162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Xilinx AMS driver 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (C) 2021 Xilinx, Inc. 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Manish Narani <mnarani@xilinx.com> 862306a36Sopenharmony_ci * Rajnikant Bhojani <rajnikant.bhojani@xilinx.com> 962306a36Sopenharmony_ci */ 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ci#include <linux/bits.h> 1262306a36Sopenharmony_ci#include <linux/bitfield.h> 1362306a36Sopenharmony_ci#include <linux/clk.h> 1462306a36Sopenharmony_ci#include <linux/delay.h> 1562306a36Sopenharmony_ci#include <linux/devm-helpers.h> 1662306a36Sopenharmony_ci#include <linux/interrupt.h> 1762306a36Sopenharmony_ci#include <linux/io.h> 1862306a36Sopenharmony_ci#include <linux/iopoll.h> 1962306a36Sopenharmony_ci#include <linux/kernel.h> 2062306a36Sopenharmony_ci#include <linux/module.h> 2162306a36Sopenharmony_ci#include <linux/mod_devicetable.h> 2262306a36Sopenharmony_ci#include <linux/overflow.h> 2362306a36Sopenharmony_ci#include <linux/platform_device.h> 2462306a36Sopenharmony_ci#include <linux/property.h> 2562306a36Sopenharmony_ci#include <linux/slab.h> 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci#include <linux/iio/events.h> 2862306a36Sopenharmony_ci#include <linux/iio/iio.h> 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci/* AMS registers definitions */ 3162306a36Sopenharmony_ci#define AMS_ISR_0 0x010 3262306a36Sopenharmony_ci#define AMS_ISR_1 0x014 3362306a36Sopenharmony_ci#define AMS_IER_0 0x020 3462306a36Sopenharmony_ci#define AMS_IER_1 0x024 3562306a36Sopenharmony_ci#define AMS_IDR_0 0x028 3662306a36Sopenharmony_ci#define AMS_IDR_1 0x02C 3762306a36Sopenharmony_ci#define AMS_PS_CSTS 0x040 3862306a36Sopenharmony_ci#define AMS_PL_CSTS 0x044 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci#define AMS_VCC_PSPLL0 0x060 4162306a36Sopenharmony_ci#define AMS_VCC_PSPLL3 0x06C 4262306a36Sopenharmony_ci#define AMS_VCCINT 0x078 4362306a36Sopenharmony_ci#define AMS_VCCBRAM 0x07C 4462306a36Sopenharmony_ci#define AMS_VCCAUX 0x080 4562306a36Sopenharmony_ci#define AMS_PSDDRPLL 0x084 4662306a36Sopenharmony_ci#define AMS_PSINTFPDDR 0x09C 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci#define AMS_VCC_PSPLL0_CH 48 4962306a36Sopenharmony_ci#define AMS_VCC_PSPLL3_CH 51 5062306a36Sopenharmony_ci#define AMS_VCCINT_CH 54 5162306a36Sopenharmony_ci#define AMS_VCCBRAM_CH 55 5262306a36Sopenharmony_ci#define AMS_VCCAUX_CH 56 5362306a36Sopenharmony_ci#define AMS_PSDDRPLL_CH 57 5462306a36Sopenharmony_ci#define AMS_PSINTFPDDR_CH 63 5562306a36Sopenharmony_ci 5662306a36Sopenharmony_ci#define AMS_REG_CONFIG0 0x100 5762306a36Sopenharmony_ci#define AMS_REG_CONFIG1 0x104 5862306a36Sopenharmony_ci#define AMS_REG_CONFIG3 0x10C 5962306a36Sopenharmony_ci#define AMS_REG_CONFIG4 0x110 6062306a36Sopenharmony_ci#define AMS_REG_SEQ_CH0 0x120 6162306a36Sopenharmony_ci#define AMS_REG_SEQ_CH1 0x124 6262306a36Sopenharmony_ci#define AMS_REG_SEQ_CH2 0x118 6362306a36Sopenharmony_ci 6462306a36Sopenharmony_ci#define AMS_VUSER0_MASK BIT(0) 6562306a36Sopenharmony_ci#define AMS_VUSER1_MASK BIT(1) 6662306a36Sopenharmony_ci#define AMS_VUSER2_MASK BIT(2) 6762306a36Sopenharmony_ci#define AMS_VUSER3_MASK BIT(3) 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci#define AMS_TEMP 0x000 7062306a36Sopenharmony_ci#define AMS_SUPPLY1 0x004 7162306a36Sopenharmony_ci#define AMS_SUPPLY2 0x008 7262306a36Sopenharmony_ci#define AMS_VP_VN 0x00C 7362306a36Sopenharmony_ci#define AMS_VREFP 0x010 7462306a36Sopenharmony_ci#define AMS_VREFN 0x014 7562306a36Sopenharmony_ci#define AMS_SUPPLY3 0x018 7662306a36Sopenharmony_ci#define AMS_SUPPLY4 0x034 7762306a36Sopenharmony_ci#define AMS_SUPPLY5 0x038 7862306a36Sopenharmony_ci#define AMS_SUPPLY6 0x03C 7962306a36Sopenharmony_ci#define AMS_SUPPLY7 0x200 8062306a36Sopenharmony_ci#define AMS_SUPPLY8 0x204 8162306a36Sopenharmony_ci#define AMS_SUPPLY9 0x208 8262306a36Sopenharmony_ci#define AMS_SUPPLY10 0x20C 8362306a36Sopenharmony_ci#define AMS_VCCAMS 0x210 8462306a36Sopenharmony_ci#define AMS_TEMP_REMOTE 0x214 8562306a36Sopenharmony_ci 8662306a36Sopenharmony_ci#define AMS_REG_VAUX(x) (0x40 + 4 * (x)) 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_ci#define AMS_PS_RESET_VALUE 0xFFFF 8962306a36Sopenharmony_ci#define AMS_PL_RESET_VALUE 0xFFFF 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_ci#define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0) 9262306a36Sopenharmony_ci 9362306a36Sopenharmony_ci#define AMS_CONF1_SEQ_MASK GENMASK(15, 12) 9462306a36Sopenharmony_ci#define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0) 9562306a36Sopenharmony_ci#define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 2) 9662306a36Sopenharmony_ci#define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 3) 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci#define AMS_REG_SEQ0_MASK GENMASK(15, 0) 9962306a36Sopenharmony_ci#define AMS_REG_SEQ2_MASK GENMASK(21, 16) 10062306a36Sopenharmony_ci#define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22) 10162306a36Sopenharmony_ci 10262306a36Sopenharmony_ci#define AMS_PS_SEQ_MASK GENMASK(21, 0) 10362306a36Sopenharmony_ci#define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22) 10462306a36Sopenharmony_ci 10562306a36Sopenharmony_ci#define AMS_ALARM_TEMP 0x140 10662306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY1 0x144 10762306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY2 0x148 10862306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY3 0x160 10962306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY4 0x164 11062306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY5 0x168 11162306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY6 0x16C 11262306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY7 0x180 11362306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY8 0x184 11462306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY9 0x188 11562306a36Sopenharmony_ci#define AMS_ALARM_SUPPLY10 0x18C 11662306a36Sopenharmony_ci#define AMS_ALARM_VCCAMS 0x190 11762306a36Sopenharmony_ci#define AMS_ALARM_TEMP_REMOTE 0x194 11862306a36Sopenharmony_ci#define AMS_ALARM_THRESHOLD_OFF_10 0x10 11962306a36Sopenharmony_ci#define AMS_ALARM_THRESHOLD_OFF_20 0x20 12062306a36Sopenharmony_ci 12162306a36Sopenharmony_ci#define AMS_ALARM_THR_DIRECT_MASK BIT(1) 12262306a36Sopenharmony_ci#define AMS_ALARM_THR_MIN 0x0000 12362306a36Sopenharmony_ci#define AMS_ALARM_THR_MAX (BIT(16) - 1) 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_ci#define AMS_ALARM_MASK GENMASK_ULL(63, 0) 12662306a36Sopenharmony_ci#define AMS_NO_OF_ALARMS 32 12762306a36Sopenharmony_ci#define AMS_PL_ALARM_START 16 12862306a36Sopenharmony_ci#define AMS_PL_ALARM_MASK GENMASK(31, 16) 12962306a36Sopenharmony_ci#define AMS_ISR0_ALARM_MASK GENMASK(31, 0) 13062306a36Sopenharmony_ci#define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0)) 13162306a36Sopenharmony_ci#define AMS_ISR1_EOC_MASK BIT(3) 13262306a36Sopenharmony_ci#define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32) 13362306a36Sopenharmony_ci#define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0) 13462306a36Sopenharmony_ci#define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3) 13562306a36Sopenharmony_ci#define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8) 13662306a36Sopenharmony_ci#define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1) 13762306a36Sopenharmony_ci#define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8) 13862306a36Sopenharmony_ci#define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0) 13962306a36Sopenharmony_ci#define AMS_REGCFG1_ALARM_MASK \ 14062306a36Sopenharmony_ci (AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0)) 14162306a36Sopenharmony_ci#define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci#define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16)) 14462306a36Sopenharmony_ci#define AMS_PL_CSTS_ACCESS_MASK BIT(1) 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci#define AMS_PL_MAX_FIXED_CHANNEL 10 14762306a36Sopenharmony_ci#define AMS_PL_MAX_EXT_CHANNEL 20 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci#define AMS_INIT_POLL_TIME_US 200 15062306a36Sopenharmony_ci#define AMS_INIT_TIMEOUT_US 10000 15162306a36Sopenharmony_ci#define AMS_UNMASK_TIMEOUT_MS 500 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ci/* 15462306a36Sopenharmony_ci * Following scale and offset value is derived from 15562306a36Sopenharmony_ci * UG580 (v1.7) December 20, 2016 15662306a36Sopenharmony_ci */ 15762306a36Sopenharmony_ci#define AMS_SUPPLY_SCALE_1VOLT_mV 1000 15862306a36Sopenharmony_ci#define AMS_SUPPLY_SCALE_3VOLT_mV 3000 15962306a36Sopenharmony_ci#define AMS_SUPPLY_SCALE_6VOLT_mV 6000 16062306a36Sopenharmony_ci#define AMS_SUPPLY_SCALE_DIV_BIT 16 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ci#define AMS_TEMP_SCALE 509314 16362306a36Sopenharmony_ci#define AMS_TEMP_SCALE_DIV_BIT 16 16462306a36Sopenharmony_ci#define AMS_TEMP_OFFSET -((280230LL << 16) / 509314) 16562306a36Sopenharmony_ci 16662306a36Sopenharmony_cienum ams_alarm_bit { 16762306a36Sopenharmony_ci AMS_ALARM_BIT_TEMP = 0, 16862306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY1 = 1, 16962306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY2 = 2, 17062306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY3 = 3, 17162306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY4 = 4, 17262306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY5 = 5, 17362306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY6 = 6, 17462306a36Sopenharmony_ci AMS_ALARM_BIT_RESERVED = 7, 17562306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY7 = 8, 17662306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY8 = 9, 17762306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY9 = 10, 17862306a36Sopenharmony_ci AMS_ALARM_BIT_SUPPLY10 = 11, 17962306a36Sopenharmony_ci AMS_ALARM_BIT_VCCAMS = 12, 18062306a36Sopenharmony_ci AMS_ALARM_BIT_TEMP_REMOTE = 13, 18162306a36Sopenharmony_ci}; 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_cienum ams_seq { 18462306a36Sopenharmony_ci AMS_SEQ_VCC_PSPLL = 0, 18562306a36Sopenharmony_ci AMS_SEQ_VCC_PSBATT = 1, 18662306a36Sopenharmony_ci AMS_SEQ_VCCINT = 2, 18762306a36Sopenharmony_ci AMS_SEQ_VCCBRAM = 3, 18862306a36Sopenharmony_ci AMS_SEQ_VCCAUX = 4, 18962306a36Sopenharmony_ci AMS_SEQ_PSDDRPLL = 5, 19062306a36Sopenharmony_ci AMS_SEQ_INTDDR = 6, 19162306a36Sopenharmony_ci}; 19262306a36Sopenharmony_ci 19362306a36Sopenharmony_cienum ams_ps_pl_seq { 19462306a36Sopenharmony_ci AMS_SEQ_CALIB = 0, 19562306a36Sopenharmony_ci AMS_SEQ_RSVD_1 = 1, 19662306a36Sopenharmony_ci AMS_SEQ_RSVD_2 = 2, 19762306a36Sopenharmony_ci AMS_SEQ_TEST = 3, 19862306a36Sopenharmony_ci AMS_SEQ_RSVD_4 = 4, 19962306a36Sopenharmony_ci AMS_SEQ_SUPPLY4 = 5, 20062306a36Sopenharmony_ci AMS_SEQ_SUPPLY5 = 6, 20162306a36Sopenharmony_ci AMS_SEQ_SUPPLY6 = 7, 20262306a36Sopenharmony_ci AMS_SEQ_TEMP = 8, 20362306a36Sopenharmony_ci AMS_SEQ_SUPPLY2 = 9, 20462306a36Sopenharmony_ci AMS_SEQ_SUPPLY1 = 10, 20562306a36Sopenharmony_ci AMS_SEQ_VP_VN = 11, 20662306a36Sopenharmony_ci AMS_SEQ_VREFP = 12, 20762306a36Sopenharmony_ci AMS_SEQ_VREFN = 13, 20862306a36Sopenharmony_ci AMS_SEQ_SUPPLY3 = 14, 20962306a36Sopenharmony_ci AMS_SEQ_CURRENT_MON = 15, 21062306a36Sopenharmony_ci AMS_SEQ_SUPPLY7 = 16, 21162306a36Sopenharmony_ci AMS_SEQ_SUPPLY8 = 17, 21262306a36Sopenharmony_ci AMS_SEQ_SUPPLY9 = 18, 21362306a36Sopenharmony_ci AMS_SEQ_SUPPLY10 = 19, 21462306a36Sopenharmony_ci AMS_SEQ_VCCAMS = 20, 21562306a36Sopenharmony_ci AMS_SEQ_TEMP_REMOTE = 21, 21662306a36Sopenharmony_ci AMS_SEQ_MAX = 22 21762306a36Sopenharmony_ci}; 21862306a36Sopenharmony_ci 21962306a36Sopenharmony_ci#define AMS_PS_SEQ_MAX AMS_SEQ_MAX 22062306a36Sopenharmony_ci#define AMS_SEQ(x) (AMS_SEQ_MAX + (x)) 22162306a36Sopenharmony_ci#define PS_SEQ(x) (x) 22262306a36Sopenharmony_ci#define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x)) 22362306a36Sopenharmony_ci#define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3) 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci#define AMS_CHAN_TEMP(_scan_index, _addr) { \ 22662306a36Sopenharmony_ci .type = IIO_TEMP, \ 22762306a36Sopenharmony_ci .indexed = 1, \ 22862306a36Sopenharmony_ci .address = (_addr), \ 22962306a36Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 23062306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_SCALE) | \ 23162306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_OFFSET), \ 23262306a36Sopenharmony_ci .event_spec = ams_temp_events, \ 23362306a36Sopenharmony_ci .scan_index = _scan_index, \ 23462306a36Sopenharmony_ci .num_event_specs = ARRAY_SIZE(ams_temp_events), \ 23562306a36Sopenharmony_ci} 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \ 23862306a36Sopenharmony_ci .type = IIO_VOLTAGE, \ 23962306a36Sopenharmony_ci .indexed = 1, \ 24062306a36Sopenharmony_ci .address = (_addr), \ 24162306a36Sopenharmony_ci .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 24262306a36Sopenharmony_ci BIT(IIO_CHAN_INFO_SCALE), \ 24362306a36Sopenharmony_ci .event_spec = (_alarm) ? ams_voltage_events : NULL, \ 24462306a36Sopenharmony_ci .scan_index = _scan_index, \ 24562306a36Sopenharmony_ci .num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \ 24662306a36Sopenharmony_ci} 24762306a36Sopenharmony_ci 24862306a36Sopenharmony_ci#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \ 24962306a36Sopenharmony_ci AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr) 25062306a36Sopenharmony_ci#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \ 25162306a36Sopenharmony_ci AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true) 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \ 25462306a36Sopenharmony_ci AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr) 25562306a36Sopenharmony_ci#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \ 25662306a36Sopenharmony_ci AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm) 25762306a36Sopenharmony_ci#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \ 25862306a36Sopenharmony_ci AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false) 25962306a36Sopenharmony_ci#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \ 26062306a36Sopenharmony_ci AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false) 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci/** 26362306a36Sopenharmony_ci * struct ams - This structure contains necessary state for xilinx-ams to operate 26462306a36Sopenharmony_ci * @base: physical base address of device 26562306a36Sopenharmony_ci * @ps_base: physical base address of PS device 26662306a36Sopenharmony_ci * @pl_base: physical base address of PL device 26762306a36Sopenharmony_ci * @clk: clocks associated with the device 26862306a36Sopenharmony_ci * @dev: pointer to device struct 26962306a36Sopenharmony_ci * @lock: to handle multiple user interaction 27062306a36Sopenharmony_ci * @intr_lock: to protect interrupt mask values 27162306a36Sopenharmony_ci * @alarm_mask: alarm configuration 27262306a36Sopenharmony_ci * @current_masked_alarm: currently masked due to alarm 27362306a36Sopenharmony_ci * @intr_mask: interrupt configuration 27462306a36Sopenharmony_ci * @ams_unmask_work: re-enables event once the event condition disappears 27562306a36Sopenharmony_ci * 27662306a36Sopenharmony_ci */ 27762306a36Sopenharmony_cistruct ams { 27862306a36Sopenharmony_ci void __iomem *base; 27962306a36Sopenharmony_ci void __iomem *ps_base; 28062306a36Sopenharmony_ci void __iomem *pl_base; 28162306a36Sopenharmony_ci struct clk *clk; 28262306a36Sopenharmony_ci struct device *dev; 28362306a36Sopenharmony_ci struct mutex lock; 28462306a36Sopenharmony_ci spinlock_t intr_lock; 28562306a36Sopenharmony_ci unsigned int alarm_mask; 28662306a36Sopenharmony_ci unsigned int current_masked_alarm; 28762306a36Sopenharmony_ci u64 intr_mask; 28862306a36Sopenharmony_ci struct delayed_work ams_unmask_work; 28962306a36Sopenharmony_ci}; 29062306a36Sopenharmony_ci 29162306a36Sopenharmony_cistatic inline void ams_ps_update_reg(struct ams *ams, unsigned int offset, 29262306a36Sopenharmony_ci u32 mask, u32 data) 29362306a36Sopenharmony_ci{ 29462306a36Sopenharmony_ci u32 val, regval; 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci val = readl(ams->ps_base + offset); 29762306a36Sopenharmony_ci regval = (val & ~mask) | (data & mask); 29862306a36Sopenharmony_ci writel(regval, ams->ps_base + offset); 29962306a36Sopenharmony_ci} 30062306a36Sopenharmony_ci 30162306a36Sopenharmony_cistatic inline void ams_pl_update_reg(struct ams *ams, unsigned int offset, 30262306a36Sopenharmony_ci u32 mask, u32 data) 30362306a36Sopenharmony_ci{ 30462306a36Sopenharmony_ci u32 val, regval; 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_ci val = readl(ams->pl_base + offset); 30762306a36Sopenharmony_ci regval = (val & ~mask) | (data & mask); 30862306a36Sopenharmony_ci writel(regval, ams->pl_base + offset); 30962306a36Sopenharmony_ci} 31062306a36Sopenharmony_ci 31162306a36Sopenharmony_cistatic void ams_update_intrmask(struct ams *ams, u64 mask, u64 val) 31262306a36Sopenharmony_ci{ 31362306a36Sopenharmony_ci u32 regval; 31462306a36Sopenharmony_ci 31562306a36Sopenharmony_ci ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask); 31662306a36Sopenharmony_ci 31762306a36Sopenharmony_ci regval = ~(ams->intr_mask | ams->current_masked_alarm); 31862306a36Sopenharmony_ci writel(regval, ams->base + AMS_IER_0); 31962306a36Sopenharmony_ci 32062306a36Sopenharmony_ci regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask)); 32162306a36Sopenharmony_ci writel(regval, ams->base + AMS_IER_1); 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci regval = ams->intr_mask | ams->current_masked_alarm; 32462306a36Sopenharmony_ci writel(regval, ams->base + AMS_IDR_0); 32562306a36Sopenharmony_ci 32662306a36Sopenharmony_ci regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask); 32762306a36Sopenharmony_ci writel(regval, ams->base + AMS_IDR_1); 32862306a36Sopenharmony_ci} 32962306a36Sopenharmony_ci 33062306a36Sopenharmony_cistatic void ams_disable_all_alarms(struct ams *ams) 33162306a36Sopenharmony_ci{ 33262306a36Sopenharmony_ci /* disable PS module alarm */ 33362306a36Sopenharmony_ci if (ams->ps_base) { 33462306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, 33562306a36Sopenharmony_ci AMS_REGCFG1_ALARM_MASK); 33662306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, 33762306a36Sopenharmony_ci AMS_REGCFG3_ALARM_MASK); 33862306a36Sopenharmony_ci } 33962306a36Sopenharmony_ci 34062306a36Sopenharmony_ci /* disable PL module alarm */ 34162306a36Sopenharmony_ci if (ams->pl_base) { 34262306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, 34362306a36Sopenharmony_ci AMS_REGCFG1_ALARM_MASK); 34462306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, 34562306a36Sopenharmony_ci AMS_REGCFG3_ALARM_MASK); 34662306a36Sopenharmony_ci } 34762306a36Sopenharmony_ci} 34862306a36Sopenharmony_ci 34962306a36Sopenharmony_cistatic void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask) 35062306a36Sopenharmony_ci{ 35162306a36Sopenharmony_ci u32 cfg; 35262306a36Sopenharmony_ci u32 val; 35362306a36Sopenharmony_ci 35462306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask); 35562306a36Sopenharmony_ci cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val)); 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask); 35862306a36Sopenharmony_ci cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val)); 35962306a36Sopenharmony_ci 36062306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg); 36162306a36Sopenharmony_ci 36262306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask); 36362306a36Sopenharmony_ci cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val)); 36462306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg); 36562306a36Sopenharmony_ci} 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_cistatic void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask) 36862306a36Sopenharmony_ci{ 36962306a36Sopenharmony_ci unsigned long pl_alarm_mask; 37062306a36Sopenharmony_ci u32 cfg; 37162306a36Sopenharmony_ci u32 val; 37262306a36Sopenharmony_ci 37362306a36Sopenharmony_ci pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask); 37462306a36Sopenharmony_ci 37562306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask); 37662306a36Sopenharmony_ci cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val)); 37762306a36Sopenharmony_ci 37862306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask); 37962306a36Sopenharmony_ci cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val)); 38062306a36Sopenharmony_ci 38162306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg); 38262306a36Sopenharmony_ci 38362306a36Sopenharmony_ci val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask); 38462306a36Sopenharmony_ci cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val)); 38562306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg); 38662306a36Sopenharmony_ci} 38762306a36Sopenharmony_ci 38862306a36Sopenharmony_cistatic void ams_update_alarm(struct ams *ams, unsigned long alarm_mask) 38962306a36Sopenharmony_ci{ 39062306a36Sopenharmony_ci unsigned long flags; 39162306a36Sopenharmony_ci 39262306a36Sopenharmony_ci if (ams->ps_base) 39362306a36Sopenharmony_ci ams_update_ps_alarm(ams, alarm_mask); 39462306a36Sopenharmony_ci 39562306a36Sopenharmony_ci if (ams->pl_base) 39662306a36Sopenharmony_ci ams_update_pl_alarm(ams, alarm_mask); 39762306a36Sopenharmony_ci 39862306a36Sopenharmony_ci spin_lock_irqsave(&ams->intr_lock, flags); 39962306a36Sopenharmony_ci ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask); 40062306a36Sopenharmony_ci spin_unlock_irqrestore(&ams->intr_lock, flags); 40162306a36Sopenharmony_ci} 40262306a36Sopenharmony_ci 40362306a36Sopenharmony_cistatic void ams_enable_channel_sequence(struct iio_dev *indio_dev) 40462306a36Sopenharmony_ci{ 40562306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 40662306a36Sopenharmony_ci unsigned long long scan_mask; 40762306a36Sopenharmony_ci int i; 40862306a36Sopenharmony_ci u32 regval; 40962306a36Sopenharmony_ci 41062306a36Sopenharmony_ci /* 41162306a36Sopenharmony_ci * Enable channel sequence. First 22 bits of scan_mask represent 41262306a36Sopenharmony_ci * PS channels, and next remaining bits represent PL channels. 41362306a36Sopenharmony_ci */ 41462306a36Sopenharmony_ci 41562306a36Sopenharmony_ci /* Run calibration of PS & PL as part of the sequence */ 41662306a36Sopenharmony_ci scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX); 41762306a36Sopenharmony_ci for (i = 0; i < indio_dev->num_channels; i++) 41862306a36Sopenharmony_ci scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index); 41962306a36Sopenharmony_ci 42062306a36Sopenharmony_ci if (ams->ps_base) { 42162306a36Sopenharmony_ci /* put sysmon in a soft reset to change the sequence */ 42262306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 42362306a36Sopenharmony_ci AMS_CONF1_SEQ_DEFAULT); 42462306a36Sopenharmony_ci 42562306a36Sopenharmony_ci /* configure basic channels */ 42662306a36Sopenharmony_ci regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask); 42762306a36Sopenharmony_ci writel(regval, ams->ps_base + AMS_REG_SEQ_CH0); 42862306a36Sopenharmony_ci 42962306a36Sopenharmony_ci regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask); 43062306a36Sopenharmony_ci writel(regval, ams->ps_base + AMS_REG_SEQ_CH2); 43162306a36Sopenharmony_ci 43262306a36Sopenharmony_ci /* set continuous sequence mode */ 43362306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 43462306a36Sopenharmony_ci AMS_CONF1_SEQ_CONTINUOUS); 43562306a36Sopenharmony_ci } 43662306a36Sopenharmony_ci 43762306a36Sopenharmony_ci if (ams->pl_base) { 43862306a36Sopenharmony_ci /* put sysmon in a soft reset to change the sequence */ 43962306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 44062306a36Sopenharmony_ci AMS_CONF1_SEQ_DEFAULT); 44162306a36Sopenharmony_ci 44262306a36Sopenharmony_ci /* configure basic channels */ 44362306a36Sopenharmony_ci scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask); 44462306a36Sopenharmony_ci 44562306a36Sopenharmony_ci regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask); 44662306a36Sopenharmony_ci writel(regval, ams->pl_base + AMS_REG_SEQ_CH0); 44762306a36Sopenharmony_ci 44862306a36Sopenharmony_ci regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask); 44962306a36Sopenharmony_ci writel(regval, ams->pl_base + AMS_REG_SEQ_CH1); 45062306a36Sopenharmony_ci 45162306a36Sopenharmony_ci regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask); 45262306a36Sopenharmony_ci writel(regval, ams->pl_base + AMS_REG_SEQ_CH2); 45362306a36Sopenharmony_ci 45462306a36Sopenharmony_ci /* set continuous sequence mode */ 45562306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 45662306a36Sopenharmony_ci AMS_CONF1_SEQ_CONTINUOUS); 45762306a36Sopenharmony_ci } 45862306a36Sopenharmony_ci} 45962306a36Sopenharmony_ci 46062306a36Sopenharmony_cistatic int ams_init_device(struct ams *ams) 46162306a36Sopenharmony_ci{ 46262306a36Sopenharmony_ci u32 expect = AMS_PS_CSTS_PS_READY; 46362306a36Sopenharmony_ci u32 reg, value; 46462306a36Sopenharmony_ci int ret; 46562306a36Sopenharmony_ci 46662306a36Sopenharmony_ci /* reset AMS */ 46762306a36Sopenharmony_ci if (ams->ps_base) { 46862306a36Sopenharmony_ci writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN); 46962306a36Sopenharmony_ci 47062306a36Sopenharmony_ci ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect), 47162306a36Sopenharmony_ci AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US); 47262306a36Sopenharmony_ci if (ret) 47362306a36Sopenharmony_ci return ret; 47462306a36Sopenharmony_ci 47562306a36Sopenharmony_ci /* put sysmon in a default state */ 47662306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 47762306a36Sopenharmony_ci AMS_CONF1_SEQ_DEFAULT); 47862306a36Sopenharmony_ci } 47962306a36Sopenharmony_ci 48062306a36Sopenharmony_ci if (ams->pl_base) { 48162306a36Sopenharmony_ci value = readl(ams->base + AMS_PL_CSTS); 48262306a36Sopenharmony_ci if (value == 0) 48362306a36Sopenharmony_ci return 0; 48462306a36Sopenharmony_ci 48562306a36Sopenharmony_ci writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN); 48662306a36Sopenharmony_ci 48762306a36Sopenharmony_ci /* put sysmon in a default state */ 48862306a36Sopenharmony_ci ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 48962306a36Sopenharmony_ci AMS_CONF1_SEQ_DEFAULT); 49062306a36Sopenharmony_ci } 49162306a36Sopenharmony_ci 49262306a36Sopenharmony_ci ams_disable_all_alarms(ams); 49362306a36Sopenharmony_ci 49462306a36Sopenharmony_ci /* Disable interrupt */ 49562306a36Sopenharmony_ci ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK); 49662306a36Sopenharmony_ci 49762306a36Sopenharmony_ci /* Clear any pending interrupt */ 49862306a36Sopenharmony_ci writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0); 49962306a36Sopenharmony_ci writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1); 50062306a36Sopenharmony_ci 50162306a36Sopenharmony_ci return 0; 50262306a36Sopenharmony_ci} 50362306a36Sopenharmony_ci 50462306a36Sopenharmony_cistatic int ams_enable_single_channel(struct ams *ams, unsigned int offset) 50562306a36Sopenharmony_ci{ 50662306a36Sopenharmony_ci u8 channel_num; 50762306a36Sopenharmony_ci 50862306a36Sopenharmony_ci switch (offset) { 50962306a36Sopenharmony_ci case AMS_VCC_PSPLL0: 51062306a36Sopenharmony_ci channel_num = AMS_VCC_PSPLL0_CH; 51162306a36Sopenharmony_ci break; 51262306a36Sopenharmony_ci case AMS_VCC_PSPLL3: 51362306a36Sopenharmony_ci channel_num = AMS_VCC_PSPLL3_CH; 51462306a36Sopenharmony_ci break; 51562306a36Sopenharmony_ci case AMS_VCCINT: 51662306a36Sopenharmony_ci channel_num = AMS_VCCINT_CH; 51762306a36Sopenharmony_ci break; 51862306a36Sopenharmony_ci case AMS_VCCBRAM: 51962306a36Sopenharmony_ci channel_num = AMS_VCCBRAM_CH; 52062306a36Sopenharmony_ci break; 52162306a36Sopenharmony_ci case AMS_VCCAUX: 52262306a36Sopenharmony_ci channel_num = AMS_VCCAUX_CH; 52362306a36Sopenharmony_ci break; 52462306a36Sopenharmony_ci case AMS_PSDDRPLL: 52562306a36Sopenharmony_ci channel_num = AMS_PSDDRPLL_CH; 52662306a36Sopenharmony_ci break; 52762306a36Sopenharmony_ci case AMS_PSINTFPDDR: 52862306a36Sopenharmony_ci channel_num = AMS_PSINTFPDDR_CH; 52962306a36Sopenharmony_ci break; 53062306a36Sopenharmony_ci default: 53162306a36Sopenharmony_ci return -EINVAL; 53262306a36Sopenharmony_ci } 53362306a36Sopenharmony_ci 53462306a36Sopenharmony_ci /* put sysmon in a soft reset to change the sequence */ 53562306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 53662306a36Sopenharmony_ci AMS_CONF1_SEQ_DEFAULT); 53762306a36Sopenharmony_ci 53862306a36Sopenharmony_ci /* write the channel number */ 53962306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK, 54062306a36Sopenharmony_ci channel_num); 54162306a36Sopenharmony_ci 54262306a36Sopenharmony_ci /* set single channel, sequencer off mode */ 54362306a36Sopenharmony_ci ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, 54462306a36Sopenharmony_ci AMS_CONF1_SEQ_SINGLE_CHANNEL); 54562306a36Sopenharmony_ci 54662306a36Sopenharmony_ci return 0; 54762306a36Sopenharmony_ci} 54862306a36Sopenharmony_ci 54962306a36Sopenharmony_cistatic int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data) 55062306a36Sopenharmony_ci{ 55162306a36Sopenharmony_ci u32 expect = AMS_ISR1_EOC_MASK; 55262306a36Sopenharmony_ci u32 reg; 55362306a36Sopenharmony_ci int ret; 55462306a36Sopenharmony_ci 55562306a36Sopenharmony_ci ret = ams_enable_single_channel(ams, offset); 55662306a36Sopenharmony_ci if (ret) 55762306a36Sopenharmony_ci return ret; 55862306a36Sopenharmony_ci 55962306a36Sopenharmony_ci /* clear end-of-conversion flag, wait for next conversion to complete */ 56062306a36Sopenharmony_ci writel(expect, ams->base + AMS_ISR_1); 56162306a36Sopenharmony_ci ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect), 56262306a36Sopenharmony_ci AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US); 56362306a36Sopenharmony_ci if (ret) 56462306a36Sopenharmony_ci return ret; 56562306a36Sopenharmony_ci 56662306a36Sopenharmony_ci *data = readl(ams->base + offset); 56762306a36Sopenharmony_ci 56862306a36Sopenharmony_ci return 0; 56962306a36Sopenharmony_ci} 57062306a36Sopenharmony_ci 57162306a36Sopenharmony_cistatic int ams_get_ps_scale(int address) 57262306a36Sopenharmony_ci{ 57362306a36Sopenharmony_ci int val; 57462306a36Sopenharmony_ci 57562306a36Sopenharmony_ci switch (address) { 57662306a36Sopenharmony_ci case AMS_SUPPLY1: 57762306a36Sopenharmony_ci case AMS_SUPPLY2: 57862306a36Sopenharmony_ci case AMS_SUPPLY3: 57962306a36Sopenharmony_ci case AMS_SUPPLY4: 58062306a36Sopenharmony_ci case AMS_SUPPLY9: 58162306a36Sopenharmony_ci case AMS_SUPPLY10: 58262306a36Sopenharmony_ci case AMS_VCCAMS: 58362306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 58462306a36Sopenharmony_ci break; 58562306a36Sopenharmony_ci case AMS_SUPPLY5: 58662306a36Sopenharmony_ci case AMS_SUPPLY6: 58762306a36Sopenharmony_ci case AMS_SUPPLY7: 58862306a36Sopenharmony_ci case AMS_SUPPLY8: 58962306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_6VOLT_mV; 59062306a36Sopenharmony_ci break; 59162306a36Sopenharmony_ci default: 59262306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_1VOLT_mV; 59362306a36Sopenharmony_ci break; 59462306a36Sopenharmony_ci } 59562306a36Sopenharmony_ci 59662306a36Sopenharmony_ci return val; 59762306a36Sopenharmony_ci} 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_cistatic int ams_get_pl_scale(struct ams *ams, int address) 60062306a36Sopenharmony_ci{ 60162306a36Sopenharmony_ci int val, regval; 60262306a36Sopenharmony_ci 60362306a36Sopenharmony_ci switch (address) { 60462306a36Sopenharmony_ci case AMS_SUPPLY1: 60562306a36Sopenharmony_ci case AMS_SUPPLY2: 60662306a36Sopenharmony_ci case AMS_SUPPLY3: 60762306a36Sopenharmony_ci case AMS_SUPPLY4: 60862306a36Sopenharmony_ci case AMS_SUPPLY5: 60962306a36Sopenharmony_ci case AMS_SUPPLY6: 61062306a36Sopenharmony_ci case AMS_VCCAMS: 61162306a36Sopenharmony_ci case AMS_VREFP: 61262306a36Sopenharmony_ci case AMS_VREFN: 61362306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 61462306a36Sopenharmony_ci break; 61562306a36Sopenharmony_ci case AMS_SUPPLY7: 61662306a36Sopenharmony_ci regval = readl(ams->pl_base + AMS_REG_CONFIG4); 61762306a36Sopenharmony_ci if (FIELD_GET(AMS_VUSER0_MASK, regval)) 61862306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_6VOLT_mV; 61962306a36Sopenharmony_ci else 62062306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 62162306a36Sopenharmony_ci break; 62262306a36Sopenharmony_ci case AMS_SUPPLY8: 62362306a36Sopenharmony_ci regval = readl(ams->pl_base + AMS_REG_CONFIG4); 62462306a36Sopenharmony_ci if (FIELD_GET(AMS_VUSER1_MASK, regval)) 62562306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_6VOLT_mV; 62662306a36Sopenharmony_ci else 62762306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 62862306a36Sopenharmony_ci break; 62962306a36Sopenharmony_ci case AMS_SUPPLY9: 63062306a36Sopenharmony_ci regval = readl(ams->pl_base + AMS_REG_CONFIG4); 63162306a36Sopenharmony_ci if (FIELD_GET(AMS_VUSER2_MASK, regval)) 63262306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_6VOLT_mV; 63362306a36Sopenharmony_ci else 63462306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 63562306a36Sopenharmony_ci break; 63662306a36Sopenharmony_ci case AMS_SUPPLY10: 63762306a36Sopenharmony_ci regval = readl(ams->pl_base + AMS_REG_CONFIG4); 63862306a36Sopenharmony_ci if (FIELD_GET(AMS_VUSER3_MASK, regval)) 63962306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_6VOLT_mV; 64062306a36Sopenharmony_ci else 64162306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 64262306a36Sopenharmony_ci break; 64362306a36Sopenharmony_ci case AMS_VP_VN: 64462306a36Sopenharmony_ci case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15): 64562306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_1VOLT_mV; 64662306a36Sopenharmony_ci break; 64762306a36Sopenharmony_ci default: 64862306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_1VOLT_mV; 64962306a36Sopenharmony_ci break; 65062306a36Sopenharmony_ci } 65162306a36Sopenharmony_ci 65262306a36Sopenharmony_ci return val; 65362306a36Sopenharmony_ci} 65462306a36Sopenharmony_ci 65562306a36Sopenharmony_cistatic int ams_get_ctrl_scale(int address) 65662306a36Sopenharmony_ci{ 65762306a36Sopenharmony_ci int val; 65862306a36Sopenharmony_ci 65962306a36Sopenharmony_ci switch (address) { 66062306a36Sopenharmony_ci case AMS_VCC_PSPLL0: 66162306a36Sopenharmony_ci case AMS_VCC_PSPLL3: 66262306a36Sopenharmony_ci case AMS_VCCINT: 66362306a36Sopenharmony_ci case AMS_VCCBRAM: 66462306a36Sopenharmony_ci case AMS_VCCAUX: 66562306a36Sopenharmony_ci case AMS_PSDDRPLL: 66662306a36Sopenharmony_ci case AMS_PSINTFPDDR: 66762306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_3VOLT_mV; 66862306a36Sopenharmony_ci break; 66962306a36Sopenharmony_ci default: 67062306a36Sopenharmony_ci val = AMS_SUPPLY_SCALE_1VOLT_mV; 67162306a36Sopenharmony_ci break; 67262306a36Sopenharmony_ci } 67362306a36Sopenharmony_ci 67462306a36Sopenharmony_ci return val; 67562306a36Sopenharmony_ci} 67662306a36Sopenharmony_ci 67762306a36Sopenharmony_cistatic int ams_read_raw(struct iio_dev *indio_dev, 67862306a36Sopenharmony_ci struct iio_chan_spec const *chan, 67962306a36Sopenharmony_ci int *val, int *val2, long mask) 68062306a36Sopenharmony_ci{ 68162306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 68262306a36Sopenharmony_ci int ret; 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci switch (mask) { 68562306a36Sopenharmony_ci case IIO_CHAN_INFO_RAW: 68662306a36Sopenharmony_ci mutex_lock(&ams->lock); 68762306a36Sopenharmony_ci if (chan->scan_index >= AMS_CTRL_SEQ_BASE) { 68862306a36Sopenharmony_ci ret = ams_read_vcc_reg(ams, chan->address, val); 68962306a36Sopenharmony_ci if (ret) 69062306a36Sopenharmony_ci goto unlock_mutex; 69162306a36Sopenharmony_ci ams_enable_channel_sequence(indio_dev); 69262306a36Sopenharmony_ci } else if (chan->scan_index >= AMS_PS_SEQ_MAX) 69362306a36Sopenharmony_ci *val = readl(ams->pl_base + chan->address); 69462306a36Sopenharmony_ci else 69562306a36Sopenharmony_ci *val = readl(ams->ps_base + chan->address); 69662306a36Sopenharmony_ci 69762306a36Sopenharmony_ci ret = IIO_VAL_INT; 69862306a36Sopenharmony_ciunlock_mutex: 69962306a36Sopenharmony_ci mutex_unlock(&ams->lock); 70062306a36Sopenharmony_ci return ret; 70162306a36Sopenharmony_ci case IIO_CHAN_INFO_SCALE: 70262306a36Sopenharmony_ci switch (chan->type) { 70362306a36Sopenharmony_ci case IIO_VOLTAGE: 70462306a36Sopenharmony_ci if (chan->scan_index < AMS_PS_SEQ_MAX) 70562306a36Sopenharmony_ci *val = ams_get_ps_scale(chan->address); 70662306a36Sopenharmony_ci else if (chan->scan_index >= AMS_PS_SEQ_MAX && 70762306a36Sopenharmony_ci chan->scan_index < AMS_CTRL_SEQ_BASE) 70862306a36Sopenharmony_ci *val = ams_get_pl_scale(ams, chan->address); 70962306a36Sopenharmony_ci else 71062306a36Sopenharmony_ci *val = ams_get_ctrl_scale(chan->address); 71162306a36Sopenharmony_ci 71262306a36Sopenharmony_ci *val2 = AMS_SUPPLY_SCALE_DIV_BIT; 71362306a36Sopenharmony_ci return IIO_VAL_FRACTIONAL_LOG2; 71462306a36Sopenharmony_ci case IIO_TEMP: 71562306a36Sopenharmony_ci *val = AMS_TEMP_SCALE; 71662306a36Sopenharmony_ci *val2 = AMS_TEMP_SCALE_DIV_BIT; 71762306a36Sopenharmony_ci return IIO_VAL_FRACTIONAL_LOG2; 71862306a36Sopenharmony_ci default: 71962306a36Sopenharmony_ci return -EINVAL; 72062306a36Sopenharmony_ci } 72162306a36Sopenharmony_ci case IIO_CHAN_INFO_OFFSET: 72262306a36Sopenharmony_ci /* Only the temperature channel has an offset */ 72362306a36Sopenharmony_ci *val = AMS_TEMP_OFFSET; 72462306a36Sopenharmony_ci return IIO_VAL_INT; 72562306a36Sopenharmony_ci default: 72662306a36Sopenharmony_ci return -EINVAL; 72762306a36Sopenharmony_ci } 72862306a36Sopenharmony_ci} 72962306a36Sopenharmony_ci 73062306a36Sopenharmony_cistatic int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir) 73162306a36Sopenharmony_ci{ 73262306a36Sopenharmony_ci int offset; 73362306a36Sopenharmony_ci 73462306a36Sopenharmony_ci if (scan_index >= AMS_PS_SEQ_MAX) 73562306a36Sopenharmony_ci scan_index -= AMS_PS_SEQ_MAX; 73662306a36Sopenharmony_ci 73762306a36Sopenharmony_ci if (dir == IIO_EV_DIR_FALLING) { 73862306a36Sopenharmony_ci if (scan_index < AMS_SEQ_SUPPLY7) 73962306a36Sopenharmony_ci offset = AMS_ALARM_THRESHOLD_OFF_10; 74062306a36Sopenharmony_ci else 74162306a36Sopenharmony_ci offset = AMS_ALARM_THRESHOLD_OFF_20; 74262306a36Sopenharmony_ci } else { 74362306a36Sopenharmony_ci offset = 0; 74462306a36Sopenharmony_ci } 74562306a36Sopenharmony_ci 74662306a36Sopenharmony_ci switch (scan_index) { 74762306a36Sopenharmony_ci case AMS_SEQ_TEMP: 74862306a36Sopenharmony_ci return AMS_ALARM_TEMP + offset; 74962306a36Sopenharmony_ci case AMS_SEQ_SUPPLY1: 75062306a36Sopenharmony_ci return AMS_ALARM_SUPPLY1 + offset; 75162306a36Sopenharmony_ci case AMS_SEQ_SUPPLY2: 75262306a36Sopenharmony_ci return AMS_ALARM_SUPPLY2 + offset; 75362306a36Sopenharmony_ci case AMS_SEQ_SUPPLY3: 75462306a36Sopenharmony_ci return AMS_ALARM_SUPPLY3 + offset; 75562306a36Sopenharmony_ci case AMS_SEQ_SUPPLY4: 75662306a36Sopenharmony_ci return AMS_ALARM_SUPPLY4 + offset; 75762306a36Sopenharmony_ci case AMS_SEQ_SUPPLY5: 75862306a36Sopenharmony_ci return AMS_ALARM_SUPPLY5 + offset; 75962306a36Sopenharmony_ci case AMS_SEQ_SUPPLY6: 76062306a36Sopenharmony_ci return AMS_ALARM_SUPPLY6 + offset; 76162306a36Sopenharmony_ci case AMS_SEQ_SUPPLY7: 76262306a36Sopenharmony_ci return AMS_ALARM_SUPPLY7 + offset; 76362306a36Sopenharmony_ci case AMS_SEQ_SUPPLY8: 76462306a36Sopenharmony_ci return AMS_ALARM_SUPPLY8 + offset; 76562306a36Sopenharmony_ci case AMS_SEQ_SUPPLY9: 76662306a36Sopenharmony_ci return AMS_ALARM_SUPPLY9 + offset; 76762306a36Sopenharmony_ci case AMS_SEQ_SUPPLY10: 76862306a36Sopenharmony_ci return AMS_ALARM_SUPPLY10 + offset; 76962306a36Sopenharmony_ci case AMS_SEQ_VCCAMS: 77062306a36Sopenharmony_ci return AMS_ALARM_VCCAMS + offset; 77162306a36Sopenharmony_ci case AMS_SEQ_TEMP_REMOTE: 77262306a36Sopenharmony_ci return AMS_ALARM_TEMP_REMOTE + offset; 77362306a36Sopenharmony_ci default: 77462306a36Sopenharmony_ci return 0; 77562306a36Sopenharmony_ci } 77662306a36Sopenharmony_ci} 77762306a36Sopenharmony_ci 77862306a36Sopenharmony_cistatic const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev, 77962306a36Sopenharmony_ci u32 event) 78062306a36Sopenharmony_ci{ 78162306a36Sopenharmony_ci int scan_index = 0, i; 78262306a36Sopenharmony_ci 78362306a36Sopenharmony_ci if (event >= AMS_PL_ALARM_START) { 78462306a36Sopenharmony_ci event -= AMS_PL_ALARM_START; 78562306a36Sopenharmony_ci scan_index = AMS_PS_SEQ_MAX; 78662306a36Sopenharmony_ci } 78762306a36Sopenharmony_ci 78862306a36Sopenharmony_ci switch (event) { 78962306a36Sopenharmony_ci case AMS_ALARM_BIT_TEMP: 79062306a36Sopenharmony_ci scan_index += AMS_SEQ_TEMP; 79162306a36Sopenharmony_ci break; 79262306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY1: 79362306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY1; 79462306a36Sopenharmony_ci break; 79562306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY2: 79662306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY2; 79762306a36Sopenharmony_ci break; 79862306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY3: 79962306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY3; 80062306a36Sopenharmony_ci break; 80162306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY4: 80262306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY4; 80362306a36Sopenharmony_ci break; 80462306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY5: 80562306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY5; 80662306a36Sopenharmony_ci break; 80762306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY6: 80862306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY6; 80962306a36Sopenharmony_ci break; 81062306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY7: 81162306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY7; 81262306a36Sopenharmony_ci break; 81362306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY8: 81462306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY8; 81562306a36Sopenharmony_ci break; 81662306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY9: 81762306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY9; 81862306a36Sopenharmony_ci break; 81962306a36Sopenharmony_ci case AMS_ALARM_BIT_SUPPLY10: 82062306a36Sopenharmony_ci scan_index += AMS_SEQ_SUPPLY10; 82162306a36Sopenharmony_ci break; 82262306a36Sopenharmony_ci case AMS_ALARM_BIT_VCCAMS: 82362306a36Sopenharmony_ci scan_index += AMS_SEQ_VCCAMS; 82462306a36Sopenharmony_ci break; 82562306a36Sopenharmony_ci case AMS_ALARM_BIT_TEMP_REMOTE: 82662306a36Sopenharmony_ci scan_index += AMS_SEQ_TEMP_REMOTE; 82762306a36Sopenharmony_ci break; 82862306a36Sopenharmony_ci default: 82962306a36Sopenharmony_ci break; 83062306a36Sopenharmony_ci } 83162306a36Sopenharmony_ci 83262306a36Sopenharmony_ci for (i = 0; i < dev->num_channels; i++) 83362306a36Sopenharmony_ci if (dev->channels[i].scan_index == scan_index) 83462306a36Sopenharmony_ci break; 83562306a36Sopenharmony_ci 83662306a36Sopenharmony_ci return &dev->channels[i]; 83762306a36Sopenharmony_ci} 83862306a36Sopenharmony_ci 83962306a36Sopenharmony_cistatic int ams_get_alarm_mask(int scan_index) 84062306a36Sopenharmony_ci{ 84162306a36Sopenharmony_ci int bit = 0; 84262306a36Sopenharmony_ci 84362306a36Sopenharmony_ci if (scan_index >= AMS_PS_SEQ_MAX) { 84462306a36Sopenharmony_ci bit = AMS_PL_ALARM_START; 84562306a36Sopenharmony_ci scan_index -= AMS_PS_SEQ_MAX; 84662306a36Sopenharmony_ci } 84762306a36Sopenharmony_ci 84862306a36Sopenharmony_ci switch (scan_index) { 84962306a36Sopenharmony_ci case AMS_SEQ_TEMP: 85062306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_TEMP + bit); 85162306a36Sopenharmony_ci case AMS_SEQ_SUPPLY1: 85262306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY1 + bit); 85362306a36Sopenharmony_ci case AMS_SEQ_SUPPLY2: 85462306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY2 + bit); 85562306a36Sopenharmony_ci case AMS_SEQ_SUPPLY3: 85662306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY3 + bit); 85762306a36Sopenharmony_ci case AMS_SEQ_SUPPLY4: 85862306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY4 + bit); 85962306a36Sopenharmony_ci case AMS_SEQ_SUPPLY5: 86062306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY5 + bit); 86162306a36Sopenharmony_ci case AMS_SEQ_SUPPLY6: 86262306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY6 + bit); 86362306a36Sopenharmony_ci case AMS_SEQ_SUPPLY7: 86462306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY7 + bit); 86562306a36Sopenharmony_ci case AMS_SEQ_SUPPLY8: 86662306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY8 + bit); 86762306a36Sopenharmony_ci case AMS_SEQ_SUPPLY9: 86862306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY9 + bit); 86962306a36Sopenharmony_ci case AMS_SEQ_SUPPLY10: 87062306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_SUPPLY10 + bit); 87162306a36Sopenharmony_ci case AMS_SEQ_VCCAMS: 87262306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_VCCAMS + bit); 87362306a36Sopenharmony_ci case AMS_SEQ_TEMP_REMOTE: 87462306a36Sopenharmony_ci return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit); 87562306a36Sopenharmony_ci default: 87662306a36Sopenharmony_ci return 0; 87762306a36Sopenharmony_ci } 87862306a36Sopenharmony_ci} 87962306a36Sopenharmony_ci 88062306a36Sopenharmony_cistatic int ams_read_event_config(struct iio_dev *indio_dev, 88162306a36Sopenharmony_ci const struct iio_chan_spec *chan, 88262306a36Sopenharmony_ci enum iio_event_type type, 88362306a36Sopenharmony_ci enum iio_event_direction dir) 88462306a36Sopenharmony_ci{ 88562306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 88662306a36Sopenharmony_ci 88762306a36Sopenharmony_ci return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index)); 88862306a36Sopenharmony_ci} 88962306a36Sopenharmony_ci 89062306a36Sopenharmony_cistatic int ams_write_event_config(struct iio_dev *indio_dev, 89162306a36Sopenharmony_ci const struct iio_chan_spec *chan, 89262306a36Sopenharmony_ci enum iio_event_type type, 89362306a36Sopenharmony_ci enum iio_event_direction dir, 89462306a36Sopenharmony_ci int state) 89562306a36Sopenharmony_ci{ 89662306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 89762306a36Sopenharmony_ci unsigned int alarm; 89862306a36Sopenharmony_ci 89962306a36Sopenharmony_ci alarm = ams_get_alarm_mask(chan->scan_index); 90062306a36Sopenharmony_ci 90162306a36Sopenharmony_ci mutex_lock(&ams->lock); 90262306a36Sopenharmony_ci 90362306a36Sopenharmony_ci if (state) 90462306a36Sopenharmony_ci ams->alarm_mask |= alarm; 90562306a36Sopenharmony_ci else 90662306a36Sopenharmony_ci ams->alarm_mask &= ~alarm; 90762306a36Sopenharmony_ci 90862306a36Sopenharmony_ci ams_update_alarm(ams, ams->alarm_mask); 90962306a36Sopenharmony_ci 91062306a36Sopenharmony_ci mutex_unlock(&ams->lock); 91162306a36Sopenharmony_ci 91262306a36Sopenharmony_ci return 0; 91362306a36Sopenharmony_ci} 91462306a36Sopenharmony_ci 91562306a36Sopenharmony_cistatic int ams_read_event_value(struct iio_dev *indio_dev, 91662306a36Sopenharmony_ci const struct iio_chan_spec *chan, 91762306a36Sopenharmony_ci enum iio_event_type type, 91862306a36Sopenharmony_ci enum iio_event_direction dir, 91962306a36Sopenharmony_ci enum iio_event_info info, int *val, int *val2) 92062306a36Sopenharmony_ci{ 92162306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 92262306a36Sopenharmony_ci unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir); 92362306a36Sopenharmony_ci 92462306a36Sopenharmony_ci mutex_lock(&ams->lock); 92562306a36Sopenharmony_ci 92662306a36Sopenharmony_ci if (chan->scan_index >= AMS_PS_SEQ_MAX) 92762306a36Sopenharmony_ci *val = readl(ams->pl_base + offset); 92862306a36Sopenharmony_ci else 92962306a36Sopenharmony_ci *val = readl(ams->ps_base + offset); 93062306a36Sopenharmony_ci 93162306a36Sopenharmony_ci mutex_unlock(&ams->lock); 93262306a36Sopenharmony_ci 93362306a36Sopenharmony_ci return IIO_VAL_INT; 93462306a36Sopenharmony_ci} 93562306a36Sopenharmony_ci 93662306a36Sopenharmony_cistatic int ams_write_event_value(struct iio_dev *indio_dev, 93762306a36Sopenharmony_ci const struct iio_chan_spec *chan, 93862306a36Sopenharmony_ci enum iio_event_type type, 93962306a36Sopenharmony_ci enum iio_event_direction dir, 94062306a36Sopenharmony_ci enum iio_event_info info, int val, int val2) 94162306a36Sopenharmony_ci{ 94262306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 94362306a36Sopenharmony_ci unsigned int offset; 94462306a36Sopenharmony_ci 94562306a36Sopenharmony_ci mutex_lock(&ams->lock); 94662306a36Sopenharmony_ci 94762306a36Sopenharmony_ci /* Set temperature channel threshold to direct threshold */ 94862306a36Sopenharmony_ci if (chan->type == IIO_TEMP) { 94962306a36Sopenharmony_ci offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING); 95062306a36Sopenharmony_ci 95162306a36Sopenharmony_ci if (chan->scan_index >= AMS_PS_SEQ_MAX) 95262306a36Sopenharmony_ci ams_pl_update_reg(ams, offset, 95362306a36Sopenharmony_ci AMS_ALARM_THR_DIRECT_MASK, 95462306a36Sopenharmony_ci AMS_ALARM_THR_DIRECT_MASK); 95562306a36Sopenharmony_ci else 95662306a36Sopenharmony_ci ams_ps_update_reg(ams, offset, 95762306a36Sopenharmony_ci AMS_ALARM_THR_DIRECT_MASK, 95862306a36Sopenharmony_ci AMS_ALARM_THR_DIRECT_MASK); 95962306a36Sopenharmony_ci } 96062306a36Sopenharmony_ci 96162306a36Sopenharmony_ci offset = ams_get_alarm_offset(chan->scan_index, dir); 96262306a36Sopenharmony_ci if (chan->scan_index >= AMS_PS_SEQ_MAX) 96362306a36Sopenharmony_ci writel(val, ams->pl_base + offset); 96462306a36Sopenharmony_ci else 96562306a36Sopenharmony_ci writel(val, ams->ps_base + offset); 96662306a36Sopenharmony_ci 96762306a36Sopenharmony_ci mutex_unlock(&ams->lock); 96862306a36Sopenharmony_ci 96962306a36Sopenharmony_ci return 0; 97062306a36Sopenharmony_ci} 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_cistatic void ams_handle_event(struct iio_dev *indio_dev, u32 event) 97362306a36Sopenharmony_ci{ 97462306a36Sopenharmony_ci const struct iio_chan_spec *chan; 97562306a36Sopenharmony_ci 97662306a36Sopenharmony_ci chan = ams_event_to_channel(indio_dev, event); 97762306a36Sopenharmony_ci 97862306a36Sopenharmony_ci if (chan->type == IIO_TEMP) { 97962306a36Sopenharmony_ci /* 98062306a36Sopenharmony_ci * The temperature channel only supports over-temperature 98162306a36Sopenharmony_ci * events. 98262306a36Sopenharmony_ci */ 98362306a36Sopenharmony_ci iio_push_event(indio_dev, 98462306a36Sopenharmony_ci IIO_UNMOD_EVENT_CODE(chan->type, chan->channel, 98562306a36Sopenharmony_ci IIO_EV_TYPE_THRESH, 98662306a36Sopenharmony_ci IIO_EV_DIR_RISING), 98762306a36Sopenharmony_ci iio_get_time_ns(indio_dev)); 98862306a36Sopenharmony_ci } else { 98962306a36Sopenharmony_ci /* 99062306a36Sopenharmony_ci * For other channels we don't know whether it is a upper or 99162306a36Sopenharmony_ci * lower threshold event. Userspace will have to check the 99262306a36Sopenharmony_ci * channel value if it wants to know. 99362306a36Sopenharmony_ci */ 99462306a36Sopenharmony_ci iio_push_event(indio_dev, 99562306a36Sopenharmony_ci IIO_UNMOD_EVENT_CODE(chan->type, chan->channel, 99662306a36Sopenharmony_ci IIO_EV_TYPE_THRESH, 99762306a36Sopenharmony_ci IIO_EV_DIR_EITHER), 99862306a36Sopenharmony_ci iio_get_time_ns(indio_dev)); 99962306a36Sopenharmony_ci } 100062306a36Sopenharmony_ci} 100162306a36Sopenharmony_ci 100262306a36Sopenharmony_cistatic void ams_handle_events(struct iio_dev *indio_dev, unsigned long events) 100362306a36Sopenharmony_ci{ 100462306a36Sopenharmony_ci unsigned int bit; 100562306a36Sopenharmony_ci 100662306a36Sopenharmony_ci for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS) 100762306a36Sopenharmony_ci ams_handle_event(indio_dev, bit); 100862306a36Sopenharmony_ci} 100962306a36Sopenharmony_ci 101062306a36Sopenharmony_ci/** 101162306a36Sopenharmony_ci * ams_unmask_worker - ams alarm interrupt unmask worker 101262306a36Sopenharmony_ci * @work: work to be done 101362306a36Sopenharmony_ci * 101462306a36Sopenharmony_ci * The ZynqMP threshold interrupts are level sensitive. Since we can't make the 101562306a36Sopenharmony_ci * threshold condition go way from within the interrupt handler, this means as 101662306a36Sopenharmony_ci * soon as a threshold condition is present we would enter the interrupt handler 101762306a36Sopenharmony_ci * again and again. To work around this we mask all active threshold interrupts 101862306a36Sopenharmony_ci * in the interrupt handler and start a timer. In this timer we poll the 101962306a36Sopenharmony_ci * interrupt status and only if the interrupt is inactive we unmask it again. 102062306a36Sopenharmony_ci */ 102162306a36Sopenharmony_cistatic void ams_unmask_worker(struct work_struct *work) 102262306a36Sopenharmony_ci{ 102362306a36Sopenharmony_ci struct ams *ams = container_of(work, struct ams, ams_unmask_work.work); 102462306a36Sopenharmony_ci unsigned int status, unmask; 102562306a36Sopenharmony_ci 102662306a36Sopenharmony_ci spin_lock_irq(&ams->intr_lock); 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_ci status = readl(ams->base + AMS_ISR_0); 102962306a36Sopenharmony_ci 103062306a36Sopenharmony_ci /* Clear those bits which are not active anymore */ 103162306a36Sopenharmony_ci unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm; 103262306a36Sopenharmony_ci 103362306a36Sopenharmony_ci /* Clear status of disabled alarm */ 103462306a36Sopenharmony_ci unmask |= ams->intr_mask; 103562306a36Sopenharmony_ci 103662306a36Sopenharmony_ci ams->current_masked_alarm &= status; 103762306a36Sopenharmony_ci 103862306a36Sopenharmony_ci /* Also clear those which are masked out anyway */ 103962306a36Sopenharmony_ci ams->current_masked_alarm &= ~ams->intr_mask; 104062306a36Sopenharmony_ci 104162306a36Sopenharmony_ci /* Clear the interrupts before we unmask them */ 104262306a36Sopenharmony_ci writel(unmask, ams->base + AMS_ISR_0); 104362306a36Sopenharmony_ci 104462306a36Sopenharmony_ci ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK); 104562306a36Sopenharmony_ci 104662306a36Sopenharmony_ci spin_unlock_irq(&ams->intr_lock); 104762306a36Sopenharmony_ci 104862306a36Sopenharmony_ci /* If still pending some alarm re-trigger the timer */ 104962306a36Sopenharmony_ci if (ams->current_masked_alarm) 105062306a36Sopenharmony_ci schedule_delayed_work(&ams->ams_unmask_work, 105162306a36Sopenharmony_ci msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS)); 105262306a36Sopenharmony_ci} 105362306a36Sopenharmony_ci 105462306a36Sopenharmony_cistatic irqreturn_t ams_irq(int irq, void *data) 105562306a36Sopenharmony_ci{ 105662306a36Sopenharmony_ci struct iio_dev *indio_dev = data; 105762306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 105862306a36Sopenharmony_ci u32 isr0; 105962306a36Sopenharmony_ci 106062306a36Sopenharmony_ci spin_lock(&ams->intr_lock); 106162306a36Sopenharmony_ci 106262306a36Sopenharmony_ci isr0 = readl(ams->base + AMS_ISR_0); 106362306a36Sopenharmony_ci 106462306a36Sopenharmony_ci /* Only process alarms that are not masked */ 106562306a36Sopenharmony_ci isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm); 106662306a36Sopenharmony_ci if (!isr0) { 106762306a36Sopenharmony_ci spin_unlock(&ams->intr_lock); 106862306a36Sopenharmony_ci return IRQ_NONE; 106962306a36Sopenharmony_ci } 107062306a36Sopenharmony_ci 107162306a36Sopenharmony_ci /* Clear interrupt */ 107262306a36Sopenharmony_ci writel(isr0, ams->base + AMS_ISR_0); 107362306a36Sopenharmony_ci 107462306a36Sopenharmony_ci /* Mask the alarm interrupts until cleared */ 107562306a36Sopenharmony_ci ams->current_masked_alarm |= isr0; 107662306a36Sopenharmony_ci ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK); 107762306a36Sopenharmony_ci 107862306a36Sopenharmony_ci ams_handle_events(indio_dev, isr0); 107962306a36Sopenharmony_ci 108062306a36Sopenharmony_ci schedule_delayed_work(&ams->ams_unmask_work, 108162306a36Sopenharmony_ci msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS)); 108262306a36Sopenharmony_ci 108362306a36Sopenharmony_ci spin_unlock(&ams->intr_lock); 108462306a36Sopenharmony_ci 108562306a36Sopenharmony_ci return IRQ_HANDLED; 108662306a36Sopenharmony_ci} 108762306a36Sopenharmony_ci 108862306a36Sopenharmony_cistatic const struct iio_event_spec ams_temp_events[] = { 108962306a36Sopenharmony_ci { 109062306a36Sopenharmony_ci .type = IIO_EV_TYPE_THRESH, 109162306a36Sopenharmony_ci .dir = IIO_EV_DIR_RISING, 109262306a36Sopenharmony_ci .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), 109362306a36Sopenharmony_ci }, 109462306a36Sopenharmony_ci}; 109562306a36Sopenharmony_ci 109662306a36Sopenharmony_cistatic const struct iio_event_spec ams_voltage_events[] = { 109762306a36Sopenharmony_ci { 109862306a36Sopenharmony_ci .type = IIO_EV_TYPE_THRESH, 109962306a36Sopenharmony_ci .dir = IIO_EV_DIR_RISING, 110062306a36Sopenharmony_ci .mask_separate = BIT(IIO_EV_INFO_VALUE), 110162306a36Sopenharmony_ci }, 110262306a36Sopenharmony_ci { 110362306a36Sopenharmony_ci .type = IIO_EV_TYPE_THRESH, 110462306a36Sopenharmony_ci .dir = IIO_EV_DIR_FALLING, 110562306a36Sopenharmony_ci .mask_separate = BIT(IIO_EV_INFO_VALUE), 110662306a36Sopenharmony_ci }, 110762306a36Sopenharmony_ci { 110862306a36Sopenharmony_ci .type = IIO_EV_TYPE_THRESH, 110962306a36Sopenharmony_ci .dir = IIO_EV_DIR_EITHER, 111062306a36Sopenharmony_ci .mask_separate = BIT(IIO_EV_INFO_ENABLE), 111162306a36Sopenharmony_ci }, 111262306a36Sopenharmony_ci}; 111362306a36Sopenharmony_ci 111462306a36Sopenharmony_cistatic const struct iio_chan_spec ams_ps_channels[] = { 111562306a36Sopenharmony_ci AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP), 111662306a36Sopenharmony_ci AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE), 111762306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1), 111862306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2), 111962306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3), 112062306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4), 112162306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5), 112262306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6), 112362306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7), 112462306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8), 112562306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9), 112662306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10), 112762306a36Sopenharmony_ci AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS), 112862306a36Sopenharmony_ci}; 112962306a36Sopenharmony_ci 113062306a36Sopenharmony_cistatic const struct iio_chan_spec ams_pl_channels[] = { 113162306a36Sopenharmony_ci AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP), 113262306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true), 113362306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true), 113462306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false), 113562306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false), 113662306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true), 113762306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true), 113862306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true), 113962306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true), 114062306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true), 114162306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false), 114262306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true), 114362306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true), 114462306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true), 114562306a36Sopenharmony_ci AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true), 114662306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(0), 114762306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(1), 114862306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(2), 114962306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(3), 115062306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(4), 115162306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(5), 115262306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(6), 115362306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(7), 115462306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(8), 115562306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(9), 115662306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(10), 115762306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(11), 115862306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(12), 115962306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(13), 116062306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(14), 116162306a36Sopenharmony_ci AMS_PL_AUX_CHAN_VOLTAGE(15), 116262306a36Sopenharmony_ci}; 116362306a36Sopenharmony_ci 116462306a36Sopenharmony_cistatic const struct iio_chan_spec ams_ctrl_channels[] = { 116562306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0), 116662306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3), 116762306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT), 116862306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM), 116962306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX), 117062306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL), 117162306a36Sopenharmony_ci AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR), 117262306a36Sopenharmony_ci}; 117362306a36Sopenharmony_ci 117462306a36Sopenharmony_cistatic int ams_get_ext_chan(struct fwnode_handle *chan_node, 117562306a36Sopenharmony_ci struct iio_chan_spec *channels, int num_channels) 117662306a36Sopenharmony_ci{ 117762306a36Sopenharmony_ci struct iio_chan_spec *chan; 117862306a36Sopenharmony_ci struct fwnode_handle *child; 117962306a36Sopenharmony_ci unsigned int reg, ext_chan; 118062306a36Sopenharmony_ci int ret; 118162306a36Sopenharmony_ci 118262306a36Sopenharmony_ci fwnode_for_each_child_node(chan_node, child) { 118362306a36Sopenharmony_ci ret = fwnode_property_read_u32(child, "reg", ®); 118462306a36Sopenharmony_ci if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30) 118562306a36Sopenharmony_ci continue; 118662306a36Sopenharmony_ci 118762306a36Sopenharmony_ci chan = &channels[num_channels]; 118862306a36Sopenharmony_ci ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30; 118962306a36Sopenharmony_ci memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels)); 119062306a36Sopenharmony_ci 119162306a36Sopenharmony_ci if (fwnode_property_read_bool(child, "xlnx,bipolar")) 119262306a36Sopenharmony_ci chan->scan_type.sign = 's'; 119362306a36Sopenharmony_ci 119462306a36Sopenharmony_ci num_channels++; 119562306a36Sopenharmony_ci } 119662306a36Sopenharmony_ci 119762306a36Sopenharmony_ci return num_channels; 119862306a36Sopenharmony_ci} 119962306a36Sopenharmony_ci 120062306a36Sopenharmony_cistatic void ams_iounmap_ps(void *data) 120162306a36Sopenharmony_ci{ 120262306a36Sopenharmony_ci struct ams *ams = data; 120362306a36Sopenharmony_ci 120462306a36Sopenharmony_ci iounmap(ams->ps_base); 120562306a36Sopenharmony_ci} 120662306a36Sopenharmony_ci 120762306a36Sopenharmony_cistatic void ams_iounmap_pl(void *data) 120862306a36Sopenharmony_ci{ 120962306a36Sopenharmony_ci struct ams *ams = data; 121062306a36Sopenharmony_ci 121162306a36Sopenharmony_ci iounmap(ams->pl_base); 121262306a36Sopenharmony_ci} 121362306a36Sopenharmony_ci 121462306a36Sopenharmony_cistatic int ams_init_module(struct iio_dev *indio_dev, 121562306a36Sopenharmony_ci struct fwnode_handle *fwnode, 121662306a36Sopenharmony_ci struct iio_chan_spec *channels) 121762306a36Sopenharmony_ci{ 121862306a36Sopenharmony_ci struct device *dev = indio_dev->dev.parent; 121962306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 122062306a36Sopenharmony_ci int num_channels = 0; 122162306a36Sopenharmony_ci int ret; 122262306a36Sopenharmony_ci 122362306a36Sopenharmony_ci if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) { 122462306a36Sopenharmony_ci ams->ps_base = fwnode_iomap(fwnode, 0); 122562306a36Sopenharmony_ci if (!ams->ps_base) 122662306a36Sopenharmony_ci return -ENXIO; 122762306a36Sopenharmony_ci ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams); 122862306a36Sopenharmony_ci if (ret < 0) 122962306a36Sopenharmony_ci return ret; 123062306a36Sopenharmony_ci 123162306a36Sopenharmony_ci /* add PS channels to iio device channels */ 123262306a36Sopenharmony_ci memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels)); 123362306a36Sopenharmony_ci num_channels = ARRAY_SIZE(ams_ps_channels); 123462306a36Sopenharmony_ci } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) { 123562306a36Sopenharmony_ci ams->pl_base = fwnode_iomap(fwnode, 0); 123662306a36Sopenharmony_ci if (!ams->pl_base) 123762306a36Sopenharmony_ci return -ENXIO; 123862306a36Sopenharmony_ci 123962306a36Sopenharmony_ci ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams); 124062306a36Sopenharmony_ci if (ret < 0) 124162306a36Sopenharmony_ci return ret; 124262306a36Sopenharmony_ci 124362306a36Sopenharmony_ci /* Copy only first 10 fix channels */ 124462306a36Sopenharmony_ci memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels)); 124562306a36Sopenharmony_ci num_channels += AMS_PL_MAX_FIXED_CHANNEL; 124662306a36Sopenharmony_ci num_channels = ams_get_ext_chan(fwnode, channels, 124762306a36Sopenharmony_ci num_channels); 124862306a36Sopenharmony_ci } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) { 124962306a36Sopenharmony_ci /* add AMS channels to iio device channels */ 125062306a36Sopenharmony_ci memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels)); 125162306a36Sopenharmony_ci num_channels += ARRAY_SIZE(ams_ctrl_channels); 125262306a36Sopenharmony_ci } else { 125362306a36Sopenharmony_ci return -EINVAL; 125462306a36Sopenharmony_ci } 125562306a36Sopenharmony_ci 125662306a36Sopenharmony_ci return num_channels; 125762306a36Sopenharmony_ci} 125862306a36Sopenharmony_ci 125962306a36Sopenharmony_cistatic int ams_parse_firmware(struct iio_dev *indio_dev) 126062306a36Sopenharmony_ci{ 126162306a36Sopenharmony_ci struct ams *ams = iio_priv(indio_dev); 126262306a36Sopenharmony_ci struct iio_chan_spec *ams_channels, *dev_channels; 126362306a36Sopenharmony_ci struct device *dev = indio_dev->dev.parent; 126462306a36Sopenharmony_ci struct fwnode_handle *child = NULL; 126562306a36Sopenharmony_ci struct fwnode_handle *fwnode = dev_fwnode(dev); 126662306a36Sopenharmony_ci size_t ams_size; 126762306a36Sopenharmony_ci int ret, ch_cnt = 0, i, rising_off, falling_off; 126862306a36Sopenharmony_ci unsigned int num_channels = 0; 126962306a36Sopenharmony_ci 127062306a36Sopenharmony_ci ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) + 127162306a36Sopenharmony_ci ARRAY_SIZE(ams_ctrl_channels); 127262306a36Sopenharmony_ci 127362306a36Sopenharmony_ci /* Initialize buffer for channel specification */ 127462306a36Sopenharmony_ci ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL); 127562306a36Sopenharmony_ci if (!ams_channels) 127662306a36Sopenharmony_ci return -ENOMEM; 127762306a36Sopenharmony_ci 127862306a36Sopenharmony_ci if (fwnode_device_is_available(fwnode)) { 127962306a36Sopenharmony_ci ret = ams_init_module(indio_dev, fwnode, ams_channels); 128062306a36Sopenharmony_ci if (ret < 0) 128162306a36Sopenharmony_ci return ret; 128262306a36Sopenharmony_ci 128362306a36Sopenharmony_ci num_channels += ret; 128462306a36Sopenharmony_ci } 128562306a36Sopenharmony_ci 128662306a36Sopenharmony_ci fwnode_for_each_child_node(fwnode, child) { 128762306a36Sopenharmony_ci if (fwnode_device_is_available(child)) { 128862306a36Sopenharmony_ci ret = ams_init_module(indio_dev, child, ams_channels + num_channels); 128962306a36Sopenharmony_ci if (ret < 0) { 129062306a36Sopenharmony_ci fwnode_handle_put(child); 129162306a36Sopenharmony_ci return ret; 129262306a36Sopenharmony_ci } 129362306a36Sopenharmony_ci 129462306a36Sopenharmony_ci num_channels += ret; 129562306a36Sopenharmony_ci } 129662306a36Sopenharmony_ci } 129762306a36Sopenharmony_ci 129862306a36Sopenharmony_ci for (i = 0; i < num_channels; i++) { 129962306a36Sopenharmony_ci ams_channels[i].channel = ch_cnt++; 130062306a36Sopenharmony_ci 130162306a36Sopenharmony_ci if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) { 130262306a36Sopenharmony_ci /* set threshold to max and min for each channel */ 130362306a36Sopenharmony_ci falling_off = 130462306a36Sopenharmony_ci ams_get_alarm_offset(ams_channels[i].scan_index, 130562306a36Sopenharmony_ci IIO_EV_DIR_FALLING); 130662306a36Sopenharmony_ci rising_off = 130762306a36Sopenharmony_ci ams_get_alarm_offset(ams_channels[i].scan_index, 130862306a36Sopenharmony_ci IIO_EV_DIR_RISING); 130962306a36Sopenharmony_ci if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) { 131062306a36Sopenharmony_ci writel(AMS_ALARM_THR_MIN, 131162306a36Sopenharmony_ci ams->pl_base + falling_off); 131262306a36Sopenharmony_ci writel(AMS_ALARM_THR_MAX, 131362306a36Sopenharmony_ci ams->pl_base + rising_off); 131462306a36Sopenharmony_ci } else { 131562306a36Sopenharmony_ci writel(AMS_ALARM_THR_MIN, 131662306a36Sopenharmony_ci ams->ps_base + falling_off); 131762306a36Sopenharmony_ci writel(AMS_ALARM_THR_MAX, 131862306a36Sopenharmony_ci ams->ps_base + rising_off); 131962306a36Sopenharmony_ci } 132062306a36Sopenharmony_ci } 132162306a36Sopenharmony_ci } 132262306a36Sopenharmony_ci 132362306a36Sopenharmony_ci dev_channels = devm_krealloc_array(dev, ams_channels, num_channels, 132462306a36Sopenharmony_ci sizeof(*dev_channels), GFP_KERNEL); 132562306a36Sopenharmony_ci if (!dev_channels) 132662306a36Sopenharmony_ci return -ENOMEM; 132762306a36Sopenharmony_ci 132862306a36Sopenharmony_ci indio_dev->channels = dev_channels; 132962306a36Sopenharmony_ci indio_dev->num_channels = num_channels; 133062306a36Sopenharmony_ci 133162306a36Sopenharmony_ci return 0; 133262306a36Sopenharmony_ci} 133362306a36Sopenharmony_ci 133462306a36Sopenharmony_cistatic const struct iio_info iio_ams_info = { 133562306a36Sopenharmony_ci .read_raw = &ams_read_raw, 133662306a36Sopenharmony_ci .read_event_config = &ams_read_event_config, 133762306a36Sopenharmony_ci .write_event_config = &ams_write_event_config, 133862306a36Sopenharmony_ci .read_event_value = &ams_read_event_value, 133962306a36Sopenharmony_ci .write_event_value = &ams_write_event_value, 134062306a36Sopenharmony_ci}; 134162306a36Sopenharmony_ci 134262306a36Sopenharmony_cistatic const struct of_device_id ams_of_match_table[] = { 134362306a36Sopenharmony_ci { .compatible = "xlnx,zynqmp-ams" }, 134462306a36Sopenharmony_ci { } 134562306a36Sopenharmony_ci}; 134662306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, ams_of_match_table); 134762306a36Sopenharmony_ci 134862306a36Sopenharmony_cistatic int ams_probe(struct platform_device *pdev) 134962306a36Sopenharmony_ci{ 135062306a36Sopenharmony_ci struct iio_dev *indio_dev; 135162306a36Sopenharmony_ci struct ams *ams; 135262306a36Sopenharmony_ci int ret; 135362306a36Sopenharmony_ci int irq; 135462306a36Sopenharmony_ci 135562306a36Sopenharmony_ci indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams)); 135662306a36Sopenharmony_ci if (!indio_dev) 135762306a36Sopenharmony_ci return -ENOMEM; 135862306a36Sopenharmony_ci 135962306a36Sopenharmony_ci ams = iio_priv(indio_dev); 136062306a36Sopenharmony_ci mutex_init(&ams->lock); 136162306a36Sopenharmony_ci spin_lock_init(&ams->intr_lock); 136262306a36Sopenharmony_ci 136362306a36Sopenharmony_ci indio_dev->name = "xilinx-ams"; 136462306a36Sopenharmony_ci 136562306a36Sopenharmony_ci indio_dev->info = &iio_ams_info; 136662306a36Sopenharmony_ci indio_dev->modes = INDIO_DIRECT_MODE; 136762306a36Sopenharmony_ci 136862306a36Sopenharmony_ci ams->base = devm_platform_ioremap_resource(pdev, 0); 136962306a36Sopenharmony_ci if (IS_ERR(ams->base)) 137062306a36Sopenharmony_ci return PTR_ERR(ams->base); 137162306a36Sopenharmony_ci 137262306a36Sopenharmony_ci ams->clk = devm_clk_get_enabled(&pdev->dev, NULL); 137362306a36Sopenharmony_ci if (IS_ERR(ams->clk)) 137462306a36Sopenharmony_ci return PTR_ERR(ams->clk); 137562306a36Sopenharmony_ci 137662306a36Sopenharmony_ci ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work, 137762306a36Sopenharmony_ci ams_unmask_worker); 137862306a36Sopenharmony_ci if (ret < 0) 137962306a36Sopenharmony_ci return ret; 138062306a36Sopenharmony_ci 138162306a36Sopenharmony_ci ret = ams_parse_firmware(indio_dev); 138262306a36Sopenharmony_ci if (ret) 138362306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n"); 138462306a36Sopenharmony_ci 138562306a36Sopenharmony_ci ret = ams_init_device(ams); 138662306a36Sopenharmony_ci if (ret) 138762306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n"); 138862306a36Sopenharmony_ci 138962306a36Sopenharmony_ci ams_enable_channel_sequence(indio_dev); 139062306a36Sopenharmony_ci 139162306a36Sopenharmony_ci irq = platform_get_irq(pdev, 0); 139262306a36Sopenharmony_ci if (irq < 0) 139362306a36Sopenharmony_ci return irq; 139462306a36Sopenharmony_ci 139562306a36Sopenharmony_ci ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq", 139662306a36Sopenharmony_ci indio_dev); 139762306a36Sopenharmony_ci if (ret < 0) 139862306a36Sopenharmony_ci return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n"); 139962306a36Sopenharmony_ci 140062306a36Sopenharmony_ci platform_set_drvdata(pdev, indio_dev); 140162306a36Sopenharmony_ci 140262306a36Sopenharmony_ci return devm_iio_device_register(&pdev->dev, indio_dev); 140362306a36Sopenharmony_ci} 140462306a36Sopenharmony_ci 140562306a36Sopenharmony_cistatic int ams_suspend(struct device *dev) 140662306a36Sopenharmony_ci{ 140762306a36Sopenharmony_ci struct ams *ams = iio_priv(dev_get_drvdata(dev)); 140862306a36Sopenharmony_ci 140962306a36Sopenharmony_ci clk_disable_unprepare(ams->clk); 141062306a36Sopenharmony_ci 141162306a36Sopenharmony_ci return 0; 141262306a36Sopenharmony_ci} 141362306a36Sopenharmony_ci 141462306a36Sopenharmony_cistatic int ams_resume(struct device *dev) 141562306a36Sopenharmony_ci{ 141662306a36Sopenharmony_ci struct ams *ams = iio_priv(dev_get_drvdata(dev)); 141762306a36Sopenharmony_ci 141862306a36Sopenharmony_ci return clk_prepare_enable(ams->clk); 141962306a36Sopenharmony_ci} 142062306a36Sopenharmony_ci 142162306a36Sopenharmony_cistatic DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume); 142262306a36Sopenharmony_ci 142362306a36Sopenharmony_cistatic struct platform_driver ams_driver = { 142462306a36Sopenharmony_ci .probe = ams_probe, 142562306a36Sopenharmony_ci .driver = { 142662306a36Sopenharmony_ci .name = "xilinx-ams", 142762306a36Sopenharmony_ci .pm = pm_sleep_ptr(&ams_pm_ops), 142862306a36Sopenharmony_ci .of_match_table = ams_of_match_table, 142962306a36Sopenharmony_ci }, 143062306a36Sopenharmony_ci}; 143162306a36Sopenharmony_cimodule_platform_driver(ams_driver); 143262306a36Sopenharmony_ci 143362306a36Sopenharmony_ciMODULE_LICENSE("GPL v2"); 143462306a36Sopenharmony_ciMODULE_AUTHOR("Xilinx, Inc."); 1435