1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Greybus operations
4 *
5 * Copyright 2014-2015 Google Inc.
6 * Copyright 2014-2015 Linaro Ltd.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/wait.h>
14#include <linux/workqueue.h>
15#include <linux/greybus.h>
16
17#include "greybus_trace.h"
18
19static struct kmem_cache *gb_operation_cache;
20static struct kmem_cache *gb_message_cache;
21
22/* Workqueue to handle Greybus operation completions. */
23static struct workqueue_struct *gb_operation_completion_wq;
24
25/* Wait queue for synchronous cancellations. */
26static DECLARE_WAIT_QUEUE_HEAD(gb_operation_cancellation_queue);
27
28/*
29 * Protects updates to operation->errno.
30 */
31static DEFINE_SPINLOCK(gb_operations_lock);
32
33static int gb_operation_response_send(struct gb_operation *operation,
34				      int errno);
35
36/*
37 * Increment operation active count and add to connection list unless the
38 * connection is going away.
39 *
40 * Caller holds operation reference.
41 */
42static int gb_operation_get_active(struct gb_operation *operation)
43{
44	struct gb_connection *connection = operation->connection;
45	unsigned long flags;
46
47	spin_lock_irqsave(&connection->lock, flags);
48	switch (connection->state) {
49	case GB_CONNECTION_STATE_ENABLED:
50		break;
51	case GB_CONNECTION_STATE_ENABLED_TX:
52		if (gb_operation_is_incoming(operation))
53			goto err_unlock;
54		break;
55	case GB_CONNECTION_STATE_DISCONNECTING:
56		if (!gb_operation_is_core(operation))
57			goto err_unlock;
58		break;
59	default:
60		goto err_unlock;
61	}
62
63	if (operation->active++ == 0)
64		list_add_tail(&operation->links, &connection->operations);
65
66	trace_gb_operation_get_active(operation);
67
68	spin_unlock_irqrestore(&connection->lock, flags);
69
70	return 0;
71
72err_unlock:
73	spin_unlock_irqrestore(&connection->lock, flags);
74
75	return -ENOTCONN;
76}
77
78/* Caller holds operation reference. */
79static void gb_operation_put_active(struct gb_operation *operation)
80{
81	struct gb_connection *connection = operation->connection;
82	unsigned long flags;
83
84	spin_lock_irqsave(&connection->lock, flags);
85
86	trace_gb_operation_put_active(operation);
87
88	if (--operation->active == 0) {
89		list_del(&operation->links);
90		if (atomic_read(&operation->waiters))
91			wake_up(&gb_operation_cancellation_queue);
92	}
93	spin_unlock_irqrestore(&connection->lock, flags);
94}
95
96static bool gb_operation_is_active(struct gb_operation *operation)
97{
98	struct gb_connection *connection = operation->connection;
99	unsigned long flags;
100	bool ret;
101
102	spin_lock_irqsave(&connection->lock, flags);
103	ret = operation->active;
104	spin_unlock_irqrestore(&connection->lock, flags);
105
106	return ret;
107}
108
109/*
110 * Set an operation's result.
111 *
112 * Initially an outgoing operation's errno value is -EBADR.
113 * If no error occurs before sending the request message the only
114 * valid value operation->errno can be set to is -EINPROGRESS,
115 * indicating the request has been (or rather is about to be) sent.
116 * At that point nobody should be looking at the result until the
117 * response arrives.
118 *
119 * The first time the result gets set after the request has been
120 * sent, that result "sticks."  That is, if two concurrent threads
121 * race to set the result, the first one wins.  The return value
122 * tells the caller whether its result was recorded; if not the
123 * caller has nothing more to do.
124 *
125 * The result value -EILSEQ is reserved to signal an implementation
126 * error; if it's ever observed, the code performing the request has
127 * done something fundamentally wrong.  It is an error to try to set
128 * the result to -EBADR, and attempts to do so result in a warning,
129 * and -EILSEQ is used instead.  Similarly, the only valid result
130 * value to set for an operation in initial state is -EINPROGRESS.
131 * Attempts to do otherwise will also record a (successful) -EILSEQ
132 * operation result.
133 */
134static bool gb_operation_result_set(struct gb_operation *operation, int result)
135{
136	unsigned long flags;
137	int prev;
138
139	if (result == -EINPROGRESS) {
140		/*
141		 * -EINPROGRESS is used to indicate the request is
142		 * in flight.  It should be the first result value
143		 * set after the initial -EBADR.  Issue a warning
144		 * and record an implementation error if it's
145		 * set at any other time.
146		 */
147		spin_lock_irqsave(&gb_operations_lock, flags);
148		prev = operation->errno;
149		if (prev == -EBADR)
150			operation->errno = result;
151		else
152			operation->errno = -EILSEQ;
153		spin_unlock_irqrestore(&gb_operations_lock, flags);
154		WARN_ON(prev != -EBADR);
155
156		return true;
157	}
158
159	/*
160	 * The first result value set after a request has been sent
161	 * will be the final result of the operation.  Subsequent
162	 * attempts to set the result are ignored.
163	 *
164	 * Note that -EBADR is a reserved "initial state" result
165	 * value.  Attempts to set this value result in a warning,
166	 * and the result code is set to -EILSEQ instead.
167	 */
168	if (WARN_ON(result == -EBADR))
169		result = -EILSEQ; /* Nobody should be setting -EBADR */
170
171	spin_lock_irqsave(&gb_operations_lock, flags);
172	prev = operation->errno;
173	if (prev == -EINPROGRESS)
174		operation->errno = result;	/* First and final result */
175	spin_unlock_irqrestore(&gb_operations_lock, flags);
176
177	return prev == -EINPROGRESS;
178}
179
180int gb_operation_result(struct gb_operation *operation)
181{
182	int result = operation->errno;
183
184	WARN_ON(result == -EBADR);
185	WARN_ON(result == -EINPROGRESS);
186
187	return result;
188}
189EXPORT_SYMBOL_GPL(gb_operation_result);
190
191/*
192 * Looks up an outgoing operation on a connection and returns a refcounted
193 * pointer if found, or NULL otherwise.
194 */
195static struct gb_operation *
196gb_operation_find_outgoing(struct gb_connection *connection, u16 operation_id)
197{
198	struct gb_operation *operation;
199	unsigned long flags;
200	bool found = false;
201
202	spin_lock_irqsave(&connection->lock, flags);
203	list_for_each_entry(operation, &connection->operations, links)
204		if (operation->id == operation_id &&
205		    !gb_operation_is_incoming(operation)) {
206			gb_operation_get(operation);
207			found = true;
208			break;
209		}
210	spin_unlock_irqrestore(&connection->lock, flags);
211
212	return found ? operation : NULL;
213}
214
215static int gb_message_send(struct gb_message *message, gfp_t gfp)
216{
217	struct gb_connection *connection = message->operation->connection;
218
219	trace_gb_message_send(message);
220	return connection->hd->driver->message_send(connection->hd,
221					connection->hd_cport_id,
222					message,
223					gfp);
224}
225
226/*
227 * Cancel a message we have passed to the host device layer to be sent.
228 */
229static void gb_message_cancel(struct gb_message *message)
230{
231	struct gb_host_device *hd = message->operation->connection->hd;
232
233	hd->driver->message_cancel(message);
234}
235
236static void gb_operation_request_handle(struct gb_operation *operation)
237{
238	struct gb_connection *connection = operation->connection;
239	int status;
240	int ret;
241
242	if (connection->handler) {
243		status = connection->handler(operation);
244	} else {
245		dev_err(&connection->hd->dev,
246			"%s: unexpected incoming request of type 0x%02x\n",
247			connection->name, operation->type);
248
249		status = -EPROTONOSUPPORT;
250	}
251
252	ret = gb_operation_response_send(operation, status);
253	if (ret) {
254		dev_err(&connection->hd->dev,
255			"%s: failed to send response %d for type 0x%02x: %d\n",
256			connection->name, status, operation->type, ret);
257		return;
258	}
259}
260
261/*
262 * Process operation work.
263 *
264 * For incoming requests, call the protocol request handler. The operation
265 * result should be -EINPROGRESS at this point.
266 *
267 * For outgoing requests, the operation result value should have
268 * been set before queueing this.  The operation callback function
269 * allows the original requester to know the request has completed
270 * and its result is available.
271 */
272static void gb_operation_work(struct work_struct *work)
273{
274	struct gb_operation *operation;
275	int ret;
276
277	operation = container_of(work, struct gb_operation, work);
278
279	if (gb_operation_is_incoming(operation)) {
280		gb_operation_request_handle(operation);
281	} else {
282		ret = del_timer_sync(&operation->timer);
283		if (!ret) {
284			/* Cancel request message if scheduled by timeout. */
285			if (gb_operation_result(operation) == -ETIMEDOUT)
286				gb_message_cancel(operation->request);
287		}
288
289		operation->callback(operation);
290	}
291
292	gb_operation_put_active(operation);
293	gb_operation_put(operation);
294}
295
296static void gb_operation_timeout(struct timer_list *t)
297{
298	struct gb_operation *operation = from_timer(operation, t, timer);
299
300	if (gb_operation_result_set(operation, -ETIMEDOUT)) {
301		/*
302		 * A stuck request message will be cancelled from the
303		 * workqueue.
304		 */
305		queue_work(gb_operation_completion_wq, &operation->work);
306	}
307}
308
309static void gb_operation_message_init(struct gb_host_device *hd,
310				      struct gb_message *message,
311				      u16 operation_id,
312				      size_t payload_size, u8 type)
313{
314	struct gb_operation_msg_hdr *header;
315
316	header = message->buffer;
317
318	message->header = header;
319	message->payload = payload_size ? header + 1 : NULL;
320	message->payload_size = payload_size;
321
322	/*
323	 * The type supplied for incoming message buffers will be
324	 * GB_REQUEST_TYPE_INVALID. Such buffers will be overwritten by
325	 * arriving data so there's no need to initialize the message header.
326	 */
327	if (type != GB_REQUEST_TYPE_INVALID) {
328		u16 message_size = (u16)(sizeof(*header) + payload_size);
329
330		/*
331		 * For a request, the operation id gets filled in
332		 * when the message is sent.  For a response, it
333		 * will be copied from the request by the caller.
334		 *
335		 * The result field in a request message must be
336		 * zero.  It will be set just prior to sending for
337		 * a response.
338		 */
339		header->size = cpu_to_le16(message_size);
340		header->operation_id = 0;
341		header->type = type;
342		header->result = 0;
343	}
344}
345
346/*
347 * Allocate a message to be used for an operation request or response.
348 * Both types of message contain a common header.  The request message
349 * for an outgoing operation is outbound, as is the response message
350 * for an incoming operation.  The message header for an outbound
351 * message is partially initialized here.
352 *
353 * The headers for inbound messages don't need to be initialized;
354 * they'll be filled in by arriving data.
355 *
356 * Our message buffers have the following layout:
357 *	message header  \_ these combined are
358 *	message payload /  the message size
359 */
360static struct gb_message *
361gb_operation_message_alloc(struct gb_host_device *hd, u8 type,
362			   size_t payload_size, gfp_t gfp_flags)
363{
364	struct gb_message *message;
365	struct gb_operation_msg_hdr *header;
366	size_t message_size = payload_size + sizeof(*header);
367
368	if (message_size > hd->buffer_size_max) {
369		dev_warn(&hd->dev, "requested message size too big (%zu > %zu)\n",
370			 message_size, hd->buffer_size_max);
371		return NULL;
372	}
373
374	/* Allocate the message structure and buffer. */
375	message = kmem_cache_zalloc(gb_message_cache, gfp_flags);
376	if (!message)
377		return NULL;
378
379	message->buffer = kzalloc(message_size, gfp_flags);
380	if (!message->buffer)
381		goto err_free_message;
382
383	/* Initialize the message.  Operation id is filled in later. */
384	gb_operation_message_init(hd, message, 0, payload_size, type);
385
386	return message;
387
388err_free_message:
389	kmem_cache_free(gb_message_cache, message);
390
391	return NULL;
392}
393
394static void gb_operation_message_free(struct gb_message *message)
395{
396	kfree(message->buffer);
397	kmem_cache_free(gb_message_cache, message);
398}
399
400/*
401 * Map an enum gb_operation_status value (which is represented in a
402 * message as a single byte) to an appropriate Linux negative errno.
403 */
404static int gb_operation_status_map(u8 status)
405{
406	switch (status) {
407	case GB_OP_SUCCESS:
408		return 0;
409	case GB_OP_INTERRUPTED:
410		return -EINTR;
411	case GB_OP_TIMEOUT:
412		return -ETIMEDOUT;
413	case GB_OP_NO_MEMORY:
414		return -ENOMEM;
415	case GB_OP_PROTOCOL_BAD:
416		return -EPROTONOSUPPORT;
417	case GB_OP_OVERFLOW:
418		return -EMSGSIZE;
419	case GB_OP_INVALID:
420		return -EINVAL;
421	case GB_OP_RETRY:
422		return -EAGAIN;
423	case GB_OP_NONEXISTENT:
424		return -ENODEV;
425	case GB_OP_MALFUNCTION:
426		return -EILSEQ;
427	case GB_OP_UNKNOWN_ERROR:
428	default:
429		return -EIO;
430	}
431}
432
433/*
434 * Map a Linux errno value (from operation->errno) into the value
435 * that should represent it in a response message status sent
436 * over the wire.  Returns an enum gb_operation_status value (which
437 * is represented in a message as a single byte).
438 */
439static u8 gb_operation_errno_map(int errno)
440{
441	switch (errno) {
442	case 0:
443		return GB_OP_SUCCESS;
444	case -EINTR:
445		return GB_OP_INTERRUPTED;
446	case -ETIMEDOUT:
447		return GB_OP_TIMEOUT;
448	case -ENOMEM:
449		return GB_OP_NO_MEMORY;
450	case -EPROTONOSUPPORT:
451		return GB_OP_PROTOCOL_BAD;
452	case -EMSGSIZE:
453		return GB_OP_OVERFLOW;	/* Could be underflow too */
454	case -EINVAL:
455		return GB_OP_INVALID;
456	case -EAGAIN:
457		return GB_OP_RETRY;
458	case -EILSEQ:
459		return GB_OP_MALFUNCTION;
460	case -ENODEV:
461		return GB_OP_NONEXISTENT;
462	case -EIO:
463	default:
464		return GB_OP_UNKNOWN_ERROR;
465	}
466}
467
468bool gb_operation_response_alloc(struct gb_operation *operation,
469				 size_t response_size, gfp_t gfp)
470{
471	struct gb_host_device *hd = operation->connection->hd;
472	struct gb_operation_msg_hdr *request_header;
473	struct gb_message *response;
474	u8 type;
475
476	type = operation->type | GB_MESSAGE_TYPE_RESPONSE;
477	response = gb_operation_message_alloc(hd, type, response_size, gfp);
478	if (!response)
479		return false;
480	response->operation = operation;
481
482	/*
483	 * Size and type get initialized when the message is
484	 * allocated.  The errno will be set before sending.  All
485	 * that's left is the operation id, which we copy from the
486	 * request message header (as-is, in little-endian order).
487	 */
488	request_header = operation->request->header;
489	response->header->operation_id = request_header->operation_id;
490	operation->response = response;
491
492	return true;
493}
494EXPORT_SYMBOL_GPL(gb_operation_response_alloc);
495
496/*
497 * Create a Greybus operation to be sent over the given connection.
498 * The request buffer will be big enough for a payload of the given
499 * size.
500 *
501 * For outgoing requests, the request message's header will be
502 * initialized with the type of the request and the message size.
503 * Outgoing operations must also specify the response buffer size,
504 * which must be sufficient to hold all expected response data.  The
505 * response message header will eventually be overwritten, so there's
506 * no need to initialize it here.
507 *
508 * Request messages for incoming operations can arrive in interrupt
509 * context, so they must be allocated with GFP_ATOMIC.  In this case
510 * the request buffer will be immediately overwritten, so there is
511 * no need to initialize the message header.  Responsibility for
512 * allocating a response buffer lies with the incoming request
513 * handler for a protocol.  So we don't allocate that here.
514 *
515 * Returns a pointer to the new operation or a null pointer if an
516 * error occurs.
517 */
518static struct gb_operation *
519gb_operation_create_common(struct gb_connection *connection, u8 type,
520			   size_t request_size, size_t response_size,
521			   unsigned long op_flags, gfp_t gfp_flags)
522{
523	struct gb_host_device *hd = connection->hd;
524	struct gb_operation *operation;
525
526	operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
527	if (!operation)
528		return NULL;
529	operation->connection = connection;
530
531	operation->request = gb_operation_message_alloc(hd, type, request_size,
532							gfp_flags);
533	if (!operation->request)
534		goto err_cache;
535	operation->request->operation = operation;
536
537	/* Allocate the response buffer for outgoing operations */
538	if (!(op_flags & GB_OPERATION_FLAG_INCOMING)) {
539		if (!gb_operation_response_alloc(operation, response_size,
540						 gfp_flags)) {
541			goto err_request;
542		}
543
544		timer_setup(&operation->timer, gb_operation_timeout, 0);
545	}
546
547	operation->flags = op_flags;
548	operation->type = type;
549	operation->errno = -EBADR;  /* Initial value--means "never set" */
550
551	INIT_WORK(&operation->work, gb_operation_work);
552	init_completion(&operation->completion);
553	kref_init(&operation->kref);
554	atomic_set(&operation->waiters, 0);
555
556	return operation;
557
558err_request:
559	gb_operation_message_free(operation->request);
560err_cache:
561	kmem_cache_free(gb_operation_cache, operation);
562
563	return NULL;
564}
565
566/*
567 * Create a new operation associated with the given connection.  The
568 * request and response sizes provided are the number of bytes
569 * required to hold the request/response payload only.  Both of
570 * these are allowed to be 0.  Note that 0x00 is reserved as an
571 * invalid operation type for all protocols, and this is enforced
572 * here.
573 */
574struct gb_operation *
575gb_operation_create_flags(struct gb_connection *connection,
576			  u8 type, size_t request_size,
577			  size_t response_size, unsigned long flags,
578			  gfp_t gfp)
579{
580	struct gb_operation *operation;
581
582	if (WARN_ON_ONCE(type == GB_REQUEST_TYPE_INVALID))
583		return NULL;
584	if (WARN_ON_ONCE(type & GB_MESSAGE_TYPE_RESPONSE))
585		type &= ~GB_MESSAGE_TYPE_RESPONSE;
586
587	if (WARN_ON_ONCE(flags & ~GB_OPERATION_FLAG_USER_MASK))
588		flags &= GB_OPERATION_FLAG_USER_MASK;
589
590	operation = gb_operation_create_common(connection, type,
591					       request_size, response_size,
592					       flags, gfp);
593	if (operation)
594		trace_gb_operation_create(operation);
595
596	return operation;
597}
598EXPORT_SYMBOL_GPL(gb_operation_create_flags);
599
600struct gb_operation *
601gb_operation_create_core(struct gb_connection *connection,
602			 u8 type, size_t request_size,
603			 size_t response_size, unsigned long flags,
604			 gfp_t gfp)
605{
606	struct gb_operation *operation;
607
608	flags |= GB_OPERATION_FLAG_CORE;
609
610	operation = gb_operation_create_common(connection, type,
611					       request_size, response_size,
612					       flags, gfp);
613	if (operation)
614		trace_gb_operation_create_core(operation);
615
616	return operation;
617}
618
619/* Do not export this function. */
620
621size_t gb_operation_get_payload_size_max(struct gb_connection *connection)
622{
623	struct gb_host_device *hd = connection->hd;
624
625	return hd->buffer_size_max - sizeof(struct gb_operation_msg_hdr);
626}
627EXPORT_SYMBOL_GPL(gb_operation_get_payload_size_max);
628
629static struct gb_operation *
630gb_operation_create_incoming(struct gb_connection *connection, u16 id,
631			     u8 type, void *data, size_t size)
632{
633	struct gb_operation *operation;
634	size_t request_size;
635	unsigned long flags = GB_OPERATION_FLAG_INCOMING;
636
637	/* Caller has made sure we at least have a message header. */
638	request_size = size - sizeof(struct gb_operation_msg_hdr);
639
640	if (!id)
641		flags |= GB_OPERATION_FLAG_UNIDIRECTIONAL;
642
643	operation = gb_operation_create_common(connection, type,
644					       request_size,
645					       GB_REQUEST_TYPE_INVALID,
646					       flags, GFP_ATOMIC);
647	if (!operation)
648		return NULL;
649
650	operation->id = id;
651	memcpy(operation->request->header, data, size);
652	trace_gb_operation_create_incoming(operation);
653
654	return operation;
655}
656
657/*
658 * Get an additional reference on an operation.
659 */
660void gb_operation_get(struct gb_operation *operation)
661{
662	kref_get(&operation->kref);
663}
664EXPORT_SYMBOL_GPL(gb_operation_get);
665
666/*
667 * Destroy a previously created operation.
668 */
669static void _gb_operation_destroy(struct kref *kref)
670{
671	struct gb_operation *operation;
672
673	operation = container_of(kref, struct gb_operation, kref);
674
675	trace_gb_operation_destroy(operation);
676
677	if (operation->response)
678		gb_operation_message_free(operation->response);
679	gb_operation_message_free(operation->request);
680
681	kmem_cache_free(gb_operation_cache, operation);
682}
683
684/*
685 * Drop a reference on an operation, and destroy it when the last
686 * one is gone.
687 */
688void gb_operation_put(struct gb_operation *operation)
689{
690	if (WARN_ON(!operation))
691		return;
692
693	kref_put(&operation->kref, _gb_operation_destroy);
694}
695EXPORT_SYMBOL_GPL(gb_operation_put);
696
697/* Tell the requester we're done */
698static void gb_operation_sync_callback(struct gb_operation *operation)
699{
700	complete(&operation->completion);
701}
702
703/**
704 * gb_operation_request_send() - send an operation request message
705 * @operation:	the operation to initiate
706 * @callback:	the operation completion callback
707 * @timeout:	operation timeout in milliseconds, or zero for no timeout
708 * @gfp:	the memory flags to use for any allocations
709 *
710 * The caller has filled in any payload so the request message is ready to go.
711 * The callback function supplied will be called when the response message has
712 * arrived, a unidirectional request has been sent, or the operation is
713 * cancelled, indicating that the operation is complete. The callback function
714 * can fetch the result of the operation using gb_operation_result() if
715 * desired.
716 *
717 * Return: 0 if the request was successfully queued in the host-driver queues,
718 * or a negative errno.
719 */
720int gb_operation_request_send(struct gb_operation *operation,
721			      gb_operation_callback callback,
722			      unsigned int timeout,
723			      gfp_t gfp)
724{
725	struct gb_connection *connection = operation->connection;
726	struct gb_operation_msg_hdr *header;
727	unsigned int cycle;
728	int ret;
729
730	if (gb_connection_is_offloaded(connection))
731		return -EBUSY;
732
733	if (!callback)
734		return -EINVAL;
735
736	/*
737	 * Record the callback function, which is executed in
738	 * non-atomic (workqueue) context when the final result
739	 * of an operation has been set.
740	 */
741	operation->callback = callback;
742
743	/*
744	 * Assign the operation's id, and store it in the request header.
745	 * Zero is a reserved operation id for unidirectional operations.
746	 */
747	if (gb_operation_is_unidirectional(operation)) {
748		operation->id = 0;
749	} else {
750		cycle = (unsigned int)atomic_inc_return(&connection->op_cycle);
751		operation->id = (u16)(cycle % U16_MAX + 1);
752	}
753
754	header = operation->request->header;
755	header->operation_id = cpu_to_le16(operation->id);
756
757	gb_operation_result_set(operation, -EINPROGRESS);
758
759	/*
760	 * Get an extra reference on the operation. It'll be dropped when the
761	 * operation completes.
762	 */
763	gb_operation_get(operation);
764	ret = gb_operation_get_active(operation);
765	if (ret)
766		goto err_put;
767
768	ret = gb_message_send(operation->request, gfp);
769	if (ret)
770		goto err_put_active;
771
772	if (timeout) {
773		operation->timer.expires = jiffies + msecs_to_jiffies(timeout);
774		add_timer(&operation->timer);
775	}
776
777	return 0;
778
779err_put_active:
780	gb_operation_put_active(operation);
781err_put:
782	gb_operation_put(operation);
783
784	return ret;
785}
786EXPORT_SYMBOL_GPL(gb_operation_request_send);
787
788/*
789 * Send a synchronous operation.  This function is expected to
790 * block, returning only when the response has arrived, (or when an
791 * error is detected.  The return value is the result of the
792 * operation.
793 */
794int gb_operation_request_send_sync_timeout(struct gb_operation *operation,
795					   unsigned int timeout)
796{
797	int ret;
798
799	ret = gb_operation_request_send(operation, gb_operation_sync_callback,
800					timeout, GFP_KERNEL);
801	if (ret)
802		return ret;
803
804	ret = wait_for_completion_interruptible(&operation->completion);
805	if (ret < 0) {
806		/* Cancel the operation if interrupted */
807		gb_operation_cancel(operation, -ECANCELED);
808	}
809
810	return gb_operation_result(operation);
811}
812EXPORT_SYMBOL_GPL(gb_operation_request_send_sync_timeout);
813
814/*
815 * Send a response for an incoming operation request.  A non-zero
816 * errno indicates a failed operation.
817 *
818 * If there is any response payload, the incoming request handler is
819 * responsible for allocating the response message.  Otherwise the
820 * it can simply supply the result errno; this function will
821 * allocate the response message if necessary.
822 */
823static int gb_operation_response_send(struct gb_operation *operation,
824				      int errno)
825{
826	struct gb_connection *connection = operation->connection;
827	int ret;
828
829	if (!operation->response &&
830	    !gb_operation_is_unidirectional(operation)) {
831		if (!gb_operation_response_alloc(operation, 0, GFP_KERNEL))
832			return -ENOMEM;
833	}
834
835	/* Record the result */
836	if (!gb_operation_result_set(operation, errno)) {
837		dev_err(&connection->hd->dev, "request result already set\n");
838		return -EIO;	/* Shouldn't happen */
839	}
840
841	/* Sender of request does not care about response. */
842	if (gb_operation_is_unidirectional(operation))
843		return 0;
844
845	/* Reference will be dropped when message has been sent. */
846	gb_operation_get(operation);
847	ret = gb_operation_get_active(operation);
848	if (ret)
849		goto err_put;
850
851	/* Fill in the response header and send it */
852	operation->response->header->result = gb_operation_errno_map(errno);
853
854	ret = gb_message_send(operation->response, GFP_KERNEL);
855	if (ret)
856		goto err_put_active;
857
858	return 0;
859
860err_put_active:
861	gb_operation_put_active(operation);
862err_put:
863	gb_operation_put(operation);
864
865	return ret;
866}
867
868/*
869 * This function is called when a message send request has completed.
870 */
871void greybus_message_sent(struct gb_host_device *hd,
872			  struct gb_message *message, int status)
873{
874	struct gb_operation *operation = message->operation;
875	struct gb_connection *connection = operation->connection;
876
877	/*
878	 * If the message was a response, we just need to drop our
879	 * reference to the operation.  If an error occurred, report
880	 * it.
881	 *
882	 * For requests, if there's no error and the operation in not
883	 * unidirectional, there's nothing more to do until the response
884	 * arrives. If an error occurred attempting to send it, or if the
885	 * operation is unidrectional, record the result of the operation and
886	 * schedule its completion.
887	 */
888	if (message == operation->response) {
889		if (status) {
890			dev_err(&connection->hd->dev,
891				"%s: error sending response 0x%02x: %d\n",
892				connection->name, operation->type, status);
893		}
894
895		gb_operation_put_active(operation);
896		gb_operation_put(operation);
897	} else if (status || gb_operation_is_unidirectional(operation)) {
898		if (gb_operation_result_set(operation, status)) {
899			queue_work(gb_operation_completion_wq,
900				   &operation->work);
901		}
902	}
903}
904EXPORT_SYMBOL_GPL(greybus_message_sent);
905
906/*
907 * We've received data on a connection, and it doesn't look like a
908 * response, so we assume it's a request.
909 *
910 * This is called in interrupt context, so just copy the incoming
911 * data into the request buffer and handle the rest via workqueue.
912 */
913static void gb_connection_recv_request(struct gb_connection *connection,
914				const struct gb_operation_msg_hdr *header,
915				void *data, size_t size)
916{
917	struct gb_operation *operation;
918	u16 operation_id;
919	u8 type;
920	int ret;
921
922	operation_id = le16_to_cpu(header->operation_id);
923	type = header->type;
924
925	operation = gb_operation_create_incoming(connection, operation_id,
926						 type, data, size);
927	if (!operation) {
928		dev_err(&connection->hd->dev,
929			"%s: can't create incoming operation\n",
930			connection->name);
931		return;
932	}
933
934	ret = gb_operation_get_active(operation);
935	if (ret) {
936		gb_operation_put(operation);
937		return;
938	}
939	trace_gb_message_recv_request(operation->request);
940
941	/*
942	 * The initial reference to the operation will be dropped when the
943	 * request handler returns.
944	 */
945	if (gb_operation_result_set(operation, -EINPROGRESS))
946		queue_work(connection->wq, &operation->work);
947}
948
949/*
950 * We've received data that appears to be an operation response
951 * message.  Look up the operation, and record that we've received
952 * its response.
953 *
954 * This is called in interrupt context, so just copy the incoming
955 * data into the response buffer and handle the rest via workqueue.
956 */
957static void gb_connection_recv_response(struct gb_connection *connection,
958				const struct gb_operation_msg_hdr *header,
959				void *data, size_t size)
960{
961	struct gb_operation *operation;
962	struct gb_message *message;
963	size_t message_size;
964	u16 operation_id;
965	int errno;
966
967	operation_id = le16_to_cpu(header->operation_id);
968
969	if (!operation_id) {
970		dev_err_ratelimited(&connection->hd->dev,
971				    "%s: invalid response id 0 received\n",
972				    connection->name);
973		return;
974	}
975
976	operation = gb_operation_find_outgoing(connection, operation_id);
977	if (!operation) {
978		dev_err_ratelimited(&connection->hd->dev,
979				    "%s: unexpected response id 0x%04x received\n",
980				    connection->name, operation_id);
981		return;
982	}
983
984	errno = gb_operation_status_map(header->result);
985	message = operation->response;
986	message_size = sizeof(*header) + message->payload_size;
987	if (!errno && size > message_size) {
988		dev_err_ratelimited(&connection->hd->dev,
989				    "%s: malformed response 0x%02x received (%zu > %zu)\n",
990				    connection->name, header->type,
991				    size, message_size);
992		errno = -EMSGSIZE;
993	} else if (!errno && size < message_size) {
994		if (gb_operation_short_response_allowed(operation)) {
995			message->payload_size = size - sizeof(*header);
996		} else {
997			dev_err_ratelimited(&connection->hd->dev,
998					    "%s: short response 0x%02x received (%zu < %zu)\n",
999					    connection->name, header->type,
1000					    size, message_size);
1001			errno = -EMSGSIZE;
1002		}
1003	}
1004
1005	/* We must ignore the payload if a bad status is returned */
1006	if (errno)
1007		size = sizeof(*header);
1008
1009	/* The rest will be handled in work queue context */
1010	if (gb_operation_result_set(operation, errno)) {
1011		memcpy(message->buffer, data, size);
1012
1013		trace_gb_message_recv_response(message);
1014
1015		queue_work(gb_operation_completion_wq, &operation->work);
1016	}
1017
1018	gb_operation_put(operation);
1019}
1020
1021/*
1022 * Handle data arriving on a connection.  As soon as we return the
1023 * supplied data buffer will be reused (so unless we do something
1024 * with, it's effectively dropped).
1025 */
1026void gb_connection_recv(struct gb_connection *connection,
1027			void *data, size_t size)
1028{
1029	struct gb_operation_msg_hdr header;
1030	struct device *dev = &connection->hd->dev;
1031	size_t msg_size;
1032
1033	if (connection->state == GB_CONNECTION_STATE_DISABLED ||
1034	    gb_connection_is_offloaded(connection)) {
1035		dev_warn_ratelimited(dev, "%s: dropping %zu received bytes\n",
1036				     connection->name, size);
1037		return;
1038	}
1039
1040	if (size < sizeof(header)) {
1041		dev_err_ratelimited(dev, "%s: short message received\n",
1042				    connection->name);
1043		return;
1044	}
1045
1046	/* Use memcpy as data may be unaligned */
1047	memcpy(&header, data, sizeof(header));
1048	msg_size = le16_to_cpu(header.size);
1049	if (size < msg_size) {
1050		dev_err_ratelimited(dev,
1051				    "%s: incomplete message 0x%04x of type 0x%02x received (%zu < %zu)\n",
1052				    connection->name,
1053				    le16_to_cpu(header.operation_id),
1054				    header.type, size, msg_size);
1055		return;		/* XXX Should still complete operation */
1056	}
1057
1058	if (header.type & GB_MESSAGE_TYPE_RESPONSE) {
1059		gb_connection_recv_response(connection,	&header, data,
1060					    msg_size);
1061	} else {
1062		gb_connection_recv_request(connection, &header, data,
1063					   msg_size);
1064	}
1065}
1066
1067/*
1068 * Cancel an outgoing operation synchronously, and record the given error to
1069 * indicate why.
1070 */
1071void gb_operation_cancel(struct gb_operation *operation, int errno)
1072{
1073	if (WARN_ON(gb_operation_is_incoming(operation)))
1074		return;
1075
1076	if (gb_operation_result_set(operation, errno)) {
1077		gb_message_cancel(operation->request);
1078		queue_work(gb_operation_completion_wq, &operation->work);
1079	}
1080	trace_gb_message_cancel_outgoing(operation->request);
1081
1082	atomic_inc(&operation->waiters);
1083	wait_event(gb_operation_cancellation_queue,
1084		   !gb_operation_is_active(operation));
1085	atomic_dec(&operation->waiters);
1086}
1087EXPORT_SYMBOL_GPL(gb_operation_cancel);
1088
1089/*
1090 * Cancel an incoming operation synchronously. Called during connection tear
1091 * down.
1092 */
1093void gb_operation_cancel_incoming(struct gb_operation *operation, int errno)
1094{
1095	if (WARN_ON(!gb_operation_is_incoming(operation)))
1096		return;
1097
1098	if (!gb_operation_is_unidirectional(operation)) {
1099		/*
1100		 * Make sure the request handler has submitted the response
1101		 * before cancelling it.
1102		 */
1103		flush_work(&operation->work);
1104		if (!gb_operation_result_set(operation, errno))
1105			gb_message_cancel(operation->response);
1106	}
1107	trace_gb_message_cancel_incoming(operation->response);
1108
1109	atomic_inc(&operation->waiters);
1110	wait_event(gb_operation_cancellation_queue,
1111		   !gb_operation_is_active(operation));
1112	atomic_dec(&operation->waiters);
1113}
1114
1115/**
1116 * gb_operation_sync_timeout() - implement a "simple" synchronous operation
1117 * @connection: the Greybus connection to send this to
1118 * @type: the type of operation to send
1119 * @request: pointer to a memory buffer to copy the request from
1120 * @request_size: size of @request
1121 * @response: pointer to a memory buffer to copy the response to
1122 * @response_size: the size of @response.
1123 * @timeout: operation timeout in milliseconds
1124 *
1125 * This function implements a simple synchronous Greybus operation.  It sends
1126 * the provided operation request and waits (sleeps) until the corresponding
1127 * operation response message has been successfully received, or an error
1128 * occurs.  @request and @response are buffers to hold the request and response
1129 * data respectively, and if they are not NULL, their size must be specified in
1130 * @request_size and @response_size.
1131 *
1132 * If a response payload is to come back, and @response is not NULL,
1133 * @response_size number of bytes will be copied into @response if the operation
1134 * is successful.
1135 *
1136 * If there is an error, the response buffer is left alone.
1137 */
1138int gb_operation_sync_timeout(struct gb_connection *connection, int type,
1139			      void *request, int request_size,
1140			      void *response, int response_size,
1141			      unsigned int timeout)
1142{
1143	struct gb_operation *operation;
1144	int ret;
1145
1146	if ((response_size && !response) ||
1147	    (request_size && !request))
1148		return -EINVAL;
1149
1150	operation = gb_operation_create(connection, type,
1151					request_size, response_size,
1152					GFP_KERNEL);
1153	if (!operation)
1154		return -ENOMEM;
1155
1156	if (request_size)
1157		memcpy(operation->request->payload, request, request_size);
1158
1159	ret = gb_operation_request_send_sync_timeout(operation, timeout);
1160	if (ret) {
1161		dev_err(&connection->hd->dev,
1162			"%s: synchronous operation id 0x%04x of type 0x%02x failed: %d\n",
1163			connection->name, operation->id, type, ret);
1164	} else {
1165		if (response_size) {
1166			memcpy(response, operation->response->payload,
1167			       response_size);
1168		}
1169	}
1170
1171	gb_operation_put(operation);
1172
1173	return ret;
1174}
1175EXPORT_SYMBOL_GPL(gb_operation_sync_timeout);
1176
1177/**
1178 * gb_operation_unidirectional_timeout() - initiate a unidirectional operation
1179 * @connection:		connection to use
1180 * @type:		type of operation to send
1181 * @request:		memory buffer to copy the request from
1182 * @request_size:	size of @request
1183 * @timeout:		send timeout in milliseconds
1184 *
1185 * Initiate a unidirectional operation by sending a request message and
1186 * waiting for it to be acknowledged as sent by the host device.
1187 *
1188 * Note that successful send of a unidirectional operation does not imply that
1189 * the request as actually reached the remote end of the connection.
1190 */
1191int gb_operation_unidirectional_timeout(struct gb_connection *connection,
1192					int type, void *request,
1193					int request_size,
1194					unsigned int timeout)
1195{
1196	struct gb_operation *operation;
1197	int ret;
1198
1199	if (request_size && !request)
1200		return -EINVAL;
1201
1202	operation = gb_operation_create_flags(connection, type,
1203					      request_size, 0,
1204					      GB_OPERATION_FLAG_UNIDIRECTIONAL,
1205					      GFP_KERNEL);
1206	if (!operation)
1207		return -ENOMEM;
1208
1209	if (request_size)
1210		memcpy(operation->request->payload, request, request_size);
1211
1212	ret = gb_operation_request_send_sync_timeout(operation, timeout);
1213	if (ret) {
1214		dev_err(&connection->hd->dev,
1215			"%s: unidirectional operation of type 0x%02x failed: %d\n",
1216			connection->name, type, ret);
1217	}
1218
1219	gb_operation_put(operation);
1220
1221	return ret;
1222}
1223EXPORT_SYMBOL_GPL(gb_operation_unidirectional_timeout);
1224
1225int __init gb_operation_init(void)
1226{
1227	gb_message_cache = kmem_cache_create("gb_message_cache",
1228					     sizeof(struct gb_message), 0, 0,
1229					     NULL);
1230	if (!gb_message_cache)
1231		return -ENOMEM;
1232
1233	gb_operation_cache = kmem_cache_create("gb_operation_cache",
1234					       sizeof(struct gb_operation), 0,
1235					       0, NULL);
1236	if (!gb_operation_cache)
1237		goto err_destroy_message_cache;
1238
1239	gb_operation_completion_wq = alloc_workqueue("greybus_completion",
1240						     0, 0);
1241	if (!gb_operation_completion_wq)
1242		goto err_destroy_operation_cache;
1243
1244	return 0;
1245
1246err_destroy_operation_cache:
1247	kmem_cache_destroy(gb_operation_cache);
1248	gb_operation_cache = NULL;
1249err_destroy_message_cache:
1250	kmem_cache_destroy(gb_message_cache);
1251	gb_message_cache = NULL;
1252
1253	return -ENOMEM;
1254}
1255
1256void gb_operation_exit(void)
1257{
1258	destroy_workqueue(gb_operation_completion_wq);
1259	gb_operation_completion_wq = NULL;
1260	kmem_cache_destroy(gb_operation_cache);
1261	gb_operation_cache = NULL;
1262	kmem_cache_destroy(gb_message_cache);
1263	gb_message_cache = NULL;
1264}
1265