1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4 * Author:Mark Yao <mark.yao@rock-chips.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/component.h>
9#include <linux/delay.h>
10#include <linux/iopoll.h>
11#include <linux/kernel.h>
12#include <linux/log2.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/overflow.h>
16#include <linux/platform_device.h>
17#include <linux/pm_runtime.h>
18#include <linux/reset.h>
19
20#include <drm/drm.h>
21#include <drm/drm_atomic.h>
22#include <drm/drm_atomic_uapi.h>
23#include <drm/drm_blend.h>
24#include <drm/drm_crtc.h>
25#include <drm/drm_flip_work.h>
26#include <drm/drm_fourcc.h>
27#include <drm/drm_framebuffer.h>
28#include <drm/drm_gem_atomic_helper.h>
29#include <drm/drm_gem_framebuffer_helper.h>
30#include <drm/drm_probe_helper.h>
31#include <drm/drm_self_refresh_helper.h>
32#include <drm/drm_vblank.h>
33
34#ifdef CONFIG_DRM_ANALOGIX_DP
35#include <drm/bridge/analogix_dp.h>
36#endif
37
38#include "rockchip_drm_drv.h"
39#include "rockchip_drm_gem.h"
40#include "rockchip_drm_fb.h"
41#include "rockchip_drm_vop.h"
42#include "rockchip_rgb.h"
43
44#define VOP_WIN_SET(vop, win, name, v) \
45		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46#define VOP_SCL_SET(vop, win, name, v) \
47		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48#define VOP_SCL_SET_EXT(vop, win, name, v) \
49		vop_reg_set(vop, &win->phy->scl->ext->name, \
50			    win->base, ~0, v, #name)
51
52#define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53	do { \
54		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56	} while (0)
57
58#define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59	do { \
60		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62	} while (0)
63
64#define VOP_INTR_SET_MASK(vop, name, mask, v) \
65		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66
67#define VOP_REG_SET(vop, group, name, v) \
68		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69
70#define VOP_HAS_REG(vop, group, name) \
71		(!!(vop->data->group->name.mask))
72
73#define VOP_INTR_SET_TYPE(vop, name, type, v) \
74	do { \
75		int i, reg = 0, mask = 0; \
76		for (i = 0; i < vop->data->intr->nintrs; i++) { \
77			if (vop->data->intr->intrs[i] & type) { \
78				reg |= (v) << i; \
79				mask |= 1 << i; \
80			} \
81		} \
82		VOP_INTR_SET_MASK(vop, name, mask, reg); \
83	} while (0)
84#define VOP_INTR_GET_TYPE(vop, name, type) \
85		vop_get_intr_type(vop, &vop->data->intr->name, type)
86
87#define VOP_WIN_GET(vop, win, name) \
88		vop_read_reg(vop, win->base, &win->phy->name)
89
90#define VOP_WIN_HAS_REG(win, name) \
91	(!!(win->phy->name.mask))
92
93#define VOP_WIN_GET_YRGBADDR(vop, win) \
94		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
95
96#define VOP_WIN_TO_INDEX(vop_win) \
97	((vop_win) - (vop_win)->vop->win)
98
99#define VOP_AFBC_SET(vop, name, v) \
100	do { \
101		if ((vop)->data->afbc) \
102			vop_reg_set((vop), &(vop)->data->afbc->name, \
103				    0, ~0, v, #name); \
104	} while (0)
105
106#define to_vop(x) container_of(x, struct vop, crtc)
107#define to_vop_win(x) container_of(x, struct vop_win, base)
108
109#define AFBC_FMT_RGB565		0x0
110#define AFBC_FMT_U8U8U8U8	0x5
111#define AFBC_FMT_U8U8U8		0x4
112
113#define AFBC_TILE_16x16		BIT(4)
114
115/*
116 * The coefficients of the following matrix are all fixed points.
117 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
118 * They are all represented in two's complement.
119 */
120static const uint32_t bt601_yuv2rgb[] = {
121	0x4A8, 0x0,    0x662,
122	0x4A8, 0x1E6F, 0x1CBF,
123	0x4A8, 0x812,  0x0,
124	0x321168, 0x0877CF, 0x2EB127
125};
126
127enum vop_pending {
128	VOP_PENDING_FB_UNREF,
129};
130
131struct vop_win {
132	struct drm_plane base;
133	const struct vop_win_data *data;
134	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
135	struct vop *vop;
136};
137
138struct rockchip_rgb;
139struct vop {
140	struct drm_crtc crtc;
141	struct device *dev;
142	struct drm_device *drm_dev;
143	bool is_enabled;
144
145	struct completion dsp_hold_completion;
146	unsigned int win_enabled;
147
148	/* protected by dev->event_lock */
149	struct drm_pending_vblank_event *event;
150
151	struct drm_flip_work fb_unref_work;
152	unsigned long pending;
153
154	struct completion line_flag_completion;
155
156	const struct vop_data *data;
157
158	uint32_t *regsbak;
159	void __iomem *regs;
160	void __iomem *lut_regs;
161
162	/* physical map length of vop register */
163	uint32_t len;
164
165	/* one time only one process allowed to config the register */
166	spinlock_t reg_lock;
167	/* lock vop irq reg */
168	spinlock_t irq_lock;
169	/* protects crtc enable/disable */
170	struct mutex vop_lock;
171
172	unsigned int irq;
173
174	/* vop AHP clk */
175	struct clk *hclk;
176	/* vop dclk */
177	struct clk *dclk;
178	/* vop share memory frequency */
179	struct clk *aclk;
180
181	/* vop dclk reset */
182	struct reset_control *dclk_rst;
183
184	/* optional internal rgb encoder */
185	struct rockchip_rgb *rgb;
186
187	struct vop_win win[];
188};
189
190static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
191{
192	return readl(vop->regs + offset);
193}
194
195static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
196				    const struct vop_reg *reg)
197{
198	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
199}
200
201static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
202			uint32_t _offset, uint32_t _mask, uint32_t v,
203			const char *reg_name)
204{
205	int offset, mask, shift;
206
207	if (!reg || !reg->mask) {
208		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
209		return;
210	}
211
212	offset = reg->offset + _offset;
213	mask = reg->mask & _mask;
214	shift = reg->shift;
215
216	if (reg->write_mask) {
217		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
218	} else {
219		uint32_t cached_val = vop->regsbak[offset >> 2];
220
221		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
222		vop->regsbak[offset >> 2] = v;
223	}
224
225	if (reg->relaxed)
226		writel_relaxed(v, vop->regs + offset);
227	else
228		writel(v, vop->regs + offset);
229}
230
231static inline uint32_t vop_get_intr_type(struct vop *vop,
232					 const struct vop_reg *reg, int type)
233{
234	uint32_t i, ret = 0;
235	uint32_t regs = vop_read_reg(vop, 0, reg);
236
237	for (i = 0; i < vop->data->intr->nintrs; i++) {
238		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
239			ret |= vop->data->intr->intrs[i];
240	}
241
242	return ret;
243}
244
245static inline void vop_cfg_done(struct vop *vop)
246{
247	VOP_REG_SET(vop, common, cfg_done, 1);
248}
249
250static bool has_rb_swapped(uint32_t version, uint32_t format)
251{
252	switch (format) {
253	case DRM_FORMAT_XBGR8888:
254	case DRM_FORMAT_ABGR8888:
255	case DRM_FORMAT_BGR565:
256		return true;
257	/*
258	 * full framework (IP version 3.x) only need rb swapped for RGB888 and
259	 * little framework (IP version 2.x) only need rb swapped for BGR888,
260	 * check for 3.x to also only rb swap BGR888 for unknown vop version
261	 */
262	case DRM_FORMAT_RGB888:
263		return VOP_MAJOR(version) == 3;
264	case DRM_FORMAT_BGR888:
265		return VOP_MAJOR(version) != 3;
266	default:
267		return false;
268	}
269}
270
271static bool has_uv_swapped(uint32_t format)
272{
273	switch (format) {
274	case DRM_FORMAT_NV21:
275	case DRM_FORMAT_NV61:
276	case DRM_FORMAT_NV42:
277		return true;
278	default:
279		return false;
280	}
281}
282
283static enum vop_data_format vop_convert_format(uint32_t format)
284{
285	switch (format) {
286	case DRM_FORMAT_XRGB8888:
287	case DRM_FORMAT_ARGB8888:
288	case DRM_FORMAT_XBGR8888:
289	case DRM_FORMAT_ABGR8888:
290		return VOP_FMT_ARGB8888;
291	case DRM_FORMAT_RGB888:
292	case DRM_FORMAT_BGR888:
293		return VOP_FMT_RGB888;
294	case DRM_FORMAT_RGB565:
295	case DRM_FORMAT_BGR565:
296		return VOP_FMT_RGB565;
297	case DRM_FORMAT_NV12:
298	case DRM_FORMAT_NV21:
299		return VOP_FMT_YUV420SP;
300	case DRM_FORMAT_NV16:
301	case DRM_FORMAT_NV61:
302		return VOP_FMT_YUV422SP;
303	case DRM_FORMAT_NV24:
304	case DRM_FORMAT_NV42:
305		return VOP_FMT_YUV444SP;
306	default:
307		DRM_ERROR("unsupported format[%08x]\n", format);
308		return -EINVAL;
309	}
310}
311
312static int vop_convert_afbc_format(uint32_t format)
313{
314	switch (format) {
315	case DRM_FORMAT_XRGB8888:
316	case DRM_FORMAT_ARGB8888:
317	case DRM_FORMAT_XBGR8888:
318	case DRM_FORMAT_ABGR8888:
319		return AFBC_FMT_U8U8U8U8;
320	case DRM_FORMAT_RGB888:
321	case DRM_FORMAT_BGR888:
322		return AFBC_FMT_U8U8U8;
323	case DRM_FORMAT_RGB565:
324	case DRM_FORMAT_BGR565:
325		return AFBC_FMT_RGB565;
326	default:
327		DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format);
328		return -EINVAL;
329	}
330}
331
332static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
333				  uint32_t dst, bool is_horizontal,
334				  int vsu_mode, int *vskiplines)
335{
336	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
337
338	if (vskiplines)
339		*vskiplines = 0;
340
341	if (is_horizontal) {
342		if (mode == SCALE_UP)
343			val = GET_SCL_FT_BIC(src, dst);
344		else if (mode == SCALE_DOWN)
345			val = GET_SCL_FT_BILI_DN(src, dst);
346	} else {
347		if (mode == SCALE_UP) {
348			if (vsu_mode == SCALE_UP_BIL)
349				val = GET_SCL_FT_BILI_UP(src, dst);
350			else
351				val = GET_SCL_FT_BIC(src, dst);
352		} else if (mode == SCALE_DOWN) {
353			if (vskiplines) {
354				*vskiplines = scl_get_vskiplines(src, dst);
355				val = scl_get_bili_dn_vskip(src, dst,
356							    *vskiplines);
357			} else {
358				val = GET_SCL_FT_BILI_DN(src, dst);
359			}
360		}
361	}
362
363	return val;
364}
365
366static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
367			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
368			     uint32_t dst_h, const struct drm_format_info *info)
369{
370	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
371	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
372	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
373	bool is_yuv = false;
374	uint16_t cbcr_src_w = src_w / info->hsub;
375	uint16_t cbcr_src_h = src_h / info->vsub;
376	uint16_t vsu_mode;
377	uint16_t lb_mode;
378	uint32_t val;
379	int vskiplines;
380
381	if (info->is_yuv)
382		is_yuv = true;
383
384	if (dst_w > 3840) {
385		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
386		return;
387	}
388
389	if (!win->phy->scl->ext) {
390		VOP_SCL_SET(vop, win, scale_yrgb_x,
391			    scl_cal_scale2(src_w, dst_w));
392		VOP_SCL_SET(vop, win, scale_yrgb_y,
393			    scl_cal_scale2(src_h, dst_h));
394		if (is_yuv) {
395			VOP_SCL_SET(vop, win, scale_cbcr_x,
396				    scl_cal_scale2(cbcr_src_w, dst_w));
397			VOP_SCL_SET(vop, win, scale_cbcr_y,
398				    scl_cal_scale2(cbcr_src_h, dst_h));
399		}
400		return;
401	}
402
403	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
404	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
405
406	if (is_yuv) {
407		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
408		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
409		if (cbcr_hor_scl_mode == SCALE_DOWN)
410			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
411		else
412			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
413	} else {
414		if (yrgb_hor_scl_mode == SCALE_DOWN)
415			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
416		else
417			lb_mode = scl_vop_cal_lb_mode(src_w, false);
418	}
419
420	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
421	if (lb_mode == LB_RGB_3840X2) {
422		if (yrgb_ver_scl_mode != SCALE_NONE) {
423			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
424			return;
425		}
426		if (cbcr_ver_scl_mode != SCALE_NONE) {
427			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
428			return;
429		}
430		vsu_mode = SCALE_UP_BIL;
431	} else if (lb_mode == LB_RGB_2560X4) {
432		vsu_mode = SCALE_UP_BIL;
433	} else {
434		vsu_mode = SCALE_UP_BIC;
435	}
436
437	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
438				true, 0, NULL);
439	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
440	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
441				false, vsu_mode, &vskiplines);
442	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
443
444	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
445	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
446
447	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
448	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
449	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
450	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
451	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
452	if (is_yuv) {
453		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
454					dst_w, true, 0, NULL);
455		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
456		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
457					dst_h, false, vsu_mode, &vskiplines);
458		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
459
460		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
461		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
462		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
463		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
464		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
465		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
466		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
467	}
468}
469
470static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
471{
472	unsigned long flags;
473
474	if (WARN_ON(!vop->is_enabled))
475		return;
476
477	spin_lock_irqsave(&vop->irq_lock, flags);
478
479	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
480	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
481
482	spin_unlock_irqrestore(&vop->irq_lock, flags);
483}
484
485static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
486{
487	unsigned long flags;
488
489	if (WARN_ON(!vop->is_enabled))
490		return;
491
492	spin_lock_irqsave(&vop->irq_lock, flags);
493
494	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
495
496	spin_unlock_irqrestore(&vop->irq_lock, flags);
497}
498
499/*
500 * (1) each frame starts at the start of the Vsync pulse which is signaled by
501 *     the "FRAME_SYNC" interrupt.
502 * (2) the active data region of each frame ends at dsp_vact_end
503 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
504 *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
505 *
506 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
507 * Interrupts
508 * LINE_FLAG -------------------------------+
509 * FRAME_SYNC ----+                         |
510 *                |                         |
511 *                v                         v
512 *                | Vsync | Vbp |  Vactive  | Vfp |
513 *                        ^     ^           ^     ^
514 *                        |     |           |     |
515 *                        |     |           |     |
516 * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
517 * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
518 * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
519 * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
520 */
521static bool vop_line_flag_irq_is_enabled(struct vop *vop)
522{
523	uint32_t line_flag_irq;
524	unsigned long flags;
525
526	spin_lock_irqsave(&vop->irq_lock, flags);
527
528	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
529
530	spin_unlock_irqrestore(&vop->irq_lock, flags);
531
532	return !!line_flag_irq;
533}
534
535static void vop_line_flag_irq_enable(struct vop *vop)
536{
537	unsigned long flags;
538
539	if (WARN_ON(!vop->is_enabled))
540		return;
541
542	spin_lock_irqsave(&vop->irq_lock, flags);
543
544	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
545	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
546
547	spin_unlock_irqrestore(&vop->irq_lock, flags);
548}
549
550static void vop_line_flag_irq_disable(struct vop *vop)
551{
552	unsigned long flags;
553
554	if (WARN_ON(!vop->is_enabled))
555		return;
556
557	spin_lock_irqsave(&vop->irq_lock, flags);
558
559	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
560
561	spin_unlock_irqrestore(&vop->irq_lock, flags);
562}
563
564static int vop_core_clks_enable(struct vop *vop)
565{
566	int ret;
567
568	ret = clk_enable(vop->hclk);
569	if (ret < 0)
570		return ret;
571
572	ret = clk_enable(vop->aclk);
573	if (ret < 0)
574		goto err_disable_hclk;
575
576	return 0;
577
578err_disable_hclk:
579	clk_disable(vop->hclk);
580	return ret;
581}
582
583static void vop_core_clks_disable(struct vop *vop)
584{
585	clk_disable(vop->aclk);
586	clk_disable(vop->hclk);
587}
588
589static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
590{
591	const struct vop_win_data *win = vop_win->data;
592
593	if (win->phy->scl && win->phy->scl->ext) {
594		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
595		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
596		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
597		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
598	}
599
600	VOP_WIN_SET(vop, win, enable, 0);
601	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
602}
603
604static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
605{
606	struct vop *vop = to_vop(crtc);
607	int ret, i;
608
609	ret = pm_runtime_resume_and_get(vop->dev);
610	if (ret < 0) {
611		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
612		return ret;
613	}
614
615	ret = vop_core_clks_enable(vop);
616	if (WARN_ON(ret < 0))
617		goto err_put_pm_runtime;
618
619	ret = clk_enable(vop->dclk);
620	if (WARN_ON(ret < 0))
621		goto err_disable_core;
622
623	/*
624	 * Slave iommu shares power, irq and clock with vop.  It was associated
625	 * automatically with this master device via common driver code.
626	 * Now that we have enabled the clock we attach it to the shared drm
627	 * mapping.
628	 */
629	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
630	if (ret) {
631		DRM_DEV_ERROR(vop->dev,
632			      "failed to attach dma mapping, %d\n", ret);
633		goto err_disable_dclk;
634	}
635
636	spin_lock(&vop->reg_lock);
637	for (i = 0; i < vop->len; i += 4)
638		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
639
640	/*
641	 * We need to make sure that all windows are disabled before we
642	 * enable the crtc. Otherwise we might try to scan from a destroyed
643	 * buffer later.
644	 *
645	 * In the case of enable-after-PSR, we don't need to worry about this
646	 * case since the buffer is guaranteed to be valid and disabling the
647	 * window will result in screen glitches on PSR exit.
648	 */
649	if (!old_state || !old_state->self_refresh_active) {
650		for (i = 0; i < vop->data->win_size; i++) {
651			struct vop_win *vop_win = &vop->win[i];
652
653			vop_win_disable(vop, vop_win);
654		}
655	}
656
657	if (vop->data->afbc) {
658		struct rockchip_crtc_state *s;
659		/*
660		 * Disable AFBC and forget there was a vop window with AFBC
661		 */
662		VOP_AFBC_SET(vop, enable, 0);
663		s = to_rockchip_crtc_state(crtc->state);
664		s->enable_afbc = false;
665	}
666
667	vop_cfg_done(vop);
668
669	spin_unlock(&vop->reg_lock);
670
671	/*
672	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
673	 */
674	vop->is_enabled = true;
675
676	spin_lock(&vop->reg_lock);
677
678	VOP_REG_SET(vop, common, standby, 1);
679
680	spin_unlock(&vop->reg_lock);
681
682	drm_crtc_vblank_on(crtc);
683
684	return 0;
685
686err_disable_dclk:
687	clk_disable(vop->dclk);
688err_disable_core:
689	vop_core_clks_disable(vop);
690err_put_pm_runtime:
691	pm_runtime_put_sync(vop->dev);
692	return ret;
693}
694
695static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
696{
697        struct vop *vop = to_vop(crtc);
698        int i;
699
700        spin_lock(&vop->reg_lock);
701
702        for (i = 0; i < vop->data->win_size; i++) {
703                struct vop_win *vop_win = &vop->win[i];
704                const struct vop_win_data *win = vop_win->data;
705
706                VOP_WIN_SET(vop, win, enable,
707                            enabled && (vop->win_enabled & BIT(i)));
708        }
709        vop_cfg_done(vop);
710
711        spin_unlock(&vop->reg_lock);
712}
713
714static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
715				    struct drm_atomic_state *state)
716{
717	struct vop *vop = to_vop(crtc);
718
719	WARN_ON(vop->event);
720
721	if (crtc->state->self_refresh_active)
722		rockchip_drm_set_win_enabled(crtc, false);
723
724	if (crtc->state->self_refresh_active)
725		goto out;
726
727	mutex_lock(&vop->vop_lock);
728
729	drm_crtc_vblank_off(crtc);
730
731	/*
732	 * Vop standby will take effect at end of current frame,
733	 * if dsp hold valid irq happen, it means standby complete.
734	 *
735	 * we must wait standby complete when we want to disable aclk,
736	 * if not, memory bus maybe dead.
737	 */
738	reinit_completion(&vop->dsp_hold_completion);
739	vop_dsp_hold_valid_irq_enable(vop);
740
741	spin_lock(&vop->reg_lock);
742
743	VOP_REG_SET(vop, common, standby, 1);
744
745	spin_unlock(&vop->reg_lock);
746
747	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
748					 msecs_to_jiffies(200)))
749		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
750
751	vop_dsp_hold_valid_irq_disable(vop);
752
753	vop->is_enabled = false;
754
755	/*
756	 * vop standby complete, so iommu detach is safe.
757	 */
758	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
759
760	clk_disable(vop->dclk);
761	vop_core_clks_disable(vop);
762	pm_runtime_put(vop->dev);
763
764	mutex_unlock(&vop->vop_lock);
765
766out:
767	if (crtc->state->event && !crtc->state->active) {
768		spin_lock_irq(&crtc->dev->event_lock);
769		drm_crtc_send_vblank_event(crtc, crtc->state->event);
770		spin_unlock_irq(&crtc->dev->event_lock);
771
772		crtc->state->event = NULL;
773	}
774}
775
776static void vop_plane_destroy(struct drm_plane *plane)
777{
778	drm_plane_cleanup(plane);
779}
780
781static inline bool rockchip_afbc(u64 modifier)
782{
783	return modifier == ROCKCHIP_AFBC_MOD;
784}
785
786static bool rockchip_mod_supported(struct drm_plane *plane,
787				   u32 format, u64 modifier)
788{
789	if (modifier == DRM_FORMAT_MOD_LINEAR)
790		return true;
791
792	if (!rockchip_afbc(modifier)) {
793		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
794
795		return false;
796	}
797
798	return vop_convert_afbc_format(format) >= 0;
799}
800
801static int vop_plane_atomic_check(struct drm_plane *plane,
802			   struct drm_atomic_state *state)
803{
804	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
805										 plane);
806	struct drm_crtc *crtc = new_plane_state->crtc;
807	struct drm_crtc_state *crtc_state;
808	struct drm_framebuffer *fb = new_plane_state->fb;
809	struct vop_win *vop_win = to_vop_win(plane);
810	const struct vop_win_data *win = vop_win->data;
811	int ret;
812	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
813					DRM_PLANE_NO_SCALING;
814	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
815					DRM_PLANE_NO_SCALING;
816
817	if (!crtc || WARN_ON(!fb))
818		return 0;
819
820	crtc_state = drm_atomic_get_existing_crtc_state(state,
821							crtc);
822	if (WARN_ON(!crtc_state))
823		return -EINVAL;
824
825	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
826						  min_scale, max_scale,
827						  true, true);
828	if (ret)
829		return ret;
830
831	if (!new_plane_state->visible)
832		return 0;
833
834	ret = vop_convert_format(fb->format->format);
835	if (ret < 0)
836		return ret;
837
838	/*
839	 * Src.x1 can be odd when do clip, but yuv plane start point
840	 * need align with 2 pixel.
841	 */
842	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
843		DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n");
844		return -EINVAL;
845	}
846
847	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
848		DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n");
849		return -EINVAL;
850	}
851
852	if (rockchip_afbc(fb->modifier)) {
853		struct vop *vop = to_vop(crtc);
854
855		if (!vop->data->afbc) {
856			DRM_DEBUG_KMS("vop does not support AFBC\n");
857			return -EINVAL;
858		}
859
860		ret = vop_convert_afbc_format(fb->format->format);
861		if (ret < 0)
862			return ret;
863
864		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
865			DRM_DEBUG_KMS("AFBC does not support offset display, " \
866				      "xpos=%d, ypos=%d, offset=%d\n",
867				      new_plane_state->src.x1, new_plane_state->src.y1,
868				      fb->offsets[0]);
869			return -EINVAL;
870		}
871
872		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
873			DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n",
874				      new_plane_state->rotation);
875			return -EINVAL;
876		}
877	}
878
879	return 0;
880}
881
882static void vop_plane_atomic_disable(struct drm_plane *plane,
883				     struct drm_atomic_state *state)
884{
885	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
886									   plane);
887	struct vop_win *vop_win = to_vop_win(plane);
888	struct vop *vop = to_vop(old_state->crtc);
889
890	if (!old_state->crtc)
891		return;
892
893	spin_lock(&vop->reg_lock);
894
895	vop_win_disable(vop, vop_win);
896
897	spin_unlock(&vop->reg_lock);
898}
899
900static void vop_plane_atomic_update(struct drm_plane *plane,
901		struct drm_atomic_state *state)
902{
903	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
904									   plane);
905	struct drm_crtc *crtc = new_state->crtc;
906	struct vop_win *vop_win = to_vop_win(plane);
907	const struct vop_win_data *win = vop_win->data;
908	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
909	struct vop *vop = to_vop(new_state->crtc);
910	struct drm_framebuffer *fb = new_state->fb;
911	unsigned int actual_w, actual_h;
912	unsigned int dsp_stx, dsp_sty;
913	uint32_t act_info, dsp_info, dsp_st;
914	struct drm_rect *src = &new_state->src;
915	struct drm_rect *dest = &new_state->dst;
916	struct drm_gem_object *obj, *uv_obj;
917	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
918	unsigned long offset;
919	dma_addr_t dma_addr;
920	uint32_t val;
921	bool rb_swap, uv_swap;
922	int win_index = VOP_WIN_TO_INDEX(vop_win);
923	int format;
924	int is_yuv = fb->format->is_yuv;
925	int i;
926
927	/*
928	 * can't update plane when vop is disabled.
929	 */
930	if (WARN_ON(!crtc))
931		return;
932
933	if (WARN_ON(!vop->is_enabled))
934		return;
935
936	if (!new_state->visible) {
937		vop_plane_atomic_disable(plane, state);
938		return;
939	}
940
941	obj = fb->obj[0];
942	rk_obj = to_rockchip_obj(obj);
943
944	actual_w = drm_rect_width(src) >> 16;
945	actual_h = drm_rect_height(src) >> 16;
946	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
947
948	dsp_info = (drm_rect_height(dest) - 1) << 16;
949	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
950
951	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
952	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
953	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
954
955	offset = (src->x1 >> 16) * fb->format->cpp[0];
956	offset += (src->y1 >> 16) * fb->pitches[0];
957	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
958
959	/*
960	 * For y-mirroring we need to move address
961	 * to the beginning of the last line.
962	 */
963	if (new_state->rotation & DRM_MODE_REFLECT_Y)
964		dma_addr += (actual_h - 1) * fb->pitches[0];
965
966	format = vop_convert_format(fb->format->format);
967
968	spin_lock(&vop->reg_lock);
969
970	if (rockchip_afbc(fb->modifier)) {
971		int afbc_format = vop_convert_afbc_format(fb->format->format);
972
973		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
974		VOP_AFBC_SET(vop, hreg_block_split, 0);
975		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
976		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
977		VOP_AFBC_SET(vop, pic_size, act_info);
978	}
979
980	VOP_WIN_SET(vop, win, format, format);
981	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
982	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
983	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
984	VOP_WIN_SET(vop, win, y_mir_en,
985		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
986	VOP_WIN_SET(vop, win, x_mir_en,
987		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
988
989	if (is_yuv) {
990		int hsub = fb->format->hsub;
991		int vsub = fb->format->vsub;
992		int bpp = fb->format->cpp[1];
993
994		uv_obj = fb->obj[1];
995		rk_uv_obj = to_rockchip_obj(uv_obj);
996
997		offset = (src->x1 >> 16) * bpp / hsub;
998		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
999
1000		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
1001		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
1002		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1003
1004		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1005			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1006							win_yuv2yuv,
1007							y2r_coefficients[i],
1008							bt601_yuv2rgb[i]);
1009		}
1010
1011		uv_swap = has_uv_swapped(fb->format->format);
1012		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1013	}
1014
1015	if (win->phy->scl)
1016		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1017				    drm_rect_width(dest), drm_rect_height(dest),
1018				    fb->format);
1019
1020	VOP_WIN_SET(vop, win, act_info, act_info);
1021	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1022	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1023
1024	rb_swap = has_rb_swapped(vop->data->version, fb->format->format);
1025	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1026
1027	/*
1028	 * Blending win0 with the background color doesn't seem to work
1029	 * correctly. We only get the background color, no matter the contents
1030	 * of the win0 framebuffer.  However, blending pre-multiplied color
1031	 * with the default opaque black default background color is a no-op,
1032	 * so we can just disable blending to get the correct result.
1033	 */
1034	if (fb->format->has_alpha && win_index > 0) {
1035		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1036			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1037		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1038			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1039			SRC_BLEND_M0(ALPHA_PER_PIX) |
1040			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1041			SRC_FACTOR_M0(ALPHA_ONE);
1042		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1043
1044		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1045		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1046		VOP_WIN_SET(vop, win, alpha_en, 1);
1047	} else {
1048		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1049		VOP_WIN_SET(vop, win, alpha_en, 0);
1050	}
1051
1052	VOP_WIN_SET(vop, win, enable, 1);
1053	vop->win_enabled |= BIT(win_index);
1054	spin_unlock(&vop->reg_lock);
1055}
1056
1057static int vop_plane_atomic_async_check(struct drm_plane *plane,
1058					struct drm_atomic_state *state)
1059{
1060	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1061										 plane);
1062	struct vop_win *vop_win = to_vop_win(plane);
1063	const struct vop_win_data *win = vop_win->data;
1064	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1065					DRM_PLANE_NO_SCALING;
1066	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1067					DRM_PLANE_NO_SCALING;
1068	struct drm_crtc_state *crtc_state;
1069
1070	if (plane != new_plane_state->crtc->cursor)
1071		return -EINVAL;
1072
1073	if (!plane->state)
1074		return -EINVAL;
1075
1076	if (!plane->state->fb)
1077		return -EINVAL;
1078
1079	if (state)
1080		crtc_state = drm_atomic_get_existing_crtc_state(state,
1081								new_plane_state->crtc);
1082	else /* Special case for asynchronous cursor updates. */
1083		crtc_state = plane->crtc->state;
1084
1085	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1086						   min_scale, max_scale,
1087						   true, true);
1088}
1089
1090static void vop_plane_atomic_async_update(struct drm_plane *plane,
1091					  struct drm_atomic_state *state)
1092{
1093	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1094									   plane);
1095	struct vop *vop = to_vop(plane->state->crtc);
1096	struct drm_framebuffer *old_fb = plane->state->fb;
1097
1098	plane->state->crtc_x = new_state->crtc_x;
1099	plane->state->crtc_y = new_state->crtc_y;
1100	plane->state->crtc_h = new_state->crtc_h;
1101	plane->state->crtc_w = new_state->crtc_w;
1102	plane->state->src_x = new_state->src_x;
1103	plane->state->src_y = new_state->src_y;
1104	plane->state->src_h = new_state->src_h;
1105	plane->state->src_w = new_state->src_w;
1106	swap(plane->state->fb, new_state->fb);
1107
1108	if (vop->is_enabled) {
1109		vop_plane_atomic_update(plane, state);
1110		spin_lock(&vop->reg_lock);
1111		vop_cfg_done(vop);
1112		spin_unlock(&vop->reg_lock);
1113
1114		/*
1115		 * A scanout can still be occurring, so we can't drop the
1116		 * reference to the old framebuffer. To solve this we get a
1117		 * reference to old_fb and set a worker to release it later.
1118		 * FIXME: if we perform 500 async_update calls before the
1119		 * vblank, then we can have 500 different framebuffers waiting
1120		 * to be released.
1121		 */
1122		if (old_fb && plane->state->fb != old_fb) {
1123			drm_framebuffer_get(old_fb);
1124			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1125			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1126			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1127		}
1128	}
1129}
1130
1131static const struct drm_plane_helper_funcs plane_helper_funcs = {
1132	.atomic_check = vop_plane_atomic_check,
1133	.atomic_update = vop_plane_atomic_update,
1134	.atomic_disable = vop_plane_atomic_disable,
1135	.atomic_async_check = vop_plane_atomic_async_check,
1136	.atomic_async_update = vop_plane_atomic_async_update,
1137};
1138
1139static const struct drm_plane_funcs vop_plane_funcs = {
1140	.update_plane	= drm_atomic_helper_update_plane,
1141	.disable_plane	= drm_atomic_helper_disable_plane,
1142	.destroy = vop_plane_destroy,
1143	.reset = drm_atomic_helper_plane_reset,
1144	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1145	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1146	.format_mod_supported = rockchip_mod_supported,
1147};
1148
1149static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1150{
1151	struct vop *vop = to_vop(crtc);
1152	unsigned long flags;
1153
1154	if (WARN_ON(!vop->is_enabled))
1155		return -EPERM;
1156
1157	spin_lock_irqsave(&vop->irq_lock, flags);
1158
1159	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1160	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1161
1162	spin_unlock_irqrestore(&vop->irq_lock, flags);
1163
1164	return 0;
1165}
1166
1167static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1168{
1169	struct vop *vop = to_vop(crtc);
1170	unsigned long flags;
1171
1172	if (WARN_ON(!vop->is_enabled))
1173		return;
1174
1175	spin_lock_irqsave(&vop->irq_lock, flags);
1176
1177	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1178
1179	spin_unlock_irqrestore(&vop->irq_lock, flags);
1180}
1181
1182static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc,
1183						const struct drm_display_mode *mode)
1184{
1185	struct vop *vop = to_vop(crtc);
1186
1187	if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width)
1188		return MODE_BAD_HVALUE;
1189
1190	return MODE_OK;
1191}
1192
1193static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1194				const struct drm_display_mode *mode,
1195				struct drm_display_mode *adjusted_mode)
1196{
1197	struct vop *vop = to_vop(crtc);
1198	unsigned long rate;
1199
1200	/*
1201	 * Clock craziness.
1202	 *
1203	 * Key points:
1204	 *
1205	 * - DRM works in kHz.
1206	 * - Clock framework works in Hz.
1207	 * - Rockchip's clock driver picks the clock rate that is the
1208	 *   same _OR LOWER_ than the one requested.
1209	 *
1210	 * Action plan:
1211	 *
1212	 * 1. Try to set the exact rate first, and confirm the clock framework
1213	 *    can provide it.
1214	 *
1215	 * 2. If the clock framework cannot provide the exact rate, we should
1216	 *    add 999 Hz to the requested rate.  That way if the clock we need
1217	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1218	 *    the clock framework will actually give us the right clock.
1219	 *
1220	 * 3. Get the clock framework to round the rate for us to tell us
1221	 *    what it will actually make.
1222	 *
1223	 * 4. Store the rounded up rate so that we don't need to worry about
1224	 *    this in the actual clk_set_rate().
1225	 */
1226	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1227	if (rate / 1000 != adjusted_mode->clock)
1228		rate = clk_round_rate(vop->dclk,
1229				      adjusted_mode->clock * 1000 + 999);
1230	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1231
1232	return true;
1233}
1234
1235static bool vop_dsp_lut_is_enabled(struct vop *vop)
1236{
1237	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1238}
1239
1240static u32 vop_lut_buffer_index(struct vop *vop)
1241{
1242	return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1243}
1244
1245static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1246{
1247	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1248	unsigned int i, bpc = ilog2(vop->data->lut_size);
1249
1250	for (i = 0; i < crtc->gamma_size; i++) {
1251		u32 word;
1252
1253		word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1254		       (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1255			drm_color_lut_extract(lut[i].blue, bpc);
1256		writel(word, vop->lut_regs + i * 4);
1257	}
1258}
1259
1260static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1261			       struct drm_crtc_state *old_state)
1262{
1263	struct drm_crtc_state *state = crtc->state;
1264	unsigned int idle;
1265	u32 lut_idx, old_idx;
1266	int ret;
1267
1268	if (!vop->lut_regs)
1269		return;
1270
1271	if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1272		/*
1273		 * To disable gamma (gamma_lut is null) or to write
1274		 * an update to the LUT, clear dsp_lut_en.
1275		 */
1276		spin_lock(&vop->reg_lock);
1277		VOP_REG_SET(vop, common, dsp_lut_en, 0);
1278		vop_cfg_done(vop);
1279		spin_unlock(&vop->reg_lock);
1280
1281		/*
1282		 * In order to write the LUT to the internal memory,
1283		 * we need to first make sure the dsp_lut_en bit is cleared.
1284		 */
1285		ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1286					 idle, !idle, 5, 30 * 1000);
1287		if (ret) {
1288			DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1289			return;
1290		}
1291
1292		if (!state->gamma_lut)
1293			return;
1294	} else {
1295		/*
1296		 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1297		 * by setting update_gamma_lut then waiting for lut_buffer_index change
1298		 */
1299		old_idx = vop_lut_buffer_index(vop);
1300	}
1301
1302	spin_lock(&vop->reg_lock);
1303	vop_crtc_write_gamma_lut(vop, crtc);
1304	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1305	VOP_REG_SET(vop, common, update_gamma_lut, 1);
1306	vop_cfg_done(vop);
1307	spin_unlock(&vop->reg_lock);
1308
1309	if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1310		ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1311					 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1312		if (ret) {
1313			DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1314			return;
1315		}
1316
1317		/*
1318		 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1319		 * in our backup of the regs.
1320		 */
1321		spin_lock(&vop->reg_lock);
1322		VOP_REG_SET(vop, common, update_gamma_lut, 0);
1323		spin_unlock(&vop->reg_lock);
1324	}
1325}
1326
1327static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1328				  struct drm_atomic_state *state)
1329{
1330	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1331									  crtc);
1332	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1333									      crtc);
1334	struct vop *vop = to_vop(crtc);
1335
1336	/*
1337	 * Only update GAMMA if the 'active' flag is not changed,
1338	 * otherwise it's updated by .atomic_enable.
1339	 */
1340	if (crtc_state->color_mgmt_changed &&
1341	    !crtc_state->active_changed)
1342		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1343}
1344
1345static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1346				   struct drm_atomic_state *state)
1347{
1348	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1349									 crtc);
1350	struct vop *vop = to_vop(crtc);
1351	const struct vop_data *vop_data = vop->data;
1352	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1353	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1354	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1355	u16 hdisplay = adjusted_mode->hdisplay;
1356	u16 htotal = adjusted_mode->htotal;
1357	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1358	u16 hact_end = hact_st + hdisplay;
1359	u16 vdisplay = adjusted_mode->vdisplay;
1360	u16 vtotal = adjusted_mode->vtotal;
1361	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1362	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1363	u16 vact_end = vact_st + vdisplay;
1364	uint32_t pin_pol, val;
1365	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1366	int ret;
1367
1368	if (old_state && old_state->self_refresh_active) {
1369		drm_crtc_vblank_on(crtc);
1370		rockchip_drm_set_win_enabled(crtc, true);
1371		return;
1372	}
1373
1374	mutex_lock(&vop->vop_lock);
1375
1376	WARN_ON(vop->event);
1377
1378	ret = vop_enable(crtc, old_state);
1379	if (ret) {
1380		mutex_unlock(&vop->vop_lock);
1381		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1382		return;
1383	}
1384	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1385		   BIT(HSYNC_POSITIVE) : 0;
1386	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1387		   BIT(VSYNC_POSITIVE) : 0;
1388	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1389	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1390
1391	switch (s->output_type) {
1392	case DRM_MODE_CONNECTOR_LVDS:
1393		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1394		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1395		VOP_REG_SET(vop, output, rgb_en, 1);
1396		break;
1397	case DRM_MODE_CONNECTOR_eDP:
1398		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1399		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1400		VOP_REG_SET(vop, output, edp_en, 1);
1401		break;
1402	case DRM_MODE_CONNECTOR_HDMIA:
1403		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1404		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1405		VOP_REG_SET(vop, output, hdmi_en, 1);
1406		break;
1407	case DRM_MODE_CONNECTOR_DSI:
1408		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1409		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1410		VOP_REG_SET(vop, output, mipi_en, 1);
1411		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1412			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1413		break;
1414	case DRM_MODE_CONNECTOR_DisplayPort:
1415		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1416		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1417		VOP_REG_SET(vop, output, dp_en, 1);
1418		break;
1419	default:
1420		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1421			      s->output_type);
1422	}
1423
1424	/*
1425	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1426	 */
1427	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1428	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1429		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1430
1431	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1432		VOP_REG_SET(vop, common, pre_dither_down, 1);
1433	else
1434		VOP_REG_SET(vop, common, pre_dither_down, 0);
1435
1436	if (dither_bpc == 6) {
1437		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1438		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1439		VOP_REG_SET(vop, common, dither_down_en, 1);
1440	} else {
1441		VOP_REG_SET(vop, common, dither_down_en, 0);
1442	}
1443
1444	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1445
1446	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1447	val = hact_st << 16;
1448	val |= hact_end;
1449	VOP_REG_SET(vop, modeset, hact_st_end, val);
1450	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1451
1452	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1453	val = vact_st << 16;
1454	val |= vact_end;
1455	VOP_REG_SET(vop, modeset, vact_st_end, val);
1456	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1457
1458	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1459
1460	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1461
1462	VOP_REG_SET(vop, common, standby, 0);
1463	mutex_unlock(&vop->vop_lock);
1464
1465	/*
1466	 * If we have a GAMMA LUT in the state, then let's make sure
1467	 * it's updated. We might be coming out of suspend,
1468	 * which means the LUT internal memory needs to be re-written.
1469	 */
1470	if (crtc->state->gamma_lut)
1471		vop_crtc_gamma_set(vop, crtc, old_state);
1472}
1473
1474static bool vop_fs_irq_is_pending(struct vop *vop)
1475{
1476	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1477}
1478
1479static void vop_wait_for_irq_handler(struct vop *vop)
1480{
1481	bool pending;
1482	int ret;
1483
1484	/*
1485	 * Spin until frame start interrupt status bit goes low, which means
1486	 * that interrupt handler was invoked and cleared it. The timeout of
1487	 * 10 msecs is really too long, but it is just a safety measure if
1488	 * something goes really wrong. The wait will only happen in the very
1489	 * unlikely case of a vblank happening exactly at the same time and
1490	 * shouldn't exceed microseconds range.
1491	 */
1492	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1493					!pending, 0, 10 * 1000);
1494	if (ret)
1495		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1496
1497	synchronize_irq(vop->irq);
1498}
1499
1500static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1501				 struct drm_atomic_state *state)
1502{
1503	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1504									  crtc);
1505	struct vop *vop = to_vop(crtc);
1506	struct drm_plane *plane;
1507	struct drm_plane_state *plane_state;
1508	struct rockchip_crtc_state *s;
1509	int afbc_planes = 0;
1510
1511	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1512	    crtc_state->gamma_lut) {
1513		unsigned int len;
1514
1515		len = drm_color_lut_size(crtc_state->gamma_lut);
1516		if (len != crtc->gamma_size) {
1517			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1518				      len, crtc->gamma_size);
1519			return -EINVAL;
1520		}
1521	}
1522
1523	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1524		plane_state =
1525			drm_atomic_get_plane_state(crtc_state->state, plane);
1526		if (IS_ERR(plane_state)) {
1527			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1528				      plane->name);
1529			return PTR_ERR(plane_state);
1530		}
1531
1532		if (drm_is_afbc(plane_state->fb->modifier))
1533			++afbc_planes;
1534	}
1535
1536	if (afbc_planes > 1) {
1537		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1538		return -EINVAL;
1539	}
1540
1541	s = to_rockchip_crtc_state(crtc_state);
1542	s->enable_afbc = afbc_planes > 0;
1543
1544	return 0;
1545}
1546
1547static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1548				  struct drm_atomic_state *state)
1549{
1550	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1551									      crtc);
1552	struct drm_atomic_state *old_state = old_crtc_state->state;
1553	struct drm_plane_state *old_plane_state, *new_plane_state;
1554	struct vop *vop = to_vop(crtc);
1555	struct drm_plane *plane;
1556	struct rockchip_crtc_state *s;
1557	int i;
1558
1559	if (WARN_ON(!vop->is_enabled))
1560		return;
1561
1562	spin_lock(&vop->reg_lock);
1563
1564	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1565	s = to_rockchip_crtc_state(crtc->state);
1566	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1567	vop_cfg_done(vop);
1568
1569	spin_unlock(&vop->reg_lock);
1570
1571	/*
1572	 * There is a (rather unlikely) possiblity that a vblank interrupt
1573	 * fired before we set the cfg_done bit. To avoid spuriously
1574	 * signalling flip completion we need to wait for it to finish.
1575	 */
1576	vop_wait_for_irq_handler(vop);
1577
1578	spin_lock_irq(&crtc->dev->event_lock);
1579	if (crtc->state->event) {
1580		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1581		WARN_ON(vop->event);
1582
1583		vop->event = crtc->state->event;
1584		crtc->state->event = NULL;
1585	}
1586	spin_unlock_irq(&crtc->dev->event_lock);
1587
1588	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1589				       new_plane_state, i) {
1590		if (!old_plane_state->fb)
1591			continue;
1592
1593		if (old_plane_state->fb == new_plane_state->fb)
1594			continue;
1595
1596		drm_framebuffer_get(old_plane_state->fb);
1597		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1598		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1599		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1600	}
1601}
1602
1603static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1604	.mode_valid = vop_crtc_mode_valid,
1605	.mode_fixup = vop_crtc_mode_fixup,
1606	.atomic_check = vop_crtc_atomic_check,
1607	.atomic_begin = vop_crtc_atomic_begin,
1608	.atomic_flush = vop_crtc_atomic_flush,
1609	.atomic_enable = vop_crtc_atomic_enable,
1610	.atomic_disable = vop_crtc_atomic_disable,
1611};
1612
1613static void vop_crtc_destroy(struct drm_crtc *crtc)
1614{
1615	drm_crtc_cleanup(crtc);
1616}
1617
1618static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1619{
1620	struct rockchip_crtc_state *rockchip_state;
1621
1622	if (WARN_ON(!crtc->state))
1623		return NULL;
1624
1625	rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state),
1626				 sizeof(*rockchip_state), GFP_KERNEL);
1627	if (!rockchip_state)
1628		return NULL;
1629
1630	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1631	return &rockchip_state->base;
1632}
1633
1634static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1635				   struct drm_crtc_state *state)
1636{
1637	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1638
1639	__drm_atomic_helper_crtc_destroy_state(&s->base);
1640	kfree(s);
1641}
1642
1643static void vop_crtc_reset(struct drm_crtc *crtc)
1644{
1645	struct rockchip_crtc_state *crtc_state =
1646		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1647
1648	if (crtc->state)
1649		vop_crtc_destroy_state(crtc, crtc->state);
1650
1651	if (crtc_state)
1652		__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1653	else
1654		__drm_atomic_helper_crtc_reset(crtc, NULL);
1655}
1656
1657#ifdef CONFIG_DRM_ANALOGIX_DP
1658static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1659{
1660	struct drm_connector *connector;
1661	struct drm_connector_list_iter conn_iter;
1662
1663	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1664	drm_for_each_connector_iter(connector, &conn_iter) {
1665		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1666			drm_connector_list_iter_end(&conn_iter);
1667			return connector;
1668		}
1669	}
1670	drm_connector_list_iter_end(&conn_iter);
1671
1672	return NULL;
1673}
1674
1675static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1676				   const char *source_name)
1677{
1678	struct vop *vop = to_vop(crtc);
1679	struct drm_connector *connector;
1680	int ret;
1681
1682	connector = vop_get_edp_connector(vop);
1683	if (!connector)
1684		return -EINVAL;
1685
1686	if (source_name && strcmp(source_name, "auto") == 0)
1687		ret = analogix_dp_start_crc(connector);
1688	else if (!source_name)
1689		ret = analogix_dp_stop_crc(connector);
1690	else
1691		ret = -EINVAL;
1692
1693	return ret;
1694}
1695
1696static int
1697vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1698			   size_t *values_cnt)
1699{
1700	if (source_name && strcmp(source_name, "auto") != 0)
1701		return -EINVAL;
1702
1703	*values_cnt = 3;
1704	return 0;
1705}
1706
1707#else
1708static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1709				   const char *source_name)
1710{
1711	return -ENODEV;
1712}
1713
1714static int
1715vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1716			   size_t *values_cnt)
1717{
1718	return -ENODEV;
1719}
1720#endif
1721
1722static const struct drm_crtc_funcs vop_crtc_funcs = {
1723	.set_config = drm_atomic_helper_set_config,
1724	.page_flip = drm_atomic_helper_page_flip,
1725	.destroy = vop_crtc_destroy,
1726	.reset = vop_crtc_reset,
1727	.atomic_duplicate_state = vop_crtc_duplicate_state,
1728	.atomic_destroy_state = vop_crtc_destroy_state,
1729	.enable_vblank = vop_crtc_enable_vblank,
1730	.disable_vblank = vop_crtc_disable_vblank,
1731	.set_crc_source = vop_crtc_set_crc_source,
1732	.verify_crc_source = vop_crtc_verify_crc_source,
1733};
1734
1735static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1736{
1737	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1738	struct drm_framebuffer *fb = val;
1739
1740	drm_crtc_vblank_put(&vop->crtc);
1741	drm_framebuffer_put(fb);
1742}
1743
1744static void vop_handle_vblank(struct vop *vop)
1745{
1746	struct drm_device *drm = vop->drm_dev;
1747	struct drm_crtc *crtc = &vop->crtc;
1748
1749	spin_lock(&drm->event_lock);
1750	if (vop->event) {
1751		drm_crtc_send_vblank_event(crtc, vop->event);
1752		drm_crtc_vblank_put(crtc);
1753		vop->event = NULL;
1754	}
1755	spin_unlock(&drm->event_lock);
1756
1757	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1758		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1759}
1760
1761static irqreturn_t vop_isr(int irq, void *data)
1762{
1763	struct vop *vop = data;
1764	struct drm_crtc *crtc = &vop->crtc;
1765	uint32_t active_irqs;
1766	int ret = IRQ_NONE;
1767
1768	/*
1769	 * The irq is shared with the iommu. If the runtime-pm state of the
1770	 * vop-device is disabled the irq has to be targeted at the iommu.
1771	 */
1772	if (!pm_runtime_get_if_in_use(vop->dev))
1773		return IRQ_NONE;
1774
1775	if (vop_core_clks_enable(vop)) {
1776		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1777		goto out;
1778	}
1779
1780	/*
1781	 * interrupt register has interrupt status, enable and clear bits, we
1782	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1783	*/
1784	spin_lock(&vop->irq_lock);
1785
1786	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1787	/* Clear all active interrupt sources */
1788	if (active_irqs)
1789		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1790
1791	spin_unlock(&vop->irq_lock);
1792
1793	/* This is expected for vop iommu irqs, since the irq is shared */
1794	if (!active_irqs)
1795		goto out_disable;
1796
1797	if (active_irqs & DSP_HOLD_VALID_INTR) {
1798		complete(&vop->dsp_hold_completion);
1799		active_irqs &= ~DSP_HOLD_VALID_INTR;
1800		ret = IRQ_HANDLED;
1801	}
1802
1803	if (active_irqs & LINE_FLAG_INTR) {
1804		complete(&vop->line_flag_completion);
1805		active_irqs &= ~LINE_FLAG_INTR;
1806		ret = IRQ_HANDLED;
1807	}
1808
1809	if (active_irqs & FS_INTR) {
1810		drm_crtc_handle_vblank(crtc);
1811		vop_handle_vblank(vop);
1812		active_irqs &= ~FS_INTR;
1813		ret = IRQ_HANDLED;
1814	}
1815
1816	/* Unhandled irqs are spurious. */
1817	if (active_irqs)
1818		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1819			      active_irqs);
1820
1821out_disable:
1822	vop_core_clks_disable(vop);
1823out:
1824	pm_runtime_put(vop->dev);
1825	return ret;
1826}
1827
1828static void vop_plane_add_properties(struct drm_plane *plane,
1829				     const struct vop_win_data *win_data)
1830{
1831	unsigned int flags = 0;
1832
1833	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1834	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1835	if (flags)
1836		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1837						   DRM_MODE_ROTATE_0 | flags);
1838}
1839
1840static int vop_create_crtc(struct vop *vop)
1841{
1842	const struct vop_data *vop_data = vop->data;
1843	struct device *dev = vop->dev;
1844	struct drm_device *drm_dev = vop->drm_dev;
1845	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1846	struct drm_crtc *crtc = &vop->crtc;
1847	struct device_node *port;
1848	int ret;
1849	int i;
1850
1851	/*
1852	 * Create drm_plane for primary and cursor planes first, since we need
1853	 * to pass them to drm_crtc_init_with_planes, which sets the
1854	 * "possible_crtcs" to the newly initialized crtc.
1855	 */
1856	for (i = 0; i < vop_data->win_size; i++) {
1857		struct vop_win *vop_win = &vop->win[i];
1858		const struct vop_win_data *win_data = vop_win->data;
1859
1860		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1861		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1862			continue;
1863
1864		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1865					       0, &vop_plane_funcs,
1866					       win_data->phy->data_formats,
1867					       win_data->phy->nformats,
1868					       win_data->phy->format_modifiers,
1869					       win_data->type, NULL);
1870		if (ret) {
1871			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1872				      ret);
1873			goto err_cleanup_planes;
1874		}
1875
1876		plane = &vop_win->base;
1877		drm_plane_helper_add(plane, &plane_helper_funcs);
1878		vop_plane_add_properties(plane, win_data);
1879		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1880			primary = plane;
1881		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1882			cursor = plane;
1883	}
1884
1885	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1886					&vop_crtc_funcs, NULL);
1887	if (ret)
1888		goto err_cleanup_planes;
1889
1890	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1891	if (vop->lut_regs) {
1892		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1893		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1894	}
1895
1896	/*
1897	 * Create drm_planes for overlay windows with possible_crtcs restricted
1898	 * to the newly created crtc.
1899	 */
1900	for (i = 0; i < vop_data->win_size; i++) {
1901		struct vop_win *vop_win = &vop->win[i];
1902		const struct vop_win_data *win_data = vop_win->data;
1903		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1904
1905		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1906			continue;
1907
1908		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1909					       possible_crtcs,
1910					       &vop_plane_funcs,
1911					       win_data->phy->data_formats,
1912					       win_data->phy->nformats,
1913					       win_data->phy->format_modifiers,
1914					       win_data->type, NULL);
1915		if (ret) {
1916			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1917				      ret);
1918			goto err_cleanup_crtc;
1919		}
1920		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1921		vop_plane_add_properties(&vop_win->base, win_data);
1922	}
1923
1924	port = of_get_child_by_name(dev->of_node, "port");
1925	if (!port) {
1926		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1927			      dev->of_node);
1928		ret = -ENOENT;
1929		goto err_cleanup_crtc;
1930	}
1931
1932	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1933			   vop_fb_unref_worker);
1934
1935	init_completion(&vop->dsp_hold_completion);
1936	init_completion(&vop->line_flag_completion);
1937	crtc->port = port;
1938
1939	ret = drm_self_refresh_helper_init(crtc);
1940	if (ret)
1941		DRM_DEV_DEBUG_KMS(vop->dev,
1942			"Failed to init %s with SR helpers %d, ignoring\n",
1943			crtc->name, ret);
1944
1945	return 0;
1946
1947err_cleanup_crtc:
1948	drm_crtc_cleanup(crtc);
1949err_cleanup_planes:
1950	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1951				 head)
1952		drm_plane_cleanup(plane);
1953	return ret;
1954}
1955
1956static void vop_destroy_crtc(struct vop *vop)
1957{
1958	struct drm_crtc *crtc = &vop->crtc;
1959	struct drm_device *drm_dev = vop->drm_dev;
1960	struct drm_plane *plane, *tmp;
1961
1962	drm_self_refresh_helper_cleanup(crtc);
1963
1964	of_node_put(crtc->port);
1965
1966	/*
1967	 * We need to cleanup the planes now.  Why?
1968	 *
1969	 * The planes are "&vop->win[i].base".  That means the memory is
1970	 * all part of the big "struct vop" chunk of memory.  That memory
1971	 * was devm allocated and associated with this component.  We need to
1972	 * free it ourselves before vop_unbind() finishes.
1973	 */
1974	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1975				 head)
1976		vop_plane_destroy(plane);
1977
1978	/*
1979	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1980	 * references the CRTC.
1981	 */
1982	drm_crtc_cleanup(crtc);
1983	drm_flip_work_cleanup(&vop->fb_unref_work);
1984}
1985
1986static int vop_initial(struct vop *vop)
1987{
1988	struct reset_control *ahb_rst;
1989	int i, ret;
1990
1991	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1992	if (IS_ERR(vop->hclk)) {
1993		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1994		return PTR_ERR(vop->hclk);
1995	}
1996	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1997	if (IS_ERR(vop->aclk)) {
1998		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1999		return PTR_ERR(vop->aclk);
2000	}
2001	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
2002	if (IS_ERR(vop->dclk)) {
2003		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
2004		return PTR_ERR(vop->dclk);
2005	}
2006
2007	ret = pm_runtime_resume_and_get(vop->dev);
2008	if (ret < 0) {
2009		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
2010		return ret;
2011	}
2012
2013	ret = clk_prepare(vop->dclk);
2014	if (ret < 0) {
2015		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
2016		goto err_put_pm_runtime;
2017	}
2018
2019	/* Enable both the hclk and aclk to setup the vop */
2020	ret = clk_prepare_enable(vop->hclk);
2021	if (ret < 0) {
2022		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2023		goto err_unprepare_dclk;
2024	}
2025
2026	ret = clk_prepare_enable(vop->aclk);
2027	if (ret < 0) {
2028		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2029		goto err_disable_hclk;
2030	}
2031
2032	/*
2033	 * do hclk_reset, reset all vop registers.
2034	 */
2035	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2036	if (IS_ERR(ahb_rst)) {
2037		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2038		ret = PTR_ERR(ahb_rst);
2039		goto err_disable_aclk;
2040	}
2041	reset_control_assert(ahb_rst);
2042	usleep_range(10, 20);
2043	reset_control_deassert(ahb_rst);
2044
2045	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2046	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2047
2048	for (i = 0; i < vop->len; i += sizeof(u32))
2049		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2050
2051	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2052	VOP_REG_SET(vop, common, dsp_blank, 0);
2053
2054	for (i = 0; i < vop->data->win_size; i++) {
2055		struct vop_win *vop_win = &vop->win[i];
2056		const struct vop_win_data *win = vop_win->data;
2057		int channel = i * 2 + 1;
2058
2059		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2060		vop_win_disable(vop, vop_win);
2061		VOP_WIN_SET(vop, win, gate, 1);
2062	}
2063
2064	vop_cfg_done(vop);
2065
2066	/*
2067	 * do dclk_reset, let all config take affect.
2068	 */
2069	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2070	if (IS_ERR(vop->dclk_rst)) {
2071		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2072		ret = PTR_ERR(vop->dclk_rst);
2073		goto err_disable_aclk;
2074	}
2075	reset_control_assert(vop->dclk_rst);
2076	usleep_range(10, 20);
2077	reset_control_deassert(vop->dclk_rst);
2078
2079	clk_disable(vop->hclk);
2080	clk_disable(vop->aclk);
2081
2082	vop->is_enabled = false;
2083
2084	pm_runtime_put_sync(vop->dev);
2085
2086	return 0;
2087
2088err_disable_aclk:
2089	clk_disable_unprepare(vop->aclk);
2090err_disable_hclk:
2091	clk_disable_unprepare(vop->hclk);
2092err_unprepare_dclk:
2093	clk_unprepare(vop->dclk);
2094err_put_pm_runtime:
2095	pm_runtime_put_sync(vop->dev);
2096	return ret;
2097}
2098
2099/*
2100 * Initialize the vop->win array elements.
2101 */
2102static void vop_win_init(struct vop *vop)
2103{
2104	const struct vop_data *vop_data = vop->data;
2105	unsigned int i;
2106
2107	for (i = 0; i < vop_data->win_size; i++) {
2108		struct vop_win *vop_win = &vop->win[i];
2109		const struct vop_win_data *win_data = &vop_data->win[i];
2110
2111		vop_win->data = win_data;
2112		vop_win->vop = vop;
2113
2114		if (vop_data->win_yuv2yuv)
2115			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2116	}
2117}
2118
2119/**
2120 * rockchip_drm_wait_vact_end
2121 * @crtc: CRTC to enable line flag
2122 * @mstimeout: millisecond for timeout
2123 *
2124 * Wait for vact_end line flag irq or timeout.
2125 *
2126 * Returns:
2127 * Zero on success, negative errno on failure.
2128 */
2129int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2130{
2131	struct vop *vop = to_vop(crtc);
2132	unsigned long jiffies_left;
2133	int ret = 0;
2134
2135	if (!crtc || !vop->is_enabled)
2136		return -ENODEV;
2137
2138	mutex_lock(&vop->vop_lock);
2139	if (mstimeout <= 0) {
2140		ret = -EINVAL;
2141		goto out;
2142	}
2143
2144	if (vop_line_flag_irq_is_enabled(vop)) {
2145		ret = -EBUSY;
2146		goto out;
2147	}
2148
2149	reinit_completion(&vop->line_flag_completion);
2150	vop_line_flag_irq_enable(vop);
2151
2152	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2153						   msecs_to_jiffies(mstimeout));
2154	vop_line_flag_irq_disable(vop);
2155
2156	if (jiffies_left == 0) {
2157		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2158		ret = -ETIMEDOUT;
2159		goto out;
2160	}
2161
2162out:
2163	mutex_unlock(&vop->vop_lock);
2164	return ret;
2165}
2166EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2167
2168static int vop_bind(struct device *dev, struct device *master, void *data)
2169{
2170	struct platform_device *pdev = to_platform_device(dev);
2171	const struct vop_data *vop_data;
2172	struct drm_device *drm_dev = data;
2173	struct vop *vop;
2174	struct resource *res;
2175	int ret, irq;
2176
2177	vop_data = of_device_get_match_data(dev);
2178	if (!vop_data)
2179		return -ENODEV;
2180
2181	/* Allocate vop struct and its vop_win array */
2182	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2183			   GFP_KERNEL);
2184	if (!vop)
2185		return -ENOMEM;
2186
2187	vop->dev = dev;
2188	vop->data = vop_data;
2189	vop->drm_dev = drm_dev;
2190	dev_set_drvdata(dev, vop);
2191
2192	vop_win_init(vop);
2193
2194	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2195	vop->regs = devm_ioremap_resource(dev, res);
2196	if (IS_ERR(vop->regs))
2197		return PTR_ERR(vop->regs);
2198	vop->len = resource_size(res);
2199
2200	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2201	if (res) {
2202		if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2203			DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2204			return -EINVAL;
2205		}
2206		vop->lut_regs = devm_ioremap_resource(dev, res);
2207		if (IS_ERR(vop->lut_regs))
2208			return PTR_ERR(vop->lut_regs);
2209	}
2210
2211	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2212	if (!vop->regsbak)
2213		return -ENOMEM;
2214
2215	irq = platform_get_irq(pdev, 0);
2216	if (irq < 0) {
2217		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2218		return irq;
2219	}
2220	vop->irq = (unsigned int)irq;
2221
2222	spin_lock_init(&vop->reg_lock);
2223	spin_lock_init(&vop->irq_lock);
2224	mutex_init(&vop->vop_lock);
2225
2226	ret = vop_create_crtc(vop);
2227	if (ret)
2228		return ret;
2229
2230	pm_runtime_enable(&pdev->dev);
2231
2232	ret = vop_initial(vop);
2233	if (ret < 0) {
2234		DRM_DEV_ERROR(&pdev->dev,
2235			      "cannot initial vop dev - err %d\n", ret);
2236		goto err_disable_pm_runtime;
2237	}
2238
2239	ret = devm_request_irq(dev, vop->irq, vop_isr,
2240			       IRQF_SHARED, dev_name(dev), vop);
2241	if (ret)
2242		goto err_disable_pm_runtime;
2243
2244	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2245		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0);
2246		if (IS_ERR(vop->rgb)) {
2247			ret = PTR_ERR(vop->rgb);
2248			goto err_disable_pm_runtime;
2249		}
2250	}
2251
2252	rockchip_drm_dma_init_device(drm_dev, dev);
2253
2254	return 0;
2255
2256err_disable_pm_runtime:
2257	pm_runtime_disable(&pdev->dev);
2258	vop_destroy_crtc(vop);
2259	return ret;
2260}
2261
2262static void vop_unbind(struct device *dev, struct device *master, void *data)
2263{
2264	struct vop *vop = dev_get_drvdata(dev);
2265
2266	if (vop->rgb)
2267		rockchip_rgb_fini(vop->rgb);
2268
2269	pm_runtime_disable(dev);
2270	vop_destroy_crtc(vop);
2271
2272	clk_unprepare(vop->aclk);
2273	clk_unprepare(vop->hclk);
2274	clk_unprepare(vop->dclk);
2275}
2276
2277const struct component_ops vop_component_ops = {
2278	.bind = vop_bind,
2279	.unbind = vop_unbind,
2280};
2281EXPORT_SYMBOL_GPL(vop_component_ops);
2282