1// SPDX-License-Identifier: MIT
2
3#include <drm/drm_exec.h>
4
5#include "nouveau_drv.h"
6#include "nouveau_gem.h"
7#include "nouveau_mem.h"
8#include "nouveau_dma.h"
9#include "nouveau_exec.h"
10#include "nouveau_abi16.h"
11#include "nouveau_chan.h"
12#include "nouveau_sched.h"
13#include "nouveau_uvmm.h"
14
15/**
16 * DOC: Overview
17 *
18 * Nouveau's VM_BIND / EXEC UAPI consists of three ioctls: DRM_NOUVEAU_VM_INIT,
19 * DRM_NOUVEAU_VM_BIND and DRM_NOUVEAU_EXEC.
20 *
21 * In order to use the UAPI firstly a user client must initialize the VA space
22 * using the DRM_NOUVEAU_VM_INIT ioctl specifying which region of the VA space
23 * should be managed by the kernel and which by the UMD.
24 *
25 * The DRM_NOUVEAU_VM_BIND ioctl provides clients an interface to manage the
26 * userspace-managable portion of the VA space. It provides operations to map
27 * and unmap memory. Mappings may be flagged as sparse. Sparse mappings are not
28 * backed by a GEM object and the kernel will ignore GEM handles provided
29 * alongside a sparse mapping.
30 *
31 * Userspace may request memory backed mappings either within or outside of the
32 * bounds (but not crossing those bounds) of a previously mapped sparse
33 * mapping. Subsequently requested memory backed mappings within a sparse
34 * mapping will take precedence over the corresponding range of the sparse
35 * mapping. If such memory backed mappings are unmapped the kernel will make
36 * sure that the corresponding sparse mapping will take their place again.
37 * Requests to unmap a sparse mapping that still contains memory backed mappings
38 * will result in those memory backed mappings being unmapped first.
39 *
40 * Unmap requests are not bound to the range of existing mappings and can even
41 * overlap the bounds of sparse mappings. For such a request the kernel will
42 * make sure to unmap all memory backed mappings within the given range,
43 * splitting up memory backed mappings which are only partially contained
44 * within the given range. Unmap requests with the sparse flag set must match
45 * the range of a previously mapped sparse mapping exactly though.
46 *
47 * While the kernel generally permits arbitrary sequences and ranges of memory
48 * backed mappings being mapped and unmapped, either within a single or multiple
49 * VM_BIND ioctl calls, there are some restrictions for sparse mappings.
50 *
51 * The kernel does not permit to:
52 *   - unmap non-existent sparse mappings
53 *   - unmap a sparse mapping and map a new sparse mapping overlapping the range
54 *     of the previously unmapped sparse mapping within the same VM_BIND ioctl
55 *   - unmap a sparse mapping and map new memory backed mappings overlapping the
56 *     range of the previously unmapped sparse mapping within the same VM_BIND
57 *     ioctl
58 *
59 * When using the VM_BIND ioctl to request the kernel to map memory to a given
60 * virtual address in the GPU's VA space there is no guarantee that the actual
61 * mappings are created in the GPU's MMU. If the given memory is swapped out
62 * at the time the bind operation is executed the kernel will stash the mapping
63 * details into it's internal alloctor and create the actual MMU mappings once
64 * the memory is swapped back in. While this is transparent for userspace, it is
65 * guaranteed that all the backing memory is swapped back in and all the memory
66 * mappings, as requested by userspace previously, are actually mapped once the
67 * DRM_NOUVEAU_EXEC ioctl is called to submit an exec job.
68 *
69 * A VM_BIND job can be executed either synchronously or asynchronously. If
70 * exectued asynchronously, userspace may provide a list of syncobjs this job
71 * will wait for and/or a list of syncobj the kernel will signal once the
72 * VM_BIND job finished execution. If executed synchronously the ioctl will
73 * block until the bind job is finished. For synchronous jobs the kernel will
74 * not permit any syncobjs submitted to the kernel.
75 *
76 * To execute a push buffer the UAPI provides the DRM_NOUVEAU_EXEC ioctl. EXEC
77 * jobs are always executed asynchronously, and, equal to VM_BIND jobs, provide
78 * the option to synchronize them with syncobjs.
79 *
80 * Besides that, EXEC jobs can be scheduled for a specified channel to execute on.
81 *
82 * Since VM_BIND jobs update the GPU's VA space on job submit, EXEC jobs do have
83 * an up to date view of the VA space. However, the actual mappings might still
84 * be pending. Hence, EXEC jobs require to have the particular fences - of
85 * the corresponding VM_BIND jobs they depent on - attached to them.
86 */
87
88static int
89nouveau_exec_job_submit(struct nouveau_job *job)
90{
91	struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
92	struct nouveau_cli *cli = job->cli;
93	struct nouveau_uvmm *uvmm = nouveau_cli_uvmm(cli);
94	struct drm_exec *exec = &job->exec;
95	struct drm_gem_object *obj;
96	unsigned long index;
97	int ret;
98
99	/* Create a new fence, but do not emit yet. */
100	ret = nouveau_fence_create(&exec_job->fence, exec_job->chan);
101	if (ret)
102		return ret;
103
104	nouveau_uvmm_lock(uvmm);
105	drm_exec_init(exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
106			    DRM_EXEC_IGNORE_DUPLICATES);
107	drm_exec_until_all_locked(exec) {
108		struct drm_gpuva *va;
109
110		drm_gpuva_for_each_va(va, &uvmm->umgr) {
111			if (unlikely(va == &uvmm->umgr.kernel_alloc_node))
112				continue;
113
114			ret = drm_exec_prepare_obj(exec, va->gem.obj, 1);
115			drm_exec_retry_on_contention(exec);
116			if (ret)
117				goto err_uvmm_unlock;
118		}
119	}
120	nouveau_uvmm_unlock(uvmm);
121
122	drm_exec_for_each_locked_object(exec, index, obj) {
123		struct nouveau_bo *nvbo = nouveau_gem_object(obj);
124
125		ret = nouveau_bo_validate(nvbo, true, false);
126		if (ret)
127			goto err_exec_fini;
128	}
129
130	return 0;
131
132err_uvmm_unlock:
133	nouveau_uvmm_unlock(uvmm);
134err_exec_fini:
135	drm_exec_fini(exec);
136	return ret;
137
138}
139
140static void
141nouveau_exec_job_armed_submit(struct nouveau_job *job)
142{
143	struct drm_exec *exec = &job->exec;
144	struct drm_gem_object *obj;
145	unsigned long index;
146
147	drm_exec_for_each_locked_object(exec, index, obj)
148		dma_resv_add_fence(obj->resv, job->done_fence, job->resv_usage);
149
150	drm_exec_fini(exec);
151}
152
153static struct dma_fence *
154nouveau_exec_job_run(struct nouveau_job *job)
155{
156	struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
157	struct nouveau_channel *chan = exec_job->chan;
158	struct nouveau_fence *fence = exec_job->fence;
159	int i, ret;
160
161	ret = nouveau_dma_wait(chan, exec_job->push.count + 1, 16);
162	if (ret) {
163		NV_PRINTK(err, job->cli, "nv50cal_space: %d\n", ret);
164		return ERR_PTR(ret);
165	}
166
167	for (i = 0; i < exec_job->push.count; i++) {
168		struct drm_nouveau_exec_push *p = &exec_job->push.s[i];
169		bool no_prefetch = p->flags & DRM_NOUVEAU_EXEC_PUSH_NO_PREFETCH;
170
171		nv50_dma_push(chan, p->va, p->va_len, no_prefetch);
172	}
173
174	ret = nouveau_fence_emit(fence);
175	if (ret) {
176		nouveau_fence_unref(&exec_job->fence);
177		NV_PRINTK(err, job->cli, "error fencing pushbuf: %d\n", ret);
178		WIND_RING(chan);
179		return ERR_PTR(ret);
180	}
181
182	/* The fence was emitted successfully, set the job's fence pointer to
183	 * NULL in order to avoid freeing it up when the job is cleaned up.
184	 */
185	exec_job->fence = NULL;
186
187	return &fence->base;
188}
189
190static void
191nouveau_exec_job_free(struct nouveau_job *job)
192{
193	struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
194
195	nouveau_job_free(job);
196
197	kfree(exec_job->fence);
198	kfree(exec_job->push.s);
199	kfree(exec_job);
200}
201
202static enum drm_gpu_sched_stat
203nouveau_exec_job_timeout(struct nouveau_job *job)
204{
205	struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
206	struct nouveau_channel *chan = exec_job->chan;
207
208	if (unlikely(!atomic_read(&chan->killed)))
209		nouveau_channel_kill(chan);
210
211	NV_PRINTK(warn, job->cli, "job timeout, channel %d killed!\n",
212		  chan->chid);
213
214	nouveau_sched_entity_fini(job->entity);
215
216	return DRM_GPU_SCHED_STAT_NOMINAL;
217}
218
219static struct nouveau_job_ops nouveau_exec_job_ops = {
220	.submit = nouveau_exec_job_submit,
221	.armed_submit = nouveau_exec_job_armed_submit,
222	.run = nouveau_exec_job_run,
223	.free = nouveau_exec_job_free,
224	.timeout = nouveau_exec_job_timeout,
225};
226
227int
228nouveau_exec_job_init(struct nouveau_exec_job **pjob,
229		      struct nouveau_exec_job_args *__args)
230{
231	struct nouveau_exec_job *job;
232	struct nouveau_job_args args = {};
233	int i, ret;
234
235	for (i = 0; i < __args->push.count; i++) {
236		struct drm_nouveau_exec_push *p = &__args->push.s[i];
237
238		if (unlikely(p->va_len > NV50_DMA_PUSH_MAX_LENGTH)) {
239			NV_PRINTK(err, nouveau_cli(__args->file_priv),
240				  "pushbuf size exceeds limit: 0x%x max 0x%x\n",
241				  p->va_len, NV50_DMA_PUSH_MAX_LENGTH);
242			return -EINVAL;
243		}
244	}
245
246	job = *pjob = kzalloc(sizeof(*job), GFP_KERNEL);
247	if (!job)
248		return -ENOMEM;
249
250	job->push.count = __args->push.count;
251	if (__args->push.count) {
252		job->push.s = kmemdup(__args->push.s,
253				      sizeof(*__args->push.s) *
254				      __args->push.count,
255				      GFP_KERNEL);
256		if (!job->push.s) {
257			ret = -ENOMEM;
258			goto err_free_job;
259		}
260	}
261
262	job->chan = __args->chan;
263
264	args.sched_entity = __args->sched_entity;
265	args.file_priv = __args->file_priv;
266
267	args.in_sync.count = __args->in_sync.count;
268	args.in_sync.s = __args->in_sync.s;
269
270	args.out_sync.count = __args->out_sync.count;
271	args.out_sync.s = __args->out_sync.s;
272
273	args.ops = &nouveau_exec_job_ops;
274	args.resv_usage = DMA_RESV_USAGE_WRITE;
275
276	ret = nouveau_job_init(&job->base, &args);
277	if (ret)
278		goto err_free_pushs;
279
280	return 0;
281
282err_free_pushs:
283	kfree(job->push.s);
284err_free_job:
285	kfree(job);
286	*pjob = NULL;
287
288	return ret;
289}
290
291static int
292nouveau_exec(struct nouveau_exec_job_args *args)
293{
294	struct nouveau_exec_job *job;
295	int ret;
296
297	ret = nouveau_exec_job_init(&job, args);
298	if (ret)
299		return ret;
300
301	ret = nouveau_job_submit(&job->base);
302	if (ret)
303		goto err_job_fini;
304
305	return 0;
306
307err_job_fini:
308	nouveau_job_fini(&job->base);
309	return ret;
310}
311
312static int
313nouveau_exec_ucopy(struct nouveau_exec_job_args *args,
314		   struct drm_nouveau_exec *req)
315{
316	struct drm_nouveau_sync **s;
317	u32 inc = req->wait_count;
318	u64 ins = req->wait_ptr;
319	u32 outc = req->sig_count;
320	u64 outs = req->sig_ptr;
321	u32 pushc = req->push_count;
322	u64 pushs = req->push_ptr;
323	int ret;
324
325	if (pushc) {
326		args->push.count = pushc;
327		args->push.s = u_memcpya(pushs, pushc, sizeof(*args->push.s));
328		if (IS_ERR(args->push.s))
329			return PTR_ERR(args->push.s);
330	}
331
332	if (inc) {
333		s = &args->in_sync.s;
334
335		args->in_sync.count = inc;
336		*s = u_memcpya(ins, inc, sizeof(**s));
337		if (IS_ERR(*s)) {
338			ret = PTR_ERR(*s);
339			goto err_free_pushs;
340		}
341	}
342
343	if (outc) {
344		s = &args->out_sync.s;
345
346		args->out_sync.count = outc;
347		*s = u_memcpya(outs, outc, sizeof(**s));
348		if (IS_ERR(*s)) {
349			ret = PTR_ERR(*s);
350			goto err_free_ins;
351		}
352	}
353
354	return 0;
355
356err_free_pushs:
357	u_free(args->push.s);
358err_free_ins:
359	u_free(args->in_sync.s);
360	return ret;
361}
362
363static void
364nouveau_exec_ufree(struct nouveau_exec_job_args *args)
365{
366	u_free(args->push.s);
367	u_free(args->in_sync.s);
368	u_free(args->out_sync.s);
369}
370
371int
372nouveau_exec_ioctl_exec(struct drm_device *dev,
373			void *data,
374			struct drm_file *file_priv)
375{
376	struct nouveau_abi16 *abi16 = nouveau_abi16_get(file_priv);
377	struct nouveau_cli *cli = nouveau_cli(file_priv);
378	struct nouveau_abi16_chan *chan16;
379	struct nouveau_channel *chan = NULL;
380	struct nouveau_exec_job_args args = {};
381	struct drm_nouveau_exec *req = data;
382	int push_max, ret = 0;
383
384	if (unlikely(!abi16))
385		return -ENOMEM;
386
387	/* abi16 locks already */
388	if (unlikely(!nouveau_cli_uvmm(cli)))
389		return nouveau_abi16_put(abi16, -ENOSYS);
390
391	list_for_each_entry(chan16, &abi16->channels, head) {
392		if (chan16->chan->chid == req->channel) {
393			chan = chan16->chan;
394			break;
395		}
396	}
397
398	if (!chan)
399		return nouveau_abi16_put(abi16, -ENOENT);
400
401	if (unlikely(atomic_read(&chan->killed)))
402		return nouveau_abi16_put(abi16, -ENODEV);
403
404	if (!chan->dma.ib_max)
405		return nouveau_abi16_put(abi16, -ENOSYS);
406
407	push_max = nouveau_exec_push_max_from_ib_max(chan->dma.ib_max);
408	if (unlikely(req->push_count > push_max)) {
409		NV_PRINTK(err, cli, "pushbuf push count exceeds limit: %d max %d\n",
410			  req->push_count, push_max);
411		return nouveau_abi16_put(abi16, -EINVAL);
412	}
413
414	ret = nouveau_exec_ucopy(&args, req);
415	if (ret)
416		goto out;
417
418	args.sched_entity = &chan16->sched_entity;
419	args.file_priv = file_priv;
420	args.chan = chan;
421
422	ret = nouveau_exec(&args);
423	if (ret)
424		goto out_free_args;
425
426out_free_args:
427	nouveau_exec_ufree(&args);
428out:
429	return nouveau_abi16_put(abi16, ret);
430}
431