1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 *
8 * Inspired from: fsl-imx25-tsadc
9 *
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/interrupt.h>
15#include <linux/irqchip/chained_irq.h>
16#include <linux/irqdesc.h>
17#include <linux/irqdomain.h>
18#include <linux/mfd/syscon.h>
19#include <linux/module.h>
20#include <linux/of_device.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/regmap.h>
25#include <linux/regulator/consumer.h>
26#include <linux/slab.h>
27#include <linux/units.h>
28
29#include "stm32-adc-core.h"
30
31#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
32
33/* SYSCFG registers */
34#define STM32MP1_SYSCFG_PMCSETR		0x04
35#define STM32MP1_SYSCFG_PMCCLRR		0x44
36
37/* SYSCFG bit fields */
38#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
39
40/* SYSCFG capability flags */
41#define HAS_VBOOSTER		BIT(0)
42#define HAS_ANASWVDD		BIT(1)
43
44/**
45 * struct stm32_adc_common_regs - stm32 common registers
46 * @csr:	common status register offset
47 * @ccr:	common control register offset
48 * @eoc_msk:    array of eoc (end of conversion flag) masks in csr for adc1..n
49 * @ovr_msk:    array of ovr (overrun flag) masks in csr for adc1..n
50 * @ier:	interrupt enable register offset for each adc
51 * @eocie_msk:	end of conversion interrupt enable mask in @ier
52 */
53struct stm32_adc_common_regs {
54	u32 csr;
55	u32 ccr;
56	u32 eoc_msk[STM32_ADC_MAX_ADCS];
57	u32 ovr_msk[STM32_ADC_MAX_ADCS];
58	u32 ier;
59	u32 eocie_msk;
60};
61
62struct stm32_adc_priv;
63
64/**
65 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
66 * @regs:	common registers for all instances
67 * @clk_sel:	clock selection routine
68 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
69 * @ipid:	adc identification number
70 * @has_syscfg: SYSCFG capability flags
71 * @num_irqs:	number of interrupt lines
72 * @num_adcs:   maximum number of ADC instances in the common registers
73 */
74struct stm32_adc_priv_cfg {
75	const struct stm32_adc_common_regs *regs;
76	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
77	u32 max_clk_rate_hz;
78	u32 ipid;
79	unsigned int has_syscfg;
80	unsigned int num_irqs;
81	unsigned int num_adcs;
82};
83
84/**
85 * struct stm32_adc_priv - stm32 ADC core private data
86 * @irq:		irq(s) for ADC block
87 * @nb_adc_max:		actual maximum number of instance per ADC block
88 * @domain:		irq domain reference
89 * @aclk:		clock reference for the analog circuitry
90 * @bclk:		bus clock common for all ADCs, depends on part used
91 * @max_clk_rate:	desired maximum clock rate
92 * @booster:		booster supply reference
93 * @vdd:		vdd supply reference
94 * @vdda:		vdda analog supply reference
95 * @vref:		regulator reference
96 * @vdd_uv:		vdd supply voltage (microvolts)
97 * @vdda_uv:		vdda supply voltage (microvolts)
98 * @cfg:		compatible configuration data
99 * @common:		common data for all ADC instances
100 * @ccr_bak:		backup CCR in low power mode
101 * @syscfg:		reference to syscon, system control registers
102 */
103struct stm32_adc_priv {
104	int				irq[STM32_ADC_MAX_ADCS];
105	unsigned int			nb_adc_max;
106	struct irq_domain		*domain;
107	struct clk			*aclk;
108	struct clk			*bclk;
109	u32				max_clk_rate;
110	struct regulator		*booster;
111	struct regulator		*vdd;
112	struct regulator		*vdda;
113	struct regulator		*vref;
114	int				vdd_uv;
115	int				vdda_uv;
116	const struct stm32_adc_priv_cfg	*cfg;
117	struct stm32_adc_common		common;
118	u32				ccr_bak;
119	struct regmap			*syscfg;
120};
121
122static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
123{
124	return container_of(com, struct stm32_adc_priv, common);
125}
126
127/* STM32F4 ADC internal common clock prescaler division ratios */
128static int stm32f4_pclk_div[] = {2, 4, 6, 8};
129
130/**
131 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
132 * @pdev: platform device
133 * @priv: stm32 ADC core private data
134 * Select clock prescaler used for analog conversions, before using ADC.
135 */
136static int stm32f4_adc_clk_sel(struct platform_device *pdev,
137			       struct stm32_adc_priv *priv)
138{
139	unsigned long rate;
140	u32 val;
141	int i;
142
143	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
144	if (!priv->aclk) {
145		dev_err(&pdev->dev, "No 'adc' clock found\n");
146		return -ENOENT;
147	}
148
149	rate = clk_get_rate(priv->aclk);
150	if (!rate) {
151		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
152		return -EINVAL;
153	}
154
155	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
156		if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
157			break;
158	}
159	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
160		dev_err(&pdev->dev, "adc clk selection failed\n");
161		return -EINVAL;
162	}
163
164	priv->common.rate = rate / stm32f4_pclk_div[i];
165	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
166	val &= ~STM32F4_ADC_ADCPRE_MASK;
167	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
168	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
169
170	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
171		priv->common.rate / 1000);
172
173	return 0;
174}
175
176/**
177 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
178 * @ckmode: ADC clock mode, Async or sync with prescaler.
179 * @presc: prescaler bitfield for async clock mode
180 * @div: prescaler division ratio
181 */
182struct stm32h7_adc_ck_spec {
183	u32 ckmode;
184	u32 presc;
185	int div;
186};
187
188static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
189	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
190	{ 0, 0, 1 },
191	{ 0, 1, 2 },
192	{ 0, 2, 4 },
193	{ 0, 3, 6 },
194	{ 0, 4, 8 },
195	{ 0, 5, 10 },
196	{ 0, 6, 12 },
197	{ 0, 7, 16 },
198	{ 0, 8, 32 },
199	{ 0, 9, 64 },
200	{ 0, 10, 128 },
201	{ 0, 11, 256 },
202	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
203	{ 1, 0, 1 },
204	{ 2, 0, 2 },
205	{ 3, 0, 4 },
206};
207
208static int stm32h7_adc_clk_sel(struct platform_device *pdev,
209			       struct stm32_adc_priv *priv)
210{
211	u32 ckmode, presc, val;
212	unsigned long rate;
213	int i, div, duty;
214
215	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
216	if (!priv->bclk) {
217		dev_err(&pdev->dev, "No 'bus' clock found\n");
218		return -ENOENT;
219	}
220
221	/*
222	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
223	 * So, choice is to have bus clock mandatory and adc clock optional.
224	 * If optional 'adc' clock has been found, then try to use it first.
225	 */
226	if (priv->aclk) {
227		/*
228		 * Asynchronous clock modes (e.g. ckmode == 0)
229		 * From spec: PLL output musn't exceed max rate
230		 */
231		rate = clk_get_rate(priv->aclk);
232		if (!rate) {
233			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
234			return -EINVAL;
235		}
236
237		/* If duty is an error, kindly use at least /2 divider */
238		duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
239		if (duty < 0)
240			dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
241
242		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
243			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
244			presc = stm32h7_adc_ckmodes_spec[i].presc;
245			div = stm32h7_adc_ckmodes_spec[i].div;
246
247			if (ckmode)
248				continue;
249
250			/*
251			 * For proper operation, clock duty cycle range is 49%
252			 * to 51%. Apply at least /2 prescaler otherwise.
253			 */
254			if (div == 1 && (duty < 49 || duty > 51))
255				continue;
256
257			if ((rate / div) <= priv->max_clk_rate)
258				goto out;
259		}
260	}
261
262	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
263	rate = clk_get_rate(priv->bclk);
264	if (!rate) {
265		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
266		return -EINVAL;
267	}
268
269	duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
270	if (duty < 0)
271		dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
272
273	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
274		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
275		presc = stm32h7_adc_ckmodes_spec[i].presc;
276		div = stm32h7_adc_ckmodes_spec[i].div;
277
278		if (!ckmode)
279			continue;
280
281		if (div == 1 && (duty < 49 || duty > 51))
282			continue;
283
284		if ((rate / div) <= priv->max_clk_rate)
285			goto out;
286	}
287
288	dev_err(&pdev->dev, "adc clk selection failed\n");
289	return -EINVAL;
290
291out:
292	/* rate used later by each ADC instance to control BOOST mode */
293	priv->common.rate = rate / div;
294
295	/* Set common clock mode and prescaler */
296	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
297	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
298	val |= ckmode << STM32H7_CKMODE_SHIFT;
299	val |= presc << STM32H7_PRESC_SHIFT;
300	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
301
302	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
303		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
304
305	return 0;
306}
307
308/* STM32F4 common registers definitions */
309static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
310	.csr = STM32F4_ADC_CSR,
311	.ccr = STM32F4_ADC_CCR,
312	.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3 },
313	.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3 },
314	.ier = STM32F4_ADC_CR1,
315	.eocie_msk = STM32F4_EOCIE,
316};
317
318/* STM32H7 common registers definitions */
319static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
320	.csr = STM32H7_ADC_CSR,
321	.ccr = STM32H7_ADC_CCR,
322	.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV },
323	.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV },
324	.ier = STM32H7_ADC_IER,
325	.eocie_msk = STM32H7_EOCIE,
326};
327
328/* STM32MP13 common registers definitions */
329static const struct stm32_adc_common_regs stm32mp13_adc_common_regs = {
330	.csr = STM32H7_ADC_CSR,
331	.ccr = STM32H7_ADC_CCR,
332	.eoc_msk = { STM32H7_EOC_MST },
333	.ovr_msk = { STM32H7_OVR_MST },
334	.ier = STM32H7_ADC_IER,
335	.eocie_msk = STM32H7_EOCIE,
336};
337
338static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
339	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
340};
341
342static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
343					  unsigned int adc)
344{
345	u32 ier, offset = stm32_adc_offset[adc];
346
347	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
348
349	return ier & priv->cfg->regs->eocie_msk;
350}
351
352/* ADC common interrupt for all instances */
353static void stm32_adc_irq_handler(struct irq_desc *desc)
354{
355	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
356	struct irq_chip *chip = irq_desc_get_chip(desc);
357	int i;
358	u32 status;
359
360	chained_irq_enter(chip, desc);
361	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
362
363	/*
364	 * End of conversion may be handled by using IRQ or DMA. There may be a
365	 * race here when two conversions complete at the same time on several
366	 * ADCs. EOC may be read 'set' for several ADCs, with:
367	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
368	 *   is then automatically cleared by DR read in hardware)
369	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
370	 *   be called in this case)
371	 * So both EOC status bit in CSR and EOCIE control bit must be checked
372	 * before invoking the interrupt handler (e.g. call ISR only for
373	 * IRQ-enabled ADCs).
374	 */
375	for (i = 0; i < priv->nb_adc_max; i++) {
376		if ((status & priv->cfg->regs->eoc_msk[i] &&
377		     stm32_adc_eoc_enabled(priv, i)) ||
378		     (status & priv->cfg->regs->ovr_msk[i]))
379			generic_handle_domain_irq(priv->domain, i);
380	}
381
382	chained_irq_exit(chip, desc);
383};
384
385static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
386				irq_hw_number_t hwirq)
387{
388	irq_set_chip_data(irq, d->host_data);
389	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
390
391	return 0;
392}
393
394static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
395{
396	irq_set_chip_and_handler(irq, NULL, NULL);
397	irq_set_chip_data(irq, NULL);
398}
399
400static const struct irq_domain_ops stm32_adc_domain_ops = {
401	.map = stm32_adc_domain_map,
402	.unmap  = stm32_adc_domain_unmap,
403	.xlate = irq_domain_xlate_onecell,
404};
405
406static int stm32_adc_irq_probe(struct platform_device *pdev,
407			       struct stm32_adc_priv *priv)
408{
409	struct device_node *np = pdev->dev.of_node;
410	unsigned int i;
411
412	/*
413	 * Interrupt(s) must be provided, depending on the compatible:
414	 * - stm32f4/h7 shares a common interrupt line.
415	 * - stm32mp1, has one line per ADC
416	 */
417	for (i = 0; i < priv->cfg->num_irqs; i++) {
418		priv->irq[i] = platform_get_irq(pdev, i);
419		if (priv->irq[i] < 0)
420			return priv->irq[i];
421	}
422
423	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
424					     &stm32_adc_domain_ops,
425					     priv);
426	if (!priv->domain) {
427		dev_err(&pdev->dev, "Failed to add irq domain\n");
428		return -ENOMEM;
429	}
430
431	for (i = 0; i < priv->cfg->num_irqs; i++) {
432		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
433		irq_set_handler_data(priv->irq[i], priv);
434	}
435
436	return 0;
437}
438
439static void stm32_adc_irq_remove(struct platform_device *pdev,
440				 struct stm32_adc_priv *priv)
441{
442	int hwirq;
443	unsigned int i;
444
445	for (hwirq = 0; hwirq < priv->nb_adc_max; hwirq++)
446		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
447	irq_domain_remove(priv->domain);
448
449	for (i = 0; i < priv->cfg->num_irqs; i++)
450		irq_set_chained_handler(priv->irq[i], NULL);
451}
452
453static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
454					     struct device *dev)
455{
456	int ret;
457
458	/*
459	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
460	 * switches (via PCSEL) which have reduced performances when their
461	 * supply is below 2.7V (vdda by default):
462	 * - Voltage booster can be used, to get full ADC performances
463	 *   (increases power consumption).
464	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
465	 *
466	 * Recommended settings for ANASWVDD and EN_BOOSTER:
467	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
468	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
469	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
470	 */
471	if (priv->vdda_uv < 2700000) {
472		if (priv->syscfg && priv->vdd_uv > 2700000) {
473			ret = regulator_enable(priv->vdd);
474			if (ret < 0) {
475				dev_err(dev, "vdd enable failed %d\n", ret);
476				return ret;
477			}
478
479			ret = regmap_write(priv->syscfg,
480					   STM32MP1_SYSCFG_PMCSETR,
481					   STM32MP1_SYSCFG_ANASWVDD_MASK);
482			if (ret < 0) {
483				regulator_disable(priv->vdd);
484				dev_err(dev, "vdd select failed, %d\n", ret);
485				return ret;
486			}
487			dev_dbg(dev, "analog switches supplied by vdd\n");
488
489			return 0;
490		}
491
492		if (priv->booster) {
493			/*
494			 * This is optional, as this is a trade-off between
495			 * analog performance and power consumption.
496			 */
497			ret = regulator_enable(priv->booster);
498			if (ret < 0) {
499				dev_err(dev, "booster enable failed %d\n", ret);
500				return ret;
501			}
502			dev_dbg(dev, "analog switches supplied by booster\n");
503
504			return 0;
505		}
506	}
507
508	/* Fallback using vdda (default), nothing to do */
509	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
510		priv->vdda_uv);
511
512	return 0;
513}
514
515static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
516{
517	if (priv->vdda_uv < 2700000) {
518		if (priv->syscfg && priv->vdd_uv > 2700000) {
519			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
520				     STM32MP1_SYSCFG_ANASWVDD_MASK);
521			regulator_disable(priv->vdd);
522			return;
523		}
524		if (priv->booster)
525			regulator_disable(priv->booster);
526	}
527}
528
529static int stm32_adc_core_hw_start(struct device *dev)
530{
531	struct stm32_adc_common *common = dev_get_drvdata(dev);
532	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
533	int ret;
534
535	ret = regulator_enable(priv->vdda);
536	if (ret < 0) {
537		dev_err(dev, "vdda enable failed %d\n", ret);
538		return ret;
539	}
540
541	ret = regulator_get_voltage(priv->vdda);
542	if (ret < 0) {
543		dev_err(dev, "vdda get voltage failed, %d\n", ret);
544		goto err_vdda_disable;
545	}
546	priv->vdda_uv = ret;
547
548	ret = stm32_adc_core_switches_supply_en(priv, dev);
549	if (ret < 0)
550		goto err_vdda_disable;
551
552	ret = regulator_enable(priv->vref);
553	if (ret < 0) {
554		dev_err(dev, "vref enable failed\n");
555		goto err_switches_dis;
556	}
557
558	ret = clk_prepare_enable(priv->bclk);
559	if (ret < 0) {
560		dev_err(dev, "bus clk enable failed\n");
561		goto err_regulator_disable;
562	}
563
564	ret = clk_prepare_enable(priv->aclk);
565	if (ret < 0) {
566		dev_err(dev, "adc clk enable failed\n");
567		goto err_bclk_disable;
568	}
569
570	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
571
572	return 0;
573
574err_bclk_disable:
575	clk_disable_unprepare(priv->bclk);
576err_regulator_disable:
577	regulator_disable(priv->vref);
578err_switches_dis:
579	stm32_adc_core_switches_supply_dis(priv);
580err_vdda_disable:
581	regulator_disable(priv->vdda);
582
583	return ret;
584}
585
586static void stm32_adc_core_hw_stop(struct device *dev)
587{
588	struct stm32_adc_common *common = dev_get_drvdata(dev);
589	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
590
591	/* Backup CCR that may be lost (depends on power state to achieve) */
592	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
593	clk_disable_unprepare(priv->aclk);
594	clk_disable_unprepare(priv->bclk);
595	regulator_disable(priv->vref);
596	stm32_adc_core_switches_supply_dis(priv);
597	regulator_disable(priv->vdda);
598}
599
600static int stm32_adc_core_switches_probe(struct device *dev,
601					 struct stm32_adc_priv *priv)
602{
603	struct device_node *np = dev->of_node;
604	int ret;
605
606	/* Analog switches supply can be controlled by syscfg (optional) */
607	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
608	if (IS_ERR(priv->syscfg)) {
609		ret = PTR_ERR(priv->syscfg);
610		if (ret != -ENODEV)
611			return dev_err_probe(dev, ret, "Can't probe syscfg\n");
612
613		priv->syscfg = NULL;
614	}
615
616	/* Booster can be used to supply analog switches (optional) */
617	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
618	    of_property_read_bool(np, "booster-supply")) {
619		priv->booster = devm_regulator_get_optional(dev, "booster");
620		if (IS_ERR(priv->booster)) {
621			ret = PTR_ERR(priv->booster);
622			if (ret != -ENODEV)
623				return dev_err_probe(dev, ret, "can't get booster\n");
624
625			priv->booster = NULL;
626		}
627	}
628
629	/* Vdd can be used to supply analog switches (optional) */
630	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
631	    of_property_read_bool(np, "vdd-supply")) {
632		priv->vdd = devm_regulator_get_optional(dev, "vdd");
633		if (IS_ERR(priv->vdd)) {
634			ret = PTR_ERR(priv->vdd);
635			if (ret != -ENODEV)
636				return dev_err_probe(dev, ret, "can't get vdd\n");
637
638			priv->vdd = NULL;
639		}
640	}
641
642	if (priv->vdd) {
643		ret = regulator_enable(priv->vdd);
644		if (ret < 0) {
645			dev_err(dev, "vdd enable failed %d\n", ret);
646			return ret;
647		}
648
649		ret = regulator_get_voltage(priv->vdd);
650		if (ret < 0) {
651			dev_err(dev, "vdd get voltage failed %d\n", ret);
652			regulator_disable(priv->vdd);
653			return ret;
654		}
655		priv->vdd_uv = ret;
656
657		regulator_disable(priv->vdd);
658	}
659
660	return 0;
661}
662
663static int stm32_adc_probe_identification(struct platform_device *pdev,
664					  struct stm32_adc_priv *priv)
665{
666	struct device_node *np = pdev->dev.of_node;
667	struct device_node *child;
668	const char *compat;
669	int ret, count = 0;
670	u32 id, val;
671
672	if (!priv->cfg->ipid)
673		return 0;
674
675	id = FIELD_GET(STM32MP1_IPIDR_MASK,
676		       readl_relaxed(priv->common.base + STM32MP1_ADC_IPDR));
677	if (id != priv->cfg->ipid) {
678		dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
679		return -EINVAL;
680	}
681
682	for_each_child_of_node(np, child) {
683		ret = of_property_read_string(child, "compatible", &compat);
684		if (ret)
685			continue;
686		/* Count child nodes with stm32 adc compatible */
687		if (strstr(compat, "st,stm32") && strstr(compat, "adc"))
688			count++;
689	}
690
691	val = readl_relaxed(priv->common.base + STM32MP1_ADC_HWCFGR0);
692	priv->nb_adc_max = FIELD_GET(STM32MP1_ADCNUM_MASK, val);
693	if (count > priv->nb_adc_max) {
694		dev_err(&pdev->dev, "Unexpected child number: %d", count);
695		return -EINVAL;
696	}
697
698	val = readl_relaxed(priv->common.base + STM32MP1_ADC_VERR);
699	dev_dbg(&pdev->dev, "ADC version: %lu.%lu\n",
700		FIELD_GET(STM32MP1_MAJREV_MASK, val),
701		FIELD_GET(STM32MP1_MINREV_MASK, val));
702
703	return 0;
704}
705
706static int stm32_adc_probe(struct platform_device *pdev)
707{
708	struct stm32_adc_priv *priv;
709	struct device *dev = &pdev->dev;
710	struct device_node *np = pdev->dev.of_node;
711	const struct of_device_id *of_id;
712
713	struct resource *res;
714	u32 max_rate;
715	int ret;
716
717	if (!pdev->dev.of_node)
718		return -ENODEV;
719
720	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
721	if (!priv)
722		return -ENOMEM;
723	platform_set_drvdata(pdev, &priv->common);
724
725	of_id = of_match_device(dev->driver->of_match_table, dev);
726	if (!of_id)
727		return -ENODEV;
728
729	priv->cfg = (const struct stm32_adc_priv_cfg *)of_id->data;
730	priv->nb_adc_max = priv->cfg->num_adcs;
731	spin_lock_init(&priv->common.lock);
732
733	priv->common.base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
734	if (IS_ERR(priv->common.base))
735		return PTR_ERR(priv->common.base);
736	priv->common.phys_base = res->start;
737
738	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
739	if (IS_ERR(priv->vdda))
740		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
741				     "vdda get failed\n");
742
743	priv->vref = devm_regulator_get(&pdev->dev, "vref");
744	if (IS_ERR(priv->vref))
745		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
746				     "vref get failed\n");
747
748	priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
749	if (IS_ERR(priv->aclk))
750		return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
751				     "Can't get 'adc' clock\n");
752
753	priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
754	if (IS_ERR(priv->bclk))
755		return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
756				     "Can't get 'bus' clock\n");
757
758	ret = stm32_adc_core_switches_probe(dev, priv);
759	if (ret)
760		return ret;
761
762	pm_runtime_get_noresume(dev);
763	pm_runtime_set_active(dev);
764	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
765	pm_runtime_use_autosuspend(dev);
766	pm_runtime_enable(dev);
767
768	ret = stm32_adc_core_hw_start(dev);
769	if (ret)
770		goto err_pm_stop;
771
772	ret = stm32_adc_probe_identification(pdev, priv);
773	if (ret < 0)
774		goto err_hw_stop;
775
776	ret = regulator_get_voltage(priv->vref);
777	if (ret < 0) {
778		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
779		goto err_hw_stop;
780	}
781	priv->common.vref_mv = ret / 1000;
782	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
783
784	ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
785				   &max_rate);
786	if (!ret)
787		priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
788	else
789		priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
790
791	ret = priv->cfg->clk_sel(pdev, priv);
792	if (ret < 0)
793		goto err_hw_stop;
794
795	ret = stm32_adc_irq_probe(pdev, priv);
796	if (ret < 0)
797		goto err_hw_stop;
798
799	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
800	if (ret < 0) {
801		dev_err(&pdev->dev, "failed to populate DT children\n");
802		goto err_irq_remove;
803	}
804
805	pm_runtime_mark_last_busy(dev);
806	pm_runtime_put_autosuspend(dev);
807
808	return 0;
809
810err_irq_remove:
811	stm32_adc_irq_remove(pdev, priv);
812err_hw_stop:
813	stm32_adc_core_hw_stop(dev);
814err_pm_stop:
815	pm_runtime_disable(dev);
816	pm_runtime_set_suspended(dev);
817	pm_runtime_put_noidle(dev);
818
819	return ret;
820}
821
822static int stm32_adc_remove(struct platform_device *pdev)
823{
824	struct stm32_adc_common *common = platform_get_drvdata(pdev);
825	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
826
827	pm_runtime_get_sync(&pdev->dev);
828	of_platform_depopulate(&pdev->dev);
829	stm32_adc_irq_remove(pdev, priv);
830	stm32_adc_core_hw_stop(&pdev->dev);
831	pm_runtime_disable(&pdev->dev);
832	pm_runtime_set_suspended(&pdev->dev);
833	pm_runtime_put_noidle(&pdev->dev);
834
835	return 0;
836}
837
838static int stm32_adc_core_runtime_suspend(struct device *dev)
839{
840	stm32_adc_core_hw_stop(dev);
841
842	return 0;
843}
844
845static int stm32_adc_core_runtime_resume(struct device *dev)
846{
847	return stm32_adc_core_hw_start(dev);
848}
849
850static int stm32_adc_core_runtime_idle(struct device *dev)
851{
852	pm_runtime_mark_last_busy(dev);
853
854	return 0;
855}
856
857static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
858				stm32_adc_core_runtime_suspend,
859				stm32_adc_core_runtime_resume,
860				stm32_adc_core_runtime_idle);
861
862static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
863	.regs = &stm32f4_adc_common_regs,
864	.clk_sel = stm32f4_adc_clk_sel,
865	.max_clk_rate_hz = 36000000,
866	.num_irqs = 1,
867	.num_adcs = 3,
868};
869
870static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
871	.regs = &stm32h7_adc_common_regs,
872	.clk_sel = stm32h7_adc_clk_sel,
873	.max_clk_rate_hz = 36000000,
874	.has_syscfg = HAS_VBOOSTER,
875	.num_irqs = 1,
876	.num_adcs = 2,
877};
878
879static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
880	.regs = &stm32h7_adc_common_regs,
881	.clk_sel = stm32h7_adc_clk_sel,
882	.max_clk_rate_hz = 36000000,
883	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
884	.ipid = STM32MP15_IPIDR_NUMBER,
885	.num_irqs = 2,
886};
887
888static const struct stm32_adc_priv_cfg stm32mp13_adc_priv_cfg = {
889	.regs = &stm32mp13_adc_common_regs,
890	.clk_sel = stm32h7_adc_clk_sel,
891	.max_clk_rate_hz = 75 * HZ_PER_MHZ,
892	.ipid = STM32MP13_IPIDR_NUMBER,
893	.num_irqs = 1,
894};
895
896static const struct of_device_id stm32_adc_of_match[] = {
897	{
898		.compatible = "st,stm32f4-adc-core",
899		.data = (void *)&stm32f4_adc_priv_cfg
900	}, {
901		.compatible = "st,stm32h7-adc-core",
902		.data = (void *)&stm32h7_adc_priv_cfg
903	}, {
904		.compatible = "st,stm32mp1-adc-core",
905		.data = (void *)&stm32mp1_adc_priv_cfg
906	}, {
907		.compatible = "st,stm32mp13-adc-core",
908		.data = (void *)&stm32mp13_adc_priv_cfg
909	}, {
910	},
911};
912MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
913
914static struct platform_driver stm32_adc_driver = {
915	.probe = stm32_adc_probe,
916	.remove = stm32_adc_remove,
917	.driver = {
918		.name = "stm32-adc-core",
919		.of_match_table = stm32_adc_of_match,
920		.pm = pm_ptr(&stm32_adc_core_pm_ops),
921	},
922};
923module_platform_driver(stm32_adc_driver);
924
925MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
926MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
927MODULE_LICENSE("GPL v2");
928MODULE_ALIAS("platform:stm32-adc-core");
929