1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 HVS module.
8 *
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
15 *
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs.  This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19 * each CRTC.
20 */
21
22#include <linux/bitfield.h>
23#include <linux/clk.h>
24#include <linux/component.h>
25#include <linux/platform_device.h>
26
27#include <drm/drm_atomic_helper.h>
28#include <drm/drm_drv.h>
29#include <drm/drm_vblank.h>
30
31#include <soc/bcm2835/raspberrypi-firmware.h>
32
33#include "vc4_drv.h"
34#include "vc4_regs.h"
35
36static const struct debugfs_reg32 hvs_regs[] = {
37	VC4_REG32(SCALER_DISPCTRL),
38	VC4_REG32(SCALER_DISPSTAT),
39	VC4_REG32(SCALER_DISPID),
40	VC4_REG32(SCALER_DISPECTRL),
41	VC4_REG32(SCALER_DISPPROF),
42	VC4_REG32(SCALER_DISPDITHER),
43	VC4_REG32(SCALER_DISPEOLN),
44	VC4_REG32(SCALER_DISPLIST0),
45	VC4_REG32(SCALER_DISPLIST1),
46	VC4_REG32(SCALER_DISPLIST2),
47	VC4_REG32(SCALER_DISPLSTAT),
48	VC4_REG32(SCALER_DISPLACT0),
49	VC4_REG32(SCALER_DISPLACT1),
50	VC4_REG32(SCALER_DISPLACT2),
51	VC4_REG32(SCALER_DISPCTRL0),
52	VC4_REG32(SCALER_DISPBKGND0),
53	VC4_REG32(SCALER_DISPSTAT0),
54	VC4_REG32(SCALER_DISPBASE0),
55	VC4_REG32(SCALER_DISPCTRL1),
56	VC4_REG32(SCALER_DISPBKGND1),
57	VC4_REG32(SCALER_DISPSTAT1),
58	VC4_REG32(SCALER_DISPBASE1),
59	VC4_REG32(SCALER_DISPCTRL2),
60	VC4_REG32(SCALER_DISPBKGND2),
61	VC4_REG32(SCALER_DISPSTAT2),
62	VC4_REG32(SCALER_DISPBASE2),
63	VC4_REG32(SCALER_DISPALPHA2),
64	VC4_REG32(SCALER_OLEDOFFS),
65	VC4_REG32(SCALER_OLEDCOEF0),
66	VC4_REG32(SCALER_OLEDCOEF1),
67	VC4_REG32(SCALER_OLEDCOEF2),
68};
69
70void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71{
72	struct drm_device *drm = &hvs->vc4->base;
73	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74	int idx, i;
75
76	if (!drm_dev_enter(drm, &idx))
77		return;
78
79	drm_print_regset32(&p, &hvs->regset);
80
81	DRM_INFO("HVS ctx:\n");
82	for (i = 0; i < 64; i += 4) {
83		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85			 readl((u32 __iomem *)hvs->dlist + i + 0),
86			 readl((u32 __iomem *)hvs->dlist + i + 1),
87			 readl((u32 __iomem *)hvs->dlist + i + 2),
88			 readl((u32 __iomem *)hvs->dlist + i + 3));
89	}
90
91	drm_dev_exit(idx);
92}
93
94static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95{
96	struct drm_debugfs_entry *entry = m->private;
97	struct drm_device *dev = entry->dev;
98	struct vc4_dev *vc4 = to_vc4_dev(dev);
99	struct drm_printer p = drm_seq_file_printer(m);
100
101	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102
103	return 0;
104}
105
106static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107{
108	struct drm_debugfs_entry *entry = m->private;
109	struct drm_device *dev = entry->dev;
110	struct vc4_dev *vc4 = to_vc4_dev(dev);
111	struct vc4_hvs *hvs = vc4->hvs;
112	struct drm_printer p = drm_seq_file_printer(m);
113	unsigned int next_entry_start = 0;
114	unsigned int i, j;
115	u32 dlist_word, dispstat;
116
117	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
118		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
119					 SCALER_DISPSTATX_MODE);
120		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
121		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
122			drm_printf(&p, "HVS chan %u disabled\n", i);
123			continue;
124		}
125
126		drm_printf(&p, "HVS chan %u:\n", i);
127
128		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
129			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
130			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
131				   dlist_word);
132			if (!next_entry_start ||
133			    next_entry_start == j) {
134				if (dlist_word & SCALER_CTL0_END)
135					break;
136				next_entry_start = j +
137					VC4_GET_FIELD(dlist_word,
138						      SCALER_CTL0_SIZE);
139			}
140		}
141	}
142
143	return 0;
144}
145
146/* The filter kernel is composed of dwords each containing 3 9-bit
147 * signed integers packed next to each other.
148 */
149#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
150#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
151	((((c0) & 0x1ff) << 0) |				\
152	 (((c1) & 0x1ff) << 9) |				\
153	 (((c2) & 0x1ff) << 18))
154
155/* The whole filter kernel is arranged as the coefficients 0-16 going
156 * up, then a pad, then 17-31 going down and reversed within the
157 * dwords.  This means that a linear phase kernel (where it's
158 * symmetrical at the boundary between 15 and 16) has the last 5
159 * dwords matching the first 5, but reversed.
160 */
161#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
162				c9, c10, c11, c12, c13, c14, c15)	\
163	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
164	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
165	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
166	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
167	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
168	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
169
170#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
171#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
172
173/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
174 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
175 */
176static const u32 mitchell_netravali_1_3_1_3_kernel[] =
177	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
178				50, 82, 119, 155, 187, 213, 227);
179
180static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
181					struct drm_mm_node *space,
182					const u32 *kernel)
183{
184	int ret, i;
185	u32 __iomem *dst_kernel;
186
187	/*
188	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
189	 * here since that function is only called from vc4_hvs_bind().
190	 */
191
192	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
193	if (ret) {
194		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
195			  ret);
196		return ret;
197	}
198
199	dst_kernel = hvs->dlist + space->start;
200
201	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
202		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
203			writel(kernel[i], &dst_kernel[i]);
204		else {
205			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
206			       &dst_kernel[i]);
207		}
208	}
209
210	return 0;
211}
212
213static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
214			     struct vc4_crtc *vc4_crtc)
215{
216	struct drm_device *drm = &hvs->vc4->base;
217	struct drm_crtc *crtc = &vc4_crtc->base;
218	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
219	int idx;
220	u32 i;
221
222	if (!drm_dev_enter(drm, &idx))
223		return;
224
225	/* The LUT memory is laid out with each HVS channel in order,
226	 * each of which takes 256 writes for R, 256 for G, then 256
227	 * for B.
228	 */
229	HVS_WRITE(SCALER_GAMADDR,
230		  SCALER_GAMADDR_AUTOINC |
231		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
232
233	for (i = 0; i < crtc->gamma_size; i++)
234		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
235	for (i = 0; i < crtc->gamma_size; i++)
236		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
237	for (i = 0; i < crtc->gamma_size; i++)
238		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
239
240	drm_dev_exit(idx);
241}
242
243static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
244				     struct vc4_crtc *vc4_crtc)
245{
246	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
247	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
248	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
249	u32 i;
250
251	for (i = 0; i < length; i++) {
252		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
253		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
254		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
255	}
256
257	vc4_hvs_lut_load(hvs, vc4_crtc);
258}
259
260u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
261{
262	struct drm_device *drm = &hvs->vc4->base;
263	u8 field = 0;
264	int idx;
265
266	if (!drm_dev_enter(drm, &idx))
267		return 0;
268
269	switch (fifo) {
270	case 0:
271		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
272				      SCALER_DISPSTAT1_FRCNT0);
273		break;
274	case 1:
275		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
276				      SCALER_DISPSTAT1_FRCNT1);
277		break;
278	case 2:
279		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
280				      SCALER_DISPSTAT2_FRCNT2);
281		break;
282	}
283
284	drm_dev_exit(idx);
285	return field;
286}
287
288int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
289{
290	struct vc4_dev *vc4 = hvs->vc4;
291	u32 reg;
292	int ret;
293
294	if (!vc4->is_vc5)
295		return output;
296
297	/*
298	 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
299	 * here, but this function is only used during the DRM device
300	 * initialization, so we should be fine.
301	 */
302
303	switch (output) {
304	case 0:
305		return 0;
306
307	case 1:
308		return 1;
309
310	case 2:
311		reg = HVS_READ(SCALER_DISPECTRL);
312		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
313		if (ret == 0)
314			return 2;
315
316		return 0;
317
318	case 3:
319		reg = HVS_READ(SCALER_DISPCTRL);
320		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
321		if (ret == 3)
322			return -EPIPE;
323
324		return ret;
325
326	case 4:
327		reg = HVS_READ(SCALER_DISPEOLN);
328		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
329		if (ret == 3)
330			return -EPIPE;
331
332		return ret;
333
334	case 5:
335		reg = HVS_READ(SCALER_DISPDITHER);
336		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
337		if (ret == 3)
338			return -EPIPE;
339
340		return ret;
341
342	default:
343		return -EPIPE;
344	}
345}
346
347static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
348				struct drm_display_mode *mode, bool oneshot)
349{
350	struct vc4_dev *vc4 = hvs->vc4;
351	struct drm_device *drm = &vc4->base;
352	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
353	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
354	unsigned int chan = vc4_crtc_state->assigned_channel;
355	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
356	u32 dispbkgndx;
357	u32 dispctrl;
358	int idx;
359
360	if (!drm_dev_enter(drm, &idx))
361		return -ENODEV;
362
363	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
364	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
365	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
366
367	/* Turn on the scaler, which will wait for vstart to start
368	 * compositing.
369	 * When feeding the transposer, we should operate in oneshot
370	 * mode.
371	 */
372	dispctrl = SCALER_DISPCTRLX_ENABLE;
373	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
374
375	if (!vc4->is_vc5) {
376		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
377					  SCALER_DISPCTRLX_WIDTH) |
378			    VC4_SET_FIELD(mode->vdisplay,
379					  SCALER_DISPCTRLX_HEIGHT) |
380			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
381		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
382	} else {
383		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
384					  SCALER5_DISPCTRLX_WIDTH) |
385			    VC4_SET_FIELD(mode->vdisplay,
386					  SCALER5_DISPCTRLX_HEIGHT) |
387			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
388		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
389	}
390
391	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
392
393	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
394	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
395
396	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
397		  ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
398		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
399
400	/* Reload the LUT, since the SRAMs would have been disabled if
401	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
402	 */
403	vc4_hvs_lut_load(hvs, vc4_crtc);
404
405	drm_dev_exit(idx);
406
407	return 0;
408}
409
410void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
411{
412	struct drm_device *drm = &hvs->vc4->base;
413	int idx;
414
415	if (!drm_dev_enter(drm, &idx))
416		return;
417
418	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
419		goto out;
420
421	HVS_WRITE(SCALER_DISPCTRLX(chan),
422		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
423	HVS_WRITE(SCALER_DISPCTRLX(chan),
424		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
425
426	/* Once we leave, the scaler should be disabled and its fifo empty. */
427	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
428
429	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
430				   SCALER_DISPSTATX_MODE) !=
431		     SCALER_DISPSTATX_MODE_DISABLED);
432
433	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
434		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
435		     SCALER_DISPSTATX_EMPTY);
436
437out:
438	drm_dev_exit(idx);
439}
440
441int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
442{
443	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
444	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
445	struct drm_device *dev = crtc->dev;
446	struct vc4_dev *vc4 = to_vc4_dev(dev);
447	struct drm_plane *plane;
448	unsigned long flags;
449	const struct drm_plane_state *plane_state;
450	u32 dlist_count = 0;
451	int ret;
452
453	/* The pixelvalve can only feed one encoder (and encoders are
454	 * 1:1 with connectors.)
455	 */
456	if (hweight32(crtc_state->connector_mask) > 1)
457		return -EINVAL;
458
459	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
460		dlist_count += vc4_plane_dlist_size(plane_state);
461
462	dlist_count++; /* Account for SCALER_CTL0_END. */
463
464	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
465	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
466				 dlist_count);
467	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
468	if (ret)
469		return ret;
470
471	return 0;
472}
473
474static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
475{
476	struct drm_device *dev = crtc->dev;
477	struct vc4_dev *vc4 = to_vc4_dev(dev);
478	struct vc4_hvs *hvs = vc4->hvs;
479	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
480	int idx;
481
482	if (!drm_dev_enter(dev, &idx))
483		return;
484
485	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
486		  vc4_state->mm.start);
487
488	drm_dev_exit(idx);
489}
490
491static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
492{
493	struct drm_device *dev = crtc->dev;
494	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
496	unsigned long flags;
497
498	if (crtc->state->event) {
499		crtc->state->event->pipe = drm_crtc_index(crtc);
500
501		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
502
503		spin_lock_irqsave(&dev->event_lock, flags);
504
505		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
506			vc4_crtc->event = crtc->state->event;
507			crtc->state->event = NULL;
508		}
509
510		spin_unlock_irqrestore(&dev->event_lock, flags);
511	}
512
513	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
514	vc4_crtc->current_dlist = vc4_state->mm.start;
515	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
516}
517
518void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
519			  struct drm_atomic_state *state)
520{
521	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
523	unsigned long flags;
524
525	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
526	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
527	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
528}
529
530void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
531			   struct drm_atomic_state *state)
532{
533	struct drm_device *dev = crtc->dev;
534	struct vc4_dev *vc4 = to_vc4_dev(dev);
535	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
536	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
537	bool oneshot = vc4_crtc->feeds_txp;
538
539	vc4_hvs_install_dlist(crtc);
540	vc4_hvs_update_dlist(crtc);
541	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
542}
543
544void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
545			    struct drm_atomic_state *state)
546{
547	struct drm_device *dev = crtc->dev;
548	struct vc4_dev *vc4 = to_vc4_dev(dev);
549	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
550	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
551	unsigned int chan = vc4_state->assigned_channel;
552
553	vc4_hvs_stop_channel(vc4->hvs, chan);
554}
555
556void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
557			  struct drm_atomic_state *state)
558{
559	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
560									 crtc);
561	struct drm_device *dev = crtc->dev;
562	struct vc4_dev *vc4 = to_vc4_dev(dev);
563	struct vc4_hvs *hvs = vc4->hvs;
564	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
565	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
566	unsigned int channel = vc4_state->assigned_channel;
567	struct drm_plane *plane;
568	struct vc4_plane_state *vc4_plane_state;
569	bool debug_dump_regs = false;
570	bool enable_bg_fill = false;
571	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
572	u32 __iomem *dlist_next = dlist_start;
573	unsigned int zpos = 0;
574	bool found = false;
575	int idx;
576
577	if (!drm_dev_enter(dev, &idx)) {
578		vc4_crtc_send_vblank(crtc);
579		return;
580	}
581
582	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
583		return;
584
585	if (debug_dump_regs) {
586		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
587		vc4_hvs_dump_state(hvs);
588	}
589
590	/* Copy all the active planes' dlist contents to the hardware dlist. */
591	do {
592		found = false;
593
594		drm_atomic_crtc_for_each_plane(plane, crtc) {
595			if (plane->state->normalized_zpos != zpos)
596				continue;
597
598			/* Is this the first active plane? */
599			if (dlist_next == dlist_start) {
600				/* We need to enable background fill when a plane
601				 * could be alpha blending from the background, i.e.
602				 * where no other plane is underneath. It suffices to
603				 * consider the first active plane here since we set
604				 * needs_bg_fill such that either the first plane
605				 * already needs it or all planes on top blend from
606				 * the first or a lower plane.
607				 */
608				vc4_plane_state = to_vc4_plane_state(plane->state);
609				enable_bg_fill = vc4_plane_state->needs_bg_fill;
610			}
611
612			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
613
614			found = true;
615		}
616
617		zpos++;
618	} while (found);
619
620	writel(SCALER_CTL0_END, dlist_next);
621	dlist_next++;
622
623	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
624
625	if (enable_bg_fill)
626		/* This sets a black background color fill, as is the case
627		 * with other DRM drivers.
628		 */
629		HVS_WRITE(SCALER_DISPBKGNDX(channel),
630			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
631			  SCALER_DISPBKGND_FILL);
632
633	/* Only update DISPLIST if the CRTC was already running and is not
634	 * being disabled.
635	 * vc4_crtc_enable() takes care of updating the dlist just after
636	 * re-enabling VBLANK interrupts and before enabling the engine.
637	 * If the CRTC is being disabled, there's no point in updating this
638	 * information.
639	 */
640	if (crtc->state->active && old_state->active) {
641		vc4_hvs_install_dlist(crtc);
642		vc4_hvs_update_dlist(crtc);
643	}
644
645	if (crtc->state->color_mgmt_changed) {
646		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
647
648		if (crtc->state->gamma_lut) {
649			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
650			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
651		} else {
652			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
653			 * in hardware, which is the same as a linear lut that
654			 * DRM expects us to use in absence of a user lut.
655			 */
656			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
657		}
658		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
659	}
660
661	if (debug_dump_regs) {
662		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
663		vc4_hvs_dump_state(hvs);
664	}
665
666	drm_dev_exit(idx);
667}
668
669void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
670{
671	struct drm_device *drm = &hvs->vc4->base;
672	u32 dispctrl;
673	int idx;
674
675	if (!drm_dev_enter(drm, &idx))
676		return;
677
678	dispctrl = HVS_READ(SCALER_DISPCTRL);
679	dispctrl &= ~(hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
680					 SCALER_DISPCTRL_DSPEISLUR(channel));
681
682	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
683
684	drm_dev_exit(idx);
685}
686
687void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
688{
689	struct drm_device *drm = &hvs->vc4->base;
690	u32 dispctrl;
691	int idx;
692
693	if (!drm_dev_enter(drm, &idx))
694		return;
695
696	dispctrl = HVS_READ(SCALER_DISPCTRL);
697	dispctrl |= (hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
698					SCALER_DISPCTRL_DSPEISLUR(channel));
699
700	HVS_WRITE(SCALER_DISPSTAT,
701		  SCALER_DISPSTAT_EUFLOW(channel));
702	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
703
704	drm_dev_exit(idx);
705}
706
707static void vc4_hvs_report_underrun(struct drm_device *dev)
708{
709	struct vc4_dev *vc4 = to_vc4_dev(dev);
710
711	atomic_inc(&vc4->underrun);
712	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
713}
714
715static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
716{
717	struct drm_device *dev = data;
718	struct vc4_dev *vc4 = to_vc4_dev(dev);
719	struct vc4_hvs *hvs = vc4->hvs;
720	irqreturn_t irqret = IRQ_NONE;
721	int channel;
722	u32 control;
723	u32 status;
724	u32 dspeislur;
725
726	/*
727	 * NOTE: We don't need to protect the register access using
728	 * drm_dev_enter() there because the interrupt handler lifetime
729	 * is tied to the device itself, and not to the DRM device.
730	 *
731	 * So when the device will be gone, one of the first thing we
732	 * will be doing will be to unregister the interrupt handler,
733	 * and then unregister the DRM device. drm_dev_enter() would
734	 * thus always succeed if we are here.
735	 */
736
737	status = HVS_READ(SCALER_DISPSTAT);
738	control = HVS_READ(SCALER_DISPCTRL);
739
740	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
741		dspeislur = vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
742					  SCALER_DISPCTRL_DSPEISLUR(channel);
743		/* Interrupt masking is not always honored, so check it here. */
744		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
745		    control & dspeislur) {
746			vc4_hvs_mask_underrun(hvs, channel);
747			vc4_hvs_report_underrun(dev);
748
749			irqret = IRQ_HANDLED;
750		}
751	}
752
753	/* Clear every per-channel interrupt flag. */
754	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
755				   SCALER_DISPSTAT_IRQMASK(1) |
756				   SCALER_DISPSTAT_IRQMASK(2));
757
758	return irqret;
759}
760
761int vc4_hvs_debugfs_init(struct drm_minor *minor)
762{
763	struct drm_device *drm = minor->dev;
764	struct vc4_dev *vc4 = to_vc4_dev(drm);
765	struct vc4_hvs *hvs = vc4->hvs;
766
767	if (!vc4->hvs)
768		return -ENODEV;
769
770	if (!vc4->is_vc5)
771		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
772				    minor->debugfs_root,
773				    &vc4->load_tracker_enabled);
774
775	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
776
777	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
778
779	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
780
781	return 0;
782}
783
784struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
785{
786	struct drm_device *drm = &vc4->base;
787	struct vc4_hvs *hvs;
788
789	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
790	if (!hvs)
791		return ERR_PTR(-ENOMEM);
792
793	hvs->vc4 = vc4;
794	hvs->pdev = pdev;
795
796	spin_lock_init(&hvs->mm_lock);
797
798	/* Set up the HVS display list memory manager.  We never
799	 * overwrite the setup from the bootloader (just 128b out of
800	 * our 16K), since we don't want to scramble the screen when
801	 * transitioning from the firmware's boot setup to runtime.
802	 */
803	drm_mm_init(&hvs->dlist_mm,
804		    HVS_BOOTLOADER_DLIST_END,
805		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
806
807	/* Set up the HVS LBM memory manager.  We could have some more
808	 * complicated data structure that allowed reuse of LBM areas
809	 * between planes when they don't overlap on the screen, but
810	 * for now we just allocate globally.
811	 */
812	if (!vc4->is_vc5)
813		/* 48k words of 2x12-bit pixels */
814		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
815	else
816		/* 60k words of 4x12-bit pixels */
817		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
818
819	vc4->hvs = hvs;
820
821	return hvs;
822}
823
824static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
825{
826	struct platform_device *pdev = to_platform_device(dev);
827	struct drm_device *drm = dev_get_drvdata(master);
828	struct vc4_dev *vc4 = to_vc4_dev(drm);
829	struct vc4_hvs *hvs = NULL;
830	int ret;
831	u32 dispctrl;
832	u32 reg, top;
833
834	hvs = __vc4_hvs_alloc(vc4, NULL);
835	if (IS_ERR(hvs))
836		return PTR_ERR(hvs);
837
838	hvs->regs = vc4_ioremap_regs(pdev, 0);
839	if (IS_ERR(hvs->regs))
840		return PTR_ERR(hvs->regs);
841
842	hvs->regset.base = hvs->regs;
843	hvs->regset.regs = hvs_regs;
844	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
845
846	if (vc4->is_vc5) {
847		struct rpi_firmware *firmware;
848		struct device_node *node;
849		unsigned int max_rate;
850
851		node = rpi_firmware_find_node();
852		if (!node)
853			return -EINVAL;
854
855		firmware = rpi_firmware_get(node);
856		of_node_put(node);
857		if (!firmware)
858			return -EPROBE_DEFER;
859
860		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
861		if (IS_ERR(hvs->core_clk)) {
862			dev_err(&pdev->dev, "Couldn't get core clock\n");
863			return PTR_ERR(hvs->core_clk);
864		}
865
866		max_rate = rpi_firmware_clk_get_max_rate(firmware,
867							 RPI_FIRMWARE_CORE_CLK_ID);
868		rpi_firmware_put(firmware);
869		if (max_rate >= 550000000)
870			hvs->vc5_hdmi_enable_hdmi_20 = true;
871
872		if (max_rate >= 600000000)
873			hvs->vc5_hdmi_enable_4096by2160 = true;
874
875		hvs->max_core_rate = max_rate;
876
877		ret = clk_prepare_enable(hvs->core_clk);
878		if (ret) {
879			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
880			return ret;
881		}
882	}
883
884	if (!vc4->is_vc5)
885		hvs->dlist = hvs->regs + SCALER_DLIST_START;
886	else
887		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
888
889	/* Upload filter kernels.  We only have the one for now, so we
890	 * keep it around for the lifetime of the driver.
891	 */
892	ret = vc4_hvs_upload_linear_kernel(hvs,
893					   &hvs->mitchell_netravali_filter,
894					   mitchell_netravali_1_3_1_3_kernel);
895	if (ret)
896		return ret;
897
898	reg = HVS_READ(SCALER_DISPECTRL);
899	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
900	HVS_WRITE(SCALER_DISPECTRL,
901		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
902
903	reg = HVS_READ(SCALER_DISPCTRL);
904	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
905	HVS_WRITE(SCALER_DISPCTRL,
906		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
907
908	reg = HVS_READ(SCALER_DISPEOLN);
909	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
910	HVS_WRITE(SCALER_DISPEOLN,
911		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
912
913	reg = HVS_READ(SCALER_DISPDITHER);
914	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
915	HVS_WRITE(SCALER_DISPDITHER,
916		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
917
918	dispctrl = HVS_READ(SCALER_DISPCTRL);
919
920	dispctrl |= SCALER_DISPCTRL_ENABLE;
921	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
922		    SCALER_DISPCTRL_DISPEIRQ(1) |
923		    SCALER_DISPCTRL_DISPEIRQ(2);
924
925	if (!vc4->is_vc5)
926		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
927			      SCALER_DISPCTRL_SLVWREIRQ |
928			      SCALER_DISPCTRL_SLVRDEIRQ |
929			      SCALER_DISPCTRL_DSPEIEOF(0) |
930			      SCALER_DISPCTRL_DSPEIEOF(1) |
931			      SCALER_DISPCTRL_DSPEIEOF(2) |
932			      SCALER_DISPCTRL_DSPEIEOLN(0) |
933			      SCALER_DISPCTRL_DSPEIEOLN(1) |
934			      SCALER_DISPCTRL_DSPEIEOLN(2) |
935			      SCALER_DISPCTRL_DSPEISLUR(0) |
936			      SCALER_DISPCTRL_DSPEISLUR(1) |
937			      SCALER_DISPCTRL_DSPEISLUR(2) |
938			      SCALER_DISPCTRL_SCLEIRQ);
939	else
940		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
941			      SCALER5_DISPCTRL_SLVEIRQ |
942			      SCALER5_DISPCTRL_DSPEIEOF(0) |
943			      SCALER5_DISPCTRL_DSPEIEOF(1) |
944			      SCALER5_DISPCTRL_DSPEIEOF(2) |
945			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
946			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
947			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
948			      SCALER5_DISPCTRL_DSPEISLUR(0) |
949			      SCALER5_DISPCTRL_DSPEISLUR(1) |
950			      SCALER5_DISPCTRL_DSPEISLUR(2) |
951			      SCALER_DISPCTRL_SCLEIRQ);
952
953
954	/* Set AXI panic mode.
955	 * VC4 panics when < 2 lines in FIFO.
956	 * VC5 panics when less than 1 line in the FIFO.
957	 */
958	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
959		      SCALER_DISPCTRL_PANIC1_MASK |
960		      SCALER_DISPCTRL_PANIC2_MASK);
961	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
962	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
963	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
964
965	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
966
967	/* Recompute Composite Output Buffer (COB) allocations for the displays
968	 */
969	if (!vc4->is_vc5) {
970		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
971		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
972		 * TXP composing RGBA to memory), whilst the remainder are only
973		 * 24bpp RGB.
974		 *
975		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
976		 * channel 0.
977		 */
978		#define VC4_COB_SIZE		20736
979		#define VC4_COB_LINE_WIDTH	2048
980		#define VC4_COB_NUM_LINES	3
981		reg = 0;
982		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
983		reg |= (top - 1) << 16;
984		HVS_WRITE(SCALER_DISPBASE2, reg);
985		reg = top;
986		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
987		reg |= (top - 1) << 16;
988		HVS_WRITE(SCALER_DISPBASE1, reg);
989		reg = top;
990		top = VC4_COB_SIZE;
991		reg |= (top - 1) << 16;
992		HVS_WRITE(SCALER_DISPBASE0, reg);
993	} else {
994		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
995		 * The bottom 4096 pixels are full RGBA (intended for the TXP
996		 * composing RGBA to memory), whilst the remainder are only
997		 * RGB. Addressing is always pixel wide.
998		 *
999		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
1000		 * lines. to channel 0.
1001		 */
1002		#define VC5_COB_SIZE		44416
1003		#define VC5_COB_LINE_WIDTH	4096
1004		#define VC5_COB_NUM_LINES	3
1005		reg = 0;
1006		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1007		reg |= top << 16;
1008		HVS_WRITE(SCALER_DISPBASE2, reg);
1009		top += 16;
1010		reg = top;
1011		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1012		reg |= top << 16;
1013		HVS_WRITE(SCALER_DISPBASE1, reg);
1014		top += 16;
1015		reg = top;
1016		top = VC5_COB_SIZE;
1017		reg |= top << 16;
1018		HVS_WRITE(SCALER_DISPBASE0, reg);
1019	}
1020
1021	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1022			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1023	if (ret)
1024		return ret;
1025
1026	return 0;
1027}
1028
1029static void vc4_hvs_unbind(struct device *dev, struct device *master,
1030			   void *data)
1031{
1032	struct drm_device *drm = dev_get_drvdata(master);
1033	struct vc4_dev *vc4 = to_vc4_dev(drm);
1034	struct vc4_hvs *hvs = vc4->hvs;
1035	struct drm_mm_node *node, *next;
1036
1037	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1038		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1039
1040	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1041		drm_mm_remove_node(node);
1042
1043	drm_mm_takedown(&vc4->hvs->dlist_mm);
1044
1045	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1046		drm_mm_remove_node(node);
1047	drm_mm_takedown(&vc4->hvs->lbm_mm);
1048
1049	clk_disable_unprepare(hvs->core_clk);
1050
1051	vc4->hvs = NULL;
1052}
1053
1054static const struct component_ops vc4_hvs_ops = {
1055	.bind   = vc4_hvs_bind,
1056	.unbind = vc4_hvs_unbind,
1057};
1058
1059static int vc4_hvs_dev_probe(struct platform_device *pdev)
1060{
1061	return component_add(&pdev->dev, &vc4_hvs_ops);
1062}
1063
1064static void vc4_hvs_dev_remove(struct platform_device *pdev)
1065{
1066	component_del(&pdev->dev, &vc4_hvs_ops);
1067}
1068
1069static const struct of_device_id vc4_hvs_dt_match[] = {
1070	{ .compatible = "brcm,bcm2711-hvs" },
1071	{ .compatible = "brcm,bcm2835-hvs" },
1072	{}
1073};
1074
1075struct platform_driver vc4_hvs_driver = {
1076	.probe = vc4_hvs_dev_probe,
1077	.remove_new = vc4_hvs_dev_remove,
1078	.driver = {
1079		.name = "vc4_hvs",
1080		.of_match_table = vc4_hvs_dt_match,
1081	},
1082};
1083