1// SPDX-License-Identifier: GPL-2.0-only
2// Copyright (C) 2014 Broadcom Corporation
3
4#include <linux/delay.h>
5#include <linux/i2c.h>
6#include <linux/interrupt.h>
7#include <linux/io.h>
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/platform_device.h>
12#include <linux/slab.h>
13
14#define IDM_CTRL_DIRECT_OFFSET       0x00
15#define CFG_OFFSET                   0x00
16#define CFG_RESET_SHIFT              31
17#define CFG_EN_SHIFT                 30
18#define CFG_SLAVE_ADDR_0_SHIFT       28
19#define CFG_M_RETRY_CNT_SHIFT        16
20#define CFG_M_RETRY_CNT_MASK         0x0f
21
22#define TIM_CFG_OFFSET               0x04
23#define TIM_CFG_MODE_400_SHIFT       31
24#define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25#define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27#define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28
29#define S_CFG_SMBUS_ADDR_OFFSET           0x08
30#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31#define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32#define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34#define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35#define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37#define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38#define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40#define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41#define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42
43#define M_FIFO_CTRL_OFFSET           0x0c
44#define M_FIFO_RX_FLUSH_SHIFT        31
45#define M_FIFO_TX_FLUSH_SHIFT        30
46#define M_FIFO_RX_CNT_SHIFT          16
47#define M_FIFO_RX_CNT_MASK           0x7f
48#define M_FIFO_RX_THLD_SHIFT         8
49#define M_FIFO_RX_THLD_MASK          0x3f
50
51#define S_FIFO_CTRL_OFFSET           0x10
52#define S_FIFO_RX_FLUSH_SHIFT        31
53#define S_FIFO_TX_FLUSH_SHIFT        30
54#define S_FIFO_RX_CNT_SHIFT          16
55#define S_FIFO_RX_CNT_MASK           0x7f
56#define S_FIFO_RX_THLD_SHIFT         8
57#define S_FIFO_RX_THLD_MASK          0x3f
58
59#define M_CMD_OFFSET                 0x30
60#define M_CMD_START_BUSY_SHIFT       31
61#define M_CMD_STATUS_SHIFT           25
62#define M_CMD_STATUS_MASK            0x07
63#define M_CMD_STATUS_SUCCESS         0x0
64#define M_CMD_STATUS_LOST_ARB        0x1
65#define M_CMD_STATUS_NACK_ADDR       0x2
66#define M_CMD_STATUS_NACK_DATA       0x3
67#define M_CMD_STATUS_TIMEOUT         0x4
68#define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69#define M_CMD_STATUS_RX_FIFO_FULL    0x6
70#define M_CMD_PROTOCOL_SHIFT         9
71#define M_CMD_PROTOCOL_MASK          0xf
72#define M_CMD_PROTOCOL_QUICK         0x0
73#define M_CMD_PROTOCOL_BLK_WR        0x7
74#define M_CMD_PROTOCOL_BLK_RD        0x8
75#define M_CMD_PROTOCOL_PROCESS       0xa
76#define M_CMD_PEC_SHIFT              8
77#define M_CMD_RD_CNT_SHIFT           0
78#define M_CMD_RD_CNT_MASK            0xff
79
80#define S_CMD_OFFSET                 0x34
81#define S_CMD_START_BUSY_SHIFT       31
82#define S_CMD_STATUS_SHIFT           23
83#define S_CMD_STATUS_MASK            0x07
84#define S_CMD_STATUS_SUCCESS         0x0
85#define S_CMD_STATUS_TIMEOUT         0x5
86#define S_CMD_STATUS_MASTER_ABORT    0x7
87
88#define IE_OFFSET                    0x38
89#define IE_M_RX_FIFO_FULL_SHIFT      31
90#define IE_M_RX_THLD_SHIFT           30
91#define IE_M_START_BUSY_SHIFT        28
92#define IE_M_TX_UNDERRUN_SHIFT       27
93#define IE_S_RX_FIFO_FULL_SHIFT      26
94#define IE_S_RX_THLD_SHIFT           25
95#define IE_S_RX_EVENT_SHIFT          24
96#define IE_S_START_BUSY_SHIFT        23
97#define IE_S_TX_UNDERRUN_SHIFT       22
98#define IE_S_RD_EVENT_SHIFT          21
99
100#define IS_OFFSET                    0x3c
101#define IS_M_RX_FIFO_FULL_SHIFT      31
102#define IS_M_RX_THLD_SHIFT           30
103#define IS_M_START_BUSY_SHIFT        28
104#define IS_M_TX_UNDERRUN_SHIFT       27
105#define IS_S_RX_FIFO_FULL_SHIFT      26
106#define IS_S_RX_THLD_SHIFT           25
107#define IS_S_RX_EVENT_SHIFT          24
108#define IS_S_START_BUSY_SHIFT        23
109#define IS_S_TX_UNDERRUN_SHIFT       22
110#define IS_S_RD_EVENT_SHIFT          21
111
112#define M_TX_OFFSET                  0x40
113#define M_TX_WR_STATUS_SHIFT         31
114#define M_TX_DATA_SHIFT              0
115#define M_TX_DATA_MASK               0xff
116
117#define M_RX_OFFSET                  0x44
118#define M_RX_STATUS_SHIFT            30
119#define M_RX_STATUS_MASK             0x03
120#define M_RX_PEC_ERR_SHIFT           29
121#define M_RX_DATA_SHIFT              0
122#define M_RX_DATA_MASK               0xff
123
124#define S_TX_OFFSET                  0x48
125#define S_TX_WR_STATUS_SHIFT         31
126#define S_TX_DATA_SHIFT              0
127#define S_TX_DATA_MASK               0xff
128
129#define S_RX_OFFSET                  0x4c
130#define S_RX_STATUS_SHIFT            30
131#define S_RX_STATUS_MASK             0x03
132#define S_RX_PEC_ERR_SHIFT           29
133#define S_RX_DATA_SHIFT              0
134#define S_RX_DATA_MASK               0xff
135
136#define I2C_TIMEOUT_MSEC             50000
137#define M_TX_RX_FIFO_SIZE            64
138#define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139
140#define M_RX_MAX_READ_LEN            255
141#define M_RX_FIFO_THLD_VALUE         50
142
143#define IE_M_ALL_INTERRUPT_SHIFT     27
144#define IE_M_ALL_INTERRUPT_MASK      0x1e
145
146#define SLAVE_READ_WRITE_BIT_MASK    0x1
147#define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148#define SLAVE_MAX_SIZE_TRANSACTION   64
149#define SLAVE_CLOCK_STRETCH_TIME     25
150
151#define IE_S_ALL_INTERRUPT_SHIFT     21
152#define IE_S_ALL_INTERRUPT_MASK      0x3f
153/*
154 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155 * running for less time, max slave read per tasklet is set to 10 bytes.
156 */
157#define MAX_SLAVE_RX_PER_INT         10
158
159enum i2c_slave_read_status {
160	I2C_SLAVE_RX_FIFO_EMPTY = 0,
161	I2C_SLAVE_RX_START,
162	I2C_SLAVE_RX_DATA,
163	I2C_SLAVE_RX_END,
164};
165
166enum bus_speed_index {
167	I2C_SPD_100K = 0,
168	I2C_SPD_400K,
169};
170
171enum bcm_iproc_i2c_type {
172	IPROC_I2C,
173	IPROC_I2C_NIC
174};
175
176struct bcm_iproc_i2c_dev {
177	struct device *device;
178	enum bcm_iproc_i2c_type type;
179	int irq;
180
181	void __iomem *base;
182	void __iomem *idm_base;
183
184	u32 ape_addr_mask;
185
186	/* lock for indirect access through IDM */
187	spinlock_t idm_lock;
188
189	struct i2c_adapter adapter;
190	unsigned int bus_speed;
191
192	struct completion done;
193	int xfer_is_done;
194
195	struct i2c_msg *msg;
196
197	struct i2c_client *slave;
198
199	/* bytes that have been transferred */
200	unsigned int tx_bytes;
201	/* bytes that have been read */
202	unsigned int rx_bytes;
203	unsigned int thld_bytes;
204
205	bool slave_rx_only;
206	bool rx_start_rcvd;
207	bool slave_read_complete;
208	u32 tx_underrun;
209	u32 slave_int_mask;
210	struct tasklet_struct slave_rx_tasklet;
211};
212
213/* tasklet to process slave rx data */
214static void slave_rx_tasklet_fn(unsigned long);
215
216/*
217 * Can be expanded in the future if more interrupt status bits are utilized
218 */
219#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220		| BIT(IS_M_RX_THLD_SHIFT))
221
222#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225		| BIT(IS_S_RX_THLD_SHIFT))
226
227static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
230					 bool enable);
231
232static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
233				   u32 offset)
234{
235	u32 val;
236	unsigned long flags;
237
238	if (iproc_i2c->idm_base) {
239		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240		writel(iproc_i2c->ape_addr_mask,
241		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242		val = readl(iproc_i2c->base + offset);
243		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
244	} else {
245		val = readl(iproc_i2c->base + offset);
246	}
247
248	return val;
249}
250
251static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
252				    u32 offset, u32 val)
253{
254	unsigned long flags;
255
256	if (iproc_i2c->idm_base) {
257		spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258		writel(iproc_i2c->ape_addr_mask,
259		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260		writel(val, iproc_i2c->base + offset);
261		spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
262	} else {
263		writel(val, iproc_i2c->base + offset);
264	}
265}
266
267static void bcm_iproc_i2c_slave_init(
268	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
269{
270	u32 val;
271
272	iproc_i2c->tx_underrun = 0;
273	if (need_reset) {
274		/* put controller in reset */
275		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276		val |= BIT(CFG_RESET_SHIFT);
277		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278
279		/* wait 100 usec per spec */
280		udelay(100);
281
282		/* bring controller out of reset */
283		val &= ~(BIT(CFG_RESET_SHIFT));
284		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
285	}
286
287	/* flush TX/RX FIFOs */
288	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
290
291	/* Maximum slave stretch time */
292	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
296
297	/* Configure the slave address */
298	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
303
304	/* clear all pending slave interrupts */
305	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
306
307	/* Enable interrupt register to indicate a valid byte in receive fifo */
308	val = BIT(IE_S_RX_EVENT_SHIFT);
309	/* Enable interrupt register to indicate Slave Rx FIFO Full */
310	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311	/* Enable interrupt register to indicate a Master read transaction */
312	val |= BIT(IE_S_RD_EVENT_SHIFT);
313	/* Enable interrupt register for the Slave BUSY command */
314	val |= BIT(IE_S_START_BUSY_SHIFT);
315	iproc_i2c->slave_int_mask = val;
316	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
317}
318
319static bool bcm_iproc_i2c_check_slave_status
320	(struct bcm_iproc_i2c_dev *iproc_i2c, u32 status)
321{
322	u32 val;
323	bool recover = false;
324
325	/* check slave transmit status only if slave is transmitting */
326	if (!iproc_i2c->slave_rx_only) {
327		val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
328		/* status is valid only when START_BUSY is cleared */
329		if (!(val & BIT(S_CMD_START_BUSY_SHIFT))) {
330			val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
331			if (val == S_CMD_STATUS_TIMEOUT ||
332			    val == S_CMD_STATUS_MASTER_ABORT) {
333				dev_warn(iproc_i2c->device,
334					 (val == S_CMD_STATUS_TIMEOUT) ?
335					 "slave random stretch time timeout\n" :
336					 "Master aborted read transaction\n");
337				recover = true;
338			}
339		}
340	}
341
342	/* RX_EVENT is not valid when START_BUSY is set */
343	if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
344	    (status & BIT(IS_S_START_BUSY_SHIFT))) {
345		dev_warn(iproc_i2c->device, "Slave aborted read transaction\n");
346		recover = true;
347	}
348
349	if (recover) {
350		/* re-initialize i2c for recovery */
351		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
352		bcm_iproc_i2c_slave_init(iproc_i2c, true);
353		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
354	}
355
356	return recover;
357}
358
359static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
360{
361	u8 rx_data, rx_status;
362	u32 rx_bytes = 0;
363	u32 val;
364
365	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
366		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
367		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
368		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
369
370		if (rx_status == I2C_SLAVE_RX_START) {
371			/* Start of SMBUS Master write */
372			i2c_slave_event(iproc_i2c->slave,
373					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
374			iproc_i2c->rx_start_rcvd = true;
375			iproc_i2c->slave_read_complete = false;
376		} else if (rx_status == I2C_SLAVE_RX_DATA &&
377			   iproc_i2c->rx_start_rcvd) {
378			/* Middle of SMBUS Master write */
379			i2c_slave_event(iproc_i2c->slave,
380					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
381		} else if (rx_status == I2C_SLAVE_RX_END &&
382			   iproc_i2c->rx_start_rcvd) {
383			/* End of SMBUS Master write */
384			if (iproc_i2c->slave_rx_only)
385				i2c_slave_event(iproc_i2c->slave,
386						I2C_SLAVE_WRITE_RECEIVED,
387						&rx_data);
388
389			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
390					&rx_data);
391		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
392			iproc_i2c->rx_start_rcvd = false;
393			iproc_i2c->slave_read_complete = true;
394			break;
395		}
396
397		rx_bytes++;
398	}
399}
400
401static void slave_rx_tasklet_fn(unsigned long data)
402{
403	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
404	u32 int_clr;
405
406	bcm_iproc_i2c_slave_read(iproc_i2c);
407
408	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
409	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
410
411	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
412		/*
413		 * In case of single byte master-read request,
414		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
415		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
416		 * from first IS_S_TX_UNDERRUN_SHIFT event.
417		 *
418		 * This means don't send any data from slave when
419		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
420		 * eeprom or other backend slave driver read pointer twice.
421		 */
422		iproc_i2c->tx_underrun = 0;
423		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
424
425		/* clear IS_S_RD_EVENT_SHIFT interrupt */
426		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
427	}
428
429	/* clear slave interrupt */
430	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
431	/* enable slave interrupts */
432	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
433}
434
435static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
436				    u32 status)
437{
438	u32 val;
439	u8 value;
440
441
442	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
443		iproc_i2c->tx_underrun++;
444		if (iproc_i2c->tx_underrun == 1)
445			/* Start of SMBUS for Master Read */
446			i2c_slave_event(iproc_i2c->slave,
447					I2C_SLAVE_READ_REQUESTED,
448					&value);
449		else
450			/* Master read other than start */
451			i2c_slave_event(iproc_i2c->slave,
452					I2C_SLAVE_READ_PROCESSED,
453					&value);
454
455		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
456		/* start transfer */
457		val = BIT(S_CMD_START_BUSY_SHIFT);
458		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
459
460		/* clear interrupt */
461		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
462				 BIT(IS_S_TX_UNDERRUN_SHIFT));
463	}
464
465	/* Stop received from master in case of master read transaction */
466	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
467		/*
468		 * Disable interrupt for TX FIFO becomes empty and
469		 * less than PKT_LENGTH bytes were output on the SMBUS
470		 */
471		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
472		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
473		val &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
474		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
475
476		/* End of SMBUS for Master Read */
477		val = BIT(S_TX_WR_STATUS_SHIFT);
478		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
479
480		val = BIT(S_CMD_START_BUSY_SHIFT);
481		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
482
483		/* flush TX FIFOs */
484		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
485		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
486		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
487
488		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
489
490		/* clear interrupt */
491		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
492				 BIT(IS_S_START_BUSY_SHIFT));
493	}
494
495	/* if the controller has been reset, immediately return from the ISR */
496	if (bcm_iproc_i2c_check_slave_status(iproc_i2c, status))
497		return true;
498
499	/*
500	 * Slave events in case of master-write, master-write-read and,
501	 * master-read
502	 *
503	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
504	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
505	 *                    events
506	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
507	 *                    events or only IS_S_RD_EVENT_SHIFT
508	 *
509	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
510	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
511	 * full. This can happen if Master issues write requests of more than
512	 * 64 bytes.
513	 */
514	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
515	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
516	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
517		/* disable slave interrupts */
518		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
519		val &= ~iproc_i2c->slave_int_mask;
520		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
521
522		if (status & BIT(IS_S_RD_EVENT_SHIFT))
523			/* Master-write-read request */
524			iproc_i2c->slave_rx_only = false;
525		else
526			/* Master-write request only */
527			iproc_i2c->slave_rx_only = true;
528
529		/* schedule tasklet to read data later */
530		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
531
532		/* clear IS_S_RX_FIFO_FULL_SHIFT interrupt */
533		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
534			val = BIT(IS_S_RX_FIFO_FULL_SHIFT);
535			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
536		}
537	}
538
539	return true;
540}
541
542static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
543{
544	struct i2c_msg *msg = iproc_i2c->msg;
545	uint32_t val;
546
547	/* Read valid data from RX FIFO */
548	while (iproc_i2c->rx_bytes < msg->len) {
549		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
550
551		/* rx fifo empty */
552		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
553			break;
554
555		msg->buf[iproc_i2c->rx_bytes] =
556			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
557		iproc_i2c->rx_bytes++;
558	}
559}
560
561static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
562{
563	struct i2c_msg *msg = iproc_i2c->msg;
564	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
565	unsigned int i;
566	u32 val;
567
568	/* can only fill up to the FIFO size */
569	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
570	for (i = 0; i < tx_bytes; i++) {
571		/* start from where we left over */
572		unsigned int idx = iproc_i2c->tx_bytes + i;
573
574		val = msg->buf[idx];
575
576		/* mark the last byte */
577		if (idx == msg->len - 1) {
578			val |= BIT(M_TX_WR_STATUS_SHIFT);
579
580			if (iproc_i2c->irq) {
581				u32 tmp;
582
583				/*
584				 * Since this is the last byte, we should now
585				 * disable TX FIFO underrun interrupt
586				 */
587				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
588				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
589				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
590						 tmp);
591			}
592		}
593
594		/* load data into TX FIFO */
595		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
596	}
597
598	/* update number of transferred bytes */
599	iproc_i2c->tx_bytes += tx_bytes;
600}
601
602static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
603{
604	struct i2c_msg *msg = iproc_i2c->msg;
605	u32 bytes_left, val;
606
607	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
608	bytes_left = msg->len - iproc_i2c->rx_bytes;
609	if (bytes_left == 0) {
610		if (iproc_i2c->irq) {
611			/* finished reading all data, disable rx thld event */
612			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
613			val &= ~BIT(IS_M_RX_THLD_SHIFT);
614			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
615		}
616	} else if (bytes_left < iproc_i2c->thld_bytes) {
617		/* set bytes left as threshold */
618		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
619		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
620		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
621		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
622		iproc_i2c->thld_bytes = bytes_left;
623	}
624	/*
625	 * bytes_left >= iproc_i2c->thld_bytes,
626	 * hence no need to change the THRESHOLD SET.
627	 * It will remain as iproc_i2c->thld_bytes itself
628	 */
629}
630
631static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
632					  u32 status)
633{
634	/* TX FIFO is empty and we have more data to send */
635	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
636		bcm_iproc_i2c_send(iproc_i2c);
637
638	/* RX FIFO threshold is reached and data needs to be read out */
639	if (status & BIT(IS_M_RX_THLD_SHIFT))
640		bcm_iproc_i2c_read(iproc_i2c);
641
642	/* transfer is done */
643	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
644		iproc_i2c->xfer_is_done = 1;
645		if (iproc_i2c->irq)
646			complete(&iproc_i2c->done);
647	}
648}
649
650static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
651{
652	struct bcm_iproc_i2c_dev *iproc_i2c = data;
653	u32 slave_status;
654	u32 status;
655	bool ret;
656
657	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
658	/* process only slave interrupt which are enabled */
659	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
660		       ISR_MASK_SLAVE;
661
662	if (slave_status) {
663		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
664		if (ret)
665			return IRQ_HANDLED;
666		else
667			return IRQ_NONE;
668	}
669
670	status &= ISR_MASK;
671	if (!status)
672		return IRQ_NONE;
673
674	/* process all master based events */
675	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
676	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
677
678	return IRQ_HANDLED;
679}
680
681static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
682{
683	u32 val;
684
685	/* put controller in reset */
686	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
687	val |= BIT(CFG_RESET_SHIFT);
688	val &= ~(BIT(CFG_EN_SHIFT));
689	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
690
691	/* wait 100 usec per spec */
692	udelay(100);
693
694	/* bring controller out of reset */
695	val &= ~(BIT(CFG_RESET_SHIFT));
696	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
697
698	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
699	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
700	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
701	/* disable all interrupts */
702	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
703	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
704			IE_M_ALL_INTERRUPT_SHIFT);
705	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
706
707	/* clear all pending interrupts */
708	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
709
710	return 0;
711}
712
713static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
714					 bool enable)
715{
716	u32 val;
717
718	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
719	if (enable)
720		val |= BIT(CFG_EN_SHIFT);
721	else
722		val &= ~BIT(CFG_EN_SHIFT);
723	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
724}
725
726static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
727				      struct i2c_msg *msg)
728{
729	u32 val;
730
731	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
732	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
733
734	switch (val) {
735	case M_CMD_STATUS_SUCCESS:
736		return 0;
737
738	case M_CMD_STATUS_LOST_ARB:
739		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
740		return -EAGAIN;
741
742	case M_CMD_STATUS_NACK_ADDR:
743		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
744		return -ENXIO;
745
746	case M_CMD_STATUS_NACK_DATA:
747		dev_dbg(iproc_i2c->device, "NAK data\n");
748		return -ENXIO;
749
750	case M_CMD_STATUS_TIMEOUT:
751		dev_dbg(iproc_i2c->device, "bus timeout\n");
752		return -ETIMEDOUT;
753
754	case M_CMD_STATUS_FIFO_UNDERRUN:
755		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
756		return -ENXIO;
757
758	case M_CMD_STATUS_RX_FIFO_FULL:
759		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
760		return -ETIMEDOUT;
761
762	default:
763		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
764
765		/* re-initialize i2c for recovery */
766		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
767		bcm_iproc_i2c_init(iproc_i2c);
768		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
769
770		return -EIO;
771	}
772}
773
774static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
775				   struct i2c_msg *msg,
776				   u32 cmd)
777{
778	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
779	u32 val, status;
780	int ret;
781
782	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
783
784	if (iproc_i2c->irq) {
785		time_left = wait_for_completion_timeout(&iproc_i2c->done,
786							time_left);
787		/* disable all interrupts */
788		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
789		/* read it back to flush the write */
790		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
791		/* make sure the interrupt handler isn't running */
792		synchronize_irq(iproc_i2c->irq);
793
794	} else { /* polling mode */
795		unsigned long timeout = jiffies + time_left;
796
797		do {
798			status = iproc_i2c_rd_reg(iproc_i2c,
799						  IS_OFFSET) & ISR_MASK;
800			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
801			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
802
803			if (time_after(jiffies, timeout)) {
804				time_left = 0;
805				break;
806			}
807
808			cpu_relax();
809			cond_resched();
810		} while (!iproc_i2c->xfer_is_done);
811	}
812
813	if (!time_left && !iproc_i2c->xfer_is_done) {
814		dev_err(iproc_i2c->device, "transaction timed out\n");
815
816		/* flush both TX/RX FIFOs */
817		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
818		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
819		return -ETIMEDOUT;
820	}
821
822	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
823	if (ret) {
824		/* flush both TX/RX FIFOs */
825		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
826		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
827		return ret;
828	}
829
830	return 0;
831}
832
833/*
834 * If 'process_call' is true, then this is a multi-msg transfer that requires
835 * a repeated start between the messages.
836 * More specifically, it must be a write (reg) followed by a read (data).
837 * The i2c quirks are set to enforce this rule.
838 */
839static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
840					struct i2c_msg *msgs, bool process_call)
841{
842	int i;
843	u8 addr;
844	u32 val, tmp, val_intr_en;
845	unsigned int tx_bytes;
846	struct i2c_msg *msg = &msgs[0];
847
848	/* check if bus is busy */
849	if (!!(iproc_i2c_rd_reg(iproc_i2c,
850				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
851		dev_warn(iproc_i2c->device, "bus is busy\n");
852		return -EBUSY;
853	}
854
855	iproc_i2c->msg = msg;
856
857	/* format and load slave address into the TX FIFO */
858	addr = i2c_8bit_addr_from_msg(msg);
859	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
860
861	/*
862	 * For a write transaction, load data into the TX FIFO. Only allow
863	 * loading up to TX FIFO size - 1 bytes of data since the first byte
864	 * has been used up by the slave address
865	 */
866	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
867	if (!(msg->flags & I2C_M_RD)) {
868		for (i = 0; i < tx_bytes; i++) {
869			val = msg->buf[i];
870
871			/* mark the last byte */
872			if (!process_call && (i == msg->len - 1))
873				val |= BIT(M_TX_WR_STATUS_SHIFT);
874
875			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
876		}
877		iproc_i2c->tx_bytes = tx_bytes;
878	}
879
880	/* Process the read message if this is process call */
881	if (process_call) {
882		msg++;
883		iproc_i2c->msg = msg;  /* point to second msg */
884
885		/*
886		 * The last byte to be sent out should be a slave
887		 * address with read operation
888		 */
889		addr = i2c_8bit_addr_from_msg(msg);
890		/* mark it the last byte out */
891		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
892		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
893	}
894
895	/* mark as incomplete before starting the transaction */
896	if (iproc_i2c->irq)
897		reinit_completion(&iproc_i2c->done);
898
899	iproc_i2c->xfer_is_done = 0;
900
901	/*
902	 * Enable the "start busy" interrupt, which will be triggered after the
903	 * transaction is done, i.e., the internal start_busy bit, transitions
904	 * from 1 to 0.
905	 */
906	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
907
908	/*
909	 * If TX data size is larger than the TX FIFO, need to enable TX
910	 * underrun interrupt, which will be triggerred when the TX FIFO is
911	 * empty. When that happens we can then pump more data into the FIFO
912	 */
913	if (!process_call && !(msg->flags & I2C_M_RD) &&
914	    msg->len > iproc_i2c->tx_bytes)
915		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
916
917	/*
918	 * Now we can activate the transfer. For a read operation, specify the
919	 * number of bytes to read
920	 */
921	val = BIT(M_CMD_START_BUSY_SHIFT);
922
923	if (msg->len == 0) {
924		/* SMBUS QUICK Command (Read/Write) */
925		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
926	} else if (msg->flags & I2C_M_RD) {
927		u32 protocol;
928
929		iproc_i2c->rx_bytes = 0;
930		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
931			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
932		else
933			iproc_i2c->thld_bytes = msg->len;
934
935		/* set threshold value */
936		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
937		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
938		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
939		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
940
941		/* enable the RX threshold interrupt */
942		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
943
944		protocol = process_call ?
945				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
946
947		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
948		       (msg->len << M_CMD_RD_CNT_SHIFT);
949	} else {
950		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
951	}
952
953	if (iproc_i2c->irq)
954		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
955
956	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
957}
958
959static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
960			      struct i2c_msg msgs[], int num)
961{
962	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
963	bool process_call = false;
964	int ret;
965
966	if (num == 2) {
967		/* Repeated start, use process call */
968		process_call = true;
969		if (msgs[1].flags & I2C_M_NOSTART) {
970			dev_err(iproc_i2c->device, "Invalid repeated start\n");
971			return -EOPNOTSUPP;
972		}
973	}
974
975	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
976	if (ret) {
977		dev_dbg(iproc_i2c->device, "xfer failed\n");
978		return ret;
979	}
980
981	return num;
982}
983
984static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
985{
986	u32 val;
987
988	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
989
990	if (adap->algo->reg_slave)
991		val |= I2C_FUNC_SLAVE;
992
993	return val;
994}
995
996static struct i2c_algorithm bcm_iproc_algo = {
997	.master_xfer = bcm_iproc_i2c_xfer,
998	.functionality = bcm_iproc_i2c_functionality,
999	.reg_slave = bcm_iproc_i2c_reg_slave,
1000	.unreg_slave = bcm_iproc_i2c_unreg_slave,
1001};
1002
1003static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
1004	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
1005	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
1006	.max_read_len = M_RX_MAX_READ_LEN,
1007};
1008
1009static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1010{
1011	unsigned int bus_speed;
1012	u32 val;
1013	int ret = of_property_read_u32(iproc_i2c->device->of_node,
1014				       "clock-frequency", &bus_speed);
1015	if (ret < 0) {
1016		dev_info(iproc_i2c->device,
1017			"unable to interpret clock-frequency DT property\n");
1018		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1019	}
1020
1021	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1022		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1023			bus_speed);
1024		dev_err(iproc_i2c->device,
1025			"valid speeds are 100khz and 400khz\n");
1026		return -EINVAL;
1027	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1028		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1029	} else {
1030		bus_speed = I2C_MAX_FAST_MODE_FREQ;
1031	}
1032
1033	iproc_i2c->bus_speed = bus_speed;
1034	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1035	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1036	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1037	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1038
1039	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1040
1041	return 0;
1042}
1043
1044static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1045{
1046	int irq, ret = 0;
1047	struct bcm_iproc_i2c_dev *iproc_i2c;
1048	struct i2c_adapter *adap;
1049
1050	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1051				 GFP_KERNEL);
1052	if (!iproc_i2c)
1053		return -ENOMEM;
1054
1055	platform_set_drvdata(pdev, iproc_i2c);
1056	iproc_i2c->device = &pdev->dev;
1057	iproc_i2c->type =
1058		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1059	init_completion(&iproc_i2c->done);
1060
1061	iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1062	if (IS_ERR(iproc_i2c->base))
1063		return PTR_ERR(iproc_i2c->base);
1064
1065	if (iproc_i2c->type == IPROC_I2C_NIC) {
1066		iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1067		if (IS_ERR(iproc_i2c->idm_base))
1068			return PTR_ERR(iproc_i2c->idm_base);
1069
1070		ret = of_property_read_u32(iproc_i2c->device->of_node,
1071					   "brcm,ape-hsls-addr-mask",
1072					   &iproc_i2c->ape_addr_mask);
1073		if (ret < 0) {
1074			dev_err(iproc_i2c->device,
1075				"'brcm,ape-hsls-addr-mask' missing\n");
1076			return -EINVAL;
1077		}
1078
1079		spin_lock_init(&iproc_i2c->idm_lock);
1080
1081		/* no slave support */
1082		bcm_iproc_algo.reg_slave = NULL;
1083		bcm_iproc_algo.unreg_slave = NULL;
1084	}
1085
1086	ret = bcm_iproc_i2c_init(iproc_i2c);
1087	if (ret)
1088		return ret;
1089
1090	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1091	if (ret)
1092		return ret;
1093
1094	irq = platform_get_irq(pdev, 0);
1095	if (irq > 0) {
1096		ret = devm_request_irq(iproc_i2c->device, irq,
1097				       bcm_iproc_i2c_isr, 0, pdev->name,
1098				       iproc_i2c);
1099		if (ret < 0) {
1100			dev_err(iproc_i2c->device,
1101				"unable to request irq %i\n", irq);
1102			return ret;
1103		}
1104
1105		iproc_i2c->irq = irq;
1106	} else {
1107		dev_warn(iproc_i2c->device,
1108			 "no irq resource, falling back to poll mode\n");
1109	}
1110
1111	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1112
1113	adap = &iproc_i2c->adapter;
1114	i2c_set_adapdata(adap, iproc_i2c);
1115	snprintf(adap->name, sizeof(adap->name),
1116		"Broadcom iProc (%s)",
1117		of_node_full_name(iproc_i2c->device->of_node));
1118	adap->algo = &bcm_iproc_algo;
1119	adap->quirks = &bcm_iproc_i2c_quirks;
1120	adap->dev.parent = &pdev->dev;
1121	adap->dev.of_node = pdev->dev.of_node;
1122
1123	return i2c_add_adapter(adap);
1124}
1125
1126static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1127{
1128	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1129
1130	if (iproc_i2c->irq) {
1131		/*
1132		 * Make sure there's no pending interrupt when we remove the
1133		 * adapter
1134		 */
1135		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1136		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1137		synchronize_irq(iproc_i2c->irq);
1138	}
1139
1140	i2c_del_adapter(&iproc_i2c->adapter);
1141	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1142}
1143
1144static int bcm_iproc_i2c_suspend(struct device *dev)
1145{
1146	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1147
1148	if (iproc_i2c->irq) {
1149		/*
1150		 * Make sure there's no pending interrupt when we go into
1151		 * suspend
1152		 */
1153		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1154		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1155		synchronize_irq(iproc_i2c->irq);
1156	}
1157
1158	/* now disable the controller */
1159	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1160
1161	return 0;
1162}
1163
1164static int bcm_iproc_i2c_resume(struct device *dev)
1165{
1166	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1167	int ret;
1168	u32 val;
1169
1170	/*
1171	 * Power domain could have been shut off completely in system deep
1172	 * sleep, so re-initialize the block here
1173	 */
1174	ret = bcm_iproc_i2c_init(iproc_i2c);
1175	if (ret)
1176		return ret;
1177
1178	/* configure to the desired bus speed */
1179	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1180	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1181	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1182	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1183
1184	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1185
1186	return 0;
1187}
1188
1189static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1190	.suspend_late = &bcm_iproc_i2c_suspend,
1191	.resume_early = &bcm_iproc_i2c_resume
1192};
1193
1194static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1195{
1196	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1197
1198	if (iproc_i2c->slave)
1199		return -EBUSY;
1200
1201	if (slave->flags & I2C_CLIENT_TEN)
1202		return -EAFNOSUPPORT;
1203
1204	iproc_i2c->slave = slave;
1205
1206	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1207		     (unsigned long)iproc_i2c);
1208
1209	bcm_iproc_i2c_slave_init(iproc_i2c, false);
1210	return 0;
1211}
1212
1213static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1214{
1215	u32 tmp;
1216	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1217
1218	if (!iproc_i2c->slave)
1219		return -EINVAL;
1220
1221	disable_irq(iproc_i2c->irq);
1222
1223	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1224
1225	/* disable all slave interrupts */
1226	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1227	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1228			IE_S_ALL_INTERRUPT_SHIFT);
1229	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1230
1231	/* Erase the slave address programmed */
1232	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1233	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1234	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1235
1236	/* flush TX/RX FIFOs */
1237	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1238	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1239
1240	/* clear all pending slave interrupts */
1241	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1242
1243	iproc_i2c->slave = NULL;
1244
1245	enable_irq(iproc_i2c->irq);
1246
1247	return 0;
1248}
1249
1250static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1251	{
1252		.compatible = "brcm,iproc-i2c",
1253		.data = (int *)IPROC_I2C,
1254	}, {
1255		.compatible = "brcm,iproc-nic-i2c",
1256		.data = (int *)IPROC_I2C_NIC,
1257	},
1258	{ /* sentinel */ }
1259};
1260MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1261
1262static struct platform_driver bcm_iproc_i2c_driver = {
1263	.driver = {
1264		.name = "bcm-iproc-i2c",
1265		.of_match_table = bcm_iproc_i2c_of_match,
1266		.pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1267	},
1268	.probe = bcm_iproc_i2c_probe,
1269	.remove_new = bcm_iproc_i2c_remove,
1270};
1271module_platform_driver(bcm_iproc_i2c_driver);
1272
1273MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1274MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1275MODULE_LICENSE("GPL v2");
1276