1// SPDX-License-Identifier: BSD-3-Clause
2/*
3 * Copyright (c) 2020, MIPI Alliance, Inc.
4 *
5 * Author: Nicolas Pitre <npitre@baylibre.com>
6 *
7 * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8 * v1.x of the spec and v2.0 will likely be split out.
9 */
10
11#include <linux/bitfield.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/i3c/master.h>
16#include <linux/io.h>
17
18#include "hci.h"
19#include "cmd.h"
20#include "ibi.h"
21
22
23/*
24 * Software Parameter Values (somewhat arb itrary for now).
25 * Some of them could be determined at run time eventually.
26 */
27
28#define XFER_RINGS			1	/* max: 8 */
29#define XFER_RING_ENTRIES		16	/* max: 255 */
30
31#define IBI_RINGS			1	/* max: 8 */
32#define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
33#define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
34#define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
35
36/*
37 * Ring Header Preamble
38 */
39
40#define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
41#define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
42
43#define RHS_CONTROL			0x00
44#define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
45#define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
46#define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
47#define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
48
49#define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
50
51/*
52 * Ring Header (Per-Ring Bundle)
53 */
54
55#define rh_reg_read(r)		readl(rh->regs + (RH_##r))
56#define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
57
58#define RH_CR_SETUP			0x00	/* Command/Response Ring */
59#define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
60#define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
61#define CR_RING_SIZE			GENMASK(8, 0)
62
63#define RH_IBI_SETUP			0x04
64#define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
65#define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
66#define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
67#define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
68
69#define RH_CHUNK_CONTROL			0x08
70
71#define RH_INTR_STATUS			0x10
72#define RH_INTR_STATUS_ENABLE		0x14
73#define RH_INTR_SIGNAL_ENABLE		0x18
74#define RH_INTR_FORCE			0x1c
75#define INTR_IBI_READY			BIT(12)
76#define INTR_TRANSFER_COMPLETION	BIT(11)
77#define INTR_RING_OP			BIT(10)
78#define INTR_TRANSFER_ERR		BIT(9)
79#define INTR_WARN_INS_STOP_MODE		BIT(7)
80#define INTR_IBI_RING_FULL		BIT(6)
81#define INTR_TRANSFER_ABORT		BIT(5)
82
83#define RH_RING_STATUS			0x20
84#define RING_STATUS_LOCKED		BIT(3)
85#define RING_STATUS_ABORTED		BIT(2)
86#define RING_STATUS_RUNNING		BIT(1)
87#define RING_STATUS_ENABLED		BIT(0)
88
89#define RH_RING_CONTROL			0x24
90#define RING_CTRL_ABORT			BIT(2)
91#define RING_CTRL_RUN_STOP		BIT(1)
92#define RING_CTRL_ENABLE		BIT(0)
93
94#define RH_RING_OPERATION1		0x28
95#define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
96#define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
97#define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
98
99#define RH_RING_OPERATION2		0x2c
100#define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
101#define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
102
103#define RH_CMD_RING_BASE_LO		0x30
104#define RH_CMD_RING_BASE_HI		0x34
105#define RH_RESP_RING_BASE_LO		0x38
106#define RH_RESP_RING_BASE_HI		0x3c
107#define RH_IBI_STATUS_RING_BASE_LO	0x40
108#define RH_IBI_STATUS_RING_BASE_HI	0x44
109#define RH_IBI_DATA_RING_BASE_LO	0x48
110#define RH_IBI_DATA_RING_BASE_HI	0x4c
111
112#define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
113#define RH_RESP_RING_SG			0x54
114#define RH_IBI_STATUS_RING_SG		0x58
115#define RH_IBI_DATA_RING_SG		0x5c
116#define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
117#define RING_SG_LIST_SIZE		GENMASK(15, 0)
118
119/*
120 * Data Buffer Descriptor (in memory)
121 */
122
123#define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
124#define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
125#define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
126
127
128struct hci_rh_data {
129	void __iomem *regs;
130	void *xfer, *resp, *ibi_status, *ibi_data;
131	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134	unsigned int done_ptr, ibi_chunk_ptr;
135	struct hci_xfer **src_xfers;
136	spinlock_t lock;
137	struct completion op_done;
138};
139
140struct hci_rings_data {
141	unsigned int total;
142	struct hci_rh_data headers[];
143};
144
145struct hci_dma_dev_ibi_data {
146	struct i3c_generic_ibi_pool *pool;
147	unsigned int max_len;
148};
149
150static inline u32 lo32(dma_addr_t physaddr)
151{
152	return physaddr;
153}
154
155static inline u32 hi32(dma_addr_t physaddr)
156{
157	/* trickery to avoid compiler warnings on 32-bit build targets */
158	if (sizeof(dma_addr_t) > 4) {
159		u64 hi = physaddr;
160		return hi >> 32;
161	}
162	return 0;
163}
164
165static void hci_dma_cleanup(struct i3c_hci *hci)
166{
167	struct hci_rings_data *rings = hci->io_data;
168	struct hci_rh_data *rh;
169	unsigned int i;
170
171	if (!rings)
172		return;
173
174	for (i = 0; i < rings->total; i++) {
175		rh = &rings->headers[i];
176
177		rh_reg_write(RING_CONTROL, 0);
178		rh_reg_write(CR_SETUP, 0);
179		rh_reg_write(IBI_SETUP, 0);
180		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
181
182		if (rh->xfer)
183			dma_free_coherent(&hci->master.dev,
184					  rh->xfer_struct_sz * rh->xfer_entries,
185					  rh->xfer, rh->xfer_dma);
186		if (rh->resp)
187			dma_free_coherent(&hci->master.dev,
188					  rh->resp_struct_sz * rh->xfer_entries,
189					  rh->resp, rh->resp_dma);
190		kfree(rh->src_xfers);
191		if (rh->ibi_status)
192			dma_free_coherent(&hci->master.dev,
193					  rh->ibi_status_sz * rh->ibi_status_entries,
194					  rh->ibi_status, rh->ibi_status_dma);
195		if (rh->ibi_data_dma)
196			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
197					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
198					 DMA_FROM_DEVICE);
199		kfree(rh->ibi_data);
200	}
201
202	rhs_reg_write(CONTROL, 0);
203
204	kfree(rings);
205	hci->io_data = NULL;
206}
207
208static int hci_dma_init(struct i3c_hci *hci)
209{
210	struct hci_rings_data *rings;
211	struct hci_rh_data *rh;
212	u32 regval;
213	unsigned int i, nr_rings, xfers_sz, resps_sz;
214	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
215	int ret;
216
217	regval = rhs_reg_read(CONTROL);
218	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
219	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
220	if (unlikely(nr_rings > 8)) {
221		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
222		nr_rings = 8;
223	}
224	if (nr_rings > XFER_RINGS)
225		nr_rings = XFER_RINGS;
226	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
227	if (!rings)
228		return -ENOMEM;
229	hci->io_data = rings;
230	rings->total = nr_rings;
231
232	for (i = 0; i < rings->total; i++) {
233		u32 offset = rhs_reg_read(RHn_OFFSET(i));
234
235		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
236		ret = -EINVAL;
237		if (!offset)
238			goto err_out;
239		rh = &rings->headers[i];
240		rh->regs = hci->base_regs + offset;
241		spin_lock_init(&rh->lock);
242		init_completion(&rh->op_done);
243
244		rh->xfer_entries = XFER_RING_ENTRIES;
245
246		regval = rh_reg_read(CR_SETUP);
247		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
248		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
249		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
250		    rh->xfer_struct_sz, rh->resp_struct_sz);
251		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
252		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
253
254		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
255					      &rh->xfer_dma, GFP_KERNEL);
256		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
257					      &rh->resp_dma, GFP_KERNEL);
258		rh->src_xfers =
259			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
260				      GFP_KERNEL);
261		ret = -ENOMEM;
262		if (!rh->xfer || !rh->resp || !rh->src_xfers)
263			goto err_out;
264
265		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
266		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
267		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
268		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
269
270		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
271		rh_reg_write(CR_SETUP, regval);
272
273		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
274		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
275						 INTR_TRANSFER_COMPLETION |
276						 INTR_RING_OP |
277						 INTR_TRANSFER_ERR |
278						 INTR_WARN_INS_STOP_MODE |
279						 INTR_IBI_RING_FULL |
280						 INTR_TRANSFER_ABORT);
281
282		/* IBIs */
283
284		if (i >= IBI_RINGS)
285			goto ring_ready;
286
287		regval = rh_reg_read(IBI_SETUP);
288		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
289		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
290		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
291
292		rh->ibi_chunk_sz = dma_get_cache_alignment();
293		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
294		BUG_ON(rh->ibi_chunk_sz > 256);
295
296		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
297		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
298
299		rh->ibi_status =
300			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
301					   &rh->ibi_status_dma, GFP_KERNEL);
302		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
303		ret = -ENOMEM;
304		if (!rh->ibi_status || !rh->ibi_data)
305			goto err_out;
306		rh->ibi_data_dma =
307			dma_map_single(&hci->master.dev, rh->ibi_data,
308				       ibi_data_ring_sz, DMA_FROM_DEVICE);
309		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
310			rh->ibi_data_dma = 0;
311			ret = -ENOMEM;
312			goto err_out;
313		}
314
315		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
316				    rh->ibi_status_entries) |
317			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
318				    ilog2(rh->ibi_chunk_sz) - 2) |
319			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
320				    rh->ibi_chunks_total);
321		rh_reg_write(IBI_SETUP, regval);
322
323		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
324		regval |= INTR_IBI_READY;
325		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
326
327ring_ready:
328		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
329	}
330
331	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
332	rhs_reg_write(CONTROL, regval);
333	return 0;
334
335err_out:
336	hci_dma_cleanup(hci);
337	return ret;
338}
339
340static void hci_dma_unmap_xfer(struct i3c_hci *hci,
341			       struct hci_xfer *xfer_list, unsigned int n)
342{
343	struct hci_xfer *xfer;
344	unsigned int i;
345
346	for (i = 0; i < n; i++) {
347		xfer = xfer_list + i;
348		dma_unmap_single(&hci->master.dev,
349				 xfer->data_dma, xfer->data_len,
350				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
351	}
352}
353
354static int hci_dma_queue_xfer(struct i3c_hci *hci,
355			      struct hci_xfer *xfer_list, int n)
356{
357	struct hci_rings_data *rings = hci->io_data;
358	struct hci_rh_data *rh;
359	unsigned int i, ring, enqueue_ptr;
360	u32 op1_val, op2_val;
361
362	/* For now we only use ring 0 */
363	ring = 0;
364	rh = &rings->headers[ring];
365
366	op1_val = rh_reg_read(RING_OPERATION1);
367	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
368	for (i = 0; i < n; i++) {
369		struct hci_xfer *xfer = xfer_list + i;
370		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
371
372		/* store cmd descriptor */
373		*ring_data++ = xfer->cmd_desc[0];
374		*ring_data++ = xfer->cmd_desc[1];
375		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
376			*ring_data++ = xfer->cmd_desc[2];
377			*ring_data++ = xfer->cmd_desc[3];
378		}
379
380		/* first word of Data Buffer Descriptor Structure */
381		if (!xfer->data)
382			xfer->data_len = 0;
383		*ring_data++ =
384			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
385			((i == n - 1) ? DATA_BUF_IOC : 0);
386
387		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
388		if (xfer->data) {
389			xfer->data_dma =
390				dma_map_single(&hci->master.dev,
391					       xfer->data,
392					       xfer->data_len,
393					       xfer->rnw ?
394						  DMA_FROM_DEVICE :
395						  DMA_TO_DEVICE);
396			if (dma_mapping_error(&hci->master.dev,
397					      xfer->data_dma)) {
398				hci_dma_unmap_xfer(hci, xfer_list, i);
399				return -ENOMEM;
400			}
401			*ring_data++ = lo32(xfer->data_dma);
402			*ring_data++ = hi32(xfer->data_dma);
403		} else {
404			*ring_data++ = 0;
405			*ring_data++ = 0;
406		}
407
408		/* remember corresponding xfer struct */
409		rh->src_xfers[enqueue_ptr] = xfer;
410		/* remember corresponding ring/entry for this xfer structure */
411		xfer->ring_number = ring;
412		xfer->ring_entry = enqueue_ptr;
413
414		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
415
416		/*
417		 * We may update the hardware view of the enqueue pointer
418		 * only if we didn't reach its dequeue pointer.
419		 */
420		op2_val = rh_reg_read(RING_OPERATION2);
421		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
422			/* the ring is full */
423			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
424			return -EBUSY;
425		}
426	}
427
428	/* take care to update the hardware enqueue pointer atomically */
429	spin_lock_irq(&rh->lock);
430	op1_val = rh_reg_read(RING_OPERATION1);
431	op1_val &= ~RING_OP1_CR_ENQ_PTR;
432	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
433	rh_reg_write(RING_OPERATION1, op1_val);
434	spin_unlock_irq(&rh->lock);
435
436	return 0;
437}
438
439static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
440				 struct hci_xfer *xfer_list, int n)
441{
442	struct hci_rings_data *rings = hci->io_data;
443	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
444	unsigned int i;
445	bool did_unqueue = false;
446
447	/* stop the ring */
448	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
449	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
450		/*
451		 * We're deep in it if ever this condition is ever met.
452		 * Hardware might still be writing to memory, etc.
453		 * Better suspend the world than risking silent corruption.
454		 */
455		dev_crit(&hci->master.dev, "unable to abort the ring\n");
456		BUG();
457	}
458
459	for (i = 0; i < n; i++) {
460		struct hci_xfer *xfer = xfer_list + i;
461		int idx = xfer->ring_entry;
462
463		/*
464		 * At the time the abort happened, the xfer might have
465		 * completed already. If not then replace corresponding
466		 * descriptor entries with a no-op.
467		 */
468		if (idx >= 0) {
469			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
470
471			/* store no-op cmd descriptor */
472			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
473			*ring_data++ = 0;
474			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
475				*ring_data++ = 0;
476				*ring_data++ = 0;
477			}
478
479			/* disassociate this xfer struct */
480			rh->src_xfers[idx] = NULL;
481
482			/* and unmap it */
483			hci_dma_unmap_xfer(hci, xfer, 1);
484
485			did_unqueue = true;
486		}
487	}
488
489	/* restart the ring */
490	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
491
492	return did_unqueue;
493}
494
495static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
496{
497	u32 op1_val, op2_val, resp, *ring_resp;
498	unsigned int tid, done_ptr = rh->done_ptr;
499	struct hci_xfer *xfer;
500
501	for (;;) {
502		op2_val = rh_reg_read(RING_OPERATION2);
503		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
504			break;
505
506		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
507		resp = *ring_resp;
508		tid = RESP_TID(resp);
509		DBG("resp = 0x%08x", resp);
510
511		xfer = rh->src_xfers[done_ptr];
512		if (!xfer) {
513			DBG("orphaned ring entry");
514		} else {
515			hci_dma_unmap_xfer(hci, xfer, 1);
516			xfer->ring_entry = -1;
517			xfer->response = resp;
518			if (tid != xfer->cmd_tid) {
519				dev_err(&hci->master.dev,
520					"response tid=%d when expecting %d\n",
521					tid, xfer->cmd_tid);
522				/* TODO: do something about it? */
523			}
524			if (xfer->completion)
525				complete(xfer->completion);
526		}
527
528		done_ptr = (done_ptr + 1) % rh->xfer_entries;
529		rh->done_ptr = done_ptr;
530	}
531
532	/* take care to update the software dequeue pointer atomically */
533	spin_lock(&rh->lock);
534	op1_val = rh_reg_read(RING_OPERATION1);
535	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
536	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
537	rh_reg_write(RING_OPERATION1, op1_val);
538	spin_unlock(&rh->lock);
539}
540
541static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
542			       const struct i3c_ibi_setup *req)
543{
544	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
545	struct i3c_generic_ibi_pool *pool;
546	struct hci_dma_dev_ibi_data *dev_ibi;
547
548	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
549	if (!dev_ibi)
550		return -ENOMEM;
551	pool = i3c_generic_ibi_alloc_pool(dev, req);
552	if (IS_ERR(pool)) {
553		kfree(dev_ibi);
554		return PTR_ERR(pool);
555	}
556	dev_ibi->pool = pool;
557	dev_ibi->max_len = req->max_payload_len;
558	dev_data->ibi_data = dev_ibi;
559	return 0;
560}
561
562static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
563{
564	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
565	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
566
567	dev_data->ibi_data = NULL;
568	i3c_generic_ibi_free_pool(dev_ibi->pool);
569	kfree(dev_ibi);
570}
571
572static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
573				     struct i3c_dev_desc *dev,
574				     struct i3c_ibi_slot *slot)
575{
576	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
577	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
578
579	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
580}
581
582static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
583{
584	struct i3c_dev_desc *dev;
585	struct i3c_hci_dev_data *dev_data;
586	struct hci_dma_dev_ibi_data *dev_ibi;
587	struct i3c_ibi_slot *slot;
588	u32 op1_val, op2_val, ibi_status_error;
589	unsigned int ptr, enq_ptr, deq_ptr;
590	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
591	int ibi_addr, last_ptr;
592	void *ring_ibi_data;
593	dma_addr_t ring_ibi_data_dma;
594
595	op1_val = rh_reg_read(RING_OPERATION1);
596	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
597
598	op2_val = rh_reg_read(RING_OPERATION2);
599	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
600
601	ibi_status_error = 0;
602	ibi_addr = -1;
603	ibi_chunks = 0;
604	ibi_size = 0;
605	last_ptr = -1;
606
607	/* let's find all we can about this IBI */
608	for (ptr = deq_ptr; ptr != enq_ptr;
609	     ptr = (ptr + 1) % rh->ibi_status_entries) {
610		u32 ibi_status, *ring_ibi_status;
611		unsigned int chunks;
612
613		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
614		ibi_status = *ring_ibi_status;
615		DBG("status = %#x", ibi_status);
616
617		if (ibi_status_error) {
618			/* we no longer care */
619		} else if (ibi_status & IBI_ERROR) {
620			ibi_status_error = ibi_status;
621		} else if (ibi_addr ==  -1) {
622			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
623		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
624			/* the address changed unexpectedly */
625			ibi_status_error = ibi_status;
626		}
627
628		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
629		ibi_chunks += chunks;
630		if (!(ibi_status & IBI_LAST_STATUS)) {
631			ibi_size += chunks * rh->ibi_chunk_sz;
632		} else {
633			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
634			last_ptr = ptr;
635			break;
636		}
637	}
638
639	/* validate what we've got */
640
641	if (last_ptr == -1) {
642		/* this IBI sequence is not yet complete */
643		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
644		return;
645	}
646	deq_ptr = last_ptr + 1;
647	deq_ptr %= rh->ibi_status_entries;
648
649	if (ibi_status_error) {
650		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
651		goto done;
652	}
653
654	/* determine who this is for */
655	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
656	if (!dev) {
657		dev_err(&hci->master.dev,
658			"IBI for unknown device %#x\n", ibi_addr);
659		goto done;
660	}
661
662	dev_data = i3c_dev_get_master_data(dev);
663	dev_ibi = dev_data->ibi_data;
664	if (ibi_size > dev_ibi->max_len) {
665		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
666			ibi_size, dev_ibi->max_len);
667		goto done;
668	}
669
670	/*
671	 * This ring model is not suitable for zero-copy processing of IBIs.
672	 * We have the data chunk ring wrap-around to deal with, meaning
673	 * that the payload might span multiple chunks beginning at the
674	 * end of the ring and wrap to the start of the ring. Furthermore
675	 * there is no guarantee that those chunks will be released in order
676	 * and in a timely manner by the upper driver. So let's just copy
677	 * them to a discrete buffer. In practice they're supposed to be
678	 * small anyway.
679	 */
680	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
681	if (!slot) {
682		dev_err(&hci->master.dev, "no free slot for IBI\n");
683		goto done;
684	}
685
686	/* copy first part of the payload */
687	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
688	ring_ibi_data = rh->ibi_data + ibi_data_offset;
689	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
690	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
691			* rh->ibi_chunk_sz;
692	if (first_part > ibi_size)
693		first_part = ibi_size;
694	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
695				first_part, DMA_FROM_DEVICE);
696	memcpy(slot->data, ring_ibi_data, first_part);
697
698	/* copy second part if any */
699	if (ibi_size > first_part) {
700		/* we wrap back to the start and copy remaining data */
701		ring_ibi_data = rh->ibi_data;
702		ring_ibi_data_dma = rh->ibi_data_dma;
703		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
704					ibi_size - first_part, DMA_FROM_DEVICE);
705		memcpy(slot->data + first_part, ring_ibi_data,
706		       ibi_size - first_part);
707	}
708
709	/* submit it */
710	slot->dev = dev;
711	slot->len = ibi_size;
712	i3c_master_queue_ibi(dev, slot);
713
714done:
715	/* take care to update the ibi dequeue pointer atomically */
716	spin_lock(&rh->lock);
717	op1_val = rh_reg_read(RING_OPERATION1);
718	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
719	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
720	rh_reg_write(RING_OPERATION1, op1_val);
721	spin_unlock(&rh->lock);
722
723	/* update the chunk pointer */
724	rh->ibi_chunk_ptr += ibi_chunks;
725	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
726
727	/* and tell the hardware about freed chunks */
728	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
729}
730
731static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
732{
733	struct hci_rings_data *rings = hci->io_data;
734	unsigned int i;
735	bool handled = false;
736
737	for (i = 0; mask && i < rings->total; i++) {
738		struct hci_rh_data *rh;
739		u32 status;
740
741		if (!(mask & BIT(i)))
742			continue;
743		mask &= ~BIT(i);
744
745		rh = &rings->headers[i];
746		status = rh_reg_read(INTR_STATUS);
747		DBG("rh%d status: %#x", i, status);
748		if (!status)
749			continue;
750		rh_reg_write(INTR_STATUS, status);
751
752		if (status & INTR_IBI_READY)
753			hci_dma_process_ibi(hci, rh);
754		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
755			hci_dma_xfer_done(hci, rh);
756		if (status & INTR_RING_OP)
757			complete(&rh->op_done);
758
759		if (status & INTR_TRANSFER_ABORT)
760			dev_notice_ratelimited(&hci->master.dev,
761				"ring %d: Transfer Aborted\n", i);
762		if (status & INTR_WARN_INS_STOP_MODE)
763			dev_warn_ratelimited(&hci->master.dev,
764				"ring %d: Inserted Stop on Mode Change\n", i);
765		if (status & INTR_IBI_RING_FULL)
766			dev_err_ratelimited(&hci->master.dev,
767				"ring %d: IBI Ring Full Condition\n", i);
768
769		handled = true;
770	}
771
772	return handled;
773}
774
775const struct hci_io_ops mipi_i3c_hci_dma = {
776	.init			= hci_dma_init,
777	.cleanup		= hci_dma_cleanup,
778	.queue_xfer		= hci_dma_queue_xfer,
779	.dequeue_xfer		= hci_dma_dequeue_xfer,
780	.irq_handler		= hci_dma_irq_handler,
781	.request_ibi		= hci_dma_request_ibi,
782	.free_ibi		= hci_dma_free_ibi,
783	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
784};
785