad5755_write_powerdown(struct iio_dev *indio_dev, uintptr_t priv,
500	struct iio_chan_spec const *chan, const char *buf, size_t len)
501{
502	bool pwr_down;
503	int ret;
504
505	ret = kstrtobool(buf, &pwr_down);
506	if (ret)
507		return ret;
508
509	ret = ad5755_set_channel_pwr_down(indio_dev, chan->channel, pwr_down);
510	return ret ? ret : len;
511}
512
513static const struct iio_info ad5755_info = {
514	.read_raw = ad5755_read_raw,
515	.write_raw = ad5755_write_raw,
516};
517
518static const struct iio_chan_spec_ext_info ad5755_ext_info[] = {
519	{
520		.name = "powerdown",
521		.read = ad5755_read_powerdown,
522		.write = ad5755_write_powerdown,
523		.shared = IIO_SEPARATE,
524	},
525	{ },
526};
527
528#define AD5755_CHANNEL(_bits) {					\
529	.indexed = 1,						\
530	.output = 1,						\
531	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
532		BIT(IIO_CHAN_INFO_SCALE) |			\
533		BIT(IIO_CHAN_INFO_OFFSET) |			\
534		BIT(IIO_CHAN_INFO_CALIBSCALE) |			\
535		BIT(IIO_CHAN_INFO_CALIBBIAS),			\
536	.scan_type = {						\
537		.sign = 'u',					\
538		.realbits = (_bits),				\
539		.storagebits = 16,				\
540		.shift = 16 - (_bits),				\
541	},							\
542	.ext_info = ad5755_ext_info,				\
543}
544
545static const struct ad5755_chip_info ad5755_chip_info_tbl[] = {
546	[ID_AD5735] = {
547		.channel_template = AD5755_CHANNEL(14),
548		.has_voltage_out = true,
549		.calib_shift = 4,
550	},
551	[ID_AD5737] = {
552		.channel_template = AD5755_CHANNEL(14),
553		.has_voltage_out = false,
554		.calib_shift = 4,
555	},
556	[ID_AD5755] = {
557		.channel_template = AD5755_CHANNEL(16),
558		.has_voltage_out = true,
559		.calib_shift = 0,
560	},
561	[ID_AD5757] = {
562		.channel_template = AD5755_CHANNEL(16),
563		.has_voltage_out = false,
564		.calib_shift = 0,
565	},
566};
567
568static bool ad5755_is_valid_mode(struct ad5755_state *st, enum ad5755_mode mode)
569{
570	switch (mode) {
571	case AD5755_MODE_VOLTAGE_0V_5V:
572	case AD5755_MODE_VOLTAGE_0V_10V:
573	case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
574	case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
575		return st->chip_info->has_voltage_out;
576	case AD5755_MODE_CURRENT_4mA_20mA:
577	case AD5755_MODE_CURRENT_0mA_20mA:
578	case AD5755_MODE_CURRENT_0mA_24mA:
579		return true;
580	default:
581		return false;
582	}
583}
584
585static int ad5755_setup_pdata(struct iio_dev *indio_dev,
586			      const struct ad5755_platform_data *pdata)
587{
588	struct ad5755_state *st = iio_priv(indio_dev);
589	unsigned int val;
590	unsigned int i;
591	int ret;
592
593	if (pdata->dc_dc_phase > AD5755_DC_DC_PHASE_90_DEGREE ||
594		pdata->dc_dc_freq > AD5755_DC_DC_FREQ_650kHZ ||
595		pdata->dc_dc_maxv > AD5755_DC_DC_MAXV_29V5)
596		return -EINVAL;
597
598	val = pdata->dc_dc_maxv << AD5755_DC_DC_MAXV;
599	val |= pdata->dc_dc_freq << AD5755_DC_DC_FREQ_SHIFT;
600	val |= pdata->dc_dc_phase << AD5755_DC_DC_PHASE_SHIFT;
601	if (pdata->ext_dc_dc_compenstation_resistor)
602		val |= AD5755_EXT_DC_DC_COMP_RES;
603
604	ret = ad5755_write_ctrl(indio_dev, 0, AD5755_CTRL_REG_DC_DC, val);
605	if (ret < 0)
606		return ret;
607
608	for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
609		val = pdata->dac[i].slew.step_size <<
610			AD5755_SLEW_STEP_SIZE_SHIFT;
611		val |= pdata->dac[i].slew.rate <<
612			AD5755_SLEW_RATE_SHIFT;
613		if (pdata->dac[i].slew.enable)
614			val |= AD5755_SLEW_ENABLE;
615
616		ret = ad5755_write_ctrl(indio_dev, i,
617					AD5755_CTRL_REG_SLEW, val);
618		if (ret < 0)
619			return ret;
620	}
621
622	for (i = 0; i < ARRAY_SIZE(pdata->dac); ++i) {
623		if (!ad5755_is_valid_mode(st, pdata->dac[i].mode))
624			return -EINVAL;
625
626		val = 0;
627		if (!pdata->dac[i].ext_current_sense_resistor)
628			val |= AD5755_DAC_INT_CURRENT_SENSE_RESISTOR;
629		if (pdata->dac[i].enable_voltage_overrange)
630			val |= AD5755_DAC_VOLTAGE_OVERRANGE_EN;
631		val |= pdata->dac[i].mode;
632
633		ret = ad5755_update_dac_ctrl(indio_dev, i, val, 0);
634		if (ret < 0)
635			return ret;
636	}
637
638	return 0;
639}
640
641static bool ad5755_is_voltage_mode(enum ad5755_mode mode)
642{
643	switch (mode) {
644	case AD5755_MODE_VOLTAGE_0V_5V:
645	case AD5755_MODE_VOLTAGE_0V_10V:
646	case AD5755_MODE_VOLTAGE_PLUSMINUS_5V:
647	case AD5755_MODE_VOLTAGE_PLUSMINUS_10V:
648		return true;
649	default:
650		return false;
651	}
652}
653
654static int ad5755_init_channels(struct iio_dev *indio_dev,
655				const struct ad5755_platform_data *pdata)
656{
657	struct ad5755_state *st = iio_priv(indio_dev);
658	struct iio_chan_spec *channels = st->channels;
659	unsigned int i;
660
661	for (i = 0; i < AD5755_NUM_CHANNELS; ++i) {
662		channels[i] = st->chip_info->channel_template;
663		channels[i].channel = i;
664		channels[i].address = i;
665		if (pdata && ad5755_is_voltage_mode(pdata->dac[i].mode))
666			channels[i].type = IIO_VOLTAGE;
667		else
668			channels[i].type = IIO_CURRENT;
669	}
670
671	indio_dev->channels = channels;
672
673	return 0;
674}
675
676#define AD5755_DEFAULT_DAC_PDATA { \
677		.mode = AD5755_MODE_CURRENT_4mA_20mA, \
678		.ext_current_sense_resistor = true, \
679		.enable_voltage_overrange = false, \
680		.slew = { \
681			.enable = false, \
682			.rate = AD5755_SLEW_RATE_64k, \
683			.step_size = AD5755_SLEW_STEP_SIZE_1, \
684		}, \
685	}
686
687static const struct ad5755_platform_data ad5755_default_pdata = {
688	.ext_dc_dc_compenstation_resistor = false,
689	.dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE,
690	.dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ,
691	.dc_dc_maxv = AD5755_DC_DC_MAXV_23V,
692	.dac = {
693		[0] = AD5755_DEFAULT_DAC_PDATA,
694		[1] = AD5755_DEFAULT_DAC_PDATA,
695		[2] = AD5755_DEFAULT_DAC_PDATA,
696		[3] = AD5755_DEFAULT_DAC_PDATA,
697	},
698};
699
700static struct ad5755_platform_data *ad5755_parse_fw(struct device *dev)
701{
702	struct fwnode_handle *pp;
703	struct ad5755_platform_data *pdata;
704	unsigned int tmp;
705	unsigned int tmparray[3];
706	int devnr, i;
707
708	if (!dev_fwnode(dev))
709		return NULL;
710
711	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
712	if (!pdata)
713		return NULL;
714
715	pdata->ext_dc_dc_compenstation_resistor =
716	    device_property_read_bool(dev, "adi,ext-dc-dc-compenstation-resistor");
717
718	pdata->dc_dc_phase = AD5755_DC_DC_PHASE_ALL_SAME_EDGE;
719	device_property_read_u32(dev, "adi,dc-dc-phase", &pdata->dc_dc_phase);
720
721	pdata->dc_dc_freq = AD5755_DC_DC_FREQ_410kHZ;
722	if (!device_property_read_u32(dev, "adi,dc-dc-freq-hz", &tmp)) {
723		for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_freq_table); i++) {
724			if (tmp == ad5755_dcdc_freq_table[i][0]) {
725				pdata->dc_dc_freq = ad5755_dcdc_freq_table[i][1];
726				break;
727			}
728		}
729
730		if (i == ARRAY_SIZE(ad5755_dcdc_freq_table))
731			dev_err(dev,
732				"adi,dc-dc-freq out of range selecting 410kHz\n");
733	}
734
735	pdata->dc_dc_maxv = AD5755_DC_DC_MAXV_23V;
736	if (!device_property_read_u32(dev, "adi,dc-dc-max-microvolt", &tmp)) {
737		for (i = 0; i < ARRAY_SIZE(ad5755_dcdc_maxv_table); i++) {
738			if (tmp == ad5755_dcdc_maxv_table[i][0]) {
739				pdata->dc_dc_maxv = ad5755_dcdc_maxv_table[i][1];
740				break;
741			}
742		}
743		if (i == ARRAY_SIZE(ad5755_dcdc_maxv_table))
744				dev_err(dev,
745					"adi,dc-dc-maxv out of range selecting 23V\n");
746	}
747
748	devnr = 0;
749	device_for_each_child_node(dev, pp) {
750		if (devnr >= AD5755_NUM_CHANNELS) {
751			dev_err(dev,
752				"There are too many channels defined in DT\n");
753			goto error_out;
754		}
755
756		pdata->dac[devnr].mode = AD5755_MODE_CURRENT_4mA_20mA;
757		fwnode_property_read_u32(pp, "adi,mode", &pdata->dac[devnr].mode);
758
759		pdata->dac[devnr].ext_current_sense_resistor =
760		    fwnode_property_read_bool(pp, "adi,ext-current-sense-resistor");
761
762		pdata->dac[devnr].enable_voltage_overrange =
763		    fwnode_property_read_bool(pp, "adi,enable-voltage-overrange");
764
765		if (!fwnode_property_read_u32_array(pp, "adi,slew", tmparray, 3)) {
766			pdata->dac[devnr].slew.enable = tmparray[0];
767
768			pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
769			for (i = 0; i < ARRAY_SIZE(ad5755_slew_rate_table); i++) {
770				if (tmparray[1] == ad5755_slew_rate_table[i][0]) {
771					pdata->dac[devnr].slew.rate =
772						ad5755_slew_rate_table[i][1];
773					break;
774				}
775			}
776			if (i == ARRAY_SIZE(ad5755_slew_rate_table))
777				dev_err(dev,
778					"channel %d slew rate out of range selecting 64kHz\n",
779					devnr);
780
781			pdata->dac[devnr].slew.step_size = AD5755_SLEW_STEP_SIZE_1;
782			for (i = 0; i < ARRAY_SIZE(ad5755_slew_step_table); i++) {
783				if (tmparray[2] == ad5755_slew_step_table[i][0]) {
784					pdata->dac[devnr].slew.step_size =
785						ad5755_slew_step_table[i][1];
786					break;
787				}
788			}
789			if (i == ARRAY_SIZE(ad5755_slew_step_table))
790				dev_err(dev,
791					"channel %d slew step size out of range selecting 1 LSB\n",
792					devnr);
793		} else {
794			pdata->dac[devnr].slew.enable = false;
795			pdata->dac[devnr].slew.rate = AD5755_SLEW_RATE_64k;
796			pdata->dac[devnr].slew.step_size =
797			    AD5755_SLEW_STEP_SIZE_1;
798		}
799		devnr++;
800	}
801
802	return pdata;
803
804 error_out:
805	fwnode_handle_put(pp);
806	devm_kfree(dev, pdata);
807	return NULL;
808}
809
810static int ad5755_probe(struct spi_device *spi)
811{
812	enum ad5755_type type = spi_get_device_id(spi)->driver_data;
813	const struct ad5755_platform_data *pdata;
814	struct iio_dev *indio_dev;
815	struct ad5755_state *st;
816	int ret;
817
818	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
819	if (indio_dev == NULL) {
820		dev_err(&spi->dev, "Failed to allocate iio device\n");
821		return  -ENOMEM;
822	}
823
824	st = iio_priv(indio_dev);
825	spi_set_drvdata(spi, indio_dev);
826
827	st->chip_info = &ad5755_chip_info_tbl[type];
828	st->spi = spi;
829	st->pwr_down = 0xf;
830
831	indio_dev->name = spi_get_device_id(spi)->name;
832	indio_dev->info = &ad5755_info;
833	indio_dev->modes = INDIO_DIRECT_MODE;
834	indio_dev->num_channels = AD5755_NUM_CHANNELS;
835
836	mutex_init(&st->lock);
837
838
839	pdata = ad5755_parse_fw(&spi->dev);
840	if (!pdata) {
841		dev_warn(&spi->dev, "no firmware provided parameters? using default\n");
842		pdata = &ad5755_default_pdata;
843	}
844
845	ret = ad5755_init_channels(indio_dev, pdata);
846	if (ret)
847		return ret;
848
849	ret = ad5755_setup_pdata(indio_dev, pdata);
850	if (ret)
851		return ret;
852
853	return devm_iio_device_register(&spi->dev, indio_dev);
854}
855
856static const struct spi_device_id ad5755_id[] = {
857	{ "ad5755", ID_AD5755 },
858	{ "ad5755-1", ID_AD5755 },
859	{ "ad5757", ID_AD5757 },
860	{ "ad5735", ID_AD5735 },
861	{ "ad5737", ID_AD5737 },
862	{}
863};
864MODULE_DEVICE_TABLE(spi, ad5755_id);
865
866static const struct of_device_id ad5755_of_match[] = {
867	{ .compatible = "adi,ad5755" },
868	{ .compatible = "adi,ad5755-1" },
869	{ .compatible = "adi,ad5757" },
870	{ .compatible = "adi,ad5735" },
871	{ .compatible = "adi,ad5737" },
872	{ }
873};
874MODULE_DEVICE_TABLE(of, ad5755_of_match);
875
876static struct spi_driver ad5755_driver = {
877	.driver = {
878		.name = "ad5755",
879	},
880	.probe = ad5755_probe,
881	.id_table = ad5755_id,
882};
883module_spi_driver(ad5755_driver);
884
885MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
886MODULE_DESCRIPTION("Analog Devices AD5755/55-1/57/35/37 DAC");
887MODULE_LICENSE("GPL v2");
888