1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6/** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21#include <linux/clk-provider.h> 22#include <linux/clk.h> 23#include <linux/completion.h> 24#include <linux/component.h> 25#include <linux/dma-mapping.h> 26#include <linux/dmaengine.h> 27#include <linux/io.h> 28#include <linux/of.h> 29#include <linux/of_address.h> 30#include <linux/platform_device.h> 31#include <linux/pm_runtime.h> 32 33#include <drm/drm_atomic_helper.h> 34#include <drm/drm_bridge.h> 35#include <drm/drm_edid.h> 36#include <drm/drm_mipi_dsi.h> 37#include <drm/drm_of.h> 38#include <drm/drm_panel.h> 39#include <drm/drm_probe_helper.h> 40#include <drm/drm_simple_kms_helper.h> 41 42#include "vc4_drv.h" 43#include "vc4_regs.h" 44 45#define DSI_CMD_FIFO_DEPTH 16 46#define DSI_PIX_FIFO_DEPTH 256 47#define DSI_PIX_FIFO_WIDTH 4 48 49#define DSI0_CTRL 0x00 50 51/* Command packet control. */ 52#define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53#define DSI1_TXPKT1C 0x04 54# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63/* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67/* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77/* Command only. Uses TXPKT1H and DISPLAY_NO */ 78# define DSI_TXPKT1C_CMD_CTRL_TX 0 79/* Command with BTA for either ack or read data. */ 80# define DSI_TXPKT1C_CMD_CTRL_RX 1 81/* Trigger according to TRIG_CMD */ 82# define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83/* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86# define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88# define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90# define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91# define DSI_TXPKT1C_CMD_EN BIT(0) 92 93/* Command packet header. */ 94#define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95#define DSI1_TXPKT1H 0x08 96# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99# define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101# define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104#define DSI1_RXPKT1H 0x14 105# define DSI_RXPKT1H_CRC_ERR BIT(31) 106# define DSI_RXPKT1H_DET_ERR BIT(30) 107# define DSI_RXPKT1H_ECC_ERR BIT(29) 108# define DSI_RXPKT1H_COR_ERR BIT(28) 109# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116# define DSI_RXPKT1H_SHORT_1_SHIFT 16 117# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118# define DSI_RXPKT1H_SHORT_0_SHIFT 8 119# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123#define DSI1_RXPKT2H 0x18 124# define DSI_RXPKT1H_DET_ERR BIT(30) 125# define DSI_RXPKT1H_ECC_ERR BIT(29) 126# define DSI_RXPKT1H_COR_ERR BIT(28) 127# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131# define DSI_RXPKT1H_DT_SHIFT 0 132 133#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134#define DSI1_TXPKT_CMD_FIFO 0x1c 135 136#define DSI0_DISP0_CTRL 0x18 137# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141# define DSI_DISP0_LP_STOP_DISABLE 0 142# define DSI_DISP0_LP_STOP_PERLINE 1 143# define DSI_DISP0_LP_STOP_PERFRAME 2 144 145/* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148# define DSI_DISP_HACTIVE_NULL BIT(10) 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150# define DSI_DISP_VBLP_CTRL BIT(9) 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152# define DSI_DISP_HFP_CTRL BIT(8) 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154# define DSI_DISP_HBP_CTRL BIT(7) 155# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156# define DSI_DISP0_CHANNEL_SHIFT 5 157/* Enables end events for HSYNC/VSYNC, not just start events. */ 158# define DSI_DISP0_ST_END BIT(4) 159# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160# define DSI_DISP0_PFORMAT_SHIFT 2 161# define DSI_PFORMAT_RGB565 0 162# define DSI_PFORMAT_RGB666_PACKED 1 163# define DSI_PFORMAT_RGB666 2 164# define DSI_PFORMAT_RGB888 3 165/* Default is VIDEO mode. */ 166# define DSI_DISP0_COMMAND_MODE BIT(1) 167# define DSI_DISP0_ENABLE BIT(0) 168 169#define DSI0_DISP1_CTRL 0x1c 170#define DSI1_DISP1_CTRL 0x2c 171/* Format of the data written to TXPKT_PIX_FIFO. */ 172# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173# define DSI_DISP1_PFORMAT_SHIFT 1 174# define DSI_DISP1_PFORMAT_16BIT 0 175# define DSI_DISP1_PFORMAT_24BIT 1 176# define DSI_DISP1_PFORMAT_32BIT_LE 2 177# define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179/* DISP1 is always command mode. */ 180# define DSI_DISP1_ENABLE BIT(0) 181 182#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184#define DSI0_INT_STAT 0x24 185#define DSI0_INT_EN 0x28 186# define DSI0_INT_FIFO_ERR BIT(25) 187# define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188# define DSI0_INT_CMDC_DONE_SHIFT 23 189# define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190# define DSI0_INT_CMDC_DONE_REPEAT 3 191# define DSI0_INT_PHY_DIR_RTF BIT(22) 192# define DSI0_INT_PHY_D1_ULPS BIT(21) 193# define DSI0_INT_PHY_D1_STOP BIT(20) 194# define DSI0_INT_PHY_RXLPDT BIT(19) 195# define DSI0_INT_PHY_RXTRIG BIT(18) 196# define DSI0_INT_PHY_D0_ULPS BIT(17) 197# define DSI0_INT_PHY_D0_LPDT BIT(16) 198# define DSI0_INT_PHY_D0_FTR BIT(15) 199# define DSI0_INT_PHY_D0_STOP BIT(14) 200/* Signaled when the clock lane enters the given state. */ 201# define DSI0_INT_PHY_CLK_ULPS BIT(13) 202# define DSI0_INT_PHY_CLK_HS BIT(12) 203# define DSI0_INT_PHY_CLK_FTR BIT(11) 204/* Signaled on timeouts */ 205# define DSI0_INT_PR_TO BIT(10) 206# define DSI0_INT_TA_TO BIT(9) 207# define DSI0_INT_LPRX_TO BIT(8) 208# define DSI0_INT_HSTX_TO BIT(7) 209/* Contention on a line when trying to drive the line low */ 210# define DSI0_INT_ERR_CONT_LP1 BIT(6) 211# define DSI0_INT_ERR_CONT_LP0 BIT(5) 212/* Control error: incorrect line state sequence on data lane 0. */ 213# define DSI0_INT_ERR_CONTROL BIT(4) 214# define DSI0_INT_ERR_SYNC_ESC BIT(3) 215# define DSI0_INT_RX2_PKT BIT(2) 216# define DSI0_INT_RX1_PKT BIT(1) 217# define DSI0_INT_CMD_PKT BIT(0) 218 219#define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228# define DSI1_INT_PHY_D3_ULPS BIT(30) 229# define DSI1_INT_PHY_D3_STOP BIT(29) 230# define DSI1_INT_PHY_D2_ULPS BIT(28) 231# define DSI1_INT_PHY_D2_STOP BIT(27) 232# define DSI1_INT_PHY_D1_ULPS BIT(26) 233# define DSI1_INT_PHY_D1_STOP BIT(25) 234# define DSI1_INT_PHY_D0_ULPS BIT(24) 235# define DSI1_INT_PHY_D0_STOP BIT(23) 236# define DSI1_INT_FIFO_ERR BIT(22) 237# define DSI1_INT_PHY_DIR_RTF BIT(21) 238# define DSI1_INT_PHY_RXLPDT BIT(20) 239# define DSI1_INT_PHY_RXTRIG BIT(19) 240# define DSI1_INT_PHY_D0_LPDT BIT(18) 241# define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243/* Signaled when the clock lane enters the given state. */ 244# define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245# define DSI1_INT_PHY_CLOCK_HS BIT(15) 246# define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248/* Signaled on timeouts */ 249# define DSI1_INT_PR_TO BIT(13) 250# define DSI1_INT_TA_TO BIT(12) 251# define DSI1_INT_LPRX_TO BIT(11) 252# define DSI1_INT_HSTX_TO BIT(10) 253 254/* Contention on a line when trying to drive the line low */ 255# define DSI1_INT_ERR_CONT_LP1 BIT(9) 256# define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258/* Control error: incorrect line state sequence on data lane 0. */ 259# define DSI1_INT_ERR_CONTROL BIT(7) 260/* LPDT synchronization error (bits received not a multiple of 8. */ 261 262# define DSI1_INT_ERR_SYNC_ESC BIT(6) 263/* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266# define DSI1_INT_RXPKT2 BIT(5) 267/* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271# define DSI1_INT_RXPKT1 BIT(4) 272# define DSI1_INT_TXPKT2_DONE BIT(3) 273# define DSI1_INT_TXPKT2_END BIT(2) 274/* Signaled after all repeats of TXPKT1 are transferred. */ 275# define DSI1_INT_TXPKT1_DONE BIT(1) 276/* Signaled after each TXPKT1 repeat is scheduled. */ 277# define DSI1_INT_TXPKT1_END BIT(0) 278 279#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288#define DSI0_STAT 0x2c 289#define DSI0_HSTX_TO_CNT 0x30 290#define DSI0_LPRX_TO_CNT 0x34 291#define DSI0_TA_TO_CNT 0x38 292#define DSI0_PR_TO_CNT 0x3c 293#define DSI0_PHYC 0x40 294# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299# define DSI1_PHYC_CLANE_ULPS BIT(17) 300# define DSI1_PHYC_CLANE_ENABLE BIT(16) 301# define DSI_PHYC_DLANE3_ULPS BIT(13) 302# define DSI_PHYC_DLANE3_ENABLE BIT(12) 303# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304# define DSI0_PHYC_CLANE_ULPS BIT(9) 305# define DSI_PHYC_DLANE2_ULPS BIT(9) 306# define DSI0_PHYC_CLANE_ENABLE BIT(8) 307# define DSI_PHYC_DLANE2_ENABLE BIT(8) 308# define DSI_PHYC_DLANE1_ULPS BIT(5) 309# define DSI_PHYC_DLANE1_ENABLE BIT(4) 310# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311# define DSI_PHYC_DLANE0_ULPS BIT(1) 312# define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314#define DSI0_HS_CLT0 0x44 315#define DSI0_HS_CLT1 0x48 316#define DSI0_HS_CLT2 0x4c 317#define DSI0_HS_DLT3 0x50 318#define DSI0_HS_DLT4 0x54 319#define DSI0_HS_DLT5 0x58 320#define DSI0_HS_DLT6 0x5c 321#define DSI0_HS_DLT7 0x60 322 323#define DSI0_PHY_AFEC0 0x64 324# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346# define DSI1_PHY_AFEC0_RESET BIT(13) 347# define DSI1_PHY_AFEC0_PD BIT(12) 348# define DSI0_PHY_AFEC0_RESET BIT(11) 349# define DSI1_PHY_AFEC0_PD_BG BIT(11) 350# define DSI0_PHY_AFEC0_PD BIT(10) 351# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 352# define DSI0_PHY_AFEC0_PD_BG BIT(9) 353# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 356# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361#define DSI0_PHY_AFEC1 0x68 362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369#define DSI0_TST_SEL 0x6c 370#define DSI0_TST_MON 0x70 371#define DSI0_ID 0x74 372# define DSI_ID_VALUE 0x00647369 373 374#define DSI1_CTRL 0x00 375# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376# define DSI_CTRL_HS_CLKC_SHIFT 14 377# define DSI_CTRL_HS_CLKC_BYTE 0 378# define DSI_CTRL_HS_CLKC_DDR2 1 379# define DSI_CTRL_HS_CLKC_DDR 2 380 381# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384# define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385# define DSI_CTRL_CAL_BYTE BIT(9) 386# define DSI_CTRL_INV_BYTE BIT(8) 387# define DSI_CTRL_CLR_LDF BIT(7) 388# define DSI0_CTRL_CLR_PBCF BIT(6) 389# define DSI1_CTRL_CLR_RXF BIT(6) 390# define DSI0_CTRL_CLR_CPBCF BIT(5) 391# define DSI1_CTRL_CLR_PDF BIT(5) 392# define DSI0_CTRL_CLR_PDF BIT(4) 393# define DSI1_CTRL_CLR_CDF BIT(4) 394# define DSI0_CTRL_CLR_CDF BIT(3) 395# define DSI0_CTRL_CTRL2 BIT(2) 396# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397# define DSI0_CTRL_CTRL1 BIT(1) 398# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399# define DSI0_CTRL_CTRL0 BIT(0) 400# define DSI1_CTRL_EN BIT(0) 401# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411#define DSI1_TXPKT2C 0x0c 412#define DSI1_TXPKT2H 0x10 413#define DSI1_TXPKT_PIX_FIFO 0x20 414#define DSI1_RXPKT_FIFO 0x24 415#define DSI1_DISP0_CTRL 0x28 416#define DSI1_INT_STAT 0x30 417#define DSI1_INT_EN 0x34 418/* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421#define DSI1_STAT 0x38 422# define DSI1_STAT_PHY_D3_ULPS BIT(31) 423# define DSI1_STAT_PHY_D3_STOP BIT(30) 424# define DSI1_STAT_PHY_D2_ULPS BIT(29) 425# define DSI1_STAT_PHY_D2_STOP BIT(28) 426# define DSI1_STAT_PHY_D1_ULPS BIT(27) 427# define DSI1_STAT_PHY_D1_STOP BIT(26) 428# define DSI1_STAT_PHY_D0_ULPS BIT(25) 429# define DSI1_STAT_PHY_D0_STOP BIT(24) 430# define DSI1_STAT_FIFO_ERR BIT(23) 431# define DSI1_STAT_PHY_RXLPDT BIT(22) 432# define DSI1_STAT_PHY_RXTRIG BIT(21) 433# define DSI1_STAT_PHY_D0_LPDT BIT(20) 434/* Set when in forward direction */ 435# define DSI1_STAT_PHY_DIR BIT(19) 436# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437# define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438# define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439# define DSI1_STAT_PR_TO BIT(15) 440# define DSI1_STAT_TA_TO BIT(14) 441# define DSI1_STAT_LPRX_TO BIT(13) 442# define DSI1_STAT_HSTX_TO BIT(12) 443# define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444# define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445# define DSI1_STAT_ERR_CONTROL BIT(9) 446# define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447# define DSI1_STAT_RXPKT2 BIT(7) 448# define DSI1_STAT_RXPKT1 BIT(6) 449# define DSI1_STAT_TXPKT2_BUSY BIT(5) 450# define DSI1_STAT_TXPKT2_DONE BIT(4) 451# define DSI1_STAT_TXPKT2_END BIT(3) 452# define DSI1_STAT_TXPKT1_BUSY BIT(2) 453# define DSI1_STAT_TXPKT1_DONE BIT(1) 454# define DSI1_STAT_TXPKT1_END BIT(0) 455 456#define DSI1_HSTX_TO_CNT 0x3c 457#define DSI1_LPRX_TO_CNT 0x40 458#define DSI1_TA_TO_CNT 0x44 459#define DSI1_PR_TO_CNT 0x48 460#define DSI1_PHYC 0x4c 461 462#define DSI1_HS_CLT0 0x50 463# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464# define DSI_HS_CLT0_CZERO_SHIFT 18 465# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466# define DSI_HS_CLT0_CPRE_SHIFT 9 467# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468# define DSI_HS_CLT0_CPREP_SHIFT 0 469 470#define DSI1_HS_CLT1 0x54 471# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472# define DSI_HS_CLT1_CTRAIL_SHIFT 9 473# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474# define DSI_HS_CLT1_CPOST_SHIFT 0 475 476#define DSI1_HS_CLT2 0x58 477# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478# define DSI_HS_CLT2_WUP_SHIFT 0 479 480#define DSI1_HS_DLT3 0x5c 481# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482# define DSI_HS_DLT3_EXIT_SHIFT 18 483# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484# define DSI_HS_DLT3_ZERO_SHIFT 9 485# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486# define DSI_HS_DLT3_PRE_SHIFT 0 487 488#define DSI1_HS_DLT4 0x60 489# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490# define DSI_HS_DLT4_ANLAT_SHIFT 18 491# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492# define DSI_HS_DLT4_TRAIL_SHIFT 9 493# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494# define DSI_HS_DLT4_LPX_SHIFT 0 495 496#define DSI1_HS_DLT5 0x64 497# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498# define DSI_HS_DLT5_INIT_SHIFT 0 499 500#define DSI1_HS_DLT6 0x68 501# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502# define DSI_HS_DLT6_TA_GET_SHIFT 24 503# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504# define DSI_HS_DLT6_TA_SURE_SHIFT 16 505# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506# define DSI_HS_DLT6_TA_GO_SHIFT 8 507# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508# define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510#define DSI1_HS_DLT7 0x6c 511# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512# define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514#define DSI1_PHY_AFEC0 0x70 515 516#define DSI1_PHY_AFEC1 0x74 517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528#define DSI1_TST_SEL 0x78 529#define DSI1_TST_MON 0x7c 530#define DSI1_PHY_TST1 0x80 531#define DSI1_PHY_TST2 0x84 532#define DSI1_PHY_FIFO_STAT 0x88 533/* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536#define DSI1_ID 0x8c 537 538struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548}; 549 550/* General DSI hardware state. */ 551struct vc4_dsi { 552 struct vc4_encoder encoder; 553 struct mipi_dsi_host dsi_host; 554 555 struct kref kref; 556 557 struct platform_device *pdev; 558 559 struct drm_bridge *out_bridge; 560 struct drm_bridge bridge; 561 562 void __iomem *regs; 563 564 struct dma_chan *reg_dma_chan; 565 dma_addr_t reg_dma_paddr; 566 u32 *reg_dma_mem; 567 dma_addr_t reg_paddr; 568 569 const struct vc4_dsi_variant *variant; 570 571 /* DSI channel for the panel we're connected to. */ 572 u32 channel; 573 u32 lanes; 574 u32 format; 575 u32 divider; 576 u32 mode_flags; 577 578 /* Input clock from CPRMAN to the digital PHY, for the DSI 579 * escape clock. 580 */ 581 struct clk *escape_clock; 582 583 /* Input clock to the analog PHY, used to generate the DSI bit 584 * clock. 585 */ 586 struct clk *pll_phy_clock; 587 588 /* HS Clocks generated within the DSI analog PHY. */ 589 struct clk_fixed_factor phy_clocks[3]; 590 591 struct clk_hw_onecell_data *clk_onecell; 592 593 /* Pixel clock output to the pixelvalve, generated from the HS 594 * clock. 595 */ 596 struct clk *pixel_clock; 597 598 struct completion xfer_completion; 599 int xfer_result; 600 601 struct debugfs_regset32 regset; 602}; 603 604#define host_to_dsi(host) \ 605 container_of_const(host, struct vc4_dsi, dsi_host) 606 607#define to_vc4_dsi(_encoder) \ 608 container_of_const(_encoder, struct vc4_dsi, encoder.base) 609 610#define bridge_to_vc4_dsi(_bridge) \ 611 container_of_const(_bridge, struct vc4_dsi, bridge) 612 613static inline void 614dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 615{ 616 struct dma_chan *chan = dsi->reg_dma_chan; 617 struct dma_async_tx_descriptor *tx; 618 dma_cookie_t cookie; 619 int ret; 620 621 kunit_fail_current_test("Accessing a register in a unit test!\n"); 622 623 /* DSI0 should be able to write normally. */ 624 if (!chan) { 625 writel(val, dsi->regs + offset); 626 return; 627 } 628 629 *dsi->reg_dma_mem = val; 630 631 tx = chan->device->device_prep_dma_memcpy(chan, 632 dsi->reg_paddr + offset, 633 dsi->reg_dma_paddr, 634 4, 0); 635 if (!tx) { 636 DRM_ERROR("Failed to set up DMA register write\n"); 637 return; 638 } 639 640 cookie = tx->tx_submit(tx); 641 ret = dma_submit_error(cookie); 642 if (ret) { 643 DRM_ERROR("Failed to submit DMA: %d\n", ret); 644 return; 645 } 646 ret = dma_sync_wait(chan, cookie); 647 if (ret) 648 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 649} 650 651#define DSI_READ(offset) \ 652 ({ \ 653 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 654 readl(dsi->regs + (offset)); \ 655 }) 656 657#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 658#define DSI_PORT_READ(offset) \ 659 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 660#define DSI_PORT_WRITE(offset, val) \ 661 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 662#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 663 664static const struct debugfs_reg32 dsi0_regs[] = { 665 VC4_REG32(DSI0_CTRL), 666 VC4_REG32(DSI0_STAT), 667 VC4_REG32(DSI0_HSTX_TO_CNT), 668 VC4_REG32(DSI0_LPRX_TO_CNT), 669 VC4_REG32(DSI0_TA_TO_CNT), 670 VC4_REG32(DSI0_PR_TO_CNT), 671 VC4_REG32(DSI0_DISP0_CTRL), 672 VC4_REG32(DSI0_DISP1_CTRL), 673 VC4_REG32(DSI0_INT_STAT), 674 VC4_REG32(DSI0_INT_EN), 675 VC4_REG32(DSI0_PHYC), 676 VC4_REG32(DSI0_HS_CLT0), 677 VC4_REG32(DSI0_HS_CLT1), 678 VC4_REG32(DSI0_HS_CLT2), 679 VC4_REG32(DSI0_HS_DLT3), 680 VC4_REG32(DSI0_HS_DLT4), 681 VC4_REG32(DSI0_HS_DLT5), 682 VC4_REG32(DSI0_HS_DLT6), 683 VC4_REG32(DSI0_HS_DLT7), 684 VC4_REG32(DSI0_PHY_AFEC0), 685 VC4_REG32(DSI0_PHY_AFEC1), 686 VC4_REG32(DSI0_ID), 687}; 688 689static const struct debugfs_reg32 dsi1_regs[] = { 690 VC4_REG32(DSI1_CTRL), 691 VC4_REG32(DSI1_STAT), 692 VC4_REG32(DSI1_HSTX_TO_CNT), 693 VC4_REG32(DSI1_LPRX_TO_CNT), 694 VC4_REG32(DSI1_TA_TO_CNT), 695 VC4_REG32(DSI1_PR_TO_CNT), 696 VC4_REG32(DSI1_DISP0_CTRL), 697 VC4_REG32(DSI1_DISP1_CTRL), 698 VC4_REG32(DSI1_INT_STAT), 699 VC4_REG32(DSI1_INT_EN), 700 VC4_REG32(DSI1_PHYC), 701 VC4_REG32(DSI1_HS_CLT0), 702 VC4_REG32(DSI1_HS_CLT1), 703 VC4_REG32(DSI1_HS_CLT2), 704 VC4_REG32(DSI1_HS_DLT3), 705 VC4_REG32(DSI1_HS_DLT4), 706 VC4_REG32(DSI1_HS_DLT5), 707 VC4_REG32(DSI1_HS_DLT6), 708 VC4_REG32(DSI1_HS_DLT7), 709 VC4_REG32(DSI1_PHY_AFEC0), 710 VC4_REG32(DSI1_PHY_AFEC1), 711 VC4_REG32(DSI1_ID), 712}; 713 714static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 715{ 716 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 717 718 if (latch) 719 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 720 else 721 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 722 723 DSI_PORT_WRITE(PHY_AFEC0, afec0); 724} 725 726/* Enters or exits Ultra Low Power State. */ 727static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 728{ 729 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 730 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 731 DSI_PHYC_DLANE0_ULPS | 732 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 733 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 734 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 735 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 736 DSI1_STAT_PHY_D0_ULPS | 737 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 738 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 739 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 740 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 741 DSI1_STAT_PHY_D0_STOP | 742 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 743 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 744 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 745 int ret; 746 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 747 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 748 749 if (ulps == ulps_currently_enabled) 750 return; 751 752 DSI_PORT_WRITE(STAT, stat_ulps); 753 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 754 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 755 if (ret) { 756 dev_warn(&dsi->pdev->dev, 757 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 758 DSI_PORT_READ(STAT)); 759 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 760 vc4_dsi_latch_ulps(dsi, false); 761 return; 762 } 763 764 /* The DSI module can't be disabled while the module is 765 * generating ULPS state. So, to be able to disable the 766 * module, we have the AFE latch the ULPS state and continue 767 * on to having the module enter STOP. 768 */ 769 vc4_dsi_latch_ulps(dsi, ulps); 770 771 DSI_PORT_WRITE(STAT, stat_stop); 772 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 773 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 774 if (ret) { 775 dev_warn(&dsi->pdev->dev, 776 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 777 DSI_PORT_READ(STAT)); 778 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 779 return; 780 } 781} 782 783static u32 784dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 785{ 786 /* The HS timings have to be rounded up to a multiple of 8 787 * because we're using the byte clock. 788 */ 789 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 790} 791 792/* ESC always runs at 100Mhz. */ 793#define ESC_TIME_NS 10 794 795static u32 796dsi_esc_timing(u32 ns) 797{ 798 return DIV_ROUND_UP(ns, ESC_TIME_NS); 799} 800 801static void vc4_dsi_bridge_disable(struct drm_bridge *bridge, 802 struct drm_bridge_state *state) 803{ 804 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 805 u32 disp0_ctrl; 806 807 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 808 disp0_ctrl &= ~DSI_DISP0_ENABLE; 809 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 810} 811 812static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge, 813 struct drm_bridge_state *state) 814{ 815 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 816 struct device *dev = &dsi->pdev->dev; 817 818 clk_disable_unprepare(dsi->pll_phy_clock); 819 clk_disable_unprepare(dsi->escape_clock); 820 clk_disable_unprepare(dsi->pixel_clock); 821 822 pm_runtime_put(dev); 823} 824 825/* Extends the mode's blank intervals to handle BCM2835's integer-only 826 * DSI PLL divider. 827 * 828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 829 * driver since most peripherals are hanging off of the PLLD_PER 830 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 831 * the pixel clock), only has an integer divider off of DSI. 832 * 833 * To get our panel mode to refresh at the expected 60Hz, we need to 834 * extend the horizontal blank time. This means we drive a 835 * higher-than-expected clock rate to the panel, but that's what the 836 * firmware does too. 837 */ 838static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge, 839 const struct drm_display_mode *mode, 840 struct drm_display_mode *adjusted_mode) 841{ 842 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 843 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 844 unsigned long parent_rate = clk_get_rate(phy_parent); 845 unsigned long pixel_clock_hz = mode->clock * 1000; 846 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 847 int divider; 848 849 /* Find what divider gets us a faster clock than the requested 850 * pixel clock. 851 */ 852 for (divider = 1; divider < 255; divider++) { 853 if (parent_rate / (divider + 1) < pll_clock) 854 break; 855 } 856 857 /* Now that we've picked a PLL divider, calculate back to its 858 * pixel clock. 859 */ 860 pll_clock = parent_rate / divider; 861 pixel_clock_hz = pll_clock / dsi->divider; 862 863 adjusted_mode->clock = pixel_clock_hz / 1000; 864 865 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 866 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 867 mode->clock; 868 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 869 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 870 871 return true; 872} 873 874static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge, 875 struct drm_bridge_state *old_state) 876{ 877 struct drm_atomic_state *state = old_state->base.state; 878 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 879 const struct drm_crtc_state *crtc_state; 880 struct device *dev = &dsi->pdev->dev; 881 const struct drm_display_mode *mode; 882 struct drm_connector *connector; 883 bool debug_dump_regs = false; 884 unsigned long hs_clock; 885 struct drm_crtc *crtc; 886 u32 ui_ns; 887 /* Minimum LP state duration in escape clock cycles. */ 888 u32 lpx = dsi_esc_timing(60); 889 unsigned long pixel_clock_hz; 890 unsigned long dsip_clock; 891 unsigned long phy_clock; 892 int ret; 893 894 ret = pm_runtime_resume_and_get(dev); 895 if (ret) { 896 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 897 return; 898 } 899 900 if (debug_dump_regs) { 901 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 902 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 903 drm_print_regset32(&p, &dsi->regset); 904 } 905 906 /* 907 * Retrieve the CRTC adjusted mode. This requires a little dance to go 908 * from the bridge to the encoder, to the connector and to the CRTC. 909 */ 910 connector = drm_atomic_get_new_connector_for_encoder(state, 911 bridge->encoder); 912 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; 913 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 914 mode = &crtc_state->adjusted_mode; 915 916 pixel_clock_hz = mode->clock * 1000; 917 918 /* Round up the clk_set_rate() request slightly, since 919 * PLLD_DSI1 is an integer divider and its rate selection will 920 * never round up. 921 */ 922 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 923 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 924 if (ret) { 925 dev_err(&dsi->pdev->dev, 926 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 927 } 928 929 /* Reset the DSI and all its fifos. */ 930 DSI_PORT_WRITE(CTRL, 931 DSI_CTRL_SOFT_RESET_CFG | 932 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 933 934 DSI_PORT_WRITE(CTRL, 935 DSI_CTRL_HSDT_EOT_DISABLE | 936 DSI_CTRL_RX_LPDT_EOT_DISABLE); 937 938 /* Clear all stat bits so we see what has happened during enable. */ 939 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 940 941 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 942 if (dsi->variant->port == 0) { 943 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 944 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 945 946 if (dsi->lanes < 2) 947 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 948 949 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 950 afec0 |= DSI0_PHY_AFEC0_RESET; 951 952 DSI_PORT_WRITE(PHY_AFEC0, afec0); 953 954 /* AFEC reset hold time */ 955 mdelay(1); 956 957 DSI_PORT_WRITE(PHY_AFEC1, 958 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 959 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 960 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 961 } else { 962 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 963 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 964 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 965 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 966 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 967 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 968 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 969 970 if (dsi->lanes < 4) 971 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 972 if (dsi->lanes < 3) 973 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 974 if (dsi->lanes < 2) 975 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 976 977 afec0 |= DSI1_PHY_AFEC0_RESET; 978 979 DSI_PORT_WRITE(PHY_AFEC0, afec0); 980 981 DSI_PORT_WRITE(PHY_AFEC1, 0); 982 983 /* AFEC reset hold time */ 984 mdelay(1); 985 } 986 987 ret = clk_prepare_enable(dsi->escape_clock); 988 if (ret) { 989 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 990 return; 991 } 992 993 ret = clk_prepare_enable(dsi->pll_phy_clock); 994 if (ret) { 995 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 996 return; 997 } 998 999 hs_clock = clk_get_rate(dsi->pll_phy_clock); 1000 1001 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 1002 * not the pixel clock rate. DSIxP take from the APHY's byte, 1003 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 1004 * that rate. Separately, a value derived from PIX_CLK_DIV 1005 * and HS_CLKC is fed into the PV to divide down to the actual 1006 * pixel clock for pushing pixels into DSI. 1007 */ 1008 dsip_clock = phy_clock / 8; 1009 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 1010 if (ret) { 1011 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 1012 dsip_clock, ret); 1013 } 1014 1015 ret = clk_prepare_enable(dsi->pixel_clock); 1016 if (ret) { 1017 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1018 return; 1019 } 1020 1021 /* How many ns one DSI unit interval is. Note that the clock 1022 * is DDR, so there's an extra divide by 2. 1023 */ 1024 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1025 1026 DSI_PORT_WRITE(HS_CLT0, 1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1028 DSI_HS_CLT0_CZERO) | 1029 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1030 DSI_HS_CLT0_CPRE) | 1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1032 DSI_HS_CLT0_CPREP)); 1033 1034 DSI_PORT_WRITE(HS_CLT1, 1035 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1036 DSI_HS_CLT1_CTRAIL) | 1037 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1038 DSI_HS_CLT1_CPOST)); 1039 1040 DSI_PORT_WRITE(HS_CLT2, 1041 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1042 DSI_HS_CLT2_WUP)); 1043 1044 DSI_PORT_WRITE(HS_DLT3, 1045 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1046 DSI_HS_DLT3_EXIT) | 1047 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1048 DSI_HS_DLT3_ZERO) | 1049 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1050 DSI_HS_DLT3_PRE)); 1051 1052 DSI_PORT_WRITE(HS_DLT4, 1053 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1054 DSI_HS_DLT4_LPX) | 1055 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1056 dsi_hs_timing(ui_ns, 60, 4)), 1057 DSI_HS_DLT4_TRAIL) | 1058 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1059 1060 /* T_INIT is how long STOP is driven after power-up to 1061 * indicate to the slave (also coming out of power-up) that 1062 * master init is complete, and should be greater than the 1063 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1064 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1065 * T_INIT,SLAVE, while allowing protocols on top of it to give 1066 * greater minimums. The vc4 firmware uses an extremely 1067 * conservative 5ms, and we maintain that here. 1068 */ 1069 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1070 5 * 1000 * 1000, 0), 1071 DSI_HS_DLT5_INIT)); 1072 1073 DSI_PORT_WRITE(HS_DLT6, 1074 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1075 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1076 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1077 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1078 1079 DSI_PORT_WRITE(HS_DLT7, 1080 VC4_SET_FIELD(dsi_esc_timing(1000000), 1081 DSI_HS_DLT7_LP_WUP)); 1082 1083 DSI_PORT_WRITE(PHYC, 1084 DSI_PHYC_DLANE0_ENABLE | 1085 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1086 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1087 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1088 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1089 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1090 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1091 (dsi->variant->port == 0 ? 1092 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1093 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1094 1095 DSI_PORT_WRITE(CTRL, 1096 DSI_PORT_READ(CTRL) | 1097 DSI_CTRL_CAL_BYTE); 1098 1099 /* HS timeout in HS clock cycles: disabled. */ 1100 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1101 /* LP receive timeout in HS clocks. */ 1102 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1103 /* Bus turnaround timeout */ 1104 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1105 /* Display reset sequence timeout */ 1106 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1107 1108 /* Set up DISP1 for transferring long command payloads through 1109 * the pixfifo. 1110 */ 1111 DSI_PORT_WRITE(DISP1_CTRL, 1112 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1113 DSI_DISP1_PFORMAT) | 1114 DSI_DISP1_ENABLE); 1115 1116 /* Ungate the block. */ 1117 if (dsi->variant->port == 0) 1118 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1119 else 1120 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1121 1122 /* Bring AFE out of reset. */ 1123 DSI_PORT_WRITE(PHY_AFEC0, 1124 DSI_PORT_READ(PHY_AFEC0) & 1125 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1126 1127 vc4_dsi_ulps(dsi, false); 1128 1129 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1130 DSI_PORT_WRITE(DISP0_CTRL, 1131 VC4_SET_FIELD(dsi->divider, 1132 DSI_DISP0_PIX_CLK_DIV) | 1133 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1134 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1135 DSI_DISP0_LP_STOP_CTRL) | 1136 DSI_DISP0_ST_END); 1137 } else { 1138 DSI_PORT_WRITE(DISP0_CTRL, 1139 DSI_DISP0_COMMAND_MODE); 1140 } 1141} 1142 1143static void vc4_dsi_bridge_enable(struct drm_bridge *bridge, 1144 struct drm_bridge_state *old_state) 1145{ 1146 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1147 bool debug_dump_regs = false; 1148 u32 disp0_ctrl; 1149 1150 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 1151 disp0_ctrl |= DSI_DISP0_ENABLE; 1152 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 1153 1154 if (debug_dump_regs) { 1155 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1156 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1157 drm_print_regset32(&p, &dsi->regset); 1158 } 1159} 1160 1161static int vc4_dsi_bridge_attach(struct drm_bridge *bridge, 1162 enum drm_bridge_attach_flags flags) 1163{ 1164 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1165 1166 /* Attach the panel or bridge to the dsi bridge */ 1167 return drm_bridge_attach(bridge->encoder, dsi->out_bridge, 1168 &dsi->bridge, flags); 1169} 1170 1171static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1172 const struct mipi_dsi_msg *msg) 1173{ 1174 struct vc4_dsi *dsi = host_to_dsi(host); 1175 struct mipi_dsi_packet packet; 1176 u32 pkth = 0, pktc = 0; 1177 int i, ret; 1178 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1179 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1180 1181 mipi_dsi_create_packet(&packet, msg); 1182 1183 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1184 pkth |= VC4_SET_FIELD(packet.header[1] | 1185 (packet.header[2] << 8), 1186 DSI_TXPKT1H_BC_PARAM); 1187 if (is_long) { 1188 /* Divide data across the various FIFOs we have available. 1189 * The command FIFO takes byte-oriented data, but is of 1190 * limited size. The pixel FIFO (never actually used for 1191 * pixel data in reality) is word oriented, and substantially 1192 * larger. So, we use the pixel FIFO for most of the data, 1193 * sending the residual bytes in the command FIFO at the start. 1194 * 1195 * With this arrangement, the command FIFO will never get full. 1196 */ 1197 if (packet.payload_length <= 16) { 1198 cmd_fifo_len = packet.payload_length; 1199 pix_fifo_len = 0; 1200 } else { 1201 cmd_fifo_len = (packet.payload_length % 1202 DSI_PIX_FIFO_WIDTH); 1203 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1204 DSI_PIX_FIFO_WIDTH); 1205 } 1206 1207 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1208 1209 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1210 } 1211 1212 if (msg->rx_len) { 1213 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1214 DSI_TXPKT1C_CMD_CTRL); 1215 } else { 1216 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1217 DSI_TXPKT1C_CMD_CTRL); 1218 } 1219 1220 for (i = 0; i < cmd_fifo_len; i++) 1221 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1222 for (i = 0; i < pix_fifo_len; i++) { 1223 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1224 1225 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1226 pix[0] | 1227 pix[1] << 8 | 1228 pix[2] << 16 | 1229 pix[3] << 24); 1230 } 1231 1232 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1233 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1234 if (is_long) 1235 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1236 1237 /* Send one copy of the packet. Larger repeats are used for pixel 1238 * data in command mode. 1239 */ 1240 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1241 1242 pktc |= DSI_TXPKT1C_CMD_EN; 1243 if (pix_fifo_len) { 1244 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1245 DSI_TXPKT1C_DISPLAY_NO); 1246 } else { 1247 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1248 DSI_TXPKT1C_DISPLAY_NO); 1249 } 1250 1251 /* Enable the appropriate interrupt for the transfer completion. */ 1252 dsi->xfer_result = 0; 1253 reinit_completion(&dsi->xfer_completion); 1254 if (dsi->variant->port == 0) { 1255 DSI_PORT_WRITE(INT_STAT, 1256 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1257 if (msg->rx_len) { 1258 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1259 DSI0_INT_PHY_DIR_RTF)); 1260 } else { 1261 DSI_PORT_WRITE(INT_EN, 1262 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1263 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1264 DSI0_INT_CMDC_DONE))); 1265 } 1266 } else { 1267 DSI_PORT_WRITE(INT_STAT, 1268 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1269 if (msg->rx_len) { 1270 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1271 DSI1_INT_PHY_DIR_RTF)); 1272 } else { 1273 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1274 DSI1_INT_TXPKT1_DONE)); 1275 } 1276 } 1277 1278 /* Send the packet. */ 1279 DSI_PORT_WRITE(TXPKT1H, pkth); 1280 DSI_PORT_WRITE(TXPKT1C, pktc); 1281 1282 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1283 msecs_to_jiffies(1000))) { 1284 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1285 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1286 DSI_PORT_READ(INT_STAT)); 1287 ret = -ETIMEDOUT; 1288 } else { 1289 ret = dsi->xfer_result; 1290 } 1291 1292 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1293 1294 if (ret) 1295 goto reset_fifo_and_return; 1296 1297 if (ret == 0 && msg->rx_len) { 1298 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1299 u8 *msg_rx = msg->rx_buf; 1300 1301 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1302 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1303 DSI_RXPKT1H_BC_PARAM); 1304 1305 if (rxlen != msg->rx_len) { 1306 DRM_ERROR("DSI returned %db, expecting %db\n", 1307 rxlen, (int)msg->rx_len); 1308 ret = -ENXIO; 1309 goto reset_fifo_and_return; 1310 } 1311 1312 for (i = 0; i < msg->rx_len; i++) 1313 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1314 } else { 1315 /* FINISHME: Handle AWER */ 1316 1317 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1318 DSI_RXPKT1H_SHORT_0); 1319 if (msg->rx_len > 1) { 1320 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1321 DSI_RXPKT1H_SHORT_1); 1322 } 1323 } 1324 } 1325 1326 return ret; 1327 1328reset_fifo_and_return: 1329 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1330 1331 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1332 udelay(1); 1333 DSI_PORT_WRITE(CTRL, 1334 DSI_PORT_READ(CTRL) | 1335 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1336 1337 DSI_PORT_WRITE(TXPKT1C, 0); 1338 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1339 return ret; 1340} 1341 1342static const struct component_ops vc4_dsi_ops; 1343static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1344 struct mipi_dsi_device *device) 1345{ 1346 struct vc4_dsi *dsi = host_to_dsi(host); 1347 int ret; 1348 1349 dsi->lanes = device->lanes; 1350 dsi->channel = device->channel; 1351 dsi->mode_flags = device->mode_flags; 1352 1353 switch (device->format) { 1354 case MIPI_DSI_FMT_RGB888: 1355 dsi->format = DSI_PFORMAT_RGB888; 1356 dsi->divider = 24 / dsi->lanes; 1357 break; 1358 case MIPI_DSI_FMT_RGB666: 1359 dsi->format = DSI_PFORMAT_RGB666; 1360 dsi->divider = 24 / dsi->lanes; 1361 break; 1362 case MIPI_DSI_FMT_RGB666_PACKED: 1363 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1364 dsi->divider = 18 / dsi->lanes; 1365 break; 1366 case MIPI_DSI_FMT_RGB565: 1367 dsi->format = DSI_PFORMAT_RGB565; 1368 dsi->divider = 16 / dsi->lanes; 1369 break; 1370 default: 1371 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1372 dsi->format); 1373 return 0; 1374 } 1375 1376 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1377 dev_err(&dsi->pdev->dev, 1378 "Only VIDEO mode panels supported currently.\n"); 1379 return 0; 1380 } 1381 1382 drm_bridge_add(&dsi->bridge); 1383 1384 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1385 if (ret) { 1386 drm_bridge_remove(&dsi->bridge); 1387 return ret; 1388 } 1389 1390 return 0; 1391} 1392 1393static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1394 struct mipi_dsi_device *device) 1395{ 1396 struct vc4_dsi *dsi = host_to_dsi(host); 1397 1398 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1399 drm_bridge_remove(&dsi->bridge); 1400 return 0; 1401} 1402 1403static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1404 .attach = vc4_dsi_host_attach, 1405 .detach = vc4_dsi_host_detach, 1406 .transfer = vc4_dsi_host_transfer, 1407}; 1408 1409static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = { 1410 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1411 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1412 .atomic_reset = drm_atomic_helper_bridge_reset, 1413 .atomic_pre_enable = vc4_dsi_bridge_pre_enable, 1414 .atomic_enable = vc4_dsi_bridge_enable, 1415 .atomic_disable = vc4_dsi_bridge_disable, 1416 .atomic_post_disable = vc4_dsi_bridge_post_disable, 1417 .attach = vc4_dsi_bridge_attach, 1418 .mode_fixup = vc4_dsi_bridge_mode_fixup, 1419}; 1420 1421static int vc4_dsi_late_register(struct drm_encoder *encoder) 1422{ 1423 struct drm_device *drm = encoder->dev; 1424 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 1425 1426 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1427 1428 return 0; 1429} 1430 1431static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 1432 .late_register = vc4_dsi_late_register, 1433}; 1434 1435static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1436 .port = 1, 1437 .debugfs_name = "dsi1_regs", 1438 .regs = dsi1_regs, 1439 .nregs = ARRAY_SIZE(dsi1_regs), 1440}; 1441 1442static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1443 .port = 0, 1444 .debugfs_name = "dsi0_regs", 1445 .regs = dsi0_regs, 1446 .nregs = ARRAY_SIZE(dsi0_regs), 1447}; 1448 1449static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1450 .port = 1, 1451 .broken_axi_workaround = true, 1452 .debugfs_name = "dsi1_regs", 1453 .regs = dsi1_regs, 1454 .nregs = ARRAY_SIZE(dsi1_regs), 1455}; 1456 1457static const struct of_device_id vc4_dsi_dt_match[] = { 1458 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1459 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1460 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1461 {} 1462}; 1463 1464static void dsi_handle_error(struct vc4_dsi *dsi, 1465 irqreturn_t *ret, u32 stat, u32 bit, 1466 const char *type) 1467{ 1468 if (!(stat & bit)) 1469 return; 1470 1471 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1472 *ret = IRQ_HANDLED; 1473} 1474 1475/* 1476 * Initial handler for port 1 where we need the reg_dma workaround. 1477 * The register DMA writes sleep, so we can't do it in the top half. 1478 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1479 * parent interrupt contrller until our interrupt thread is done. 1480 */ 1481static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1482{ 1483 struct vc4_dsi *dsi = data; 1484 u32 stat = DSI_PORT_READ(INT_STAT); 1485 1486 if (!stat) 1487 return IRQ_NONE; 1488 1489 return IRQ_WAKE_THREAD; 1490} 1491 1492/* 1493 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1494 * 1 where we need the reg_dma workaround. 1495 */ 1496static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1497{ 1498 struct vc4_dsi *dsi = data; 1499 u32 stat = DSI_PORT_READ(INT_STAT); 1500 irqreturn_t ret = IRQ_NONE; 1501 1502 DSI_PORT_WRITE(INT_STAT, stat); 1503 1504 dsi_handle_error(dsi, &ret, stat, 1505 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1506 dsi_handle_error(dsi, &ret, stat, 1507 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1508 dsi_handle_error(dsi, &ret, stat, 1509 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1510 dsi_handle_error(dsi, &ret, stat, 1511 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1512 dsi_handle_error(dsi, &ret, stat, 1513 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1514 dsi_handle_error(dsi, &ret, stat, 1515 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1516 dsi_handle_error(dsi, &ret, stat, 1517 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1518 dsi_handle_error(dsi, &ret, stat, 1519 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1520 1521 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1522 DSI0_INT_CMDC_DONE_MASK) | 1523 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1524 complete(&dsi->xfer_completion); 1525 ret = IRQ_HANDLED; 1526 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1527 complete(&dsi->xfer_completion); 1528 dsi->xfer_result = -ETIMEDOUT; 1529 ret = IRQ_HANDLED; 1530 } 1531 1532 return ret; 1533} 1534 1535/** 1536 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1537 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1538 * @dsi: DSI encoder 1539 */ 1540static int 1541vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1542{ 1543 struct device *dev = &dsi->pdev->dev; 1544 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1545 static const struct { 1546 const char *name; 1547 int div; 1548 } phy_clocks[] = { 1549 { "byte", 8 }, 1550 { "ddr2", 4 }, 1551 { "ddr", 2 }, 1552 }; 1553 int i; 1554 1555 dsi->clk_onecell = devm_kzalloc(dev, 1556 sizeof(*dsi->clk_onecell) + 1557 ARRAY_SIZE(phy_clocks) * 1558 sizeof(struct clk_hw *), 1559 GFP_KERNEL); 1560 if (!dsi->clk_onecell) 1561 return -ENOMEM; 1562 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1563 1564 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1565 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1566 struct clk_init_data init; 1567 char clk_name[16]; 1568 int ret; 1569 1570 snprintf(clk_name, sizeof(clk_name), 1571 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1572 1573 /* We just use core fixed factor clock ops for the PHY 1574 * clocks. The clocks are actually gated by the 1575 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1576 * setting if we use the DDR/DDR2 clocks. However, 1577 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1578 * setting both our parent DSI PLL's rate and this 1579 * clock's rate, so it knows if DDR/DDR2 are going to 1580 * be used and could enable the gates itself. 1581 */ 1582 fix->mult = 1; 1583 fix->div = phy_clocks[i].div; 1584 fix->hw.init = &init; 1585 1586 memset(&init, 0, sizeof(init)); 1587 init.parent_names = &parent_name; 1588 init.num_parents = 1; 1589 init.name = clk_name; 1590 init.ops = &clk_fixed_factor_ops; 1591 1592 ret = devm_clk_hw_register(dev, &fix->hw); 1593 if (ret) 1594 return ret; 1595 1596 dsi->clk_onecell->hws[i] = &fix->hw; 1597 } 1598 1599 return of_clk_add_hw_provider(dev->of_node, 1600 of_clk_hw_onecell_get, 1601 dsi->clk_onecell); 1602} 1603 1604static void vc4_dsi_dma_mem_release(void *ptr) 1605{ 1606 struct vc4_dsi *dsi = ptr; 1607 struct device *dev = &dsi->pdev->dev; 1608 1609 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); 1610 dsi->reg_dma_mem = NULL; 1611} 1612 1613static void vc4_dsi_dma_chan_release(void *ptr) 1614{ 1615 struct vc4_dsi *dsi = ptr; 1616 1617 dma_release_channel(dsi->reg_dma_chan); 1618 dsi->reg_dma_chan = NULL; 1619} 1620 1621static void vc4_dsi_release(struct kref *kref) 1622{ 1623 struct vc4_dsi *dsi = 1624 container_of(kref, struct vc4_dsi, kref); 1625 1626 kfree(dsi); 1627} 1628 1629static void vc4_dsi_get(struct vc4_dsi *dsi) 1630{ 1631 kref_get(&dsi->kref); 1632} 1633 1634static void vc4_dsi_put(struct vc4_dsi *dsi) 1635{ 1636 kref_put(&dsi->kref, &vc4_dsi_release); 1637} 1638 1639static void vc4_dsi_release_action(struct drm_device *drm, void *ptr) 1640{ 1641 struct vc4_dsi *dsi = ptr; 1642 1643 vc4_dsi_put(dsi); 1644} 1645 1646static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1647{ 1648 struct platform_device *pdev = to_platform_device(dev); 1649 struct drm_device *drm = dev_get_drvdata(master); 1650 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1651 struct drm_encoder *encoder = &dsi->encoder.base; 1652 int ret; 1653 1654 vc4_dsi_get(dsi); 1655 1656 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi); 1657 if (ret) 1658 return ret; 1659 1660 dsi->variant = of_device_get_match_data(dev); 1661 1662 dsi->encoder.type = dsi->variant->port ? 1663 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1664 1665 dsi->regs = vc4_ioremap_regs(pdev, 0); 1666 if (IS_ERR(dsi->regs)) 1667 return PTR_ERR(dsi->regs); 1668 1669 dsi->regset.base = dsi->regs; 1670 dsi->regset.regs = dsi->variant->regs; 1671 dsi->regset.nregs = dsi->variant->nregs; 1672 1673 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1674 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1675 DSI_PORT_READ(ID), DSI_ID_VALUE); 1676 return -ENODEV; 1677 } 1678 1679 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1680 * writes from the ARM. It does handle writes from the DMA engine, 1681 * so set up a channel for talking to it. 1682 */ 1683 if (dsi->variant->broken_axi_workaround) { 1684 dma_cap_mask_t dma_mask; 1685 1686 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1687 &dsi->reg_dma_paddr, 1688 GFP_KERNEL); 1689 if (!dsi->reg_dma_mem) { 1690 DRM_ERROR("Failed to get DMA memory\n"); 1691 return -ENOMEM; 1692 } 1693 1694 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); 1695 if (ret) 1696 return ret; 1697 1698 dma_cap_zero(dma_mask); 1699 dma_cap_set(DMA_MEMCPY, dma_mask); 1700 1701 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1702 if (IS_ERR(dsi->reg_dma_chan)) { 1703 ret = PTR_ERR(dsi->reg_dma_chan); 1704 if (ret != -EPROBE_DEFER) 1705 DRM_ERROR("Failed to get DMA channel: %d\n", 1706 ret); 1707 return ret; 1708 } 1709 1710 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); 1711 if (ret) 1712 return ret; 1713 1714 /* Get the physical address of the device's registers. The 1715 * struct resource for the regs gives us the bus address 1716 * instead. 1717 */ 1718 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1719 0, NULL, NULL)); 1720 } 1721 1722 init_completion(&dsi->xfer_completion); 1723 /* At startup enable error-reporting interrupts and nothing else. */ 1724 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1725 /* Clear any existing interrupt state. */ 1726 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1727 1728 if (dsi->reg_dma_mem) 1729 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1730 vc4_dsi_irq_defer_to_thread_handler, 1731 vc4_dsi_irq_handler, 1732 IRQF_ONESHOT, 1733 "vc4 dsi", dsi); 1734 else 1735 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1736 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1737 if (ret) { 1738 if (ret != -EPROBE_DEFER) 1739 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1740 return ret; 1741 } 1742 1743 dsi->escape_clock = devm_clk_get(dev, "escape"); 1744 if (IS_ERR(dsi->escape_clock)) { 1745 ret = PTR_ERR(dsi->escape_clock); 1746 if (ret != -EPROBE_DEFER) 1747 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1748 return ret; 1749 } 1750 1751 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1752 if (IS_ERR(dsi->pll_phy_clock)) { 1753 ret = PTR_ERR(dsi->pll_phy_clock); 1754 if (ret != -EPROBE_DEFER) 1755 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1756 return ret; 1757 } 1758 1759 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1760 if (IS_ERR(dsi->pixel_clock)) { 1761 ret = PTR_ERR(dsi->pixel_clock); 1762 if (ret != -EPROBE_DEFER) 1763 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1764 return ret; 1765 } 1766 1767 dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0); 1768 if (IS_ERR(dsi->out_bridge)) 1769 return PTR_ERR(dsi->out_bridge); 1770 1771 /* The esc clock rate is supposed to always be 100Mhz. */ 1772 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1773 if (ret) { 1774 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1775 return ret; 1776 } 1777 1778 ret = vc4_dsi_init_phy_clocks(dsi); 1779 if (ret) 1780 return ret; 1781 1782 ret = drmm_encoder_init(drm, encoder, 1783 &vc4_dsi_encoder_funcs, 1784 DRM_MODE_ENCODER_DSI, 1785 NULL); 1786 if (ret) 1787 return ret; 1788 1789 ret = devm_pm_runtime_enable(dev); 1790 if (ret) 1791 return ret; 1792 1793 ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0); 1794 if (ret) 1795 return ret; 1796 1797 return 0; 1798} 1799 1800static const struct component_ops vc4_dsi_ops = { 1801 .bind = vc4_dsi_bind, 1802}; 1803 1804static int vc4_dsi_dev_probe(struct platform_device *pdev) 1805{ 1806 struct device *dev = &pdev->dev; 1807 struct vc4_dsi *dsi; 1808 1809 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL); 1810 if (!dsi) 1811 return -ENOMEM; 1812 dev_set_drvdata(dev, dsi); 1813 1814 kref_init(&dsi->kref); 1815 1816 dsi->pdev = pdev; 1817 dsi->bridge.funcs = &vc4_dsi_bridge_funcs; 1818#ifdef CONFIG_OF 1819 dsi->bridge.of_node = dev->of_node; 1820#endif 1821 dsi->bridge.type = DRM_MODE_CONNECTOR_DSI; 1822 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1823 dsi->dsi_host.dev = dev; 1824 mipi_dsi_host_register(&dsi->dsi_host); 1825 1826 return 0; 1827} 1828 1829static void vc4_dsi_dev_remove(struct platform_device *pdev) 1830{ 1831 struct device *dev = &pdev->dev; 1832 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1833 1834 mipi_dsi_host_unregister(&dsi->dsi_host); 1835 vc4_dsi_put(dsi); 1836} 1837 1838struct platform_driver vc4_dsi_driver = { 1839 .probe = vc4_dsi_dev_probe, 1840 .remove_new = vc4_dsi_dev_remove, 1841 .driver = { 1842 .name = "vc4_dsi", 1843 .of_match_table = vc4_dsi_dt_match, 1844 }, 1845}; 1846