1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7#include <linux/bitfield.h>
8#include <linux/clk.h>
9#include <linux/debugfs.h>
10#include <linux/errno.h>
11#include <linux/i2c.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/jiffies.h>
16#include <linux/kernel.h>
17#include <linux/mfd/syscon.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/platform_device.h>
21#include <linux/regmap.h>
22
23enum i2c_mode {
24	I2C_MASTER,
25	I2C_SLAVE,
26};
27
28/*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32enum i2c_state_ind {
33	I2C_NO_STATUS_IND = 0,
34	I2C_SLAVE_RCV_IND,
35	I2C_SLAVE_XMIT_IND,
36	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37	I2C_SLAVE_RESTART_IND,
38	I2C_SLAVE_DONE_IND,
39	I2C_MASTER_DONE_IND,
40	I2C_NACK_IND,
41	I2C_BUS_ERR_IND,
42	I2C_WAKE_UP_IND,
43	I2C_BLOCK_BYTES_ERR_IND,
44	I2C_SLAVE_RCV_MISSING_DATA_IND,
45};
46
47/*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52enum i2c_oper {
53	I2C_NO_OPER = 0,
54	I2C_WRITE_OPER,
55	I2C_READ_OPER,
56};
57
58/* I2C Bank (module had 2 banks of registers) */
59enum i2c_bank {
60	I2C_BANK_0 = 0,
61	I2C_BANK_1,
62};
63
64/* Internal I2C states values (for the I2C module state machine). */
65enum i2c_state {
66	I2C_DISABLE = 0,
67	I2C_IDLE,
68	I2C_MASTER_START,
69	I2C_SLAVE_MATCH,
70	I2C_OPER_STARTED,
71	I2C_STOP_PENDING,
72};
73
74#if IS_ENABLED(CONFIG_I2C_SLAVE)
75/* Module supports setting multiple own slave addresses */
76enum i2c_addr {
77	I2C_SLAVE_ADDR1 = 0,
78	I2C_SLAVE_ADDR2,
79	I2C_SLAVE_ADDR3,
80	I2C_SLAVE_ADDR4,
81	I2C_SLAVE_ADDR5,
82	I2C_SLAVE_ADDR6,
83	I2C_SLAVE_ADDR7,
84	I2C_SLAVE_ADDR8,
85	I2C_SLAVE_ADDR9,
86	I2C_SLAVE_ADDR10,
87	I2C_GC_ADDR,
88	I2C_ARP_ADDR,
89};
90#endif
91
92/* init register and default value required to enable module */
93#define NPCM_I2CSEGCTL			0xE4
94
95/* Common regs */
96#define NPCM_I2CSDA			0x00
97#define NPCM_I2CST			0x02
98#define NPCM_I2CCST			0x04
99#define NPCM_I2CCTL1			0x06
100#define NPCM_I2CADDR1			0x08
101#define NPCM_I2CCTL2			0x0A
102#define NPCM_I2CADDR2			0x0C
103#define NPCM_I2CCTL3			0x0E
104#define NPCM_I2CCST2			0x18
105#define NPCM_I2CCST3			0x19
106#define I2C_VER				0x1F
107
108/* BANK 0 regs */
109#define NPCM_I2CADDR3			0x10
110#define NPCM_I2CADDR7			0x11
111#define NPCM_I2CADDR4			0x12
112#define NPCM_I2CADDR8			0x13
113#define NPCM_I2CADDR5			0x14
114#define NPCM_I2CADDR9			0x15
115#define NPCM_I2CADDR6			0x16
116#define NPCM_I2CADDR10			0x17
117#define NPCM_I2CCTL4			0x1A
118#define NPCM_I2CCTL5			0x1B
119#define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
120#define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
121#define NPCM_I2CSCLHT			0x1E /* SCL High Time */
122
123/* BANK 1 regs */
124#define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
125#define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
126#define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
127#define NPCM_I2CPEC			0x16 /* PEC Data */
128#define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
129#define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
130#define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
131
132#if IS_ENABLED(CONFIG_I2C_SLAVE)
133/*
134 * npcm_i2caddr array:
135 * The module supports having multiple own slave addresses.
136 * Since the addr regs are sprinkled all over the address space,
137 * use this array to get the address or each register.
138 */
139#define I2C_NUM_OWN_ADDR 2
140#define I2C_NUM_OWN_ADDR_SUPPORTED 2
141
142static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143	NPCM_I2CADDR1, NPCM_I2CADDR2,
144};
145#endif
146
147/* NPCM_I2CST reg fields */
148#define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
149#define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
150#define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
151#define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
152#define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
153#define NPCM_I2CST_BER			BIT(5)	/* Bus error */
154#define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
155#define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
156
157/* NPCM_I2CCST reg fields */
158#define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
159#define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
160#define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
161#define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
162#define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
163#define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
164#define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
165#define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
166
167/* NPCM_I2CCTL1 reg fields */
168#define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
169#define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
170#define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
171#define NPCM_I2CCTL1_EOBINTE		BIT(3)
172#define NPCM_I2CCTL1_ACK		BIT(4)
173#define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
174#define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
175#define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
176
177/* RW1S fields (inside a RW reg): */
178#define NPCM_I2CCTL1_RWS   \
179	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
180
181/* npcm_i2caddr reg fields */
182#define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
183#define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
184
185/* NPCM_I2CCTL2 reg fields */
186#define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
187#define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
188
189/* NPCM_I2CCTL3 reg fields */
190#define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
191#define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
192#define I2CCTL3_IDL_START		BIT(3)
193#define I2CCTL3_400K_MODE		BIT(4)
194#define I2CCTL3_BNK_SEL			BIT(5)
195#define I2CCTL3_SDA_LVL			BIT(6)
196#define I2CCTL3_SCL_LVL			BIT(7)
197
198/* NPCM_I2CCST2 reg fields */
199#define NPCM_I2CCST2_MATCHA1F		BIT(0)
200#define NPCM_I2CCST2_MATCHA2F		BIT(1)
201#define NPCM_I2CCST2_MATCHA3F		BIT(2)
202#define NPCM_I2CCST2_MATCHA4F		BIT(3)
203#define NPCM_I2CCST2_MATCHA5F		BIT(4)
204#define NPCM_I2CCST2_MATCHA6F		BIT(5)
205#define NPCM_I2CCST2_MATCHA7F		BIT(5)
206#define NPCM_I2CCST2_INTSTS		BIT(7)
207
208/* NPCM_I2CCST3 reg fields */
209#define NPCM_I2CCST3_MATCHA8F		BIT(0)
210#define NPCM_I2CCST3_MATCHA9F		BIT(1)
211#define NPCM_I2CCST3_MATCHA10F		BIT(2)
212#define NPCM_I2CCST3_EO_BUSY		BIT(7)
213
214/* NPCM_I2CCTL4 reg fields */
215#define I2CCTL4_HLDT			GENMASK(5, 0)
216#define I2CCTL4_LVL_WE			BIT(7)
217
218/* NPCM_I2CCTL5 reg fields */
219#define I2CCTL5_DBNCT			GENMASK(3, 0)
220
221/* NPCM_I2CFIF_CTS reg fields */
222#define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
223#define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
224#define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
225#define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
226
227/* NPCM_I2CTXF_CTL reg field */
228#define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
229
230/* NPCM_I2CT_OUT reg fields */
231#define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
232#define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
233#define NPCM_I2CT_OUT_T_OUTST		BIT(7)
234
235/* NPCM_I2CTXF_STS reg fields */
236#define NPCM_I2CTXF_STS_TX_THST		BIT(6)
237
238/* NPCM_I2CRXF_STS reg fields */
239#define NPCM_I2CRXF_STS_RX_THST		BIT(6)
240
241/* NPCM_I2CFIF_CTL reg fields */
242#define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
243
244/* NPCM_I2CRXF_CTL reg fields */
245#define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
246
247#define MAX_I2C_HW_FIFO_SIZE		32
248
249/* I2C_VER reg fields */
250#define I2C_VER_VERSION			GENMASK(6, 0)
251#define I2C_VER_FIFO_EN			BIT(7)
252
253/* stall/stuck timeout in us */
254#define DEFAULT_STALL_COUNT		25
255
256/* SCLFRQ field position */
257#define SCLFRQ_0_TO_6			GENMASK(6, 0)
258#define SCLFRQ_7_TO_8			GENMASK(8, 7)
259
260/* supported clk settings. values in Hz. */
261#define I2C_FREQ_MIN_HZ			10000
262#define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
263
264struct npcm_i2c_data {
265	u8 fifo_size;
266	u32 segctl_init_val;
267	u8 txf_sts_tx_bytes;
268	u8 rxf_sts_rx_bytes;
269	u8 rxf_ctl_last_pec;
270};
271
272static const struct npcm_i2c_data npxm7xx_i2c_data = {
273	.fifo_size = 16,
274	.segctl_init_val = 0x0333F000,
275	.txf_sts_tx_bytes = GENMASK(4, 0),
276	.rxf_sts_rx_bytes = GENMASK(4, 0),
277	.rxf_ctl_last_pec = BIT(5),
278};
279
280static const struct npcm_i2c_data npxm8xx_i2c_data = {
281	.fifo_size = 32,
282	.segctl_init_val = 0x9333F000,
283	.txf_sts_tx_bytes = GENMASK(5, 0),
284	.rxf_sts_rx_bytes = GENMASK(5, 0),
285	.rxf_ctl_last_pec = BIT(7),
286};
287
288/* Status of one I2C module */
289struct npcm_i2c {
290	struct i2c_adapter adap;
291	struct device *dev;
292	unsigned char __iomem *reg;
293	const struct npcm_i2c_data *data;
294	spinlock_t lock;   /* IRQ synchronization */
295	struct completion cmd_complete;
296	int cmd_err;
297	struct i2c_msg *msgs;
298	int msgs_num;
299	int num;
300	u32 apb_clk;
301	struct i2c_bus_recovery_info rinfo;
302	enum i2c_state state;
303	enum i2c_oper operation;
304	enum i2c_mode master_or_slave;
305	enum i2c_state_ind stop_ind;
306	u8 dest_addr;
307	u8 *rd_buf;
308	u16 rd_size;
309	u16 rd_ind;
310	u8 *wr_buf;
311	u16 wr_size;
312	u16 wr_ind;
313	bool fifo_use;
314	u16 PEC_mask; /* PEC bit mask per slave address */
315	bool PEC_use;
316	bool read_block_use;
317	unsigned long int_time_stamp;
318	unsigned long bus_freq; /* in Hz */
319#if IS_ENABLED(CONFIG_I2C_SLAVE)
320	u8 own_slave_addr;
321	struct i2c_client *slave;
322	int slv_rd_size;
323	int slv_rd_ind;
324	int slv_wr_size;
325	int slv_wr_ind;
326	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
327	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
328#endif
329	struct dentry *debugfs; /* debugfs device directory */
330	u64 ber_cnt;
331	u64 rec_succ_cnt;
332	u64 rec_fail_cnt;
333	u64 nack_cnt;
334	u64 timeout_cnt;
335	u64 tx_complete_cnt;
336};
337
338static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
339					enum i2c_bank bank)
340{
341	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
342
343	if (bank == I2C_BANK_0)
344		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
345	else
346		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
347	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
348}
349
350static void npcm_i2c_init_params(struct npcm_i2c *bus)
351{
352	bus->stop_ind = I2C_NO_STATUS_IND;
353	bus->rd_size = 0;
354	bus->wr_size = 0;
355	bus->rd_ind = 0;
356	bus->wr_ind = 0;
357	bus->read_block_use = false;
358	bus->int_time_stamp = 0;
359	bus->PEC_use = false;
360	bus->PEC_mask = 0;
361#if IS_ENABLED(CONFIG_I2C_SLAVE)
362	if (bus->slave)
363		bus->master_or_slave = I2C_SLAVE;
364#endif
365}
366
367static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
368{
369	iowrite8(data, bus->reg + NPCM_I2CSDA);
370}
371
372static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
373{
374	return ioread8(bus->reg + NPCM_I2CSDA);
375}
376
377static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
378{
379	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
380
381	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
382}
383
384static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
385{
386	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
387
388	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
389}
390
391static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
392{
393	if (bus->operation == I2C_READ_OPER)
394		return bus->rd_ind;
395	if (bus->operation == I2C_WRITE_OPER)
396		return bus->wr_ind;
397	return 0;
398}
399
400/* quick protocol (just address) */
401static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
402{
403	return bus->wr_size == 0 && bus->rd_size == 0;
404}
405
406static void npcm_i2c_disable(struct npcm_i2c *bus)
407{
408	u8 i2cctl2;
409
410#if IS_ENABLED(CONFIG_I2C_SLAVE)
411	int i;
412
413	/* Slave addresses removal */
414	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
415		iowrite8(0, bus->reg + npcm_i2caddr[i]);
416
417#endif
418	/* Disable module */
419	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
420	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
421	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
422
423	bus->state = I2C_DISABLE;
424}
425
426static void npcm_i2c_enable(struct npcm_i2c *bus)
427{
428	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
429
430	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
431	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
432	bus->state = I2C_IDLE;
433}
434
435/* enable\disable end of busy (EOB) interrupts */
436static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
437{
438	u8 val;
439
440	/* Clear EO_BUSY pending bit: */
441	val = ioread8(bus->reg + NPCM_I2CCST3);
442	val = val | NPCM_I2CCST3_EO_BUSY;
443	iowrite8(val, bus->reg + NPCM_I2CCST3);
444
445	val = ioread8(bus->reg + NPCM_I2CCTL1);
446	val &= ~NPCM_I2CCTL1_RWS;
447	if (enable)
448		val |= NPCM_I2CCTL1_EOBINTE;
449	else
450		val &= ~NPCM_I2CCTL1_EOBINTE;
451	iowrite8(val, bus->reg + NPCM_I2CCTL1);
452}
453
454static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
455{
456	u8 tx_fifo_sts;
457
458	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
459	/* check if TX FIFO is not empty */
460	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
461		return false;
462
463	/* check if TX FIFO status bit is set: */
464	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
465}
466
467static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
468{
469	u8 rx_fifo_sts;
470
471	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
472	/* check if RX FIFO is not empty: */
473	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
474		return false;
475
476	/* check if rx fifo full status is set: */
477	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
478}
479
480static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
481{
482	u8 val;
483
484	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
485	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
486	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
487}
488
489static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
490{
491	u8 val;
492
493	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
494	val = val | NPCM_I2CTXF_STS_TX_THST;
495	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
496}
497
498static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
499{
500	u8 val;
501
502	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
503	val = val | NPCM_I2CRXF_STS_RX_THST;
504	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
505}
506
507static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
508{
509	u8 val;
510
511	val = ioread8(bus->reg + NPCM_I2CCTL1);
512	val &= ~NPCM_I2CCTL1_RWS;
513	if (enable)
514		val |= NPCM_I2CCTL1_INTEN;
515	else
516		val &= ~NPCM_I2CCTL1_INTEN;
517	iowrite8(val, bus->reg + NPCM_I2CCTL1);
518}
519
520static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
521{
522	u8 val;
523
524	val = ioread8(bus->reg + NPCM_I2CCTL1);
525	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
526	val |= NPCM_I2CCTL1_START;
527	iowrite8(val, bus->reg + NPCM_I2CCTL1);
528}
529
530static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
531{
532	u8 val;
533
534	/*
535	 * override HW issue: I2C may fail to supply stop condition in Master
536	 * Write operation.
537	 * Need to delay at least 5 us from the last int, before issueing a stop
538	 */
539	udelay(10); /* function called from interrupt, can't sleep */
540	val = ioread8(bus->reg + NPCM_I2CCTL1);
541	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
542	val |= NPCM_I2CCTL1_STOP;
543	iowrite8(val, bus->reg + NPCM_I2CCTL1);
544
545	if (!bus->fifo_use)
546		return;
547
548	npcm_i2c_select_bank(bus, I2C_BANK_1);
549
550	if (bus->operation == I2C_READ_OPER)
551		npcm_i2c_clear_rx_fifo(bus);
552	else
553		npcm_i2c_clear_tx_fifo(bus);
554	npcm_i2c_clear_fifo_int(bus);
555	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
556}
557
558static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
559{
560	u8 val;
561
562	val = ioread8(bus->reg + NPCM_I2CCTL1);
563	val &= ~NPCM_I2CCTL1_RWS;
564	if (stall)
565		val |= NPCM_I2CCTL1_STASTRE;
566	else
567		val &= ~NPCM_I2CCTL1_STASTRE;
568	iowrite8(val, bus->reg + NPCM_I2CCTL1);
569}
570
571static inline void npcm_i2c_nack(struct npcm_i2c *bus)
572{
573	u8 val;
574
575	val = ioread8(bus->reg + NPCM_I2CCTL1);
576	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
577	val |= NPCM_I2CCTL1_ACK;
578	iowrite8(val, bus->reg + NPCM_I2CCTL1);
579}
580
581static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
582{
583	u8 val;
584
585	/* Clear NEGACK, STASTR and BER bits */
586	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
587	iowrite8(val, bus->reg + NPCM_I2CST);
588}
589
590#if IS_ENABLED(CONFIG_I2C_SLAVE)
591static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
592{
593	u8 i2cctl1;
594
595	/* enable interrupt on slave match: */
596	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
597	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
598	if (enable)
599		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
600	else
601		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
602	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
603}
604
605static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
606				 u8 addr, bool enable)
607{
608	u8 i2cctl1;
609	u8 i2cctl3;
610	u8 sa_reg;
611
612	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
613	if (addr_type == I2C_GC_ADDR) {
614		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
615		if (enable)
616			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
617		else
618			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
619		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
620		return 0;
621	} else if (addr_type == I2C_ARP_ADDR) {
622		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
623		if (enable)
624			i2cctl3 |= I2CCTL3_ARPMEN;
625		else
626			i2cctl3 &= ~I2CCTL3_ARPMEN;
627		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
628		return 0;
629	}
630	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
631		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
632
633	if (addr_type >= I2C_ARP_ADDR)
634		return -EFAULT;
635
636	/* Set and enable the address */
637	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
638	npcm_i2c_slave_int_enable(bus, enable);
639
640	return 0;
641}
642#endif
643
644static void npcm_i2c_reset(struct npcm_i2c *bus)
645{
646	/*
647	 * Save I2CCTL1 relevant bits. It is being cleared when the module
648	 *  is disabled.
649	 */
650	u8 i2cctl1;
651#if IS_ENABLED(CONFIG_I2C_SLAVE)
652	u8 addr;
653#endif
654
655	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
656
657	npcm_i2c_disable(bus);
658	npcm_i2c_enable(bus);
659
660	/* Restore NPCM_I2CCTL1 Status */
661	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
662	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
663
664	/* Clear BB (BUS BUSY) bit */
665	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
666	iowrite8(0xFF, bus->reg + NPCM_I2CST);
667
668	/* Clear and disable EOB */
669	npcm_i2c_eob_int(bus, false);
670
671	/* Clear all fifo bits: */
672	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
673
674#if IS_ENABLED(CONFIG_I2C_SLAVE)
675	if (bus->slave) {
676		addr = bus->slave->addr;
677		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
678	}
679#endif
680
681	/* Clear status bits for spurious interrupts */
682	npcm_i2c_clear_master_status(bus);
683
684	bus->state = I2C_IDLE;
685}
686
687static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
688{
689	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
690}
691
692static void npcm_i2c_callback(struct npcm_i2c *bus,
693			      enum i2c_state_ind op_status, u16 info)
694{
695	struct i2c_msg *msgs;
696	int msgs_num;
697	bool do_complete = false;
698
699	msgs = bus->msgs;
700	msgs_num = bus->msgs_num;
701	/*
702	 * check that transaction was not timed-out, and msgs still
703	 * holds a valid value.
704	 */
705	if (!msgs)
706		return;
707
708	if (completion_done(&bus->cmd_complete))
709		return;
710
711	switch (op_status) {
712	case I2C_MASTER_DONE_IND:
713		bus->cmd_err = bus->msgs_num;
714		if (bus->tx_complete_cnt < ULLONG_MAX)
715			bus->tx_complete_cnt++;
716		fallthrough;
717	case I2C_BLOCK_BYTES_ERR_IND:
718		/* Master tx finished and all transmit bytes were sent */
719		if (bus->msgs) {
720			if (msgs[0].flags & I2C_M_RD)
721				msgs[0].len = info;
722			else if (msgs_num == 2 &&
723				 msgs[1].flags & I2C_M_RD)
724				msgs[1].len = info;
725		}
726		do_complete = true;
727		break;
728	case I2C_NACK_IND:
729		/* MASTER transmit got a NACK before tx all bytes */
730		bus->cmd_err = -ENXIO;
731		do_complete = true;
732		break;
733	case I2C_BUS_ERR_IND:
734		/* Bus error */
735		bus->cmd_err = -EAGAIN;
736		do_complete = true;
737		break;
738	case I2C_WAKE_UP_IND:
739		/* I2C wake up */
740		break;
741	default:
742		break;
743	}
744
745	bus->operation = I2C_NO_OPER;
746#if IS_ENABLED(CONFIG_I2C_SLAVE)
747	if (bus->slave)
748		bus->master_or_slave = I2C_SLAVE;
749#endif
750	if (do_complete)
751		complete(&bus->cmd_complete);
752}
753
754static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
755{
756	if (bus->operation == I2C_WRITE_OPER)
757		return (bus->data->txf_sts_tx_bytes &
758			ioread8(bus->reg + NPCM_I2CTXF_STS));
759	if (bus->operation == I2C_READ_OPER)
760		return (bus->data->rxf_sts_rx_bytes &
761			ioread8(bus->reg + NPCM_I2CRXF_STS));
762	return 0;
763}
764
765static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
766{
767	u8 size_free_fifo;
768
769	/*
770	 * Fill the FIFO, while the FIFO is not full and there are more bytes
771	 * to write
772	 */
773	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
774	while (max_bytes-- && size_free_fifo) {
775		if (bus->wr_ind < bus->wr_size)
776			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
777		else
778			npcm_i2c_wr_byte(bus, 0xFF);
779		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
780	}
781}
782
783/*
784 * npcm_i2c_set_fifo:
785 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
786 * configured. same for nwrite
787 */
788static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
789{
790	u8 rxf_ctl = 0;
791
792	if (!bus->fifo_use)
793		return;
794	npcm_i2c_select_bank(bus, I2C_BANK_1);
795	npcm_i2c_clear_tx_fifo(bus);
796	npcm_i2c_clear_rx_fifo(bus);
797
798	/* configure RX FIFO */
799	if (nread > 0) {
800		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
801
802		/* set LAST bit. if LAST is set next FIFO packet is nacked */
803		if (nread <= bus->data->fifo_size)
804			rxf_ctl |= bus->data->rxf_ctl_last_pec;
805
806		/*
807		 * if we are about to read the first byte in blk rd mode,
808		 * don't NACK it. If slave returns zero size HW can't NACK
809		 * it immediately, it will read extra byte and then NACK.
810		 */
811		if (bus->rd_ind == 0 && bus->read_block_use) {
812			/* set fifo to read one byte, no last: */
813			rxf_ctl = 1;
814		}
815
816		/* set fifo size: */
817		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
818	}
819
820	/* configure TX FIFO */
821	if (nwrite > 0) {
822		if (nwrite > bus->data->fifo_size)
823			/* data to send is more then FIFO size. */
824			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
825		else
826			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
827
828		npcm_i2c_clear_tx_fifo(bus);
829	}
830}
831
832static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
833{
834	u8 data;
835
836	while (bytes_in_fifo--) {
837		data = npcm_i2c_rd_byte(bus);
838		if (bus->rd_ind < bus->rd_size)
839			bus->rd_buf[bus->rd_ind++] = data;
840	}
841}
842
843static void npcm_i2c_master_abort(struct npcm_i2c *bus)
844{
845	/* Only current master is allowed to issue a stop condition */
846	if (!npcm_i2c_is_master(bus))
847		return;
848
849	npcm_i2c_eob_int(bus, true);
850	npcm_i2c_master_stop(bus);
851	npcm_i2c_clear_master_status(bus);
852}
853
854#if IS_ENABLED(CONFIG_I2C_SLAVE)
855static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
856{
857	u8 slave_add;
858
859	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
860		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
861
862	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
863
864	return slave_add;
865}
866
867static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
868{
869	int i;
870
871	/* Set the enable bit */
872	slave_add |= 0x80;
873
874	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
875		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
876			iowrite8(0, bus->reg + npcm_i2caddr[i]);
877	}
878
879	return 0;
880}
881
882static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
883{
884	/*
885	 * Fill the FIFO, while the FIFO is not full and there are more bytes
886	 * to write
887	 */
888	npcm_i2c_clear_fifo_int(bus);
889	npcm_i2c_clear_tx_fifo(bus);
890	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
891	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
892		if (bus->slv_wr_size <= 0)
893			break;
894		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
895		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
896		bus->slv_wr_ind++;
897		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
898		bus->slv_wr_size--;
899	}
900}
901
902static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
903{
904	u8 data;
905
906	if (!bus->slave)
907		return;
908
909	while (bytes_in_fifo--) {
910		data = npcm_i2c_rd_byte(bus);
911
912		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
913		bus->slv_rd_buf[bus->slv_rd_ind] = data;
914		bus->slv_rd_ind++;
915
916		/* 1st byte is length in block protocol: */
917		if (bus->slv_rd_ind == 1 && bus->read_block_use)
918			bus->slv_rd_size = data + bus->PEC_use + 1;
919	}
920}
921
922static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
923{
924	int i;
925	u8 value;
926	int ind;
927	int ret = bus->slv_wr_ind;
928
929	/* fill a cyclic buffer */
930	for (i = 0; i < bus->data->fifo_size; i++) {
931		if (bus->slv_wr_size >= bus->data->fifo_size)
932			break;
933		if (bus->state == I2C_SLAVE_MATCH) {
934			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
935			bus->state = I2C_OPER_STARTED;
936		} else {
937			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
938		}
939		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
940		bus->slv_wr_buf[ind] = value;
941		bus->slv_wr_size++;
942	}
943	return bus->data->fifo_size - ret;
944}
945
946static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
947{
948	int i;
949
950	for (i = 0; i < bus->slv_rd_ind; i++)
951		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
952				&bus->slv_rd_buf[i]);
953	/*
954	 * once we send bytes up, need to reset the counter of the wr buf
955	 * got data from master (new offset in device), ignore wr fifo:
956	 */
957	if (bus->slv_rd_ind) {
958		bus->slv_wr_size = 0;
959		bus->slv_wr_ind = 0;
960	}
961
962	bus->slv_rd_ind = 0;
963	bus->slv_rd_size = bus->adap.quirks->max_read_len;
964
965	npcm_i2c_clear_fifo_int(bus);
966	npcm_i2c_clear_rx_fifo(bus);
967}
968
969static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
970				   u8 *read_data)
971{
972	bus->state = I2C_OPER_STARTED;
973	bus->operation = I2C_READ_OPER;
974	bus->slv_rd_size = nread;
975	bus->slv_rd_ind = 0;
976
977	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
978	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
979	npcm_i2c_clear_tx_fifo(bus);
980	npcm_i2c_clear_rx_fifo(bus);
981}
982
983static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
984				u8 *write_data)
985{
986	if (nwrite == 0)
987		return;
988
989	bus->operation = I2C_WRITE_OPER;
990
991	/* get the next buffer */
992	npcm_i2c_slave_get_wr_buf(bus);
993	npcm_i2c_write_fifo_slave(bus, nwrite);
994}
995
996/*
997 * npcm_i2c_slave_wr_buf_sync:
998 * currently slave IF only supports single byte operations.
999 * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1000 * at a time, pack them in buffer, and then transmit them all together
1001 * to the FIFO and onward to the bus.
1002 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1003 * sending a NACK wherever the backend requests for it is not supported.
1004 * the next two functions allow reading to local buffer before writing it all
1005 * to the HW FIFO.
1006 */
1007static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1008{
1009	int left_in_fifo;
1010
1011	left_in_fifo = bus->data->txf_sts_tx_bytes &
1012			ioread8(bus->reg + NPCM_I2CTXF_STS);
1013
1014	/* fifo already full: */
1015	if (left_in_fifo >= bus->data->fifo_size ||
1016	    bus->slv_wr_size >= bus->data->fifo_size)
1017		return;
1018
1019	/* update the wr fifo index back to the untransmitted bytes: */
1020	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1021	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1022
1023	if (bus->slv_wr_ind < 0)
1024		bus->slv_wr_ind += bus->data->fifo_size;
1025}
1026
1027static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1028{
1029	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1030		/*
1031		 * Slave got an address match with direction bit 1 so it should
1032		 * transmit data. Write till the master will NACK
1033		 */
1034		bus->operation = I2C_WRITE_OPER;
1035		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1036				    bus->slv_wr_buf);
1037	} else {
1038		/*
1039		 * Slave got an address match with direction bit 0 so it should
1040		 * receive data.
1041		 * this module does not support saying no to bytes.
1042		 * it will always ACK.
1043		 */
1044		bus->operation = I2C_READ_OPER;
1045		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1046		bus->stop_ind = I2C_SLAVE_RCV_IND;
1047		npcm_i2c_slave_send_rd_buf(bus);
1048		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1049				       bus->slv_rd_buf);
1050	}
1051}
1052
1053static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1054{
1055	u8 val;
1056	irqreturn_t ret = IRQ_NONE;
1057	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1058
1059	/* Slave: A NACK has occurred */
1060	if (NPCM_I2CST_NEGACK & i2cst) {
1061		bus->stop_ind = I2C_NACK_IND;
1062		npcm_i2c_slave_wr_buf_sync(bus);
1063		if (bus->fifo_use)
1064			/* clear the FIFO */
1065			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1066				 bus->reg + NPCM_I2CFIF_CTS);
1067
1068		/* In slave write, NACK is OK, otherwise it is a problem */
1069		bus->stop_ind = I2C_NO_STATUS_IND;
1070		bus->operation = I2C_NO_OPER;
1071		bus->own_slave_addr = 0xFF;
1072
1073		/*
1074		 * Slave has to wait for STOP to decide this is the end
1075		 * of the transaction. tx is not yet considered as done
1076		 */
1077		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1078
1079		ret = IRQ_HANDLED;
1080	}
1081
1082	/* Slave mode: a Bus Error (BER) has been identified */
1083	if (NPCM_I2CST_BER & i2cst) {
1084		/*
1085		 * Check whether bus arbitration or Start or Stop during data
1086		 * xfer bus arbitration problem should not result in recovery
1087		 */
1088		bus->stop_ind = I2C_BUS_ERR_IND;
1089
1090		/* wait for bus busy before clear fifo */
1091		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1092
1093		bus->state = I2C_IDLE;
1094
1095		/*
1096		 * in BER case we might get 2 interrupts: one for slave one for
1097		 * master ( for a channel which is master\slave switching)
1098		 */
1099		if (completion_done(&bus->cmd_complete) == false) {
1100			bus->cmd_err = -EIO;
1101			complete(&bus->cmd_complete);
1102		}
1103		bus->own_slave_addr = 0xFF;
1104		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1105		ret = IRQ_HANDLED;
1106	}
1107
1108	/* A Slave Stop Condition has been identified */
1109	if (NPCM_I2CST_SLVSTP & i2cst) {
1110		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1111
1112		bus->stop_ind = I2C_SLAVE_DONE_IND;
1113
1114		if (bus->operation == I2C_READ_OPER)
1115			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1116
1117		/* if the buffer is empty nothing will be sent */
1118		npcm_i2c_slave_send_rd_buf(bus);
1119
1120		/* Slave done transmitting or receiving */
1121		bus->stop_ind = I2C_NO_STATUS_IND;
1122
1123		/*
1124		 * Note, just because we got here, it doesn't mean we through
1125		 * away the wr buffer.
1126		 * we keep it until the next received offset.
1127		 */
1128		bus->operation = I2C_NO_OPER;
1129		bus->own_slave_addr = 0xFF;
1130		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1131		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1132		if (bus->fifo_use) {
1133			npcm_i2c_clear_fifo_int(bus);
1134			npcm_i2c_clear_rx_fifo(bus);
1135			npcm_i2c_clear_tx_fifo(bus);
1136
1137			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1138				 bus->reg + NPCM_I2CFIF_CTS);
1139		}
1140		bus->state = I2C_IDLE;
1141		ret = IRQ_HANDLED;
1142	}
1143
1144	/* restart condition occurred and Rx-FIFO was not empty */
1145	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1146				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1147		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1148		bus->master_or_slave = I2C_SLAVE;
1149		if (bus->operation == I2C_READ_OPER)
1150			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1151		bus->operation = I2C_WRITE_OPER;
1152		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1153		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1154		      NPCM_I2CFIF_CTS_RXF_TXE;
1155		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1156		npcm_i2c_slave_rd_wr(bus);
1157		ret = IRQ_HANDLED;
1158	}
1159
1160	/* A Slave Address Match has been identified */
1161	if (NPCM_I2CST_NMATCH & i2cst) {
1162		u8 info = 0;
1163
1164		/* Address match automatically implies slave mode */
1165		bus->master_or_slave = I2C_SLAVE;
1166		npcm_i2c_clear_fifo_int(bus);
1167		npcm_i2c_clear_rx_fifo(bus);
1168		npcm_i2c_clear_tx_fifo(bus);
1169		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1170		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1171		if (NPCM_I2CST_XMIT & i2cst) {
1172			bus->operation = I2C_WRITE_OPER;
1173		} else {
1174			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1175					&info);
1176			bus->operation = I2C_READ_OPER;
1177		}
1178		if (bus->own_slave_addr == 0xFF) {
1179			/* Check which type of address match */
1180			val = ioread8(bus->reg + NPCM_I2CCST);
1181			if (NPCM_I2CCST_MATCH & val) {
1182				u16 addr;
1183				enum i2c_addr eaddr;
1184				u8 i2ccst2;
1185				u8 i2ccst3;
1186
1187				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1188				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1189
1190				/*
1191				 * the i2c module can response to 10 own SA.
1192				 * check which one was addressed by the master.
1193				 * respond to the first one.
1194				 */
1195				addr = ((i2ccst3 & 0x07) << 7) |
1196					(i2ccst2 & 0x7F);
1197				info = ffs(addr);
1198				eaddr = (enum i2c_addr)info;
1199				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1200				addr &= 0x7F;
1201				bus->own_slave_addr = addr;
1202				if (bus->PEC_mask & BIT(info))
1203					bus->PEC_use = true;
1204				else
1205					bus->PEC_use = false;
1206			} else {
1207				if (NPCM_I2CCST_GCMATCH & val)
1208					bus->own_slave_addr = 0;
1209				if (NPCM_I2CCST_ARPMATCH & val)
1210					bus->own_slave_addr = 0x61;
1211			}
1212		} else {
1213			/*
1214			 *  Slave match can happen in two options:
1215			 *  1. Start, SA, read (slave read without further ado)
1216			 *  2. Start, SA, read, data, restart, SA, read,  ...
1217			 *     (slave read in fragmented mode)
1218			 *  3. Start, SA, write, data, restart, SA, read, ..
1219			 *     (regular write-read mode)
1220			 */
1221			if ((bus->state == I2C_OPER_STARTED &&
1222			     bus->operation == I2C_READ_OPER &&
1223			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1224			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1225				/* slave tx after slave rx w/o STOP */
1226				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1227			}
1228		}
1229
1230		if (NPCM_I2CST_XMIT & i2cst)
1231			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1232		else
1233			bus->stop_ind = I2C_SLAVE_RCV_IND;
1234		bus->state = I2C_SLAVE_MATCH;
1235		npcm_i2c_slave_rd_wr(bus);
1236		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1237		ret = IRQ_HANDLED;
1238	}
1239
1240	/* Slave SDA status is set - tx or rx */
1241	if ((NPCM_I2CST_SDAST & i2cst) ||
1242	    (bus->fifo_use &&
1243	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1244		npcm_i2c_slave_rd_wr(bus);
1245		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1246		ret = IRQ_HANDLED;
1247	} /* SDAST */
1248
1249	/*
1250	 * If irq is not one of the above, make sure EOB is disabled and all
1251	 * status bits are cleared.
1252	 */
1253	if (ret == IRQ_NONE) {
1254		npcm_i2c_eob_int(bus, false);
1255		npcm_i2c_clear_master_status(bus);
1256	}
1257
1258	return IRQ_HANDLED;
1259}
1260
1261static int npcm_i2c_reg_slave(struct i2c_client *client)
1262{
1263	unsigned long lock_flags;
1264	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1265
1266	bus->slave = client;
1267
1268	if (!bus->slave)
1269		return -EINVAL;
1270
1271	if (client->flags & I2C_CLIENT_TEN)
1272		return -EAFNOSUPPORT;
1273
1274	spin_lock_irqsave(&bus->lock, lock_flags);
1275
1276	npcm_i2c_init_params(bus);
1277	bus->slv_rd_size = 0;
1278	bus->slv_wr_size = 0;
1279	bus->slv_rd_ind = 0;
1280	bus->slv_wr_ind = 0;
1281	if (client->flags & I2C_CLIENT_PEC)
1282		bus->PEC_use = true;
1283
1284	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1285		 client->addr, bus->PEC_use);
1286
1287	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1288	npcm_i2c_clear_fifo_int(bus);
1289	npcm_i2c_clear_rx_fifo(bus);
1290	npcm_i2c_clear_tx_fifo(bus);
1291	npcm_i2c_slave_int_enable(bus, true);
1292
1293	spin_unlock_irqrestore(&bus->lock, lock_flags);
1294	return 0;
1295}
1296
1297static int npcm_i2c_unreg_slave(struct i2c_client *client)
1298{
1299	struct npcm_i2c *bus = client->adapter->algo_data;
1300	unsigned long lock_flags;
1301
1302	spin_lock_irqsave(&bus->lock, lock_flags);
1303	if (!bus->slave) {
1304		spin_unlock_irqrestore(&bus->lock, lock_flags);
1305		return -EINVAL;
1306	}
1307	npcm_i2c_slave_int_enable(bus, false);
1308	npcm_i2c_remove_slave_addr(bus, client->addr);
1309	bus->slave = NULL;
1310	spin_unlock_irqrestore(&bus->lock, lock_flags);
1311	return 0;
1312}
1313#endif /* CONFIG_I2C_SLAVE */
1314
1315static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1316{
1317	int rcount;
1318	int fifo_bytes;
1319	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1320
1321	fifo_bytes = npcm_i2c_fifo_usage(bus);
1322	rcount = bus->rd_size - bus->rd_ind;
1323
1324	/*
1325	 * In order not to change the RX_TRH during transaction (we found that
1326	 * this might be problematic if it takes too much time to read the FIFO)
1327	 * we read the data in the following way. If the number of bytes to
1328	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1329	 * and in the next int we read rest of the data.
1330	 */
1331	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1332		fifo_bytes = rcount - bus->data->fifo_size;
1333
1334	if (rcount <= fifo_bytes) {
1335		/* last bytes are about to be read - end of tx */
1336		bus->state = I2C_STOP_PENDING;
1337		bus->stop_ind = ind;
1338		npcm_i2c_eob_int(bus, true);
1339		/* Stop should be set before reading last byte. */
1340		npcm_i2c_master_stop(bus);
1341		npcm_i2c_read_fifo(bus, fifo_bytes);
1342	} else {
1343		npcm_i2c_read_fifo(bus, fifo_bytes);
1344		rcount = bus->rd_size - bus->rd_ind;
1345		npcm_i2c_set_fifo(bus, rcount, -1);
1346	}
1347}
1348
1349static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1350{
1351	u16 wcount;
1352
1353	if (bus->fifo_use)
1354		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1355
1356	/* Master write operation - last byte handling */
1357	if (bus->wr_ind == bus->wr_size) {
1358		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1359			/*
1360			 * No more bytes to send (to add to the FIFO),
1361			 * however the FIFO is not empty yet. It is
1362			 * still in the middle of tx. Currently there's nothing
1363			 * to do except for waiting to the end of the tx
1364			 * We will get an int when the FIFO will get empty.
1365			 */
1366			return;
1367
1368		if (bus->rd_size == 0) {
1369			/* all bytes have been written, in wr only operation */
1370			npcm_i2c_eob_int(bus, true);
1371			bus->state = I2C_STOP_PENDING;
1372			bus->stop_ind = I2C_MASTER_DONE_IND;
1373			npcm_i2c_master_stop(bus);
1374			/* Clear SDA Status bit (by writing dummy byte) */
1375			npcm_i2c_wr_byte(bus, 0xFF);
1376
1377		} else {
1378			/* last write-byte written on previous int - restart */
1379			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1380			/* Generate repeated start upon next write to SDA */
1381			npcm_i2c_master_start(bus);
1382
1383			/*
1384			 * Receiving one byte only - stall after successful
1385			 * completion of send address byte. If we NACK here, and
1386			 * slave doesn't ACK the address, we might
1387			 * unintentionally NACK the next multi-byte read.
1388			 */
1389			if (bus->rd_size == 1)
1390				npcm_i2c_stall_after_start(bus, true);
1391
1392			/* Next int will occur on read */
1393			bus->operation = I2C_READ_OPER;
1394			/* send the slave address in read direction */
1395			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1396		}
1397	} else {
1398		/* write next byte not last byte and not slave address */
1399		if (!bus->fifo_use || bus->wr_size == 1) {
1400			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1401		} else {
1402			wcount = bus->wr_size - bus->wr_ind;
1403			npcm_i2c_set_fifo(bus, -1, wcount);
1404			if (wcount)
1405				npcm_i2c_write_to_fifo_master(bus, wcount);
1406		}
1407	}
1408}
1409
1410static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1411{
1412	u16 block_extra_bytes_size;
1413	u8 data;
1414
1415	/* added bytes to the packet: */
1416	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1417
1418	/*
1419	 * Perform master read, distinguishing between last byte and the rest of
1420	 * the bytes. The last byte should be read when the clock is stopped
1421	 */
1422	if (bus->rd_ind == 0) { /* first byte handling: */
1423		if (bus->read_block_use) {
1424			/* first byte in block protocol is the size: */
1425			data = npcm_i2c_rd_byte(bus);
1426			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1427			bus->rd_size = data + block_extra_bytes_size;
1428			bus->rd_buf[bus->rd_ind++] = data;
1429
1430			/* clear RX FIFO interrupt status: */
1431			if (bus->fifo_use) {
1432				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1433				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1434				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1435			}
1436
1437			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1438			npcm_i2c_stall_after_start(bus, false);
1439		} else {
1440			npcm_i2c_clear_tx_fifo(bus);
1441			npcm_i2c_master_fifo_read(bus);
1442		}
1443	} else {
1444		if (bus->rd_size == block_extra_bytes_size &&
1445		    bus->read_block_use) {
1446			bus->state = I2C_STOP_PENDING;
1447			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1448			bus->cmd_err = -EIO;
1449			npcm_i2c_eob_int(bus, true);
1450			npcm_i2c_master_stop(bus);
1451			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1452		} else {
1453			npcm_i2c_master_fifo_read(bus);
1454		}
1455	}
1456}
1457
1458static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1459{
1460	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1461	npcm_i2c_nack(bus);
1462	bus->stop_ind = I2C_BUS_ERR_IND;
1463	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1464}
1465
1466/* A NACK has occurred */
1467static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1468{
1469	u8 val;
1470
1471	if (bus->nack_cnt < ULLONG_MAX)
1472		bus->nack_cnt++;
1473
1474	if (bus->fifo_use) {
1475		/*
1476		 * if there are still untransmitted bytes in TX FIFO
1477		 * reduce them from wr_ind
1478		 */
1479		if (bus->operation == I2C_WRITE_OPER)
1480			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1481
1482		/* clear the FIFO */
1483		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1484	}
1485
1486	/* In master write operation, got unexpected NACK */
1487	bus->stop_ind = I2C_NACK_IND;
1488	/* Only current master is allowed to issue Stop Condition */
1489	if (npcm_i2c_is_master(bus)) {
1490		/* stopping in the middle */
1491		npcm_i2c_eob_int(bus, false);
1492		npcm_i2c_master_stop(bus);
1493
1494		/* Clear SDA Status bit (by reading dummy byte) */
1495		npcm_i2c_rd_byte(bus);
1496
1497		/*
1498		 * The bus is released from stall only after the SW clears
1499		 * NEGACK bit. Then a Stop condition is sent.
1500		 */
1501		npcm_i2c_clear_master_status(bus);
1502		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1503					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1504		/* Verify no status bits are still set after bus is released */
1505		npcm_i2c_clear_master_status(bus);
1506	}
1507	bus->state = I2C_IDLE;
1508
1509	/*
1510	 * In Master mode, NACK should be cleared only after STOP.
1511	 * In such case, the bus is released from stall only after the
1512	 * software clears NACK bit. Then a Stop condition is sent.
1513	 */
1514	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1515}
1516
1517	/* Master mode: a Bus Error has been identified */
1518static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1519{
1520	if (bus->ber_cnt < ULLONG_MAX)
1521		bus->ber_cnt++;
1522	bus->stop_ind = I2C_BUS_ERR_IND;
1523	if (npcm_i2c_is_master(bus)) {
1524		npcm_i2c_master_abort(bus);
1525	} else {
1526		npcm_i2c_clear_master_status(bus);
1527
1528		/* Clear BB (BUS BUSY) bit */
1529		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1530
1531		bus->cmd_err = -EAGAIN;
1532		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1533	}
1534	bus->state = I2C_IDLE;
1535}
1536
1537	/* EOB: a master End Of Busy (meaning STOP completed) */
1538static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1539{
1540	npcm_i2c_eob_int(bus, false);
1541	bus->state = I2C_IDLE;
1542	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1543}
1544
1545/* Address sent and requested stall occurred (Master mode) */
1546static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1547{
1548	if (npcm_i2c_is_quick(bus)) {
1549		bus->state = I2C_STOP_PENDING;
1550		bus->stop_ind = I2C_MASTER_DONE_IND;
1551		npcm_i2c_eob_int(bus, true);
1552		npcm_i2c_master_stop(bus);
1553	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1554		/*
1555		 * Receiving one byte only - set NACK after ensuring
1556		 * slave ACKed the address byte.
1557		 */
1558		npcm_i2c_nack(bus);
1559	}
1560
1561	/* Reset stall-after-address-byte */
1562	npcm_i2c_stall_after_start(bus, false);
1563
1564	/* Clear stall only after setting STOP */
1565	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1566}
1567
1568/* SDA status is set - TX or RX, master */
1569static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1570{
1571	u8 fif_cts;
1572
1573	if (!npcm_i2c_is_master(bus))
1574		return;
1575
1576	if (bus->state == I2C_IDLE) {
1577		bus->stop_ind = I2C_WAKE_UP_IND;
1578
1579		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1580			/*
1581			 * Need to stall after successful
1582			 * completion of sending address byte
1583			 */
1584			npcm_i2c_stall_after_start(bus, true);
1585		else
1586			npcm_i2c_stall_after_start(bus, false);
1587
1588		/*
1589		 * Receiving one byte only - stall after successful completion
1590		 * of sending address byte If we NACK here, and slave doesn't
1591		 * ACK the address, we might unintentionally NACK the next
1592		 * multi-byte read
1593		 */
1594		if (bus->wr_size == 0 && bus->rd_size == 1)
1595			npcm_i2c_stall_after_start(bus, true);
1596
1597		/* Initiate I2C master tx */
1598
1599		/* select bank 1 for FIFO regs */
1600		npcm_i2c_select_bank(bus, I2C_BANK_1);
1601
1602		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1603		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1604
1605		/* clear FIFO and relevant status bits. */
1606		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1607		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1608
1609		/* re-enable */
1610		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1611		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1612
1613		/*
1614		 * Configure the FIFO threshold:
1615		 * according to the needed # of bytes to read.
1616		 * Note: due to HW limitation can't config the rx fifo before it
1617		 * got and ACK on the restart. LAST bit will not be reset unless
1618		 * RX completed. It will stay set on the next tx.
1619		 */
1620		if (bus->wr_size)
1621			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1622		else
1623			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1624
1625		bus->state = I2C_OPER_STARTED;
1626
1627		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1628			npcm_i2c_wr_byte(bus, bus->dest_addr);
1629		else
1630			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1631	/* SDA interrupt, after start\restart */
1632	} else {
1633		if (NPCM_I2CST_XMIT & i2cst) {
1634			bus->operation = I2C_WRITE_OPER;
1635			npcm_i2c_irq_master_handler_write(bus);
1636		} else {
1637			bus->operation = I2C_READ_OPER;
1638			npcm_i2c_irq_master_handler_read(bus);
1639		}
1640	}
1641}
1642
1643static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1644{
1645	u8 i2cst;
1646	int ret = -EIO;
1647
1648	i2cst = ioread8(bus->reg + NPCM_I2CST);
1649
1650	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1651		npcm_i2c_irq_handle_nmatch(bus);
1652		return 0;
1653	}
1654	/* A NACK has occurred */
1655	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1656		npcm_i2c_irq_handle_nack(bus);
1657		return 0;
1658	}
1659
1660	/* Master mode: a Bus Error has been identified */
1661	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1662		npcm_i2c_irq_handle_ber(bus);
1663		return 0;
1664	}
1665
1666	/* EOB: a master End Of Busy (meaning STOP completed) */
1667	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1668		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1669	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1670		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1671		npcm_i2c_irq_handle_eob(bus);
1672		return 0;
1673	}
1674
1675	/* Address sent and requested stall occurred (Master mode) */
1676	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1677		npcm_i2c_irq_handle_stall_after_start(bus);
1678		ret = 0;
1679	}
1680
1681	/* SDA status is set - TX or RX, master */
1682	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1683	    (bus->fifo_use &&
1684	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1685		npcm_i2c_irq_handle_sda(bus, i2cst);
1686		ret = 0;
1687	}
1688
1689	return ret;
1690}
1691
1692/* recovery using TGCLK functionality of the module */
1693static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1694{
1695	u8               val;
1696	u8               fif_cts;
1697	bool             done = false;
1698	int              status = -ENOTRECOVERABLE;
1699	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1700	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1701	int              iter = 27;
1702
1703	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1704		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1705			bus->num, bus->dest_addr);
1706		npcm_i2c_reset(bus);
1707		return 0;
1708	}
1709
1710	npcm_i2c_int_enable(bus, false);
1711	npcm_i2c_disable(bus);
1712	npcm_i2c_enable(bus);
1713	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1714	npcm_i2c_clear_tx_fifo(bus);
1715	npcm_i2c_clear_rx_fifo(bus);
1716	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1717	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1718	npcm_i2c_stall_after_start(bus, false);
1719
1720	/* select bank 1 for FIFO regs */
1721	npcm_i2c_select_bank(bus, I2C_BANK_1);
1722
1723	/* clear FIFO and relevant status bits. */
1724	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1725	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1726	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1727	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1728	npcm_i2c_set_fifo(bus, -1, 0);
1729
1730	/* Repeat the following sequence until SDA is released */
1731	do {
1732		/* Issue a single SCL toggle */
1733		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1734		usleep_range(20, 30);
1735		/* If SDA line is inactive (high), stop */
1736		if (npcm_i2c_get_SDA(_adap)) {
1737			done = true;
1738			status = 0;
1739		}
1740	} while (!done && iter--);
1741
1742	/* If SDA line is released: send start-addr-stop, to re-sync. */
1743	if (npcm_i2c_get_SDA(_adap)) {
1744		/* Send an address byte in write direction: */
1745		npcm_i2c_wr_byte(bus, bus->dest_addr);
1746		npcm_i2c_master_start(bus);
1747		/* Wait until START condition is sent */
1748		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1749					    20, 200);
1750		/* If START condition was sent */
1751		if (npcm_i2c_is_master(bus) > 0) {
1752			usleep_range(20, 30);
1753			npcm_i2c_master_stop(bus);
1754			usleep_range(200, 500);
1755		}
1756	}
1757	npcm_i2c_reset(bus);
1758	npcm_i2c_int_enable(bus, true);
1759
1760	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1761		status = 0;
1762	else
1763		status = -ENOTRECOVERABLE;
1764	if (status) {
1765		if (bus->rec_fail_cnt < ULLONG_MAX)
1766			bus->rec_fail_cnt++;
1767	} else {
1768		if (bus->rec_succ_cnt < ULLONG_MAX)
1769			bus->rec_succ_cnt++;
1770	}
1771	return status;
1772}
1773
1774/* recovery using bit banging functionality of the module */
1775static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1776{
1777	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1778	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1779
1780	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1781
1782	/*
1783	 * npcm i2c HW allows direct reading of SCL and SDA.
1784	 * However, it does not support setting SCL and SDA directly.
1785	 * The recovery function can toggle SCL when SDA is low (but not set)
1786	 * Getter functions used internally, and can be used externally.
1787	 */
1788	rinfo->get_scl = npcm_i2c_get_SCL;
1789	rinfo->get_sda = npcm_i2c_get_SDA;
1790	_adap->bus_recovery_info = rinfo;
1791}
1792
1793/* SCLFRQ min/max field values */
1794#define SCLFRQ_MIN  10
1795#define SCLFRQ_MAX  511
1796#define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1797
1798/*
1799 * npcm_i2c_init_clk: init HW timing parameters.
1800 * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1801 * and bus frequency.
1802 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1803 * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1804 * by the HW designer, given core clock range (equations in comments below).
1805 *
1806 */
1807static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1808{
1809	u32  k1 = 0;
1810	u32  k2 = 0;
1811	u8   dbnct = 0;
1812	u32  sclfrq = 0;
1813	u8   hldt = 7;
1814	u8   fast_mode = 0;
1815	u32  src_clk_khz;
1816	u32  bus_freq_khz;
1817
1818	src_clk_khz = bus->apb_clk / 1000;
1819	bus_freq_khz = bus_freq_hz / 1000;
1820	bus->bus_freq = bus_freq_hz;
1821
1822	/* 100KHz and below: */
1823	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1824		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1825
1826		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1827			return -EDOM;
1828
1829		if (src_clk_khz >= 40000)
1830			hldt = 17;
1831		else if (src_clk_khz >= 12500)
1832			hldt = 15;
1833		else
1834			hldt = 7;
1835	}
1836
1837	/* 400KHz: */
1838	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1839		sclfrq = 0;
1840		fast_mode = I2CCTL3_400K_MODE;
1841
1842		if (src_clk_khz < 7500)
1843			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1844			return -EDOM;
1845
1846		else if (src_clk_khz >= 50000) {
1847			k1 = 80;
1848			k2 = 48;
1849			hldt = 12;
1850			dbnct = 7;
1851		}
1852
1853		/* Master or Slave with frequency > 25MHz */
1854		else if (src_clk_khz > 25000) {
1855			hldt = clk_coef(src_clk_khz, 300) + 7;
1856			k1 = clk_coef(src_clk_khz, 1600);
1857			k2 = clk_coef(src_clk_khz, 900);
1858		}
1859	}
1860
1861	/* 1MHz: */
1862	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1863		sclfrq = 0;
1864		fast_mode = I2CCTL3_400K_MODE;
1865
1866		/* 1MHZ cannot be supported for core clock < 24 MHz */
1867		if (src_clk_khz < 24000)
1868			return -EDOM;
1869
1870		k1 = clk_coef(src_clk_khz, 620);
1871		k2 = clk_coef(src_clk_khz, 380);
1872
1873		/* Core clk > 40 MHz */
1874		if (src_clk_khz > 40000) {
1875			/*
1876			 * Set HLDT:
1877			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1878			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1879			 */
1880			hldt = clk_coef(src_clk_khz, 120) + 7;
1881		} else {
1882			hldt = 7;
1883			dbnct = 2;
1884		}
1885	}
1886
1887	/* Frequency larger than 1 MHz is not supported */
1888	else
1889		return -EINVAL;
1890
1891	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1892		k1 = round_up(k1, 2);
1893		k2 = round_up(k2 + 1, 2);
1894		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1895		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1896			return -EDOM;
1897	}
1898
1899	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1900	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1901		 bus->reg + NPCM_I2CCTL2);
1902
1903	/* bits [8:7] are in I2CCTL3 reg */
1904	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1905		 bus->reg + NPCM_I2CCTL3);
1906
1907	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1908	npcm_i2c_select_bank(bus, I2C_BANK_0);
1909
1910	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1911		/*
1912		 * Set SCL Low/High Time:
1913		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1914		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1915		 */
1916		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1917		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1918
1919		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1920	}
1921
1922	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1923
1924	/* Return to Bank 1, and stay there by default: */
1925	npcm_i2c_select_bank(bus, I2C_BANK_1);
1926
1927	return 0;
1928}
1929
1930static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1931				u32 bus_freq_hz)
1932{
1933	u8 val;
1934	int ret;
1935
1936	/* Check whether module already enabled or frequency is out of bounds */
1937	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1938	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1939		return -EINVAL;
1940
1941	npcm_i2c_int_enable(bus, false);
1942	npcm_i2c_disable(bus);
1943
1944	/* Configure FIFO mode : */
1945	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1946		bus->fifo_use = true;
1947		npcm_i2c_select_bank(bus, I2C_BANK_0);
1948		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1949		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1950		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1951		npcm_i2c_select_bank(bus, I2C_BANK_1);
1952	} else {
1953		bus->fifo_use = false;
1954	}
1955
1956	/* Configure I2C module clock frequency */
1957	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1958	if (ret) {
1959		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1960		return ret;
1961	}
1962
1963	/* Enable module (before configuring CTL1) */
1964	npcm_i2c_enable(bus);
1965	bus->state = I2C_IDLE;
1966	val = ioread8(bus->reg + NPCM_I2CCTL1);
1967	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1968	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1969
1970	npcm_i2c_reset(bus);
1971
1972	/* Check HW is OK: SDA and SCL should be high at this point. */
1973	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1974		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1975		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1976			npcm_i2c_get_SCL(&bus->adap));
1977		return -ENXIO;
1978	}
1979
1980	npcm_i2c_int_enable(bus, true);
1981	return 0;
1982}
1983
1984static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1985{
1986	u32 clk_freq_hz;
1987	int ret;
1988
1989	/* Initialize the internal data structures */
1990	bus->state = I2C_DISABLE;
1991	bus->master_or_slave = I2C_SLAVE;
1992	bus->int_time_stamp = 0;
1993#if IS_ENABLED(CONFIG_I2C_SLAVE)
1994	bus->slave = NULL;
1995#endif
1996
1997	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1998				       &clk_freq_hz);
1999	if (ret) {
2000		dev_info(&pdev->dev, "Could not read clock-frequency property");
2001		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2002	}
2003
2004	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2005	if (ret) {
2006		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2007		return ret;
2008	}
2009
2010	return 0;
2011}
2012
2013static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2014{
2015	struct npcm_i2c *bus = dev_id;
2016
2017	if (npcm_i2c_is_master(bus))
2018		bus->master_or_slave = I2C_MASTER;
2019
2020	if (bus->master_or_slave == I2C_MASTER) {
2021		bus->int_time_stamp = jiffies;
2022		if (!npcm_i2c_int_master_handler(bus))
2023			return IRQ_HANDLED;
2024	}
2025#if IS_ENABLED(CONFIG_I2C_SLAVE)
2026	if (bus->slave) {
2027		bus->master_or_slave = I2C_SLAVE;
2028		if (npcm_i2c_int_slave_handler(bus))
2029			return IRQ_HANDLED;
2030	}
2031#endif
2032	/* Clear status bits for spurious interrupts */
2033	npcm_i2c_clear_master_status(bus);
2034
2035	return IRQ_HANDLED;
2036}
2037
2038static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2039				       u8 slave_addr, u16 nwrite, u16 nread,
2040				       u8 *write_data, u8 *read_data,
2041				       bool use_PEC, bool use_read_block)
2042{
2043	if (bus->state != I2C_IDLE) {
2044		bus->cmd_err = -EBUSY;
2045		return false;
2046	}
2047	bus->dest_addr = slave_addr << 1;
2048	bus->wr_buf = write_data;
2049	bus->wr_size = nwrite;
2050	bus->wr_ind = 0;
2051	bus->rd_buf = read_data;
2052	bus->rd_size = nread;
2053	bus->rd_ind = 0;
2054	bus->PEC_use = 0;
2055
2056	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2057	if (nread)
2058		bus->PEC_use = use_PEC;
2059
2060	bus->read_block_use = use_read_block;
2061	if (nread && !nwrite)
2062		bus->operation = I2C_READ_OPER;
2063	else
2064		bus->operation = I2C_WRITE_OPER;
2065	if (bus->fifo_use) {
2066		u8 i2cfif_cts;
2067
2068		npcm_i2c_select_bank(bus, I2C_BANK_1);
2069		/* clear FIFO and relevant status bits. */
2070		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2071		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2072		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2073		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2074	}
2075
2076	bus->state = I2C_IDLE;
2077	npcm_i2c_stall_after_start(bus, true);
2078	npcm_i2c_master_start(bus);
2079	return true;
2080}
2081
2082static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2083				int num)
2084{
2085	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2086	struct i2c_msg *msg0, *msg1;
2087	unsigned long time_left, flags;
2088	u16 nwrite, nread;
2089	u8 *write_data, *read_data;
2090	u8 slave_addr;
2091	unsigned long timeout;
2092	bool read_block = false;
2093	bool read_PEC = false;
2094	u8 bus_busy;
2095	unsigned long timeout_usec;
2096
2097	if (bus->state == I2C_DISABLE) {
2098		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2099		return -EINVAL;
2100	}
2101
2102	msg0 = &msgs[0];
2103	slave_addr = msg0->addr;
2104	if (msg0->flags & I2C_M_RD) { /* read */
2105		nwrite = 0;
2106		write_data = NULL;
2107		read_data = msg0->buf;
2108		if (msg0->flags & I2C_M_RECV_LEN) {
2109			nread = 1;
2110			read_block = true;
2111			if (msg0->flags & I2C_CLIENT_PEC)
2112				read_PEC = true;
2113		} else {
2114			nread = msg0->len;
2115		}
2116	} else { /* write */
2117		nwrite = msg0->len;
2118		write_data = msg0->buf;
2119		nread = 0;
2120		read_data = NULL;
2121		if (num == 2) {
2122			msg1 = &msgs[1];
2123			read_data = msg1->buf;
2124			if (msg1->flags & I2C_M_RECV_LEN) {
2125				nread = 1;
2126				read_block = true;
2127				if (msg1->flags & I2C_CLIENT_PEC)
2128					read_PEC = true;
2129			} else {
2130				nread = msg1->len;
2131				read_block = false;
2132			}
2133		}
2134	}
2135
2136	/*
2137	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2138	 * 2: double the timeout for clock stretching case
2139	 * 9: bits per transaction (including the ack/nack)
2140	 */
2141	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2142	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2143	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2144		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2145		return -EINVAL;
2146	}
2147
2148	time_left = jiffies + timeout + 1;
2149	do {
2150		/*
2151		 * we must clear slave address immediately when the bus is not
2152		 * busy, so we spinlock it, but we don't keep the lock for the
2153		 * entire while since it is too long.
2154		 */
2155		spin_lock_irqsave(&bus->lock, flags);
2156		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2157#if IS_ENABLED(CONFIG_I2C_SLAVE)
2158		if (!bus_busy && bus->slave)
2159			iowrite8((bus->slave->addr & 0x7F),
2160				 bus->reg + NPCM_I2CADDR1);
2161#endif
2162		spin_unlock_irqrestore(&bus->lock, flags);
2163
2164	} while (time_is_after_jiffies(time_left) && bus_busy);
2165
2166	if (bus_busy) {
2167		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2168		npcm_i2c_reset(bus);
2169		i2c_recover_bus(adap);
2170		return -EAGAIN;
2171	}
2172
2173	npcm_i2c_init_params(bus);
2174	bus->dest_addr = slave_addr;
2175	bus->msgs = msgs;
2176	bus->msgs_num = num;
2177	bus->cmd_err = 0;
2178	bus->read_block_use = read_block;
2179
2180	reinit_completion(&bus->cmd_complete);
2181
2182	npcm_i2c_int_enable(bus, true);
2183
2184	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2185				       write_data, read_data, read_PEC,
2186				       read_block)) {
2187		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2188							timeout);
2189
2190		if (time_left == 0) {
2191			if (bus->timeout_cnt < ULLONG_MAX)
2192				bus->timeout_cnt++;
2193			if (bus->master_or_slave == I2C_MASTER) {
2194				i2c_recover_bus(adap);
2195				bus->cmd_err = -EIO;
2196				bus->state = I2C_IDLE;
2197			}
2198		}
2199	}
2200
2201	/* if there was BER, check if need to recover the bus: */
2202	if (bus->cmd_err == -EAGAIN)
2203		bus->cmd_err = i2c_recover_bus(adap);
2204
2205	/*
2206	 * After any type of error, check if LAST bit is still set,
2207	 * due to a HW issue.
2208	 * It cannot be cleared without resetting the module.
2209	 */
2210	else if (bus->cmd_err &&
2211		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2212		npcm_i2c_reset(bus);
2213
2214	/* After any xfer, successful or not, stall and EOB must be disabled */
2215	npcm_i2c_stall_after_start(bus, false);
2216	npcm_i2c_eob_int(bus, false);
2217
2218#if IS_ENABLED(CONFIG_I2C_SLAVE)
2219	/* reenable slave if it was enabled */
2220	if (bus->slave)
2221		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2222			 bus->reg + NPCM_I2CADDR1);
2223#else
2224	npcm_i2c_int_enable(bus, false);
2225#endif
2226	return bus->cmd_err;
2227}
2228
2229static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2230{
2231	return I2C_FUNC_I2C |
2232	       I2C_FUNC_SMBUS_EMUL |
2233	       I2C_FUNC_SMBUS_BLOCK_DATA |
2234	       I2C_FUNC_SMBUS_PEC |
2235	       I2C_FUNC_SLAVE;
2236}
2237
2238static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2239	.max_read_len = 32768,
2240	.max_write_len = 32768,
2241	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2242};
2243
2244static const struct i2c_algorithm npcm_i2c_algo = {
2245	.master_xfer = npcm_i2c_master_xfer,
2246	.functionality = npcm_i2c_functionality,
2247#if IS_ENABLED(CONFIG_I2C_SLAVE)
2248	.reg_slave	= npcm_i2c_reg_slave,
2249	.unreg_slave	= npcm_i2c_unreg_slave,
2250#endif
2251};
2252
2253/* i2c debugfs directory: used to keep health monitor of i2c devices */
2254static struct dentry *npcm_i2c_debugfs_dir;
2255
2256static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2257				  struct npcm_i2c *bus)
2258{
2259	struct dentry *d;
2260
2261	if (!npcm_i2c_debugfs_dir)
2262		return;
2263	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2264	if (IS_ERR_OR_NULL(d))
2265		return;
2266	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2267	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2268	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2269	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2270	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2271	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2272
2273	bus->debugfs = d;
2274}
2275
2276static int npcm_i2c_probe_bus(struct platform_device *pdev)
2277{
2278	struct device_node *np = pdev->dev.of_node;
2279	static struct regmap *gcr_regmap;
2280	struct device *dev = &pdev->dev;
2281	struct i2c_adapter *adap;
2282	struct npcm_i2c *bus;
2283	struct clk *i2c_clk;
2284	int irq;
2285	int ret;
2286
2287	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2288	if (!bus)
2289		return -ENOMEM;
2290
2291	bus->dev = &pdev->dev;
2292
2293	bus->data = of_device_get_match_data(dev);
2294	if (!bus->data) {
2295		dev_err(dev, "OF data missing\n");
2296		return -EINVAL;
2297	}
2298
2299	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2300	/* core clk must be acquired to calculate module timing settings */
2301	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2302	if (IS_ERR(i2c_clk))
2303		return PTR_ERR(i2c_clk);
2304	bus->apb_clk = clk_get_rate(i2c_clk);
2305
2306	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2307	if (IS_ERR(gcr_regmap))
2308		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2309
2310	if (IS_ERR(gcr_regmap))
2311		return PTR_ERR(gcr_regmap);
2312	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2313
2314	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2315	if (IS_ERR(bus->reg))
2316		return PTR_ERR(bus->reg);
2317
2318	spin_lock_init(&bus->lock);
2319	init_completion(&bus->cmd_complete);
2320
2321	adap = &bus->adap;
2322	adap->owner = THIS_MODULE;
2323	adap->retries = 3;
2324	adap->timeout = msecs_to_jiffies(35);
2325	adap->algo = &npcm_i2c_algo;
2326	adap->quirks = &npcm_i2c_quirks;
2327	adap->algo_data = bus;
2328	adap->dev.parent = &pdev->dev;
2329	adap->dev.of_node = pdev->dev.of_node;
2330	adap->nr = pdev->id;
2331
2332	irq = platform_get_irq(pdev, 0);
2333	if (irq < 0)
2334		return irq;
2335
2336	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2337			       dev_name(bus->dev), bus);
2338	if (ret)
2339		return ret;
2340
2341	ret = __npcm_i2c_init(bus, pdev);
2342	if (ret)
2343		return ret;
2344
2345	npcm_i2c_recovery_init(adap);
2346
2347	i2c_set_adapdata(adap, bus);
2348
2349	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2350		 bus->num);
2351	ret = i2c_add_numbered_adapter(&bus->adap);
2352	if (ret)
2353		return ret;
2354
2355	platform_set_drvdata(pdev, bus);
2356	npcm_i2c_init_debugfs(pdev, bus);
2357	return 0;
2358}
2359
2360static void npcm_i2c_remove_bus(struct platform_device *pdev)
2361{
2362	unsigned long lock_flags;
2363	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2364
2365	debugfs_remove_recursive(bus->debugfs);
2366	spin_lock_irqsave(&bus->lock, lock_flags);
2367	npcm_i2c_disable(bus);
2368	spin_unlock_irqrestore(&bus->lock, lock_flags);
2369	i2c_del_adapter(&bus->adap);
2370}
2371
2372static const struct of_device_id npcm_i2c_bus_of_table[] = {
2373	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2374	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2375	{}
2376};
2377MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2378
2379static struct platform_driver npcm_i2c_bus_driver = {
2380	.probe = npcm_i2c_probe_bus,
2381	.remove_new = npcm_i2c_remove_bus,
2382	.driver = {
2383		.name = "nuvoton-i2c",
2384		.of_match_table = npcm_i2c_bus_of_table,
2385	}
2386};
2387
2388static int __init npcm_i2c_init(void)
2389{
2390	int ret;
2391
2392	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2393
2394	ret = platform_driver_register(&npcm_i2c_bus_driver);
2395	if (ret) {
2396		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2397		return ret;
2398	}
2399
2400	return 0;
2401}
2402module_init(npcm_i2c_init);
2403
2404static void __exit npcm_i2c_exit(void)
2405{
2406	platform_driver_unregister(&npcm_i2c_bus_driver);
2407	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2408}
2409module_exit(npcm_i2c_exit);
2410
2411MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2412MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2413MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2414MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2415MODULE_LICENSE("GPL v2");
2416