162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0+
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * sgp40.c - Support for Sensirion SGP40 Gas Sensor
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de>
662306a36Sopenharmony_ci *
762306a36Sopenharmony_ci * I2C slave address: 0x59
862306a36Sopenharmony_ci *
962306a36Sopenharmony_ci * Datasheet can be found here:
1062306a36Sopenharmony_ci * https://www.sensirion.com/file/datasheet_sgp40
1162306a36Sopenharmony_ci *
1262306a36Sopenharmony_ci * There are two functionalities supported:
1362306a36Sopenharmony_ci *
1462306a36Sopenharmony_ci * 1) read raw logarithmic resistance value from sensor
1562306a36Sopenharmony_ci *    --> useful to pass it to the algorithm of the sensor vendor for
1662306a36Sopenharmony_ci *    measuring deteriorations and improvements of air quality.
1762306a36Sopenharmony_ci *
1862306a36Sopenharmony_ci * 2) calculate an estimated absolute voc index (0 - 500 index points) for
1962306a36Sopenharmony_ci *    measuring the air quality.
2062306a36Sopenharmony_ci *    For this purpose the value of the resistance for which the voc index
2162306a36Sopenharmony_ci *    will be 250 can be set up using calibbias.
2262306a36Sopenharmony_ci *
2362306a36Sopenharmony_ci * Compensation values of relative humidity and temperature can be set up
2462306a36Sopenharmony_ci * by writing to the out values of temp and humidityrelative.
2562306a36Sopenharmony_ci */
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_ci#include <linux/delay.h>
2862306a36Sopenharmony_ci#include <linux/crc8.h>
2962306a36Sopenharmony_ci#include <linux/module.h>
3062306a36Sopenharmony_ci#include <linux/mutex.h>
3162306a36Sopenharmony_ci#include <linux/i2c.h>
3262306a36Sopenharmony_ci#include <linux/iio/iio.h>
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci/*
3562306a36Sopenharmony_ci * floating point calculation of voc is done as integer
3662306a36Sopenharmony_ci * where numbers are multiplied by 1 << SGP40_CALC_POWER
3762306a36Sopenharmony_ci */
3862306a36Sopenharmony_ci#define SGP40_CALC_POWER	14
3962306a36Sopenharmony_ci
4062306a36Sopenharmony_ci#define SGP40_CRC8_POLYNOMIAL	0x31
4162306a36Sopenharmony_ci#define SGP40_CRC8_INIT		0xff
4262306a36Sopenharmony_ci
4362306a36Sopenharmony_ciDECLARE_CRC8_TABLE(sgp40_crc8_table);
4462306a36Sopenharmony_ci
4562306a36Sopenharmony_cistruct sgp40_data {
4662306a36Sopenharmony_ci	struct device		*dev;
4762306a36Sopenharmony_ci	struct i2c_client	*client;
4862306a36Sopenharmony_ci	int			rht;
4962306a36Sopenharmony_ci	int			temp;
5062306a36Sopenharmony_ci	int			res_calibbias;
5162306a36Sopenharmony_ci	/* Prevent concurrent access to rht, tmp, calibbias */
5262306a36Sopenharmony_ci	struct mutex		lock;
5362306a36Sopenharmony_ci};
5462306a36Sopenharmony_ci
5562306a36Sopenharmony_cistruct sgp40_tg_measure {
5662306a36Sopenharmony_ci	u8	command[2];
5762306a36Sopenharmony_ci	__be16	rht_ticks;
5862306a36Sopenharmony_ci	u8	rht_crc;
5962306a36Sopenharmony_ci	__be16	temp_ticks;
6062306a36Sopenharmony_ci	u8	temp_crc;
6162306a36Sopenharmony_ci} __packed;
6262306a36Sopenharmony_ci
6362306a36Sopenharmony_cistruct sgp40_tg_result {
6462306a36Sopenharmony_ci	__be16	res_ticks;
6562306a36Sopenharmony_ci	u8	res_crc;
6662306a36Sopenharmony_ci} __packed;
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_cistatic const struct iio_chan_spec sgp40_channels[] = {
6962306a36Sopenharmony_ci	{
7062306a36Sopenharmony_ci		.type = IIO_CONCENTRATION,
7162306a36Sopenharmony_ci		.channel2 = IIO_MOD_VOC,
7262306a36Sopenharmony_ci		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
7362306a36Sopenharmony_ci	},
7462306a36Sopenharmony_ci	{
7562306a36Sopenharmony_ci		.type = IIO_RESISTANCE,
7662306a36Sopenharmony_ci		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
7762306a36Sopenharmony_ci			BIT(IIO_CHAN_INFO_CALIBBIAS),
7862306a36Sopenharmony_ci	},
7962306a36Sopenharmony_ci	{
8062306a36Sopenharmony_ci		.type = IIO_TEMP,
8162306a36Sopenharmony_ci		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
8262306a36Sopenharmony_ci		.output = 1,
8362306a36Sopenharmony_ci	},
8462306a36Sopenharmony_ci	{
8562306a36Sopenharmony_ci		.type = IIO_HUMIDITYRELATIVE,
8662306a36Sopenharmony_ci		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
8762306a36Sopenharmony_ci		.output = 1,
8862306a36Sopenharmony_ci	},
8962306a36Sopenharmony_ci};
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci/*
9262306a36Sopenharmony_ci * taylor approximation of e^x:
9362306a36Sopenharmony_ci * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n!
9462306a36Sopenharmony_ci *
9562306a36Sopenharmony_ci * Because we are calculating x real value multiplied by 2^power we get
9662306a36Sopenharmony_ci * an additional 2^power^n to divide for every element. For a reasonable
9762306a36Sopenharmony_ci * precision this would overflow after a few iterations. Therefore we
9862306a36Sopenharmony_ci * divide the x^n part whenever its about to overflow (xmax).
9962306a36Sopenharmony_ci */
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_cistatic u32 sgp40_exp(int exp, u32 power, u32 rounds)
10262306a36Sopenharmony_ci{
10362306a36Sopenharmony_ci        u32 x, y, xp;
10462306a36Sopenharmony_ci        u32 factorial, divider, xmax;
10562306a36Sopenharmony_ci        int sign = 1;
10662306a36Sopenharmony_ci	int i;
10762306a36Sopenharmony_ci
10862306a36Sopenharmony_ci        if (exp == 0)
10962306a36Sopenharmony_ci                return 1 << power;
11062306a36Sopenharmony_ci        else if (exp < 0) {
11162306a36Sopenharmony_ci                sign = -1;
11262306a36Sopenharmony_ci                exp *= -1;
11362306a36Sopenharmony_ci        }
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci        xmax = 0x7FFFFFFF / exp;
11662306a36Sopenharmony_ci        x = exp;
11762306a36Sopenharmony_ci        xp = 1;
11862306a36Sopenharmony_ci        factorial = 1;
11962306a36Sopenharmony_ci        y = 1 << power;
12062306a36Sopenharmony_ci        divider = 0;
12162306a36Sopenharmony_ci
12262306a36Sopenharmony_ci        for (i = 1; i <= rounds; i++) {
12362306a36Sopenharmony_ci                xp *= x;
12462306a36Sopenharmony_ci                factorial *= i;
12562306a36Sopenharmony_ci                y += (xp >> divider) / factorial;
12662306a36Sopenharmony_ci                divider += power;
12762306a36Sopenharmony_ci                /* divide when next multiplication would overflow */
12862306a36Sopenharmony_ci                if (xp >= xmax) {
12962306a36Sopenharmony_ci                        xp >>= power;
13062306a36Sopenharmony_ci                        divider -= power;
13162306a36Sopenharmony_ci                }
13262306a36Sopenharmony_ci        }
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_ci        if (sign == -1)
13562306a36Sopenharmony_ci                return (1 << (power * 2)) / y;
13662306a36Sopenharmony_ci        else
13762306a36Sopenharmony_ci                return y;
13862306a36Sopenharmony_ci}
13962306a36Sopenharmony_ci
14062306a36Sopenharmony_cistatic int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc)
14162306a36Sopenharmony_ci{
14262306a36Sopenharmony_ci	int x;
14362306a36Sopenharmony_ci	u32 exp = 0;
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci	/* we calculate as a multiple of 16384 (2^14) */
14662306a36Sopenharmony_ci	mutex_lock(&data->lock);
14762306a36Sopenharmony_ci	x = ((int)resistance_raw - data->res_calibbias) * 106;
14862306a36Sopenharmony_ci	mutex_unlock(&data->lock);
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_ci	/* voc = 500 / (1 + e^x) */
15162306a36Sopenharmony_ci	exp = sgp40_exp(x, SGP40_CALC_POWER, 18);
15262306a36Sopenharmony_ci	*voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp));
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci	dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n",
15562306a36Sopenharmony_ci				resistance_raw, data->res_calibbias, x, exp, *voc);
15662306a36Sopenharmony_ci
15762306a36Sopenharmony_ci	return 0;
15862306a36Sopenharmony_ci}
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_cistatic int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw)
16162306a36Sopenharmony_ci{
16262306a36Sopenharmony_ci	int ret;
16362306a36Sopenharmony_ci	struct i2c_client *client = data->client;
16462306a36Sopenharmony_ci	u32 ticks;
16562306a36Sopenharmony_ci	u16 ticks16;
16662306a36Sopenharmony_ci	u8 crc;
16762306a36Sopenharmony_ci	struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}};
16862306a36Sopenharmony_ci	struct sgp40_tg_result tgres;
16962306a36Sopenharmony_ci
17062306a36Sopenharmony_ci	mutex_lock(&data->lock);
17162306a36Sopenharmony_ci
17262306a36Sopenharmony_ci	ticks = (data->rht / 10) * 65535 / 10000;
17362306a36Sopenharmony_ci	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */
17462306a36Sopenharmony_ci	tg.rht_ticks = cpu_to_be16(ticks16);
17562306a36Sopenharmony_ci	tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT);
17662306a36Sopenharmony_ci
17762306a36Sopenharmony_ci	ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500;
17862306a36Sopenharmony_ci	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */
17962306a36Sopenharmony_ci	tg.temp_ticks = cpu_to_be16(ticks16);
18062306a36Sopenharmony_ci	tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT);
18162306a36Sopenharmony_ci
18262306a36Sopenharmony_ci	mutex_unlock(&data->lock);
18362306a36Sopenharmony_ci
18462306a36Sopenharmony_ci	ret = i2c_master_send(client, (const char *)&tg, sizeof(tg));
18562306a36Sopenharmony_ci	if (ret != sizeof(tg)) {
18662306a36Sopenharmony_ci		dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg));
18762306a36Sopenharmony_ci		return -EIO;
18862306a36Sopenharmony_ci	}
18962306a36Sopenharmony_ci	msleep(30);
19062306a36Sopenharmony_ci
19162306a36Sopenharmony_ci	ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres));
19262306a36Sopenharmony_ci	if (ret < 0)
19362306a36Sopenharmony_ci		return ret;
19462306a36Sopenharmony_ci	if (ret != sizeof(tgres)) {
19562306a36Sopenharmony_ci		dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres));
19662306a36Sopenharmony_ci		return -EIO;
19762306a36Sopenharmony_ci	}
19862306a36Sopenharmony_ci
19962306a36Sopenharmony_ci	crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT);
20062306a36Sopenharmony_ci	if (crc != tgres.res_crc) {
20162306a36Sopenharmony_ci		dev_err(data->dev, "CRC error while measure-raw\n");
20262306a36Sopenharmony_ci		return -EIO;
20362306a36Sopenharmony_ci	}
20462306a36Sopenharmony_ci
20562306a36Sopenharmony_ci	*resistance_raw = be16_to_cpu(tgres.res_ticks);
20662306a36Sopenharmony_ci
20762306a36Sopenharmony_ci	return 0;
20862306a36Sopenharmony_ci}
20962306a36Sopenharmony_ci
21062306a36Sopenharmony_cistatic int sgp40_read_raw(struct iio_dev *indio_dev,
21162306a36Sopenharmony_ci			struct iio_chan_spec const *chan, int *val,
21262306a36Sopenharmony_ci			int *val2, long mask)
21362306a36Sopenharmony_ci{
21462306a36Sopenharmony_ci	struct sgp40_data *data = iio_priv(indio_dev);
21562306a36Sopenharmony_ci	int ret, voc;
21662306a36Sopenharmony_ci	u16 resistance_raw;
21762306a36Sopenharmony_ci
21862306a36Sopenharmony_ci	switch (mask) {
21962306a36Sopenharmony_ci	case IIO_CHAN_INFO_RAW:
22062306a36Sopenharmony_ci		switch (chan->type) {
22162306a36Sopenharmony_ci		case IIO_RESISTANCE:
22262306a36Sopenharmony_ci			ret = sgp40_measure_resistance_raw(data, &resistance_raw);
22362306a36Sopenharmony_ci			if (ret)
22462306a36Sopenharmony_ci				return ret;
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_ci			*val = resistance_raw;
22762306a36Sopenharmony_ci			return IIO_VAL_INT;
22862306a36Sopenharmony_ci		case IIO_TEMP:
22962306a36Sopenharmony_ci			mutex_lock(&data->lock);
23062306a36Sopenharmony_ci			*val = data->temp;
23162306a36Sopenharmony_ci			mutex_unlock(&data->lock);
23262306a36Sopenharmony_ci			return IIO_VAL_INT;
23362306a36Sopenharmony_ci		case IIO_HUMIDITYRELATIVE:
23462306a36Sopenharmony_ci			mutex_lock(&data->lock);
23562306a36Sopenharmony_ci			*val = data->rht;
23662306a36Sopenharmony_ci			mutex_unlock(&data->lock);
23762306a36Sopenharmony_ci			return IIO_VAL_INT;
23862306a36Sopenharmony_ci		default:
23962306a36Sopenharmony_ci			return -EINVAL;
24062306a36Sopenharmony_ci		}
24162306a36Sopenharmony_ci	case IIO_CHAN_INFO_PROCESSED:
24262306a36Sopenharmony_ci		ret = sgp40_measure_resistance_raw(data, &resistance_raw);
24362306a36Sopenharmony_ci		if (ret)
24462306a36Sopenharmony_ci			return ret;
24562306a36Sopenharmony_ci
24662306a36Sopenharmony_ci		ret = sgp40_calc_voc(data, resistance_raw, &voc);
24762306a36Sopenharmony_ci		if (ret)
24862306a36Sopenharmony_ci			return ret;
24962306a36Sopenharmony_ci
25062306a36Sopenharmony_ci		*val = voc / (1 << SGP40_CALC_POWER);
25162306a36Sopenharmony_ci		/*
25262306a36Sopenharmony_ci		 * calculation should fit into integer, where:
25362306a36Sopenharmony_ci		 * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000
25462306a36Sopenharmony_ci		 * (with SGP40_CALC_POWER = 14)
25562306a36Sopenharmony_ci		 */
25662306a36Sopenharmony_ci		*val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12));
25762306a36Sopenharmony_ci		dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2);
25862306a36Sopenharmony_ci		return IIO_VAL_INT_PLUS_MICRO;
25962306a36Sopenharmony_ci	case IIO_CHAN_INFO_CALIBBIAS:
26062306a36Sopenharmony_ci		mutex_lock(&data->lock);
26162306a36Sopenharmony_ci		*val = data->res_calibbias;
26262306a36Sopenharmony_ci		mutex_unlock(&data->lock);
26362306a36Sopenharmony_ci		return IIO_VAL_INT;
26462306a36Sopenharmony_ci	default:
26562306a36Sopenharmony_ci		return -EINVAL;
26662306a36Sopenharmony_ci	}
26762306a36Sopenharmony_ci}
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_cistatic int sgp40_write_raw(struct iio_dev *indio_dev,
27062306a36Sopenharmony_ci			struct iio_chan_spec const *chan, int val,
27162306a36Sopenharmony_ci			int val2, long mask)
27262306a36Sopenharmony_ci{
27362306a36Sopenharmony_ci	struct sgp40_data *data = iio_priv(indio_dev);
27462306a36Sopenharmony_ci
27562306a36Sopenharmony_ci	switch (mask) {
27662306a36Sopenharmony_ci	case IIO_CHAN_INFO_RAW:
27762306a36Sopenharmony_ci		switch (chan->type) {
27862306a36Sopenharmony_ci		case IIO_TEMP:
27962306a36Sopenharmony_ci			if ((val < -45000) || (val > 130000))
28062306a36Sopenharmony_ci				return -EINVAL;
28162306a36Sopenharmony_ci
28262306a36Sopenharmony_ci			mutex_lock(&data->lock);
28362306a36Sopenharmony_ci			data->temp = val;
28462306a36Sopenharmony_ci			mutex_unlock(&data->lock);
28562306a36Sopenharmony_ci			return 0;
28662306a36Sopenharmony_ci		case IIO_HUMIDITYRELATIVE:
28762306a36Sopenharmony_ci			if ((val < 0) || (val > 100000))
28862306a36Sopenharmony_ci				return -EINVAL;
28962306a36Sopenharmony_ci
29062306a36Sopenharmony_ci			mutex_lock(&data->lock);
29162306a36Sopenharmony_ci			data->rht = val;
29262306a36Sopenharmony_ci			mutex_unlock(&data->lock);
29362306a36Sopenharmony_ci			return 0;
29462306a36Sopenharmony_ci		default:
29562306a36Sopenharmony_ci			return -EINVAL;
29662306a36Sopenharmony_ci		}
29762306a36Sopenharmony_ci	case IIO_CHAN_INFO_CALIBBIAS:
29862306a36Sopenharmony_ci		if ((val < 20000) || (val > 52768))
29962306a36Sopenharmony_ci			return -EINVAL;
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci		mutex_lock(&data->lock);
30262306a36Sopenharmony_ci		data->res_calibbias = val;
30362306a36Sopenharmony_ci		mutex_unlock(&data->lock);
30462306a36Sopenharmony_ci		return 0;
30562306a36Sopenharmony_ci	}
30662306a36Sopenharmony_ci	return -EINVAL;
30762306a36Sopenharmony_ci}
30862306a36Sopenharmony_ci
30962306a36Sopenharmony_cistatic const struct iio_info sgp40_info = {
31062306a36Sopenharmony_ci	.read_raw	= sgp40_read_raw,
31162306a36Sopenharmony_ci	.write_raw	= sgp40_write_raw,
31262306a36Sopenharmony_ci};
31362306a36Sopenharmony_ci
31462306a36Sopenharmony_cistatic int sgp40_probe(struct i2c_client *client)
31562306a36Sopenharmony_ci{
31662306a36Sopenharmony_ci	const struct i2c_device_id *id = i2c_client_get_device_id(client);
31762306a36Sopenharmony_ci	struct device *dev = &client->dev;
31862306a36Sopenharmony_ci	struct iio_dev *indio_dev;
31962306a36Sopenharmony_ci	struct sgp40_data *data;
32062306a36Sopenharmony_ci	int ret;
32162306a36Sopenharmony_ci
32262306a36Sopenharmony_ci	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
32362306a36Sopenharmony_ci	if (!indio_dev)
32462306a36Sopenharmony_ci		return -ENOMEM;
32562306a36Sopenharmony_ci
32662306a36Sopenharmony_ci	data = iio_priv(indio_dev);
32762306a36Sopenharmony_ci	data->client = client;
32862306a36Sopenharmony_ci	data->dev = dev;
32962306a36Sopenharmony_ci
33062306a36Sopenharmony_ci	crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL);
33162306a36Sopenharmony_ci
33262306a36Sopenharmony_ci	mutex_init(&data->lock);
33362306a36Sopenharmony_ci
33462306a36Sopenharmony_ci	/* set default values */
33562306a36Sopenharmony_ci	data->rht = 50000;		/* 50 % */
33662306a36Sopenharmony_ci	data->temp = 25000;		/* 25 °C */
33762306a36Sopenharmony_ci	data->res_calibbias = 30000;	/* resistance raw value for voc index of 250 */
33862306a36Sopenharmony_ci
33962306a36Sopenharmony_ci	indio_dev->info = &sgp40_info;
34062306a36Sopenharmony_ci	indio_dev->name = id->name;
34162306a36Sopenharmony_ci	indio_dev->modes = INDIO_DIRECT_MODE;
34262306a36Sopenharmony_ci	indio_dev->channels = sgp40_channels;
34362306a36Sopenharmony_ci	indio_dev->num_channels = ARRAY_SIZE(sgp40_channels);
34462306a36Sopenharmony_ci
34562306a36Sopenharmony_ci	ret = devm_iio_device_register(dev, indio_dev);
34662306a36Sopenharmony_ci	if (ret)
34762306a36Sopenharmony_ci		dev_err(dev, "failed to register iio device\n");
34862306a36Sopenharmony_ci
34962306a36Sopenharmony_ci	return ret;
35062306a36Sopenharmony_ci}
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_cistatic const struct i2c_device_id sgp40_id[] = {
35362306a36Sopenharmony_ci	{ "sgp40" },
35462306a36Sopenharmony_ci	{ }
35562306a36Sopenharmony_ci};
35662306a36Sopenharmony_ci
35762306a36Sopenharmony_ciMODULE_DEVICE_TABLE(i2c, sgp40_id);
35862306a36Sopenharmony_ci
35962306a36Sopenharmony_cistatic const struct of_device_id sgp40_dt_ids[] = {
36062306a36Sopenharmony_ci	{ .compatible = "sensirion,sgp40" },
36162306a36Sopenharmony_ci	{ }
36262306a36Sopenharmony_ci};
36362306a36Sopenharmony_ci
36462306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, sgp40_dt_ids);
36562306a36Sopenharmony_ci
36662306a36Sopenharmony_cistatic struct i2c_driver sgp40_driver = {
36762306a36Sopenharmony_ci	.driver = {
36862306a36Sopenharmony_ci		.name = "sgp40",
36962306a36Sopenharmony_ci		.of_match_table = sgp40_dt_ids,
37062306a36Sopenharmony_ci	},
37162306a36Sopenharmony_ci	.probe = sgp40_probe,
37262306a36Sopenharmony_ci	.id_table = sgp40_id,
37362306a36Sopenharmony_ci};
37462306a36Sopenharmony_cimodule_i2c_driver(sgp40_driver);
37562306a36Sopenharmony_ci
37662306a36Sopenharmony_ciMODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
37762306a36Sopenharmony_ciMODULE_DESCRIPTION("Sensirion SGP40 gas sensor");
37862306a36Sopenharmony_ciMODULE_LICENSE("GPL v2");
379