xref: /kernel/linux/linux-6.6/drivers/hv/hv_common.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Architecture neutral utility routines for interacting with
5 * Hyper-V. This file is specifically for code that must be
6 * built-in to the kernel image when CONFIG_HYPERV is set
7 * (vs. being in a module) because it is called from architecture
8 * specific code under arch/.
9 *
10 * Copyright (C) 2021, Microsoft, Inc.
11 *
12 * Author : Michael Kelley <mikelley@microsoft.com>
13 */
14
15#include <linux/types.h>
16#include <linux/acpi.h>
17#include <linux/export.h>
18#include <linux/bitfield.h>
19#include <linux/cpumask.h>
20#include <linux/sched/task_stack.h>
21#include <linux/panic_notifier.h>
22#include <linux/ptrace.h>
23#include <linux/kdebug.h>
24#include <linux/kmsg_dump.h>
25#include <linux/slab.h>
26#include <linux/dma-map-ops.h>
27#include <linux/set_memory.h>
28#include <asm/hyperv-tlfs.h>
29#include <asm/mshyperv.h>
30
31/*
32 * hv_root_partition, ms_hyperv and hv_nested are defined here with other
33 * Hyper-V specific globals so they are shared across all architectures and are
34 * built only when CONFIG_HYPERV is defined.  But on x86,
35 * ms_hyperv_init_platform() is built even when CONFIG_HYPERV is not
36 * defined, and it uses these three variables.  So mark them as __weak
37 * here, allowing for an overriding definition in the module containing
38 * ms_hyperv_init_platform().
39 */
40bool __weak hv_root_partition;
41EXPORT_SYMBOL_GPL(hv_root_partition);
42
43bool __weak hv_nested;
44EXPORT_SYMBOL_GPL(hv_nested);
45
46struct ms_hyperv_info __weak ms_hyperv;
47EXPORT_SYMBOL_GPL(ms_hyperv);
48
49u32 *hv_vp_index;
50EXPORT_SYMBOL_GPL(hv_vp_index);
51
52u32 hv_max_vp_index;
53EXPORT_SYMBOL_GPL(hv_max_vp_index);
54
55void * __percpu *hyperv_pcpu_input_arg;
56EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
57
58void * __percpu *hyperv_pcpu_output_arg;
59EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg);
60
61static void hv_kmsg_dump_unregister(void);
62
63static struct ctl_table_header *hv_ctl_table_hdr;
64
65/*
66 * Hyper-V specific initialization and shutdown code that is
67 * common across all architectures.  Called from architecture
68 * specific initialization functions.
69 */
70
71void __init hv_common_free(void)
72{
73	unregister_sysctl_table(hv_ctl_table_hdr);
74	hv_ctl_table_hdr = NULL;
75
76	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE)
77		hv_kmsg_dump_unregister();
78
79	kfree(hv_vp_index);
80	hv_vp_index = NULL;
81
82	free_percpu(hyperv_pcpu_output_arg);
83	hyperv_pcpu_output_arg = NULL;
84
85	free_percpu(hyperv_pcpu_input_arg);
86	hyperv_pcpu_input_arg = NULL;
87}
88
89/*
90 * Functions for allocating and freeing memory with size and
91 * alignment HV_HYP_PAGE_SIZE. These functions are needed because
92 * the guest page size may not be the same as the Hyper-V page
93 * size. We depend upon kmalloc() aligning power-of-two size
94 * allocations to the allocation size boundary, so that the
95 * allocated memory appears to Hyper-V as a page of the size
96 * it expects.
97 */
98
99void *hv_alloc_hyperv_page(void)
100{
101	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE);
102
103	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
104		return (void *)__get_free_page(GFP_KERNEL);
105	else
106		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
107}
108EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
109
110void *hv_alloc_hyperv_zeroed_page(void)
111{
112	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
113		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
114	else
115		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
116}
117EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
118
119void hv_free_hyperv_page(void *addr)
120{
121	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
122		free_page((unsigned long)addr);
123	else
124		kfree(addr);
125}
126EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
127
128static void *hv_panic_page;
129
130/*
131 * Boolean to control whether to report panic messages over Hyper-V.
132 *
133 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
134 */
135static int sysctl_record_panic_msg = 1;
136
137/*
138 * sysctl option to allow the user to control whether kmsg data should be
139 * reported to Hyper-V on panic.
140 */
141static struct ctl_table hv_ctl_table[] = {
142	{
143		.procname	= "hyperv_record_panic_msg",
144		.data		= &sysctl_record_panic_msg,
145		.maxlen		= sizeof(int),
146		.mode		= 0644,
147		.proc_handler	= proc_dointvec_minmax,
148		.extra1		= SYSCTL_ZERO,
149		.extra2		= SYSCTL_ONE
150	},
151	{}
152};
153
154static int hv_die_panic_notify_crash(struct notifier_block *self,
155				     unsigned long val, void *args);
156
157static struct notifier_block hyperv_die_report_block = {
158	.notifier_call = hv_die_panic_notify_crash,
159};
160
161static struct notifier_block hyperv_panic_report_block = {
162	.notifier_call = hv_die_panic_notify_crash,
163};
164
165/*
166 * The following callback works both as die and panic notifier; its
167 * goal is to provide panic information to the hypervisor unless the
168 * kmsg dumper is used [see hv_kmsg_dump()], which provides more
169 * information but isn't always available.
170 *
171 * Notice that both the panic/die report notifiers are registered only
172 * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set.
173 */
174static int hv_die_panic_notify_crash(struct notifier_block *self,
175				     unsigned long val, void *args)
176{
177	struct pt_regs *regs;
178	bool is_die;
179
180	/* Don't notify Hyper-V unless we have a die oops event or panic. */
181	if (self == &hyperv_panic_report_block) {
182		is_die = false;
183		regs = current_pt_regs();
184	} else { /* die event */
185		if (val != DIE_OOPS)
186			return NOTIFY_DONE;
187
188		is_die = true;
189		regs = ((struct die_args *)args)->regs;
190	}
191
192	/*
193	 * Hyper-V should be notified only once about a panic/die. If we will
194	 * be calling hv_kmsg_dump() later with kmsg data, don't do the
195	 * notification here.
196	 */
197	if (!sysctl_record_panic_msg || !hv_panic_page)
198		hyperv_report_panic(regs, val, is_die);
199
200	return NOTIFY_DONE;
201}
202
203/*
204 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
205 * buffer and call into Hyper-V to transfer the data.
206 */
207static void hv_kmsg_dump(struct kmsg_dumper *dumper,
208			 enum kmsg_dump_reason reason)
209{
210	struct kmsg_dump_iter iter;
211	size_t bytes_written;
212
213	/* We are only interested in panics. */
214	if (reason != KMSG_DUMP_PANIC || !sysctl_record_panic_msg)
215		return;
216
217	/*
218	 * Write dump contents to the page. No need to synchronize; panic should
219	 * be single-threaded.
220	 */
221	kmsg_dump_rewind(&iter);
222	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
223			     &bytes_written);
224	if (!bytes_written)
225		return;
226	/*
227	 * P3 to contain the physical address of the panic page & P4 to
228	 * contain the size of the panic data in that page. Rest of the
229	 * registers are no-op when the NOTIFY_MSG flag is set.
230	 */
231	hv_set_register(HV_REGISTER_CRASH_P0, 0);
232	hv_set_register(HV_REGISTER_CRASH_P1, 0);
233	hv_set_register(HV_REGISTER_CRASH_P2, 0);
234	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
235	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
236
237	/*
238	 * Let Hyper-V know there is crash data available along with
239	 * the panic message.
240	 */
241	hv_set_register(HV_REGISTER_CRASH_CTL,
242			(HV_CRASH_CTL_CRASH_NOTIFY |
243			 HV_CRASH_CTL_CRASH_NOTIFY_MSG));
244}
245
246static struct kmsg_dumper hv_kmsg_dumper = {
247	.dump = hv_kmsg_dump,
248};
249
250static void hv_kmsg_dump_unregister(void)
251{
252	kmsg_dump_unregister(&hv_kmsg_dumper);
253	unregister_die_notifier(&hyperv_die_report_block);
254	atomic_notifier_chain_unregister(&panic_notifier_list,
255					 &hyperv_panic_report_block);
256
257	hv_free_hyperv_page(hv_panic_page);
258	hv_panic_page = NULL;
259}
260
261static void hv_kmsg_dump_register(void)
262{
263	int ret;
264
265	hv_panic_page = hv_alloc_hyperv_zeroed_page();
266	if (!hv_panic_page) {
267		pr_err("Hyper-V: panic message page memory allocation failed\n");
268		return;
269	}
270
271	ret = kmsg_dump_register(&hv_kmsg_dumper);
272	if (ret) {
273		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
274		hv_free_hyperv_page(hv_panic_page);
275		hv_panic_page = NULL;
276	}
277}
278
279int __init hv_common_init(void)
280{
281	int i;
282
283	if (hv_is_isolation_supported())
284		sysctl_record_panic_msg = 0;
285
286	/*
287	 * Hyper-V expects to get crash register data or kmsg when
288	 * crash enlightment is available and system crashes. Set
289	 * crash_kexec_post_notifiers to be true to make sure that
290	 * calling crash enlightment interface before running kdump
291	 * kernel.
292	 */
293	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
294		u64 hyperv_crash_ctl;
295
296		crash_kexec_post_notifiers = true;
297		pr_info("Hyper-V: enabling crash_kexec_post_notifiers\n");
298
299		/*
300		 * Panic message recording (sysctl_record_panic_msg)
301		 * is enabled by default in non-isolated guests and
302		 * disabled by default in isolated guests; the panic
303		 * message recording won't be available in isolated
304		 * guests should the following registration fail.
305		 */
306		hv_ctl_table_hdr = register_sysctl("kernel", hv_ctl_table);
307		if (!hv_ctl_table_hdr)
308			pr_err("Hyper-V: sysctl table register error");
309
310		/*
311		 * Register for panic kmsg callback only if the right
312		 * capability is supported by the hypervisor.
313		 */
314		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
315		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
316			hv_kmsg_dump_register();
317
318		register_die_notifier(&hyperv_die_report_block);
319		atomic_notifier_chain_register(&panic_notifier_list,
320					       &hyperv_panic_report_block);
321	}
322
323	/*
324	 * Allocate the per-CPU state for the hypercall input arg.
325	 * If this allocation fails, we will not be able to setup
326	 * (per-CPU) hypercall input page and thus this failure is
327	 * fatal on Hyper-V.
328	 */
329	hyperv_pcpu_input_arg = alloc_percpu(void  *);
330	BUG_ON(!hyperv_pcpu_input_arg);
331
332	/* Allocate the per-CPU state for output arg for root */
333	if (hv_root_partition) {
334		hyperv_pcpu_output_arg = alloc_percpu(void *);
335		BUG_ON(!hyperv_pcpu_output_arg);
336	}
337
338	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
339				    GFP_KERNEL);
340	if (!hv_vp_index) {
341		hv_common_free();
342		return -ENOMEM;
343	}
344
345	for (i = 0; i < num_possible_cpus(); i++)
346		hv_vp_index[i] = VP_INVAL;
347
348	return 0;
349}
350
351/*
352 * Hyper-V specific initialization and die code for
353 * individual CPUs that is common across all architectures.
354 * Called by the CPU hotplug mechanism.
355 */
356
357int hv_common_cpu_init(unsigned int cpu)
358{
359	void **inputarg, **outputarg;
360	u64 msr_vp_index;
361	gfp_t flags;
362	int pgcount = hv_root_partition ? 2 : 1;
363	void *mem;
364	int ret;
365
366	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
367	flags = irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL;
368
369	inputarg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
370
371	/*
372	 * hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory is already
373	 * allocated if this CPU was previously online and then taken offline
374	 */
375	if (!*inputarg) {
376		mem = kmalloc(pgcount * HV_HYP_PAGE_SIZE, flags);
377		if (!mem)
378			return -ENOMEM;
379
380		if (hv_root_partition) {
381			outputarg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg);
382			*outputarg = (char *)mem + HV_HYP_PAGE_SIZE;
383		}
384
385		if (!ms_hyperv.paravisor_present &&
386		    (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
387			ret = set_memory_decrypted((unsigned long)mem, pgcount);
388			if (ret) {
389				/* It may be unsafe to free 'mem' */
390				return ret;
391			}
392
393			memset(mem, 0x00, pgcount * HV_HYP_PAGE_SIZE);
394		}
395
396		/*
397		 * In a fully enlightened TDX/SNP VM with more than 64 VPs, if
398		 * hyperv_pcpu_input_arg is not NULL, set_memory_decrypted() ->
399		 * ... -> cpa_flush()-> ... -> __send_ipi_mask_ex() tries to
400		 * use hyperv_pcpu_input_arg as the hypercall input page, which
401		 * must be a decrypted page in such a VM, but the page is still
402		 * encrypted before set_memory_decrypted() returns. Fix this by
403		 * setting *inputarg after the above set_memory_decrypted(): if
404		 * hyperv_pcpu_input_arg is NULL, __send_ipi_mask_ex() returns
405		 * HV_STATUS_INVALID_PARAMETER immediately, and the function
406		 * hv_send_ipi_mask() falls back to orig_apic.send_IPI_mask(),
407		 * which may be slightly slower than the hypercall, but still
408		 * works correctly in such a VM.
409		 */
410		*inputarg = mem;
411	}
412
413	msr_vp_index = hv_get_register(HV_REGISTER_VP_INDEX);
414
415	hv_vp_index[cpu] = msr_vp_index;
416
417	if (msr_vp_index > hv_max_vp_index)
418		hv_max_vp_index = msr_vp_index;
419
420	return 0;
421}
422
423int hv_common_cpu_die(unsigned int cpu)
424{
425	/*
426	 * The hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory
427	 * is not freed when the CPU goes offline as the hyperv_pcpu_input_arg
428	 * may be used by the Hyper-V vPCI driver in reassigning interrupts
429	 * as part of the offlining process.  The interrupt reassignment
430	 * happens *after* the CPUHP_AP_HYPERV_ONLINE state has run and
431	 * called this function.
432	 *
433	 * If a previously offlined CPU is brought back online again, the
434	 * originally allocated memory is reused in hv_common_cpu_init().
435	 */
436
437	return 0;
438}
439
440/* Bit mask of the extended capability to query: see HV_EXT_CAPABILITY_xxx */
441bool hv_query_ext_cap(u64 cap_query)
442{
443	/*
444	 * The address of the 'hv_extended_cap' variable will be used as an
445	 * output parameter to the hypercall below and so it should be
446	 * compatible with 'virt_to_phys'. Which means, it's address should be
447	 * directly mapped. Use 'static' to keep it compatible; stack variables
448	 * can be virtually mapped, making them incompatible with
449	 * 'virt_to_phys'.
450	 * Hypercall input/output addresses should also be 8-byte aligned.
451	 */
452	static u64 hv_extended_cap __aligned(8);
453	static bool hv_extended_cap_queried;
454	u64 status;
455
456	/*
457	 * Querying extended capabilities is an extended hypercall. Check if the
458	 * partition supports extended hypercall, first.
459	 */
460	if (!(ms_hyperv.priv_high & HV_ENABLE_EXTENDED_HYPERCALLS))
461		return false;
462
463	/* Extended capabilities do not change at runtime. */
464	if (hv_extended_cap_queried)
465		return hv_extended_cap & cap_query;
466
467	status = hv_do_hypercall(HV_EXT_CALL_QUERY_CAPABILITIES, NULL,
468				 &hv_extended_cap);
469
470	/*
471	 * The query extended capabilities hypercall should not fail under
472	 * any normal circumstances. Avoid repeatedly making the hypercall, on
473	 * error.
474	 */
475	hv_extended_cap_queried = true;
476	if (!hv_result_success(status)) {
477		pr_err("Hyper-V: Extended query capabilities hypercall failed 0x%llx\n",
478		       status);
479		return false;
480	}
481
482	return hv_extended_cap & cap_query;
483}
484EXPORT_SYMBOL_GPL(hv_query_ext_cap);
485
486void hv_setup_dma_ops(struct device *dev, bool coherent)
487{
488	/*
489	 * Hyper-V does not offer a vIOMMU in the guest
490	 * VM, so pass 0/NULL for the IOMMU settings
491	 */
492	arch_setup_dma_ops(dev, 0, 0, NULL, coherent);
493}
494EXPORT_SYMBOL_GPL(hv_setup_dma_ops);
495
496bool hv_is_hibernation_supported(void)
497{
498	return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4);
499}
500EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);
501
502/*
503 * Default function to read the Hyper-V reference counter, independent
504 * of whether Hyper-V enlightened clocks/timers are being used. But on
505 * architectures where it is used, Hyper-V enlightenment code in
506 * hyperv_timer.c may override this function.
507 */
508static u64 __hv_read_ref_counter(void)
509{
510	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
511}
512
513u64 (*hv_read_reference_counter)(void) = __hv_read_ref_counter;
514EXPORT_SYMBOL_GPL(hv_read_reference_counter);
515
516/* These __weak functions provide default "no-op" behavior and
517 * may be overridden by architecture specific versions. Architectures
518 * for which the default "no-op" behavior is sufficient can leave
519 * them unimplemented and not be cluttered with a bunch of stub
520 * functions in arch-specific code.
521 */
522
523bool __weak hv_is_isolation_supported(void)
524{
525	return false;
526}
527EXPORT_SYMBOL_GPL(hv_is_isolation_supported);
528
529bool __weak hv_isolation_type_snp(void)
530{
531	return false;
532}
533EXPORT_SYMBOL_GPL(hv_isolation_type_snp);
534
535bool __weak hv_isolation_type_tdx(void)
536{
537	return false;
538}
539EXPORT_SYMBOL_GPL(hv_isolation_type_tdx);
540
541void __weak hv_setup_vmbus_handler(void (*handler)(void))
542{
543}
544EXPORT_SYMBOL_GPL(hv_setup_vmbus_handler);
545
546void __weak hv_remove_vmbus_handler(void)
547{
548}
549EXPORT_SYMBOL_GPL(hv_remove_vmbus_handler);
550
551void __weak hv_setup_kexec_handler(void (*handler)(void))
552{
553}
554EXPORT_SYMBOL_GPL(hv_setup_kexec_handler);
555
556void __weak hv_remove_kexec_handler(void)
557{
558}
559EXPORT_SYMBOL_GPL(hv_remove_kexec_handler);
560
561void __weak hv_setup_crash_handler(void (*handler)(struct pt_regs *regs))
562{
563}
564EXPORT_SYMBOL_GPL(hv_setup_crash_handler);
565
566void __weak hv_remove_crash_handler(void)
567{
568}
569EXPORT_SYMBOL_GPL(hv_remove_crash_handler);
570
571void __weak hyperv_cleanup(void)
572{
573}
574EXPORT_SYMBOL_GPL(hyperv_cleanup);
575
576u64 __weak hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size)
577{
578	return HV_STATUS_INVALID_PARAMETER;
579}
580EXPORT_SYMBOL_GPL(hv_ghcb_hypercall);
581
582u64 __weak hv_tdx_hypercall(u64 control, u64 param1, u64 param2)
583{
584	return HV_STATUS_INVALID_PARAMETER;
585}
586EXPORT_SYMBOL_GPL(hv_tdx_hypercall);
587