1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 *    Jerome Glisse <glisse@freedesktop.org>
29 *    Dave Airlie
30 */
31
32#include <linux/atomic.h>
33#include <linux/firmware.h>
34#include <linux/kref.h>
35#include <linux/sched/signal.h>
36#include <linux/seq_file.h>
37#include <linux/slab.h>
38#include <linux/wait.h>
39
40#include <drm/drm_device.h>
41#include <drm/drm_file.h>
42
43#include "radeon.h"
44#include "radeon_reg.h"
45#include "radeon_trace.h"
46
47/*
48 * Fences
49 * Fences mark an event in the GPUs pipeline and are used
50 * for GPU/CPU synchronization.  When the fence is written,
51 * it is expected that all buffers associated with that fence
52 * are no longer in use by the associated ring on the GPU and
53 * that the relevant GPU caches have been flushed.  Whether
54 * we use a scratch register or memory location depends on the asic
55 * and whether writeback is enabled.
56 */
57
58/**
59 * radeon_fence_write - write a fence value
60 *
61 * @rdev: radeon_device pointer
62 * @seq: sequence number to write
63 * @ring: ring index the fence is associated with
64 *
65 * Writes a fence value to memory or a scratch register (all asics).
66 */
67static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68{
69	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71		if (drv->cpu_addr) {
72			*drv->cpu_addr = cpu_to_le32(seq);
73		}
74	} else {
75		WREG32(drv->scratch_reg, seq);
76	}
77}
78
79/**
80 * radeon_fence_read - read a fence value
81 *
82 * @rdev: radeon_device pointer
83 * @ring: ring index the fence is associated with
84 *
85 * Reads a fence value from memory or a scratch register (all asics).
86 * Returns the value of the fence read from memory or register.
87 */
88static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89{
90	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91	u32 seq = 0;
92
93	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94		if (drv->cpu_addr) {
95			seq = le32_to_cpu(*drv->cpu_addr);
96		} else {
97			seq = lower_32_bits(atomic64_read(&drv->last_seq));
98		}
99	} else {
100		seq = RREG32(drv->scratch_reg);
101	}
102	return seq;
103}
104
105/**
106 * radeon_fence_schedule_check - schedule lockup check
107 *
108 * @rdev: radeon_device pointer
109 * @ring: ring index we should work with
110 *
111 * Queues a delayed work item to check for lockups.
112 */
113static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114{
115	/*
116	 * Do not reset the timer here with mod_delayed_work,
117	 * this can livelock in an interaction with TTM delayed destroy.
118	 */
119	queue_delayed_work(system_power_efficient_wq,
120			   &rdev->fence_drv[ring].lockup_work,
121			   RADEON_FENCE_JIFFIES_TIMEOUT);
122}
123
124/**
125 * radeon_fence_emit - emit a fence on the requested ring
126 *
127 * @rdev: radeon_device pointer
128 * @fence: radeon fence object
129 * @ring: ring index the fence is associated with
130 *
131 * Emits a fence command on the requested ring (all asics).
132 * Returns 0 on success, -ENOMEM on failure.
133 */
134int radeon_fence_emit(struct radeon_device *rdev,
135		      struct radeon_fence **fence,
136		      int ring)
137{
138	u64 seq;
139
140	/* we are protected by the ring emission mutex */
141	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142	if ((*fence) == NULL) {
143		return -ENOMEM;
144	}
145	(*fence)->rdev = rdev;
146	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
147	(*fence)->ring = ring;
148	(*fence)->is_vm_update = false;
149	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
150		       &rdev->fence_queue.lock,
151		       rdev->fence_context + ring,
152		       seq);
153	radeon_fence_ring_emit(rdev, ring, *fence);
154	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
155	radeon_fence_schedule_check(rdev, ring);
156	return 0;
157}
158
159/*
160 * radeon_fence_check_signaled - callback from fence_queue
161 *
162 * this function is called with fence_queue lock held, which is also used
163 * for the fence locking itself, so unlocked variants are used for
164 * fence_signal, and remove_wait_queue.
165 */
166static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
167{
168	struct radeon_fence *fence;
169	u64 seq;
170
171	fence = container_of(wait, struct radeon_fence, fence_wake);
172
173	/*
174	 * We cannot use radeon_fence_process here because we're already
175	 * in the waitqueue, in a call from wake_up_all.
176	 */
177	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178	if (seq >= fence->seq) {
179		dma_fence_signal_locked(&fence->base);
180		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
181		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
182		dma_fence_put(&fence->base);
183	}
184	return 0;
185}
186
187/**
188 * radeon_fence_activity - check for fence activity
189 *
190 * @rdev: radeon_device pointer
191 * @ring: ring index the fence is associated with
192 *
193 * Checks the current fence value and calculates the last
194 * signalled fence value. Returns true if activity occured
195 * on the ring, and the fence_queue should be waken up.
196 */
197static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198{
199	uint64_t seq, last_seq, last_emitted;
200	unsigned count_loop = 0;
201	bool wake = false;
202
203	/* Note there is a scenario here for an infinite loop but it's
204	 * very unlikely to happen. For it to happen, the current polling
205	 * process need to be interrupted by another process and another
206	 * process needs to update the last_seq btw the atomic read and
207	 * xchg of the current process.
208	 *
209	 * More over for this to go in infinite loop there need to be
210	 * continuously new fence signaled ie radeon_fence_read needs
211	 * to return a different value each time for both the currently
212	 * polling process and the other process that xchg the last_seq
213	 * btw atomic read and xchg of the current process. And the
214	 * value the other process set as last seq must be higher than
215	 * the seq value we just read. Which means that current process
216	 * need to be interrupted after radeon_fence_read and before
217	 * atomic xchg.
218	 *
219	 * To be even more safe we count the number of time we loop and
220	 * we bail after 10 loop just accepting the fact that we might
221	 * have temporarly set the last_seq not to the true real last
222	 * seq but to an older one.
223	 */
224	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225	do {
226		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227		seq = radeon_fence_read(rdev, ring);
228		seq |= last_seq & 0xffffffff00000000LL;
229		if (seq < last_seq) {
230			seq &= 0xffffffff;
231			seq |= last_emitted & 0xffffffff00000000LL;
232		}
233
234		if (seq <= last_seq || seq > last_emitted) {
235			break;
236		}
237		/* If we loop over we don't want to return without
238		 * checking if a fence is signaled as it means that the
239		 * seq we just read is different from the previous on.
240		 */
241		wake = true;
242		last_seq = seq;
243		if ((count_loop++) > 10) {
244			/* We looped over too many time leave with the
245			 * fact that we might have set an older fence
246			 * seq then the current real last seq as signaled
247			 * by the hw.
248			 */
249			break;
250		}
251	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252
253	if (seq < last_emitted)
254		radeon_fence_schedule_check(rdev, ring);
255
256	return wake;
257}
258
259/**
260 * radeon_fence_check_lockup - check for hardware lockup
261 *
262 * @work: delayed work item
263 *
264 * Checks for fence activity and if there is none probe
265 * the hardware if a lockup occured.
266 */
267static void radeon_fence_check_lockup(struct work_struct *work)
268{
269	struct radeon_fence_driver *fence_drv;
270	struct radeon_device *rdev;
271	int ring;
272
273	fence_drv = container_of(work, struct radeon_fence_driver,
274				 lockup_work.work);
275	rdev = fence_drv->rdev;
276	ring = fence_drv - &rdev->fence_drv[0];
277
278	if (!down_read_trylock(&rdev->exclusive_lock)) {
279		/* just reschedule the check if a reset is going on */
280		radeon_fence_schedule_check(rdev, ring);
281		return;
282	}
283
284	if (fence_drv->delayed_irq && rdev->irq.installed) {
285		unsigned long irqflags;
286
287		fence_drv->delayed_irq = false;
288		spin_lock_irqsave(&rdev->irq.lock, irqflags);
289		radeon_irq_set(rdev);
290		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291	}
292
293	if (radeon_fence_activity(rdev, ring))
294		wake_up_all(&rdev->fence_queue);
295
296	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297
298		/* good news we believe it's a lockup */
299		dev_warn(rdev->dev, "GPU lockup (current fence id "
300			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301			 (uint64_t)atomic64_read(&fence_drv->last_seq),
302			 fence_drv->sync_seq[ring], ring);
303
304		/* remember that we need an reset */
305		rdev->needs_reset = true;
306		wake_up_all(&rdev->fence_queue);
307	}
308	up_read(&rdev->exclusive_lock);
309}
310
311/**
312 * radeon_fence_process - process a fence
313 *
314 * @rdev: radeon_device pointer
315 * @ring: ring index the fence is associated with
316 *
317 * Checks the current fence value and wakes the fence queue
318 * if the sequence number has increased (all asics).
319 */
320void radeon_fence_process(struct radeon_device *rdev, int ring)
321{
322	if (radeon_fence_activity(rdev, ring))
323		wake_up_all(&rdev->fence_queue);
324}
325
326/**
327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328 *
329 * @rdev: radeon device pointer
330 * @seq: sequence number
331 * @ring: ring index the fence is associated with
332 *
333 * Check if the last signaled fence sequnce number is >= the requested
334 * sequence number (all asics).
335 * Returns true if the fence has signaled (current fence value
336 * is >= requested value) or false if it has not (current fence
337 * value is < the requested value.  Helper function for
338 * radeon_fence_signaled().
339 */
340static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341				      u64 seq, unsigned ring)
342{
343	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344		return true;
345	}
346	/* poll new last sequence at least once */
347	radeon_fence_process(rdev, ring);
348	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349		return true;
350	}
351	return false;
352}
353
354static bool radeon_fence_is_signaled(struct dma_fence *f)
355{
356	struct radeon_fence *fence = to_radeon_fence(f);
357	struct radeon_device *rdev = fence->rdev;
358	unsigned ring = fence->ring;
359	u64 seq = fence->seq;
360
361	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362		return true;
363	}
364
365	if (down_read_trylock(&rdev->exclusive_lock)) {
366		radeon_fence_process(rdev, ring);
367		up_read(&rdev->exclusive_lock);
368
369		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370			return true;
371		}
372	}
373	return false;
374}
375
376/**
377 * radeon_fence_enable_signaling - enable signalling on fence
378 * @f: fence
379 *
380 * This function is called with fence_queue lock held, and adds a callback
381 * to fence_queue that checks if this fence is signaled, and if so it
382 * signals the fence and removes itself.
383 */
384static bool radeon_fence_enable_signaling(struct dma_fence *f)
385{
386	struct radeon_fence *fence = to_radeon_fence(f);
387	struct radeon_device *rdev = fence->rdev;
388
389	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390		return false;
391
392	if (down_read_trylock(&rdev->exclusive_lock)) {
393		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394
395		if (radeon_fence_activity(rdev, fence->ring))
396			wake_up_all_locked(&rdev->fence_queue);
397
398		/* did fence get signaled after we enabled the sw irq? */
399		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401			up_read(&rdev->exclusive_lock);
402			return false;
403		}
404
405		up_read(&rdev->exclusive_lock);
406	} else {
407		/* we're probably in a lockup, lets not fiddle too much */
408		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409			rdev->fence_drv[fence->ring].delayed_irq = true;
410		radeon_fence_schedule_check(rdev, fence->ring);
411	}
412
413	fence->fence_wake.flags = 0;
414	fence->fence_wake.private = NULL;
415	fence->fence_wake.func = radeon_fence_check_signaled;
416	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417	dma_fence_get(f);
418	return true;
419}
420
421/**
422 * radeon_fence_signaled - check if a fence has signaled
423 *
424 * @fence: radeon fence object
425 *
426 * Check if the requested fence has signaled (all asics).
427 * Returns true if the fence has signaled or false if it has not.
428 */
429bool radeon_fence_signaled(struct radeon_fence *fence)
430{
431	if (!fence)
432		return true;
433
434	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
435		dma_fence_signal(&fence->base);
436		return true;
437	}
438	return false;
439}
440
441/**
442 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
443 *
444 * @rdev: radeon device pointer
445 * @seq: sequence numbers
446 *
447 * Check if the last signaled fence sequnce number is >= the requested
448 * sequence number (all asics).
449 * Returns true if any has signaled (current value is >= requested value)
450 * or false if it has not. Helper function for radeon_fence_wait_seq.
451 */
452static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
453{
454	unsigned i;
455
456	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
457		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
458			return true;
459	}
460	return false;
461}
462
463/**
464 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
465 *
466 * @rdev: radeon device pointer
467 * @target_seq: sequence number(s) we want to wait for
468 * @intr: use interruptable sleep
469 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
470 *
471 * Wait for the requested sequence number(s) to be written by any ring
472 * (all asics).  Sequnce number array is indexed by ring id.
473 * @intr selects whether to use interruptable (true) or non-interruptable
474 * (false) sleep when waiting for the sequence number.  Helper function
475 * for radeon_fence_wait_*().
476 * Returns remaining time if the sequence number has passed, 0 when
477 * the wait timeout, or an error for all other cases.
478 * -EDEADLK is returned when a GPU lockup has been detected.
479 */
480static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
481					  u64 *target_seq, bool intr,
482					  long timeout)
483{
484	long r;
485	int i;
486
487	if (radeon_fence_any_seq_signaled(rdev, target_seq))
488		return timeout;
489
490	/* enable IRQs and tracing */
491	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
492		if (!target_seq[i])
493			continue;
494
495		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
496		radeon_irq_kms_sw_irq_get(rdev, i);
497	}
498
499	if (intr) {
500		r = wait_event_interruptible_timeout(rdev->fence_queue, (
501			radeon_fence_any_seq_signaled(rdev, target_seq)
502			 || rdev->needs_reset), timeout);
503	} else {
504		r = wait_event_timeout(rdev->fence_queue, (
505			radeon_fence_any_seq_signaled(rdev, target_seq)
506			 || rdev->needs_reset), timeout);
507	}
508
509	if (rdev->needs_reset)
510		r = -EDEADLK;
511
512	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
513		if (!target_seq[i])
514			continue;
515
516		radeon_irq_kms_sw_irq_put(rdev, i);
517		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
518	}
519
520	return r;
521}
522
523/**
524 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
525 *
526 * @fence: radeon fence object
527 * @intr: use interruptible sleep
528 *
529 * Wait for the requested fence to signal (all asics).
530 * @intr selects whether to use interruptable (true) or non-interruptable
531 * (false) sleep when waiting for the fence.
532 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
533 * Returns remaining time if the sequence number has passed, 0 when
534 * the wait timeout, or an error for all other cases.
535 */
536long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
537{
538	uint64_t seq[RADEON_NUM_RINGS] = {};
539	long r;
540
541	/*
542	 * This function should not be called on !radeon fences.
543	 * If this is the case, it would mean this function can
544	 * also be called on radeon fences belonging to another card.
545	 * exclusive_lock is not held in that case.
546	 */
547	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
548		return dma_fence_wait(&fence->base, intr);
549
550	seq[fence->ring] = fence->seq;
551	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
552	if (r <= 0) {
553		return r;
554	}
555
556	dma_fence_signal(&fence->base);
557	return r;
558}
559
560/**
561 * radeon_fence_wait - wait for a fence to signal
562 *
563 * @fence: radeon fence object
564 * @intr: use interruptible sleep
565 *
566 * Wait for the requested fence to signal (all asics).
567 * @intr selects whether to use interruptable (true) or non-interruptable
568 * (false) sleep when waiting for the fence.
569 * Returns 0 if the fence has passed, error for all other cases.
570 */
571int radeon_fence_wait(struct radeon_fence *fence, bool intr)
572{
573	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
574	if (r > 0) {
575		return 0;
576	} else {
577		return r;
578	}
579}
580
581/**
582 * radeon_fence_wait_any - wait for a fence to signal on any ring
583 *
584 * @rdev: radeon device pointer
585 * @fences: radeon fence object(s)
586 * @intr: use interruptable sleep
587 *
588 * Wait for any requested fence to signal (all asics).  Fence
589 * array is indexed by ring id.  @intr selects whether to use
590 * interruptable (true) or non-interruptable (false) sleep when
591 * waiting for the fences. Used by the suballocator.
592 * Returns 0 if any fence has passed, error for all other cases.
593 */
594int radeon_fence_wait_any(struct radeon_device *rdev,
595			  struct radeon_fence **fences,
596			  bool intr)
597{
598	uint64_t seq[RADEON_NUM_RINGS];
599	unsigned i, num_rings = 0;
600	long r;
601
602	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
603		seq[i] = 0;
604
605		if (!fences[i]) {
606			continue;
607		}
608
609		seq[i] = fences[i]->seq;
610		++num_rings;
611	}
612
613	/* nothing to wait for ? */
614	if (num_rings == 0)
615		return -ENOENT;
616
617	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
618	if (r < 0) {
619		return r;
620	}
621	return 0;
622}
623
624/**
625 * radeon_fence_wait_next - wait for the next fence to signal
626 *
627 * @rdev: radeon device pointer
628 * @ring: ring index the fence is associated with
629 *
630 * Wait for the next fence on the requested ring to signal (all asics).
631 * Returns 0 if the next fence has passed, error for all other cases.
632 * Caller must hold ring lock.
633 */
634int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
635{
636	uint64_t seq[RADEON_NUM_RINGS] = {};
637	long r;
638
639	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
640	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
641		/* nothing to wait for, last_seq is
642		   already the last emited fence */
643		return -ENOENT;
644	}
645	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
646	if (r < 0)
647		return r;
648	return 0;
649}
650
651/**
652 * radeon_fence_wait_empty - wait for all fences to signal
653 *
654 * @rdev: radeon device pointer
655 * @ring: ring index the fence is associated with
656 *
657 * Wait for all fences on the requested ring to signal (all asics).
658 * Returns 0 if the fences have passed, error for all other cases.
659 * Caller must hold ring lock.
660 */
661int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
662{
663	uint64_t seq[RADEON_NUM_RINGS] = {};
664	long r;
665
666	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
667	if (!seq[ring])
668		return 0;
669
670	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
671	if (r < 0) {
672		if (r == -EDEADLK)
673			return -EDEADLK;
674
675		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
676			ring, r);
677	}
678	return 0;
679}
680
681/**
682 * radeon_fence_ref - take a ref on a fence
683 *
684 * @fence: radeon fence object
685 *
686 * Take a reference on a fence (all asics).
687 * Returns the fence.
688 */
689struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
690{
691	dma_fence_get(&fence->base);
692	return fence;
693}
694
695/**
696 * radeon_fence_unref - remove a ref on a fence
697 *
698 * @fence: radeon fence object
699 *
700 * Remove a reference on a fence (all asics).
701 */
702void radeon_fence_unref(struct radeon_fence **fence)
703{
704	struct radeon_fence *tmp = *fence;
705
706	*fence = NULL;
707	if (tmp) {
708		dma_fence_put(&tmp->base);
709	}
710}
711
712/**
713 * radeon_fence_count_emitted - get the count of emitted fences
714 *
715 * @rdev: radeon device pointer
716 * @ring: ring index the fence is associated with
717 *
718 * Get the number of fences emitted on the requested ring (all asics).
719 * Returns the number of emitted fences on the ring.  Used by the
720 * dynpm code to ring track activity.
721 */
722unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
723{
724	uint64_t emitted;
725
726	/* We are not protected by ring lock when reading the last sequence
727	 * but it's ok to report slightly wrong fence count here.
728	 */
729	radeon_fence_process(rdev, ring);
730	emitted = rdev->fence_drv[ring].sync_seq[ring]
731		- atomic64_read(&rdev->fence_drv[ring].last_seq);
732	/* to avoid 32bits warp around */
733	if (emitted > 0x10000000) {
734		emitted = 0x10000000;
735	}
736	return (unsigned)emitted;
737}
738
739/**
740 * radeon_fence_need_sync - do we need a semaphore
741 *
742 * @fence: radeon fence object
743 * @dst_ring: which ring to check against
744 *
745 * Check if the fence needs to be synced against another ring
746 * (all asics).  If so, we need to emit a semaphore.
747 * Returns true if we need to sync with another ring, false if
748 * not.
749 */
750bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
751{
752	struct radeon_fence_driver *fdrv;
753
754	if (!fence) {
755		return false;
756	}
757
758	if (fence->ring == dst_ring) {
759		return false;
760	}
761
762	/* we are protected by the ring mutex */
763	fdrv = &fence->rdev->fence_drv[dst_ring];
764	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
765		return false;
766	}
767
768	return true;
769}
770
771/**
772 * radeon_fence_note_sync - record the sync point
773 *
774 * @fence: radeon fence object
775 * @dst_ring: which ring to check against
776 *
777 * Note the sequence number at which point the fence will
778 * be synced with the requested ring (all asics).
779 */
780void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
781{
782	struct radeon_fence_driver *dst, *src;
783	unsigned i;
784
785	if (!fence) {
786		return;
787	}
788
789	if (fence->ring == dst_ring) {
790		return;
791	}
792
793	/* we are protected by the ring mutex */
794	src = &fence->rdev->fence_drv[fence->ring];
795	dst = &fence->rdev->fence_drv[dst_ring];
796	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
797		if (i == dst_ring) {
798			continue;
799		}
800		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
801	}
802}
803
804/**
805 * radeon_fence_driver_start_ring - make the fence driver
806 * ready for use on the requested ring.
807 *
808 * @rdev: radeon device pointer
809 * @ring: ring index to start the fence driver on
810 *
811 * Make the fence driver ready for processing (all asics).
812 * Not all asics have all rings, so each asic will only
813 * start the fence driver on the rings it has.
814 * Returns 0 for success, errors for failure.
815 */
816int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
817{
818	uint64_t index;
819	int r;
820
821	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
822	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
823		rdev->fence_drv[ring].scratch_reg = 0;
824		if (ring != R600_RING_TYPE_UVD_INDEX) {
825			index = R600_WB_EVENT_OFFSET + ring * 4;
826			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
827			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
828							 index;
829
830		} else {
831			/* put fence directly behind firmware */
832			index = ALIGN(rdev->uvd_fw->size, 8);
833			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
834			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
835		}
836
837	} else {
838		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
839		if (r) {
840			dev_err(rdev->dev, "fence failed to get scratch register\n");
841			return r;
842		}
843		index = RADEON_WB_SCRATCH_OFFSET +
844			rdev->fence_drv[ring].scratch_reg -
845			rdev->scratch.reg_base;
846		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
847		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
848	}
849	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
850	rdev->fence_drv[ring].initialized = true;
851	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
852		 ring, rdev->fence_drv[ring].gpu_addr);
853	return 0;
854}
855
856/**
857 * radeon_fence_driver_init_ring - init the fence driver
858 * for the requested ring.
859 *
860 * @rdev: radeon device pointer
861 * @ring: ring index to start the fence driver on
862 *
863 * Init the fence driver for the requested ring (all asics).
864 * Helper function for radeon_fence_driver_init().
865 */
866static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
867{
868	int i;
869
870	rdev->fence_drv[ring].scratch_reg = -1;
871	rdev->fence_drv[ring].cpu_addr = NULL;
872	rdev->fence_drv[ring].gpu_addr = 0;
873	for (i = 0; i < RADEON_NUM_RINGS; ++i)
874		rdev->fence_drv[ring].sync_seq[i] = 0;
875	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
876	rdev->fence_drv[ring].initialized = false;
877	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
878			  radeon_fence_check_lockup);
879	rdev->fence_drv[ring].rdev = rdev;
880}
881
882/**
883 * radeon_fence_driver_init - init the fence driver
884 * for all possible rings.
885 *
886 * @rdev: radeon device pointer
887 *
888 * Init the fence driver for all possible rings (all asics).
889 * Not all asics have all rings, so each asic will only
890 * start the fence driver on the rings it has using
891 * radeon_fence_driver_start_ring().
892 */
893void radeon_fence_driver_init(struct radeon_device *rdev)
894{
895	int ring;
896
897	init_waitqueue_head(&rdev->fence_queue);
898	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
899		radeon_fence_driver_init_ring(rdev, ring);
900	}
901
902	radeon_debugfs_fence_init(rdev);
903}
904
905/**
906 * radeon_fence_driver_fini - tear down the fence driver
907 * for all possible rings.
908 *
909 * @rdev: radeon device pointer
910 *
911 * Tear down the fence driver for all possible rings (all asics).
912 */
913void radeon_fence_driver_fini(struct radeon_device *rdev)
914{
915	int ring, r;
916
917	mutex_lock(&rdev->ring_lock);
918	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
919		if (!rdev->fence_drv[ring].initialized)
920			continue;
921		r = radeon_fence_wait_empty(rdev, ring);
922		if (r) {
923			/* no need to trigger GPU reset as we are unloading */
924			radeon_fence_driver_force_completion(rdev, ring);
925		}
926		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
927		wake_up_all(&rdev->fence_queue);
928		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
929		rdev->fence_drv[ring].initialized = false;
930	}
931	mutex_unlock(&rdev->ring_lock);
932}
933
934/**
935 * radeon_fence_driver_force_completion - force all fence waiter to complete
936 *
937 * @rdev: radeon device pointer
938 * @ring: the ring to complete
939 *
940 * In case of GPU reset failure make sure no process keep waiting on fence
941 * that will never complete.
942 */
943void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
944{
945	if (rdev->fence_drv[ring].initialized) {
946		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
947		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
948	}
949}
950
951
952/*
953 * Fence debugfs
954 */
955#if defined(CONFIG_DEBUG_FS)
956static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
957{
958	struct radeon_device *rdev = m->private;
959	int i, j;
960
961	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
962		if (!rdev->fence_drv[i].initialized)
963			continue;
964
965		radeon_fence_process(rdev, i);
966
967		seq_printf(m, "--- ring %d ---\n", i);
968		seq_printf(m, "Last signaled fence 0x%016llx\n",
969			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
970		seq_printf(m, "Last emitted        0x%016llx\n",
971			   rdev->fence_drv[i].sync_seq[i]);
972
973		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
974			if (i != j && rdev->fence_drv[j].initialized)
975				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
976					   j, rdev->fence_drv[i].sync_seq[j]);
977		}
978	}
979	return 0;
980}
981
982/*
983 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
984 *
985 * Manually trigger a gpu reset at the next fence wait.
986 */
987static int radeon_debugfs_gpu_reset(void *data, u64 *val)
988{
989	struct radeon_device *rdev = (struct radeon_device *)data;
990
991	down_read(&rdev->exclusive_lock);
992	*val = rdev->needs_reset;
993	rdev->needs_reset = true;
994	wake_up_all(&rdev->fence_queue);
995	up_read(&rdev->exclusive_lock);
996
997	return 0;
998}
999DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
1000DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
1001			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
1002#endif
1003
1004void radeon_debugfs_fence_init(struct radeon_device *rdev)
1005{
1006#if defined(CONFIG_DEBUG_FS)
1007	struct dentry *root = rdev->ddev->primary->debugfs_root;
1008
1009	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1010			    &radeon_debugfs_gpu_reset_fops);
1011	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1012			    &radeon_debugfs_fence_info_fops);
1013
1014
1015#endif
1016}
1017
1018static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1019{
1020	return "radeon";
1021}
1022
1023static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1024{
1025	struct radeon_fence *fence = to_radeon_fence(f);
1026	switch (fence->ring) {
1027	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1028	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1029	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1030	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1031	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1032	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1033	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1034	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1035	default: WARN_ON_ONCE(1); return "radeon.unk";
1036	}
1037}
1038
1039static inline bool radeon_test_signaled(struct radeon_fence *fence)
1040{
1041	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1042}
1043
1044struct radeon_wait_cb {
1045	struct dma_fence_cb base;
1046	struct task_struct *task;
1047};
1048
1049static void
1050radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1051{
1052	struct radeon_wait_cb *wait =
1053		container_of(cb, struct radeon_wait_cb, base);
1054
1055	wake_up_process(wait->task);
1056}
1057
1058static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1059					     signed long t)
1060{
1061	struct radeon_fence *fence = to_radeon_fence(f);
1062	struct radeon_device *rdev = fence->rdev;
1063	struct radeon_wait_cb cb;
1064
1065	cb.task = current;
1066
1067	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1068		return t;
1069
1070	while (t > 0) {
1071		if (intr)
1072			set_current_state(TASK_INTERRUPTIBLE);
1073		else
1074			set_current_state(TASK_UNINTERRUPTIBLE);
1075
1076		/*
1077		 * radeon_test_signaled must be called after
1078		 * set_current_state to prevent a race with wake_up_process
1079		 */
1080		if (radeon_test_signaled(fence))
1081			break;
1082
1083		if (rdev->needs_reset) {
1084			t = -EDEADLK;
1085			break;
1086		}
1087
1088		t = schedule_timeout(t);
1089
1090		if (t > 0 && intr && signal_pending(current))
1091			t = -ERESTARTSYS;
1092	}
1093
1094	__set_current_state(TASK_RUNNING);
1095	dma_fence_remove_callback(f, &cb.base);
1096
1097	return t;
1098}
1099
1100const struct dma_fence_ops radeon_fence_ops = {
1101	.get_driver_name = radeon_fence_get_driver_name,
1102	.get_timeline_name = radeon_fence_get_timeline_name,
1103	.enable_signaling = radeon_fence_enable_signaling,
1104	.signaled = radeon_fence_is_signaled,
1105	.wait = radeon_fence_default_wait,
1106	.release = NULL,
1107};
1108