1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *   Robert Bragg <robert@sixbynine.org>
25 */
26
27
28/**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration.  For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 *   Existing perf pmus are used for profiling work on a cpu and we were
109 *   introducing the idea of _IS_DEVICE pmus with different security
110 *   implications, the need to fake cpu-related data (such as user/kernel
111 *   registers) to fit with perf's current design, and adding _DEVICE records
112 *   as a way to forward device-specific status records.
113 *
114 *   The OA unit writes reports of counters into a circular buffer, without
115 *   involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 *   Given the way we were periodically forward data from the GPU-mapped, OA
118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119 *   we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 *   Perf supports groups of counters and allows those to be read via
122 *   transactions internally but transactions currently seem designed to be
123 *   explicitly initiated from the cpu (say in response to a userspace read())
124 *   and while we could pull a report out of the OA buffer we can't
125 *   trigger a report from the cpu on demand.
126 *
127 *   Related to being report based; the OA counters are configured in HW as a
128 *   set while perf generally expects counter configurations to be orthogonal.
129 *   Although counters can be associated with a group leader as they are
130 *   opened, there's no clear precedent for being able to provide group-wide
131 *   configuration attributes (for example we want to let userspace choose the
132 *   OA unit report format used to capture all counters in a set, or specify a
133 *   GPU context to filter metrics on). We avoided using perf's grouping
134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135 *   field. This suited our userspace well considering how coupled the counters
136 *   are when dealing with normalizing. It would be inconvenient to split
137 *   counters up into separate events, only to require userspace to recombine
138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 *   for combining with the side-band raw reports it captures using
140 *   MI_REPORT_PERF_COUNT commands.
141 *
142 *   - As a side note on perf's grouping feature; there was also some concern
143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144 *     would quite drastically inflate our sample sizes, which would likely
145 *     lower the effective sampling resolutions we could use when the available
146 *     memory bandwidth is limited.
147 *
148 *     With the OA unit's report formats, counters are packed together as 32
149 *     or 40bit values, with the largest report size being 256 bytes.
150 *
151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 *   Related to counter orthogonality; we can't time share the OA unit, while
156 *   event scheduling is a central design idea within perf for allowing
157 *   userspace to open + enable more events than can be configured in HW at any
158 *   one time.  The OA unit is not designed to allow re-configuration while in
159 *   use. We can't reconfigure the OA unit without losing internal OA unit
160 *   state which we can't access explicitly to save and restore. Reconfiguring
161 *   the OA unit is also relatively slow, involving ~100 register writes. From
162 *   userspace Mesa also depends on a stable OA configuration when emitting
163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 *   disabled while there are outstanding MI_RPC commands lest we hang the
165 *   command streamer.
166 *
167 *   The contents of sample records aren't extensible by device drivers (i.e.
168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 *   into sample records by using the 'raw' field, but it's tricky to pack more
171 *   than one thing into this field because events/core.c currently only lets a
172 *   pmu give a single raw data pointer plus len which will be copied into the
173 *   ring buffer. To include more than the OA report we'd have to copy the
174 *   report into an intermediate larger buffer. I'd been considering allowing a
175 *   vector of data+len values to be specified for copying the raw data, but
176 *   it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 *   just for the sake of using perf:
180 *
181 *   perf_event_open() requires events to either relate to a pid or a specific
182 *   cpu core, while our device pmu related to neither.  Events opened with a
183 *   pid will be automatically enabled/disabled according to the scheduling of
184 *   that process - so not appropriate for us. When an event is related to a
185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
187 *   perf events for a specific cpu. This was workable but it meant the
188 *   majority of the OA driver ran in atomic context, including all OA report
189 *   forwarding, which wasn't really necessary in our case and seems to make
190 *   our locking requirements somewhat complex as we handled the interaction
191 *   with the rest of the i915 driver.
192 */
193
194#include <linux/anon_inodes.h>
195#include <linux/nospec.h>
196#include <linux/sizes.h>
197#include <linux/uuid.h>
198
199#include "gem/i915_gem_context.h"
200#include "gem/i915_gem_internal.h"
201#include "gt/intel_engine_pm.h"
202#include "gt/intel_engine_regs.h"
203#include "gt/intel_engine_user.h"
204#include "gt/intel_execlists_submission.h"
205#include "gt/intel_gpu_commands.h"
206#include "gt/intel_gt.h"
207#include "gt/intel_gt_clock_utils.h"
208#include "gt/intel_gt_mcr.h"
209#include "gt/intel_gt_regs.h"
210#include "gt/intel_lrc.h"
211#include "gt/intel_lrc_reg.h"
212#include "gt/intel_rc6.h"
213#include "gt/intel_ring.h"
214#include "gt/uc/intel_guc_slpc.h"
215
216#include "i915_drv.h"
217#include "i915_file_private.h"
218#include "i915_perf.h"
219#include "i915_perf_oa_regs.h"
220#include "i915_reg.h"
221
222/* HW requires this to be a power of two, between 128k and 16M, though driver
223 * is currently generally designed assuming the largest 16M size is used such
224 * that the overflow cases are unlikely in normal operation.
225 */
226#define OA_BUFFER_SIZE		SZ_16M
227
228#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229
230/**
231 * DOC: OA Tail Pointer Race
232 *
233 * There's a HW race condition between OA unit tail pointer register updates and
234 * writes to memory whereby the tail pointer can sometimes get ahead of what's
235 * been written out to the OA buffer so far (in terms of what's visible to the
236 * CPU).
237 *
238 * Although this can be observed explicitly while copying reports to userspace
239 * by checking for a zeroed report-id field in tail reports, we want to account
240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241 * redundant read() attempts.
242 *
243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244 * in the OA buffer, starting from the tail reported by the HW until we find a
245 * report with its first 2 dwords not 0 meaning its previous report is
246 * completely in memory and ready to be read. Those dwords are also set to 0
247 * once read and the whole buffer is cleared upon OA buffer initialization. The
248 * first dword is the reason for this report while the second is the timestamp,
249 * making the chances of having those 2 fields at 0 fairly unlikely. A more
250 * detailed explanation is available in oa_buffer_check_unlocked().
251 *
252 * Most of the implementation details for this workaround are in
253 * oa_buffer_check_unlocked() and _append_oa_reports()
254 *
255 * Note for posterity: previously the driver used to define an effective tail
256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258 * This was flawed considering that the OA unit may also automatically generate
259 * non-periodic reports (such as on context switch) or the OA unit may be
260 * enabled without any periodic sampling.
261 */
262#define OA_TAIL_MARGIN_NSEC	100000ULL
263#define INVALID_TAIL_PTR	0xffffffff
264
265/* The default frequency for checking whether the OA unit has written new
266 * reports to the circular OA buffer...
267 */
268#define DEFAULT_POLL_FREQUENCY_HZ 200
269#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270
271/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272static u32 i915_perf_stream_paranoid = true;
273
274/* The maximum exponent the hardware accepts is 63 (essentially it selects one
275 * of the 64bit timestamp bits to trigger reports from) but there's currently
276 * no known use case for sampling as infrequently as once per 47 thousand years.
277 *
278 * Since the timestamps included in OA reports are only 32bits it seems
279 * reasonable to limit the OA exponent where it's still possible to account for
280 * overflow in OA report timestamps.
281 */
282#define OA_EXPONENT_MAX 31
283
284#define INVALID_CTX_ID 0xffffffff
285
286/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287#define OAREPORT_REASON_MASK           0x3f
288#define OAREPORT_REASON_MASK_EXTENDED  0x7f
289#define OAREPORT_REASON_SHIFT          19
290#define OAREPORT_REASON_TIMER          (1<<0)
291#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292#define OAREPORT_REASON_CLK_RATIO      (1<<5)
293
294#define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295
296/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297 *
298 * The highest sampling frequency we can theoretically program the OA unit
299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300 *
301 * Initialized just before we register the sysctl parameter.
302 */
303static int oa_sample_rate_hard_limit;
304
305/* Theoretically we can program the OA unit to sample every 160ns but don't
306 * allow that by default unless root...
307 *
308 * The default threshold of 100000Hz is based on perf's similar
309 * kernel.perf_event_max_sample_rate sysctl parameter.
310 */
311static u32 i915_oa_max_sample_rate = 100000;
312
313/* XXX: beware if future OA HW adds new report formats that the current
314 * code assumes all reports have a power-of-two size and ~(size - 1) can
315 * be used as a mask to align the OA tail pointer.
316 */
317static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333};
334
335static const u32 mtl_oa_base[] = {
336	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337};
338
339#define SAMPLE_OA_REPORT      (1<<0)
340
341/**
342 * struct perf_open_properties - for validated properties given to open a stream
343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344 * @single_context: Whether a single or all gpu contexts should be monitored
345 * @hold_preemption: Whether the preemption is disabled for the filtered
346 *                   context
347 * @ctx_handle: A gem ctx handle for use with @single_context
348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349 * @oa_format: An OA unit HW report format
350 * @oa_periodic: Whether to enable periodic OA unit sampling
351 * @oa_period_exponent: The OA unit sampling period is derived from this
352 * @engine: The engine (typically rcs0) being monitored by the OA unit
353 * @has_sseu: Whether @sseu was specified by userspace
354 * @sseu: internal SSEU configuration computed either from the userspace
355 *        specified configuration in the opening parameters or a default value
356 *        (see get_default_sseu_config())
357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358 * data availability
359 *
360 * As read_properties_unlocked() enumerates and validates the properties given
361 * to open a stream of metrics the configuration is built up in the structure
362 * which starts out zero initialized.
363 */
364struct perf_open_properties {
365	u32 sample_flags;
366
367	u64 single_context:1;
368	u64 hold_preemption:1;
369	u64 ctx_handle;
370
371	/* OA sampling state */
372	int metrics_set;
373	int oa_format;
374	bool oa_periodic;
375	int oa_period_exponent;
376
377	struct intel_engine_cs *engine;
378
379	bool has_sseu;
380	struct intel_sseu sseu;
381
382	u64 poll_oa_period;
383};
384
385struct i915_oa_config_bo {
386	struct llist_node node;
387
388	struct i915_oa_config *oa_config;
389	struct i915_vma *vma;
390};
391
392static struct ctl_table_header *sysctl_header;
393
394static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395
396void i915_oa_config_release(struct kref *ref)
397{
398	struct i915_oa_config *oa_config =
399		container_of(ref, typeof(*oa_config), ref);
400
401	kfree(oa_config->flex_regs);
402	kfree(oa_config->b_counter_regs);
403	kfree(oa_config->mux_regs);
404
405	kfree_rcu(oa_config, rcu);
406}
407
408struct i915_oa_config *
409i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410{
411	struct i915_oa_config *oa_config;
412
413	rcu_read_lock();
414	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415	if (oa_config)
416		oa_config = i915_oa_config_get(oa_config);
417	rcu_read_unlock();
418
419	return oa_config;
420}
421
422static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423{
424	i915_oa_config_put(oa_bo->oa_config);
425	i915_vma_put(oa_bo->vma);
426	kfree(oa_bo);
427}
428
429static inline const
430struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431{
432	return &stream->engine->oa_group->regs;
433}
434
435static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436{
437	struct intel_uncore *uncore = stream->uncore;
438
439	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440	       GEN12_OAG_OATAILPTR_MASK;
441}
442
443static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444{
445	struct intel_uncore *uncore = stream->uncore;
446
447	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448}
449
450static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451{
452	struct intel_uncore *uncore = stream->uncore;
453	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454
455	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456}
457
458#define oa_report_header_64bit(__s) \
459	((__s)->oa_buffer.format->header == HDR_64_BIT)
460
461static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462{
463	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464}
465
466static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467{
468	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470		OAREPORT_REASON_MASK_EXTENDED :
471		OAREPORT_REASON_MASK);
472}
473
474static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475{
476	if (oa_report_header_64bit(stream))
477		*(u64 *)report = 0;
478	else
479		*report = 0;
480}
481
482static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483{
484	return !(oa_report_id(stream, report) &
485	       stream->perf->gen8_valid_ctx_bit);
486}
487
488static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
489{
490	return oa_report_header_64bit(stream) ?
491		*((u64 *)report + 1) :
492		*((u32 *)report + 1);
493}
494
495static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
496{
497	if (oa_report_header_64bit(stream))
498		*(u64 *)&report[2] = 0;
499	else
500		report[1] = 0;
501}
502
503static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
504{
505	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
506
507	return ctx_id & stream->specific_ctx_id_mask;
508}
509
510static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
511{
512	if (oa_report_header_64bit(stream))
513		report[4] = INVALID_CTX_ID;
514	else
515		report[2] = INVALID_CTX_ID;
516}
517
518/**
519 * oa_buffer_check_unlocked - check for data and update tail ptr state
520 * @stream: i915 stream instance
521 *
522 * This is either called via fops (for blocking reads in user ctx) or the poll
523 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
524 * if there is data available for userspace to read.
525 *
526 * This function is central to providing a workaround for the OA unit tail
527 * pointer having a race with respect to what data is visible to the CPU.
528 * It is responsible for reading tail pointers from the hardware and giving
529 * the pointers time to 'age' before they are made available for reading.
530 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
531 *
532 * Besides returning true when there is data available to read() this function
533 * also updates the tail in the oa_buffer object.
534 *
535 * Note: It's safe to read OA config state here unlocked, assuming that this is
536 * only called while the stream is enabled, while the global OA configuration
537 * can't be modified.
538 *
539 * Returns: %true if the OA buffer contains data, else %false
540 */
541static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
542{
543	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
544	int report_size = stream->oa_buffer.format->size;
545	u32 head, tail, read_tail;
546	unsigned long flags;
547	bool pollin;
548	u32 hw_tail;
549	u32 partial_report_size;
550
551	/* We have to consider the (unlikely) possibility that read() errors
552	 * could result in an OA buffer reset which might reset the head and
553	 * tail state.
554	 */
555	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
556
557	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558
559	/* The tail pointer increases in 64 byte increments, not in report_size
560	 * steps. Also the report size may not be a power of 2. Compute
561	 * potentially partially landed report in the OA buffer
562	 */
563	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
564	partial_report_size %= report_size;
565
566	/* Subtract partial amount off the tail */
567	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
568
569	/* NB: The head we observe here might effectively be a little
570	 * out of date. If a read() is in progress, the head could be
571	 * anywhere between this head and stream->oa_buffer.tail.
572	 */
573	head = stream->oa_buffer.head - gtt_offset;
574	read_tail = stream->oa_buffer.tail - gtt_offset;
575
576	tail = hw_tail;
577
578	/* Walk the stream backward until we find a report with report
579	 * id and timestmap not at 0. Since the circular buffer pointers
580	 * progress by increments of 64 bytes and that reports can be up
581	 * to 256 bytes long, we can't tell whether a report has fully
582	 * landed in memory before the report id and timestamp of the
583	 * following report have effectively landed.
584	 *
585	 * This is assuming that the writes of the OA unit land in
586	 * memory in the order they were written to.
587	 * If not : (╯°□°)╯︵ ┻━┻
588	 */
589	while (OA_TAKEN(tail, read_tail) >= report_size) {
590		void *report = stream->oa_buffer.vaddr + tail;
591
592		if (oa_report_id(stream, report) ||
593		    oa_timestamp(stream, report))
594			break;
595
596		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
597	}
598
599	if (OA_TAKEN(hw_tail, tail) > report_size &&
600	    __ratelimit(&stream->perf->tail_pointer_race))
601		drm_notice(&stream->uncore->i915->drm,
602			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
603		 head, tail, hw_tail);
604
605	stream->oa_buffer.tail = gtt_offset + tail;
606
607	pollin = OA_TAKEN(stream->oa_buffer.tail,
608			  stream->oa_buffer.head) >= report_size;
609
610	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
611
612	return pollin;
613}
614
615/**
616 * append_oa_status - Appends a status record to a userspace read() buffer.
617 * @stream: An i915-perf stream opened for OA metrics
618 * @buf: destination buffer given by userspace
619 * @count: the number of bytes userspace wants to read
620 * @offset: (inout): the current position for writing into @buf
621 * @type: The kind of status to report to userspace
622 *
623 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
624 * into the userspace read() buffer.
625 *
626 * The @buf @offset will only be updated on success.
627 *
628 * Returns: 0 on success, negative error code on failure.
629 */
630static int append_oa_status(struct i915_perf_stream *stream,
631			    char __user *buf,
632			    size_t count,
633			    size_t *offset,
634			    enum drm_i915_perf_record_type type)
635{
636	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
637
638	if ((count - *offset) < header.size)
639		return -ENOSPC;
640
641	if (copy_to_user(buf + *offset, &header, sizeof(header)))
642		return -EFAULT;
643
644	(*offset) += header.size;
645
646	return 0;
647}
648
649/**
650 * append_oa_sample - Copies single OA report into userspace read() buffer.
651 * @stream: An i915-perf stream opened for OA metrics
652 * @buf: destination buffer given by userspace
653 * @count: the number of bytes userspace wants to read
654 * @offset: (inout): the current position for writing into @buf
655 * @report: A single OA report to (optionally) include as part of the sample
656 *
657 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
658 * properties when opening a stream, tracked as `stream->sample_flags`. This
659 * function copies the requested components of a single sample to the given
660 * read() @buf.
661 *
662 * The @buf @offset will only be updated on success.
663 *
664 * Returns: 0 on success, negative error code on failure.
665 */
666static int append_oa_sample(struct i915_perf_stream *stream,
667			    char __user *buf,
668			    size_t count,
669			    size_t *offset,
670			    const u8 *report)
671{
672	int report_size = stream->oa_buffer.format->size;
673	struct drm_i915_perf_record_header header;
674	int report_size_partial;
675	u8 *oa_buf_end;
676
677	header.type = DRM_I915_PERF_RECORD_SAMPLE;
678	header.pad = 0;
679	header.size = stream->sample_size;
680
681	if ((count - *offset) < header.size)
682		return -ENOSPC;
683
684	buf += *offset;
685	if (copy_to_user(buf, &header, sizeof(header)))
686		return -EFAULT;
687	buf += sizeof(header);
688
689	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
690	report_size_partial = oa_buf_end - report;
691
692	if (report_size_partial < report_size) {
693		if (copy_to_user(buf, report, report_size_partial))
694			return -EFAULT;
695		buf += report_size_partial;
696
697		if (copy_to_user(buf, stream->oa_buffer.vaddr,
698				 report_size - report_size_partial))
699			return -EFAULT;
700	} else if (copy_to_user(buf, report, report_size)) {
701		return -EFAULT;
702	}
703
704	(*offset) += header.size;
705
706	return 0;
707}
708
709/**
710 * gen8_append_oa_reports - Copies all buffered OA reports into
711 *			    userspace read() buffer.
712 * @stream: An i915-perf stream opened for OA metrics
713 * @buf: destination buffer given by userspace
714 * @count: the number of bytes userspace wants to read
715 * @offset: (inout): the current position for writing into @buf
716 *
717 * Notably any error condition resulting in a short read (-%ENOSPC or
718 * -%EFAULT) will be returned even though one or more records may
719 * have been successfully copied. In this case it's up to the caller
720 * to decide if the error should be squashed before returning to
721 * userspace.
722 *
723 * Note: reports are consumed from the head, and appended to the
724 * tail, so the tail chases the head?... If you think that's mad
725 * and back-to-front you're not alone, but this follows the
726 * Gen PRM naming convention.
727 *
728 * Returns: 0 on success, negative error code on failure.
729 */
730static int gen8_append_oa_reports(struct i915_perf_stream *stream,
731				  char __user *buf,
732				  size_t count,
733				  size_t *offset)
734{
735	struct intel_uncore *uncore = stream->uncore;
736	int report_size = stream->oa_buffer.format->size;
737	u8 *oa_buf_base = stream->oa_buffer.vaddr;
738	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
739	u32 mask = (OA_BUFFER_SIZE - 1);
740	size_t start_offset = *offset;
741	unsigned long flags;
742	u32 head, tail;
743	int ret = 0;
744
745	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
746		return -EIO;
747
748	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
749
750	head = stream->oa_buffer.head;
751	tail = stream->oa_buffer.tail;
752
753	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
754
755	/*
756	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
757	 * while indexing relative to oa_buf_base.
758	 */
759	head -= gtt_offset;
760	tail -= gtt_offset;
761
762	/*
763	 * An out of bounds or misaligned head or tail pointer implies a driver
764	 * bug since we validate + align the tail pointers we read from the
765	 * hardware and we are in full control of the head pointer which should
766	 * only be incremented by multiples of the report size.
767	 */
768	if (drm_WARN_ONCE(&uncore->i915->drm,
769			  head > OA_BUFFER_SIZE ||
770			  tail > OA_BUFFER_SIZE,
771			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
772			  head, tail))
773		return -EIO;
774
775
776	for (/* none */;
777	     OA_TAKEN(tail, head);
778	     head = (head + report_size) & mask) {
779		u8 *report = oa_buf_base + head;
780		u32 *report32 = (void *)report;
781		u32 ctx_id;
782		u64 reason;
783
784		/*
785		 * The reason field includes flags identifying what
786		 * triggered this specific report (mostly timer
787		 * triggered or e.g. due to a context switch).
788		 */
789		reason = oa_report_reason(stream, report);
790		ctx_id = oa_context_id(stream, report32);
791
792		/*
793		 * Squash whatever is in the CTX_ID field if it's marked as
794		 * invalid to be sure we avoid false-positive, single-context
795		 * filtering below...
796		 *
797		 * Note: that we don't clear the valid_ctx_bit so userspace can
798		 * understand that the ID has been squashed by the kernel.
799		 *
800		 * Update:
801		 *
802		 * On XEHP platforms the behavior of context id valid bit has
803		 * changed compared to prior platforms. To describe this, we
804		 * define a few terms:
805		 *
806		 * context-switch-report: This is a report with the reason type
807		 * being context-switch. It is generated when a context switches
808		 * out.
809		 *
810		 * context-valid-bit: A bit that is set in the report ID field
811		 * to indicate that a valid context has been loaded.
812		 *
813		 * gpu-idle: A condition characterized by a
814		 * context-switch-report with context-valid-bit set to 0.
815		 *
816		 * On prior platforms, context-id-valid bit is set to 0 only
817		 * when GPU goes idle. In all other reports, it is set to 1.
818		 *
819		 * On XEHP platforms, context-valid-bit is set to 1 in a context
820		 * switch report if a new context switched in. For all other
821		 * reports it is set to 0.
822		 *
823		 * This change in behavior causes an issue with MMIO triggered
824		 * reports. MMIO triggered reports have the markers in the
825		 * context ID field and the context-valid-bit is 0. The logic
826		 * below to squash the context ID would render the report
827		 * useless since the user will not be able to find it in the OA
828		 * buffer. Since MMIO triggered reports exist only on XEHP,
829		 * we should avoid squashing these for XEHP platforms.
830		 */
831
832		if (oa_report_ctx_invalid(stream, report) &&
833		    GRAPHICS_VER_FULL(stream->engine->i915) < IP_VER(12, 50)) {
834			ctx_id = INVALID_CTX_ID;
835			oa_context_id_squash(stream, report32);
836		}
837
838		/*
839		 * NB: For Gen 8 the OA unit no longer supports clock gating
840		 * off for a specific context and the kernel can't securely
841		 * stop the counters from updating as system-wide / global
842		 * values.
843		 *
844		 * Automatic reports now include a context ID so reports can be
845		 * filtered on the cpu but it's not worth trying to
846		 * automatically subtract/hide counter progress for other
847		 * contexts while filtering since we can't stop userspace
848		 * issuing MI_REPORT_PERF_COUNT commands which would still
849		 * provide a side-band view of the real values.
850		 *
851		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
852		 * to normalize counters for a single filtered context then it
853		 * needs be forwarded bookend context-switch reports so that it
854		 * can track switches in between MI_REPORT_PERF_COUNT commands
855		 * and can itself subtract/ignore the progress of counters
856		 * associated with other contexts. Note that the hardware
857		 * automatically triggers reports when switching to a new
858		 * context which are tagged with the ID of the newly active
859		 * context. To avoid the complexity (and likely fragility) of
860		 * reading ahead while parsing reports to try and minimize
861		 * forwarding redundant context switch reports (i.e. between
862		 * other, unrelated contexts) we simply elect to forward them
863		 * all.
864		 *
865		 * We don't rely solely on the reason field to identify context
866		 * switches since it's not-uncommon for periodic samples to
867		 * identify a switch before any 'context switch' report.
868		 */
869		if (!stream->ctx ||
870		    stream->specific_ctx_id == ctx_id ||
871		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
872		    reason & OAREPORT_REASON_CTX_SWITCH) {
873
874			/*
875			 * While filtering for a single context we avoid
876			 * leaking the IDs of other contexts.
877			 */
878			if (stream->ctx &&
879			    stream->specific_ctx_id != ctx_id) {
880				oa_context_id_squash(stream, report32);
881			}
882
883			ret = append_oa_sample(stream, buf, count, offset,
884					       report);
885			if (ret)
886				break;
887
888			stream->oa_buffer.last_ctx_id = ctx_id;
889		}
890
891		if (is_power_of_2(report_size)) {
892			/*
893			 * Clear out the report id and timestamp as a means
894			 * to detect unlanded reports.
895			 */
896			oa_report_id_clear(stream, report32);
897			oa_timestamp_clear(stream, report32);
898		} else {
899			u8 *oa_buf_end = stream->oa_buffer.vaddr +
900					 OA_BUFFER_SIZE;
901			u32 part = oa_buf_end - (u8 *)report32;
902
903			/* Zero out the entire report */
904			if (report_size <= part) {
905				memset(report32, 0, report_size);
906			} else {
907				memset(report32, 0, part);
908				memset(oa_buf_base, 0, report_size - part);
909			}
910		}
911	}
912
913	if (start_offset != *offset) {
914		i915_reg_t oaheadptr;
915
916		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
917			    __oa_regs(stream)->oa_head_ptr :
918			    GEN8_OAHEADPTR;
919
920		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
921
922		/*
923		 * We removed the gtt_offset for the copy loop above, indexing
924		 * relative to oa_buf_base so put back here...
925		 */
926		head += gtt_offset;
927		intel_uncore_write(uncore, oaheadptr,
928				   head & GEN12_OAG_OAHEADPTR_MASK);
929		stream->oa_buffer.head = head;
930
931		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
932	}
933
934	return ret;
935}
936
937/**
938 * gen8_oa_read - copy status records then buffered OA reports
939 * @stream: An i915-perf stream opened for OA metrics
940 * @buf: destination buffer given by userspace
941 * @count: the number of bytes userspace wants to read
942 * @offset: (inout): the current position for writing into @buf
943 *
944 * Checks OA unit status registers and if necessary appends corresponding
945 * status records for userspace (such as for a buffer full condition) and then
946 * initiate appending any buffered OA reports.
947 *
948 * Updates @offset according to the number of bytes successfully copied into
949 * the userspace buffer.
950 *
951 * NB: some data may be successfully copied to the userspace buffer
952 * even if an error is returned, and this is reflected in the
953 * updated @offset.
954 *
955 * Returns: zero on success or a negative error code
956 */
957static int gen8_oa_read(struct i915_perf_stream *stream,
958			char __user *buf,
959			size_t count,
960			size_t *offset)
961{
962	struct intel_uncore *uncore = stream->uncore;
963	u32 oastatus;
964	i915_reg_t oastatus_reg;
965	int ret;
966
967	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
968		return -EIO;
969
970	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
971		       __oa_regs(stream)->oa_status :
972		       GEN8_OASTATUS;
973
974	oastatus = intel_uncore_read(uncore, oastatus_reg);
975
976	/*
977	 * We treat OABUFFER_OVERFLOW as a significant error:
978	 *
979	 * Although theoretically we could handle this more gracefully
980	 * sometimes, some Gens don't correctly suppress certain
981	 * automatically triggered reports in this condition and so we
982	 * have to assume that old reports are now being trampled
983	 * over.
984	 *
985	 * Considering how we don't currently give userspace control
986	 * over the OA buffer size and always configure a large 16MB
987	 * buffer, then a buffer overflow does anyway likely indicate
988	 * that something has gone quite badly wrong.
989	 */
990	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
991		ret = append_oa_status(stream, buf, count, offset,
992				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
993		if (ret)
994			return ret;
995
996		drm_dbg(&stream->perf->i915->drm,
997			"OA buffer overflow (exponent = %d): force restart\n",
998			stream->period_exponent);
999
1000		stream->perf->ops.oa_disable(stream);
1001		stream->perf->ops.oa_enable(stream);
1002
1003		/*
1004		 * Note: .oa_enable() is expected to re-init the oabuffer and
1005		 * reset GEN8_OASTATUS for us
1006		 */
1007		oastatus = intel_uncore_read(uncore, oastatus_reg);
1008	}
1009
1010	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
1011		ret = append_oa_status(stream, buf, count, offset,
1012				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1013		if (ret)
1014			return ret;
1015
1016		intel_uncore_rmw(uncore, oastatus_reg,
1017				 GEN8_OASTATUS_COUNTER_OVERFLOW |
1018				 GEN8_OASTATUS_REPORT_LOST,
1019				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
1020				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
1021				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
1022	}
1023
1024	return gen8_append_oa_reports(stream, buf, count, offset);
1025}
1026
1027/**
1028 * gen7_append_oa_reports - Copies all buffered OA reports into
1029 *			    userspace read() buffer.
1030 * @stream: An i915-perf stream opened for OA metrics
1031 * @buf: destination buffer given by userspace
1032 * @count: the number of bytes userspace wants to read
1033 * @offset: (inout): the current position for writing into @buf
1034 *
1035 * Notably any error condition resulting in a short read (-%ENOSPC or
1036 * -%EFAULT) will be returned even though one or more records may
1037 * have been successfully copied. In this case it's up to the caller
1038 * to decide if the error should be squashed before returning to
1039 * userspace.
1040 *
1041 * Note: reports are consumed from the head, and appended to the
1042 * tail, so the tail chases the head?... If you think that's mad
1043 * and back-to-front you're not alone, but this follows the
1044 * Gen PRM naming convention.
1045 *
1046 * Returns: 0 on success, negative error code on failure.
1047 */
1048static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1049				  char __user *buf,
1050				  size_t count,
1051				  size_t *offset)
1052{
1053	struct intel_uncore *uncore = stream->uncore;
1054	int report_size = stream->oa_buffer.format->size;
1055	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1056	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1057	u32 mask = (OA_BUFFER_SIZE - 1);
1058	size_t start_offset = *offset;
1059	unsigned long flags;
1060	u32 head, tail;
1061	int ret = 0;
1062
1063	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1064		return -EIO;
1065
1066	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1067
1068	head = stream->oa_buffer.head;
1069	tail = stream->oa_buffer.tail;
1070
1071	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1072
1073	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1074	 * while indexing relative to oa_buf_base.
1075	 */
1076	head -= gtt_offset;
1077	tail -= gtt_offset;
1078
1079	/* An out of bounds or misaligned head or tail pointer implies a driver
1080	 * bug since we validate + align the tail pointers we read from the
1081	 * hardware and we are in full control of the head pointer which should
1082	 * only be incremented by multiples of the report size (notably also
1083	 * all a power of two).
1084	 */
1085	if (drm_WARN_ONCE(&uncore->i915->drm,
1086			  head > OA_BUFFER_SIZE || head % report_size ||
1087			  tail > OA_BUFFER_SIZE || tail % report_size,
1088			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1089			  head, tail))
1090		return -EIO;
1091
1092
1093	for (/* none */;
1094	     OA_TAKEN(tail, head);
1095	     head = (head + report_size) & mask) {
1096		u8 *report = oa_buf_base + head;
1097		u32 *report32 = (void *)report;
1098
1099		/* All the report sizes factor neatly into the buffer
1100		 * size so we never expect to see a report split
1101		 * between the beginning and end of the buffer.
1102		 *
1103		 * Given the initial alignment check a misalignment
1104		 * here would imply a driver bug that would result
1105		 * in an overrun.
1106		 */
1107		if (drm_WARN_ON(&uncore->i915->drm,
1108				(OA_BUFFER_SIZE - head) < report_size)) {
1109			drm_err(&uncore->i915->drm,
1110				"Spurious OA head ptr: non-integral report offset\n");
1111			break;
1112		}
1113
1114		/* The report-ID field for periodic samples includes
1115		 * some undocumented flags related to what triggered
1116		 * the report and is never expected to be zero so we
1117		 * can check that the report isn't invalid before
1118		 * copying it to userspace...
1119		 */
1120		if (report32[0] == 0) {
1121			if (__ratelimit(&stream->perf->spurious_report_rs))
1122				drm_notice(&uncore->i915->drm,
1123					   "Skipping spurious, invalid OA report\n");
1124			continue;
1125		}
1126
1127		ret = append_oa_sample(stream, buf, count, offset, report);
1128		if (ret)
1129			break;
1130
1131		/* Clear out the first 2 dwords as a mean to detect unlanded
1132		 * reports.
1133		 */
1134		report32[0] = 0;
1135		report32[1] = 0;
1136	}
1137
1138	if (start_offset != *offset) {
1139		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1140
1141		/* We removed the gtt_offset for the copy loop above, indexing
1142		 * relative to oa_buf_base so put back here...
1143		 */
1144		head += gtt_offset;
1145
1146		intel_uncore_write(uncore, GEN7_OASTATUS2,
1147				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1148				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1149		stream->oa_buffer.head = head;
1150
1151		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1152	}
1153
1154	return ret;
1155}
1156
1157/**
1158 * gen7_oa_read - copy status records then buffered OA reports
1159 * @stream: An i915-perf stream opened for OA metrics
1160 * @buf: destination buffer given by userspace
1161 * @count: the number of bytes userspace wants to read
1162 * @offset: (inout): the current position for writing into @buf
1163 *
1164 * Checks Gen 7 specific OA unit status registers and if necessary appends
1165 * corresponding status records for userspace (such as for a buffer full
1166 * condition) and then initiate appending any buffered OA reports.
1167 *
1168 * Updates @offset according to the number of bytes successfully copied into
1169 * the userspace buffer.
1170 *
1171 * Returns: zero on success or a negative error code
1172 */
1173static int gen7_oa_read(struct i915_perf_stream *stream,
1174			char __user *buf,
1175			size_t count,
1176			size_t *offset)
1177{
1178	struct intel_uncore *uncore = stream->uncore;
1179	u32 oastatus1;
1180	int ret;
1181
1182	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1183		return -EIO;
1184
1185	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1186
1187	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1188	 * bits while the OA unit is enabled (while the tail pointer
1189	 * may be updated asynchronously) so we ignore status bits
1190	 * that have already been reported to userspace.
1191	 */
1192	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1193
1194	/* We treat OABUFFER_OVERFLOW as a significant error:
1195	 *
1196	 * - The status can be interpreted to mean that the buffer is
1197	 *   currently full (with a higher precedence than OA_TAKEN()
1198	 *   which will start to report a near-empty buffer after an
1199	 *   overflow) but it's awkward that we can't clear the status
1200	 *   on Haswell, so without a reset we won't be able to catch
1201	 *   the state again.
1202	 *
1203	 * - Since it also implies the HW has started overwriting old
1204	 *   reports it may also affect our sanity checks for invalid
1205	 *   reports when copying to userspace that assume new reports
1206	 *   are being written to cleared memory.
1207	 *
1208	 * - In the future we may want to introduce a flight recorder
1209	 *   mode where the driver will automatically maintain a safe
1210	 *   guard band between head/tail, avoiding this overflow
1211	 *   condition, but we avoid the added driver complexity for
1212	 *   now.
1213	 */
1214	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1215		ret = append_oa_status(stream, buf, count, offset,
1216				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1217		if (ret)
1218			return ret;
1219
1220		drm_dbg(&stream->perf->i915->drm,
1221			"OA buffer overflow (exponent = %d): force restart\n",
1222			stream->period_exponent);
1223
1224		stream->perf->ops.oa_disable(stream);
1225		stream->perf->ops.oa_enable(stream);
1226
1227		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1228	}
1229
1230	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1231		ret = append_oa_status(stream, buf, count, offset,
1232				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1233		if (ret)
1234			return ret;
1235		stream->perf->gen7_latched_oastatus1 |=
1236			GEN7_OASTATUS1_REPORT_LOST;
1237	}
1238
1239	return gen7_append_oa_reports(stream, buf, count, offset);
1240}
1241
1242/**
1243 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1244 * @stream: An i915-perf stream opened for OA metrics
1245 *
1246 * Called when userspace tries to read() from a blocking stream FD opened
1247 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1248 * OA buffer and wakes us.
1249 *
1250 * Note: it's acceptable to have this return with some false positives
1251 * since any subsequent read handling will return -EAGAIN if there isn't
1252 * really data ready for userspace yet.
1253 *
1254 * Returns: zero on success or a negative error code
1255 */
1256static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1257{
1258	/* We would wait indefinitely if periodic sampling is not enabled */
1259	if (!stream->periodic)
1260		return -EIO;
1261
1262	return wait_event_interruptible(stream->poll_wq,
1263					oa_buffer_check_unlocked(stream));
1264}
1265
1266/**
1267 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1268 * @stream: An i915-perf stream opened for OA metrics
1269 * @file: An i915 perf stream file
1270 * @wait: poll() state table
1271 *
1272 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1273 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1274 * when it sees data ready to read in the circular OA buffer.
1275 */
1276static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1277			      struct file *file,
1278			      poll_table *wait)
1279{
1280	poll_wait(file, &stream->poll_wq, wait);
1281}
1282
1283/**
1284 * i915_oa_read - just calls through to &i915_oa_ops->read
1285 * @stream: An i915-perf stream opened for OA metrics
1286 * @buf: destination buffer given by userspace
1287 * @count: the number of bytes userspace wants to read
1288 * @offset: (inout): the current position for writing into @buf
1289 *
1290 * Updates @offset according to the number of bytes successfully copied into
1291 * the userspace buffer.
1292 *
1293 * Returns: zero on success or a negative error code
1294 */
1295static int i915_oa_read(struct i915_perf_stream *stream,
1296			char __user *buf,
1297			size_t count,
1298			size_t *offset)
1299{
1300	return stream->perf->ops.read(stream, buf, count, offset);
1301}
1302
1303static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1304{
1305	struct i915_gem_engines_iter it;
1306	struct i915_gem_context *ctx = stream->ctx;
1307	struct intel_context *ce;
1308	struct i915_gem_ww_ctx ww;
1309	int err = -ENODEV;
1310
1311	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1312		if (ce->engine != stream->engine) /* first match! */
1313			continue;
1314
1315		err = 0;
1316		break;
1317	}
1318	i915_gem_context_unlock_engines(ctx);
1319
1320	if (err)
1321		return ERR_PTR(err);
1322
1323	i915_gem_ww_ctx_init(&ww, true);
1324retry:
1325	/*
1326	 * As the ID is the gtt offset of the context's vma we
1327	 * pin the vma to ensure the ID remains fixed.
1328	 */
1329	err = intel_context_pin_ww(ce, &ww);
1330	if (err == -EDEADLK) {
1331		err = i915_gem_ww_ctx_backoff(&ww);
1332		if (!err)
1333			goto retry;
1334	}
1335	i915_gem_ww_ctx_fini(&ww);
1336
1337	if (err)
1338		return ERR_PTR(err);
1339
1340	stream->pinned_ctx = ce;
1341	return stream->pinned_ctx;
1342}
1343
1344static int
1345__store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1346{
1347	u32 *cs, cmd;
1348
1349	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1350	if (GRAPHICS_VER(rq->i915) >= 8)
1351		cmd++;
1352
1353	cs = intel_ring_begin(rq, 4);
1354	if (IS_ERR(cs))
1355		return PTR_ERR(cs);
1356
1357	*cs++ = cmd;
1358	*cs++ = i915_mmio_reg_offset(reg);
1359	*cs++ = ggtt_offset;
1360	*cs++ = 0;
1361
1362	intel_ring_advance(rq, cs);
1363
1364	return 0;
1365}
1366
1367static int
1368__read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1369{
1370	struct i915_request *rq;
1371	int err;
1372
1373	rq = i915_request_create(ce);
1374	if (IS_ERR(rq))
1375		return PTR_ERR(rq);
1376
1377	i915_request_get(rq);
1378
1379	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1380
1381	i915_request_add(rq);
1382	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1383		err = -ETIME;
1384
1385	i915_request_put(rq);
1386
1387	return err;
1388}
1389
1390static int
1391gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1392{
1393	struct i915_vma *scratch;
1394	u32 *val;
1395	int err;
1396
1397	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1398	if (IS_ERR(scratch))
1399		return PTR_ERR(scratch);
1400
1401	err = i915_vma_sync(scratch);
1402	if (err)
1403		goto err_scratch;
1404
1405	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1406			 i915_ggtt_offset(scratch));
1407	if (err)
1408		goto err_scratch;
1409
1410	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1411	if (IS_ERR(val)) {
1412		err = PTR_ERR(val);
1413		goto err_scratch;
1414	}
1415
1416	*ctx_id = *val;
1417	i915_gem_object_unpin_map(scratch->obj);
1418
1419err_scratch:
1420	i915_vma_unpin_and_release(&scratch, 0);
1421	return err;
1422}
1423
1424/*
1425 * For execlist mode of submission, pick an unused context id
1426 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1427 * XXX_MAX_CONTEXT_HW_ID is used by idle context
1428 *
1429 * For GuC mode of submission read context id from the upper dword of the
1430 * EXECLIST_STATUS register. Note that we read this value only once and expect
1431 * that the value stays fixed for the entire OA use case. There are cases where
1432 * GuC KMD implementation may deregister a context to reuse it's context id, but
1433 * we prevent that from happening to the OA context by pinning it.
1434 */
1435static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1436{
1437	u32 ctx_id, mask;
1438	int ret;
1439
1440	if (intel_engine_uses_guc(stream->engine)) {
1441		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1442		if (ret)
1443			return ret;
1444
1445		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1446			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1447	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1448		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1449			(XEHP_SW_CTX_ID_SHIFT - 32);
1450
1451		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1452			(XEHP_SW_CTX_ID_SHIFT - 32);
1453	} else {
1454		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1455			 (GEN11_SW_CTX_ID_SHIFT - 32);
1456
1457		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1458			(GEN11_SW_CTX_ID_SHIFT - 32);
1459	}
1460	stream->specific_ctx_id = ctx_id & mask;
1461	stream->specific_ctx_id_mask = mask;
1462
1463	return 0;
1464}
1465
1466static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1467{
1468	u32 idx = *offset;
1469	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1470	bool found = false;
1471
1472	idx++;
1473	for (; idx < len; idx += 2) {
1474		if (state[idx] == reg) {
1475			found = true;
1476			break;
1477		}
1478	}
1479
1480	*offset = idx;
1481	return found;
1482}
1483
1484static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1485{
1486	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1487	u32 *state = ce->lrc_reg_state;
1488
1489	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1490		return U32_MAX;
1491
1492	for (offset = 0; offset < len; ) {
1493		if (IS_MI_LRI_CMD(state[offset])) {
1494			/*
1495			 * We expect reg-value pairs in MI_LRI command, so
1496			 * MI_LRI_LEN() should be even, if not, issue a warning.
1497			 */
1498			drm_WARN_ON(&ce->engine->i915->drm,
1499				    MI_LRI_LEN(state[offset]) & 0x1);
1500
1501			if (oa_find_reg_in_lri(state, reg, &offset, len))
1502				break;
1503		} else {
1504			offset++;
1505		}
1506	}
1507
1508	return offset < len ? offset : U32_MAX;
1509}
1510
1511static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1512{
1513	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1514	struct i915_perf *perf = &ce->engine->i915->perf;
1515	u32 offset = perf->ctx_oactxctrl_offset;
1516
1517	/* Do this only once. Failure is stored as offset of U32_MAX */
1518	if (offset)
1519		goto exit;
1520
1521	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1522	perf->ctx_oactxctrl_offset = offset;
1523
1524	drm_dbg(&ce->engine->i915->drm,
1525		"%s oa ctx control at 0x%08x dword offset\n",
1526		ce->engine->name, offset);
1527
1528exit:
1529	return offset && offset != U32_MAX ? 0 : -ENODEV;
1530}
1531
1532static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1533{
1534	return engine->class == RENDER_CLASS;
1535}
1536
1537/**
1538 * oa_get_render_ctx_id - determine and hold ctx hw id
1539 * @stream: An i915-perf stream opened for OA metrics
1540 *
1541 * Determine the render context hw id, and ensure it remains fixed for the
1542 * lifetime of the stream. This ensures that we don't have to worry about
1543 * updating the context ID in OACONTROL on the fly.
1544 *
1545 * Returns: zero on success or a negative error code
1546 */
1547static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1548{
1549	struct intel_context *ce;
1550	int ret = 0;
1551
1552	ce = oa_pin_context(stream);
1553	if (IS_ERR(ce))
1554		return PTR_ERR(ce);
1555
1556	if (engine_supports_mi_query(stream->engine) &&
1557	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1558		/*
1559		 * We are enabling perf query here. If we don't find the context
1560		 * offset here, just return an error.
1561		 */
1562		ret = set_oa_ctx_ctrl_offset(ce);
1563		if (ret) {
1564			intel_context_unpin(ce);
1565			drm_err(&stream->perf->i915->drm,
1566				"Enabling perf query failed for %s\n",
1567				stream->engine->name);
1568			return ret;
1569		}
1570	}
1571
1572	switch (GRAPHICS_VER(ce->engine->i915)) {
1573	case 7: {
1574		/*
1575		 * On Haswell we don't do any post processing of the reports
1576		 * and don't need to use the mask.
1577		 */
1578		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1579		stream->specific_ctx_id_mask = 0;
1580		break;
1581	}
1582
1583	case 8:
1584	case 9:
1585		if (intel_engine_uses_guc(ce->engine)) {
1586			/*
1587			 * When using GuC, the context descriptor we write in
1588			 * i915 is read by GuC and rewritten before it's
1589			 * actually written into the hardware. The LRCA is
1590			 * what is put into the context id field of the
1591			 * context descriptor by GuC. Because it's aligned to
1592			 * a page, the lower 12bits are always at 0 and
1593			 * dropped by GuC. They won't be part of the context
1594			 * ID in the OA reports, so squash those lower bits.
1595			 */
1596			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1597
1598			/*
1599			 * GuC uses the top bit to signal proxy submission, so
1600			 * ignore that bit.
1601			 */
1602			stream->specific_ctx_id_mask =
1603				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1604		} else {
1605			stream->specific_ctx_id_mask =
1606				(1U << GEN8_CTX_ID_WIDTH) - 1;
1607			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1608		}
1609		break;
1610
1611	case 11:
1612	case 12:
1613		ret = gen12_get_render_context_id(stream);
1614		break;
1615
1616	default:
1617		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1618	}
1619
1620	ce->tag = stream->specific_ctx_id;
1621
1622	drm_dbg(&stream->perf->i915->drm,
1623		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1624		stream->specific_ctx_id,
1625		stream->specific_ctx_id_mask);
1626
1627	return ret;
1628}
1629
1630/**
1631 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1632 * @stream: An i915-perf stream opened for OA metrics
1633 *
1634 * In case anything needed doing to ensure the context HW ID would remain valid
1635 * for the lifetime of the stream, then that can be undone here.
1636 */
1637static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1638{
1639	struct intel_context *ce;
1640
1641	ce = fetch_and_zero(&stream->pinned_ctx);
1642	if (ce) {
1643		ce->tag = 0; /* recomputed on next submission after parking */
1644		intel_context_unpin(ce);
1645	}
1646
1647	stream->specific_ctx_id = INVALID_CTX_ID;
1648	stream->specific_ctx_id_mask = 0;
1649}
1650
1651static void
1652free_oa_buffer(struct i915_perf_stream *stream)
1653{
1654	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1655				   I915_VMA_RELEASE_MAP);
1656
1657	stream->oa_buffer.vaddr = NULL;
1658}
1659
1660static void
1661free_oa_configs(struct i915_perf_stream *stream)
1662{
1663	struct i915_oa_config_bo *oa_bo, *tmp;
1664
1665	i915_oa_config_put(stream->oa_config);
1666	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1667		free_oa_config_bo(oa_bo);
1668}
1669
1670static void
1671free_noa_wait(struct i915_perf_stream *stream)
1672{
1673	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1674}
1675
1676static bool engine_supports_oa(const struct intel_engine_cs *engine)
1677{
1678	return engine->oa_group;
1679}
1680
1681static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1682{
1683	return engine->oa_group && engine->oa_group->type == type;
1684}
1685
1686static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1687{
1688	struct i915_perf *perf = stream->perf;
1689	struct intel_gt *gt = stream->engine->gt;
1690	struct i915_perf_group *g = stream->engine->oa_group;
1691
1692	if (WARN_ON(stream != g->exclusive_stream))
1693		return;
1694
1695	/*
1696	 * Unset exclusive_stream first, it will be checked while disabling
1697	 * the metric set on gen8+.
1698	 *
1699	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1700	 */
1701	WRITE_ONCE(g->exclusive_stream, NULL);
1702	perf->ops.disable_metric_set(stream);
1703
1704	free_oa_buffer(stream);
1705
1706	/*
1707	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1708	 */
1709	if (stream->override_gucrc)
1710		drm_WARN_ON(&gt->i915->drm,
1711			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1712
1713	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1714	intel_engine_pm_put(stream->engine);
1715
1716	if (stream->ctx)
1717		oa_put_render_ctx_id(stream);
1718
1719	free_oa_configs(stream);
1720	free_noa_wait(stream);
1721
1722	if (perf->spurious_report_rs.missed) {
1723		drm_notice(&gt->i915->drm,
1724			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1725			   perf->spurious_report_rs.missed);
1726	}
1727}
1728
1729static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1730{
1731	struct intel_uncore *uncore = stream->uncore;
1732	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1733	unsigned long flags;
1734
1735	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1736
1737	/* Pre-DevBDW: OABUFFER must be set with counters off,
1738	 * before OASTATUS1, but after OASTATUS2
1739	 */
1740	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1741			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1742	stream->oa_buffer.head = gtt_offset;
1743
1744	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1745
1746	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1747			   gtt_offset | OABUFFER_SIZE_16M);
1748
1749	/* Mark that we need updated tail pointers to read from... */
1750	stream->oa_buffer.tail = gtt_offset;
1751
1752	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1753
1754	/* On Haswell we have to track which OASTATUS1 flags we've
1755	 * already seen since they can't be cleared while periodic
1756	 * sampling is enabled.
1757	 */
1758	stream->perf->gen7_latched_oastatus1 = 0;
1759
1760	/* NB: although the OA buffer will initially be allocated
1761	 * zeroed via shmfs (and so this memset is redundant when
1762	 * first allocating), we may re-init the OA buffer, either
1763	 * when re-enabling a stream or in error/reset paths.
1764	 *
1765	 * The reason we clear the buffer for each re-init is for the
1766	 * sanity check in gen7_append_oa_reports() that looks at the
1767	 * report-id field to make sure it's non-zero which relies on
1768	 * the assumption that new reports are being written to zeroed
1769	 * memory...
1770	 */
1771	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1772}
1773
1774static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1775{
1776	struct intel_uncore *uncore = stream->uncore;
1777	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1778	unsigned long flags;
1779
1780	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1781
1782	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1783	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1784	stream->oa_buffer.head = gtt_offset;
1785
1786	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1787
1788	/*
1789	 * PRM says:
1790	 *
1791	 *  "This MMIO must be set before the OATAILPTR
1792	 *  register and after the OAHEADPTR register. This is
1793	 *  to enable proper functionality of the overflow
1794	 *  bit."
1795	 */
1796	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1797		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1798	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1799
1800	/* Mark that we need updated tail pointers to read from... */
1801	stream->oa_buffer.tail = gtt_offset;
1802
1803	/*
1804	 * Reset state used to recognise context switches, affecting which
1805	 * reports we will forward to userspace while filtering for a single
1806	 * context.
1807	 */
1808	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1809
1810	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1811
1812	/*
1813	 * NB: although the OA buffer will initially be allocated
1814	 * zeroed via shmfs (and so this memset is redundant when
1815	 * first allocating), we may re-init the OA buffer, either
1816	 * when re-enabling a stream or in error/reset paths.
1817	 *
1818	 * The reason we clear the buffer for each re-init is for the
1819	 * sanity check in gen8_append_oa_reports() that looks at the
1820	 * reason field to make sure it's non-zero which relies on
1821	 * the assumption that new reports are being written to zeroed
1822	 * memory...
1823	 */
1824	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1825}
1826
1827static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1828{
1829	struct intel_uncore *uncore = stream->uncore;
1830	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1831	unsigned long flags;
1832
1833	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1834
1835	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1836	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1837			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1838	stream->oa_buffer.head = gtt_offset;
1839
1840	/*
1841	 * PRM says:
1842	 *
1843	 *  "This MMIO must be set before the OATAILPTR
1844	 *  register and after the OAHEADPTR register. This is
1845	 *  to enable proper functionality of the overflow
1846	 *  bit."
1847	 */
1848	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1849			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1850	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1851			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1852
1853	/* Mark that we need updated tail pointers to read from... */
1854	stream->oa_buffer.tail = gtt_offset;
1855
1856	/*
1857	 * Reset state used to recognise context switches, affecting which
1858	 * reports we will forward to userspace while filtering for a single
1859	 * context.
1860	 */
1861	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1862
1863	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1864
1865	/*
1866	 * NB: although the OA buffer will initially be allocated
1867	 * zeroed via shmfs (and so this memset is redundant when
1868	 * first allocating), we may re-init the OA buffer, either
1869	 * when re-enabling a stream or in error/reset paths.
1870	 *
1871	 * The reason we clear the buffer for each re-init is for the
1872	 * sanity check in gen8_append_oa_reports() that looks at the
1873	 * reason field to make sure it's non-zero which relies on
1874	 * the assumption that new reports are being written to zeroed
1875	 * memory...
1876	 */
1877	memset(stream->oa_buffer.vaddr, 0,
1878	       stream->oa_buffer.vma->size);
1879}
1880
1881static int alloc_oa_buffer(struct i915_perf_stream *stream)
1882{
1883	struct drm_i915_private *i915 = stream->perf->i915;
1884	struct intel_gt *gt = stream->engine->gt;
1885	struct drm_i915_gem_object *bo;
1886	struct i915_vma *vma;
1887	int ret;
1888
1889	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1890		return -ENODEV;
1891
1892	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1893	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1894
1895	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1896	if (IS_ERR(bo)) {
1897		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1898		return PTR_ERR(bo);
1899	}
1900
1901	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1902
1903	/* PreHSW required 512K alignment, HSW requires 16M */
1904	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1905	if (IS_ERR(vma)) {
1906		ret = PTR_ERR(vma);
1907		goto err_unref;
1908	}
1909
1910	/*
1911	 * PreHSW required 512K alignment.
1912	 * HSW and onwards, align to requested size of OA buffer.
1913	 */
1914	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1915	if (ret) {
1916		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1917		goto err_unref;
1918	}
1919
1920	stream->oa_buffer.vma = vma;
1921
1922	stream->oa_buffer.vaddr =
1923		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1924	if (IS_ERR(stream->oa_buffer.vaddr)) {
1925		ret = PTR_ERR(stream->oa_buffer.vaddr);
1926		goto err_unpin;
1927	}
1928
1929	return 0;
1930
1931err_unpin:
1932	__i915_vma_unpin(vma);
1933
1934err_unref:
1935	i915_gem_object_put(bo);
1936
1937	stream->oa_buffer.vaddr = NULL;
1938	stream->oa_buffer.vma = NULL;
1939
1940	return ret;
1941}
1942
1943static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1944				  bool save, i915_reg_t reg, u32 offset,
1945				  u32 dword_count)
1946{
1947	u32 cmd;
1948	u32 d;
1949
1950	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1951	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1952	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1953		cmd++;
1954
1955	for (d = 0; d < dword_count; d++) {
1956		*cs++ = cmd;
1957		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1958		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1959		*cs++ = 0;
1960	}
1961
1962	return cs;
1963}
1964
1965static int alloc_noa_wait(struct i915_perf_stream *stream)
1966{
1967	struct drm_i915_private *i915 = stream->perf->i915;
1968	struct intel_gt *gt = stream->engine->gt;
1969	struct drm_i915_gem_object *bo;
1970	struct i915_vma *vma;
1971	const u64 delay_ticks = 0xffffffffffffffff -
1972		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1973		atomic64_read(&stream->perf->noa_programming_delay));
1974	const u32 base = stream->engine->mmio_base;
1975#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1976	u32 *batch, *ts0, *cs, *jump;
1977	struct i915_gem_ww_ctx ww;
1978	int ret, i;
1979	enum {
1980		START_TS,
1981		NOW_TS,
1982		DELTA_TS,
1983		JUMP_PREDICATE,
1984		DELTA_TARGET,
1985		N_CS_GPR
1986	};
1987	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1988					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1989					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1990
1991	/*
1992	 * gt->scratch was being used to save/restore the GPR registers, but on
1993	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1994	 * causes an engine hang. Instead allocate an additional page here to
1995	 * save/restore GPR registers
1996	 */
1997	bo = i915_gem_object_create_internal(i915, 8192);
1998	if (IS_ERR(bo)) {
1999		drm_err(&i915->drm,
2000			"Failed to allocate NOA wait batchbuffer\n");
2001		return PTR_ERR(bo);
2002	}
2003
2004	i915_gem_ww_ctx_init(&ww, true);
2005retry:
2006	ret = i915_gem_object_lock(bo, &ww);
2007	if (ret)
2008		goto out_ww;
2009
2010	/*
2011	 * We pin in GGTT because we jump into this buffer now because
2012	 * multiple OA config BOs will have a jump to this address and it
2013	 * needs to be fixed during the lifetime of the i915/perf stream.
2014	 */
2015	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
2016	if (IS_ERR(vma)) {
2017		ret = PTR_ERR(vma);
2018		goto out_ww;
2019	}
2020
2021	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2022	if (ret)
2023		goto out_ww;
2024
2025	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
2026	if (IS_ERR(batch)) {
2027		ret = PTR_ERR(batch);
2028		goto err_unpin;
2029	}
2030
2031	stream->noa_wait = vma;
2032
2033#define GPR_SAVE_OFFSET 4096
2034#define PREDICATE_SAVE_OFFSET 4160
2035
2036	/* Save registers. */
2037	for (i = 0; i < N_CS_GPR; i++)
2038		cs = save_restore_register(
2039			stream, cs, true /* save */, CS_GPR(i),
2040			GPR_SAVE_OFFSET + 8 * i, 2);
2041	cs = save_restore_register(
2042		stream, cs, true /* save */, mi_predicate_result,
2043		PREDICATE_SAVE_OFFSET, 1);
2044
2045	/* First timestamp snapshot location. */
2046	ts0 = cs;
2047
2048	/*
2049	 * Initial snapshot of the timestamp register to implement the wait.
2050	 * We work with 32b values, so clear out the top 32b bits of the
2051	 * register because the ALU works 64bits.
2052	 */
2053	*cs++ = MI_LOAD_REGISTER_IMM(1);
2054	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2055	*cs++ = 0;
2056	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2057	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2058	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2059
2060	/*
2061	 * This is the location we're going to jump back into until the
2062	 * required amount of time has passed.
2063	 */
2064	jump = cs;
2065
2066	/*
2067	 * Take another snapshot of the timestamp register. Take care to clear
2068	 * up the top 32bits of CS_GPR(1) as we're using it for other
2069	 * operations below.
2070	 */
2071	*cs++ = MI_LOAD_REGISTER_IMM(1);
2072	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2073	*cs++ = 0;
2074	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2075	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2076	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2077
2078	/*
2079	 * Do a diff between the 2 timestamps and store the result back into
2080	 * CS_GPR(1).
2081	 */
2082	*cs++ = MI_MATH(5);
2083	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2084	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2085	*cs++ = MI_MATH_SUB;
2086	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2087	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2088
2089	/*
2090	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2091	 * timestamp have rolled over the 32bits) into the predicate register
2092	 * to be used for the predicated jump.
2093	 */
2094	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2095	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2096	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2097
2098	if (HAS_MI_SET_PREDICATE(i915))
2099		*cs++ = MI_SET_PREDICATE | 1;
2100
2101	/* Restart from the beginning if we had timestamps roll over. */
2102	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2103		 MI_BATCH_BUFFER_START :
2104		 MI_BATCH_BUFFER_START_GEN8) |
2105		MI_BATCH_PREDICATE;
2106	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2107	*cs++ = 0;
2108
2109	if (HAS_MI_SET_PREDICATE(i915))
2110		*cs++ = MI_SET_PREDICATE;
2111
2112	/*
2113	 * Now add the diff between to previous timestamps and add it to :
2114	 *      (((1 * << 64) - 1) - delay_ns)
2115	 *
2116	 * When the Carry Flag contains 1 this means the elapsed time is
2117	 * longer than the expected delay, and we can exit the wait loop.
2118	 */
2119	*cs++ = MI_LOAD_REGISTER_IMM(2);
2120	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2121	*cs++ = lower_32_bits(delay_ticks);
2122	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2123	*cs++ = upper_32_bits(delay_ticks);
2124
2125	*cs++ = MI_MATH(4);
2126	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2127	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2128	*cs++ = MI_MATH_ADD;
2129	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2130
2131	*cs++ = MI_ARB_CHECK;
2132
2133	/*
2134	 * Transfer the result into the predicate register to be used for the
2135	 * predicated jump.
2136	 */
2137	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2138	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2139	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2140
2141	if (HAS_MI_SET_PREDICATE(i915))
2142		*cs++ = MI_SET_PREDICATE | 1;
2143
2144	/* Predicate the jump.  */
2145	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2146		 MI_BATCH_BUFFER_START :
2147		 MI_BATCH_BUFFER_START_GEN8) |
2148		MI_BATCH_PREDICATE;
2149	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2150	*cs++ = 0;
2151
2152	if (HAS_MI_SET_PREDICATE(i915))
2153		*cs++ = MI_SET_PREDICATE;
2154
2155	/* Restore registers. */
2156	for (i = 0; i < N_CS_GPR; i++)
2157		cs = save_restore_register(
2158			stream, cs, false /* restore */, CS_GPR(i),
2159			GPR_SAVE_OFFSET + 8 * i, 2);
2160	cs = save_restore_register(
2161		stream, cs, false /* restore */, mi_predicate_result,
2162		PREDICATE_SAVE_OFFSET, 1);
2163
2164	/* And return to the ring. */
2165	*cs++ = MI_BATCH_BUFFER_END;
2166
2167	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2168
2169	i915_gem_object_flush_map(bo);
2170	__i915_gem_object_release_map(bo);
2171
2172	goto out_ww;
2173
2174err_unpin:
2175	i915_vma_unpin_and_release(&vma, 0);
2176out_ww:
2177	if (ret == -EDEADLK) {
2178		ret = i915_gem_ww_ctx_backoff(&ww);
2179		if (!ret)
2180			goto retry;
2181	}
2182	i915_gem_ww_ctx_fini(&ww);
2183	if (ret)
2184		i915_gem_object_put(bo);
2185	return ret;
2186}
2187
2188static u32 *write_cs_mi_lri(u32 *cs,
2189			    const struct i915_oa_reg *reg_data,
2190			    u32 n_regs)
2191{
2192	u32 i;
2193
2194	for (i = 0; i < n_regs; i++) {
2195		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2196			u32 n_lri = min_t(u32,
2197					  n_regs - i,
2198					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2199
2200			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2201		}
2202		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2203		*cs++ = reg_data[i].value;
2204	}
2205
2206	return cs;
2207}
2208
2209static int num_lri_dwords(int num_regs)
2210{
2211	int count = 0;
2212
2213	if (num_regs > 0) {
2214		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2215		count += num_regs * 2;
2216	}
2217
2218	return count;
2219}
2220
2221static struct i915_oa_config_bo *
2222alloc_oa_config_buffer(struct i915_perf_stream *stream,
2223		       struct i915_oa_config *oa_config)
2224{
2225	struct drm_i915_gem_object *obj;
2226	struct i915_oa_config_bo *oa_bo;
2227	struct i915_gem_ww_ctx ww;
2228	size_t config_length = 0;
2229	u32 *cs;
2230	int err;
2231
2232	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2233	if (!oa_bo)
2234		return ERR_PTR(-ENOMEM);
2235
2236	config_length += num_lri_dwords(oa_config->mux_regs_len);
2237	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2238	config_length += num_lri_dwords(oa_config->flex_regs_len);
2239	config_length += 3; /* MI_BATCH_BUFFER_START */
2240	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2241
2242	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2243	if (IS_ERR(obj)) {
2244		err = PTR_ERR(obj);
2245		goto err_free;
2246	}
2247
2248	i915_gem_ww_ctx_init(&ww, true);
2249retry:
2250	err = i915_gem_object_lock(obj, &ww);
2251	if (err)
2252		goto out_ww;
2253
2254	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2255	if (IS_ERR(cs)) {
2256		err = PTR_ERR(cs);
2257		goto out_ww;
2258	}
2259
2260	cs = write_cs_mi_lri(cs,
2261			     oa_config->mux_regs,
2262			     oa_config->mux_regs_len);
2263	cs = write_cs_mi_lri(cs,
2264			     oa_config->b_counter_regs,
2265			     oa_config->b_counter_regs_len);
2266	cs = write_cs_mi_lri(cs,
2267			     oa_config->flex_regs,
2268			     oa_config->flex_regs_len);
2269
2270	/* Jump into the active wait. */
2271	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2272		 MI_BATCH_BUFFER_START :
2273		 MI_BATCH_BUFFER_START_GEN8);
2274	*cs++ = i915_ggtt_offset(stream->noa_wait);
2275	*cs++ = 0;
2276
2277	i915_gem_object_flush_map(obj);
2278	__i915_gem_object_release_map(obj);
2279
2280	oa_bo->vma = i915_vma_instance(obj,
2281				       &stream->engine->gt->ggtt->vm,
2282				       NULL);
2283	if (IS_ERR(oa_bo->vma)) {
2284		err = PTR_ERR(oa_bo->vma);
2285		goto out_ww;
2286	}
2287
2288	oa_bo->oa_config = i915_oa_config_get(oa_config);
2289	llist_add(&oa_bo->node, &stream->oa_config_bos);
2290
2291out_ww:
2292	if (err == -EDEADLK) {
2293		err = i915_gem_ww_ctx_backoff(&ww);
2294		if (!err)
2295			goto retry;
2296	}
2297	i915_gem_ww_ctx_fini(&ww);
2298
2299	if (err)
2300		i915_gem_object_put(obj);
2301err_free:
2302	if (err) {
2303		kfree(oa_bo);
2304		return ERR_PTR(err);
2305	}
2306	return oa_bo;
2307}
2308
2309static struct i915_vma *
2310get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2311{
2312	struct i915_oa_config_bo *oa_bo;
2313
2314	/*
2315	 * Look for the buffer in the already allocated BOs attached
2316	 * to the stream.
2317	 */
2318	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2319		if (oa_bo->oa_config == oa_config &&
2320		    memcmp(oa_bo->oa_config->uuid,
2321			   oa_config->uuid,
2322			   sizeof(oa_config->uuid)) == 0)
2323			goto out;
2324	}
2325
2326	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2327	if (IS_ERR(oa_bo))
2328		return ERR_CAST(oa_bo);
2329
2330out:
2331	return i915_vma_get(oa_bo->vma);
2332}
2333
2334static int
2335emit_oa_config(struct i915_perf_stream *stream,
2336	       struct i915_oa_config *oa_config,
2337	       struct intel_context *ce,
2338	       struct i915_active *active)
2339{
2340	struct i915_request *rq;
2341	struct i915_vma *vma;
2342	struct i915_gem_ww_ctx ww;
2343	int err;
2344
2345	vma = get_oa_vma(stream, oa_config);
2346	if (IS_ERR(vma))
2347		return PTR_ERR(vma);
2348
2349	i915_gem_ww_ctx_init(&ww, true);
2350retry:
2351	err = i915_gem_object_lock(vma->obj, &ww);
2352	if (err)
2353		goto err;
2354
2355	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2356	if (err)
2357		goto err;
2358
2359	intel_engine_pm_get(ce->engine);
2360	rq = i915_request_create(ce);
2361	intel_engine_pm_put(ce->engine);
2362	if (IS_ERR(rq)) {
2363		err = PTR_ERR(rq);
2364		goto err_vma_unpin;
2365	}
2366
2367	if (!IS_ERR_OR_NULL(active)) {
2368		/* After all individual context modifications */
2369		err = i915_request_await_active(rq, active,
2370						I915_ACTIVE_AWAIT_ACTIVE);
2371		if (err)
2372			goto err_add_request;
2373
2374		err = i915_active_add_request(active, rq);
2375		if (err)
2376			goto err_add_request;
2377	}
2378
2379	err = i915_vma_move_to_active(vma, rq, 0);
2380	if (err)
2381		goto err_add_request;
2382
2383	err = rq->engine->emit_bb_start(rq,
2384					i915_vma_offset(vma), 0,
2385					I915_DISPATCH_SECURE);
2386	if (err)
2387		goto err_add_request;
2388
2389err_add_request:
2390	i915_request_add(rq);
2391err_vma_unpin:
2392	i915_vma_unpin(vma);
2393err:
2394	if (err == -EDEADLK) {
2395		err = i915_gem_ww_ctx_backoff(&ww);
2396		if (!err)
2397			goto retry;
2398	}
2399
2400	i915_gem_ww_ctx_fini(&ww);
2401	i915_vma_put(vma);
2402	return err;
2403}
2404
2405static struct intel_context *oa_context(struct i915_perf_stream *stream)
2406{
2407	return stream->pinned_ctx ?: stream->engine->kernel_context;
2408}
2409
2410static int
2411hsw_enable_metric_set(struct i915_perf_stream *stream,
2412		      struct i915_active *active)
2413{
2414	struct intel_uncore *uncore = stream->uncore;
2415
2416	/*
2417	 * PRM:
2418	 *
2419	 * OA unit is using “crclk” for its functionality. When trunk
2420	 * level clock gating takes place, OA clock would be gated,
2421	 * unable to count the events from non-render clock domain.
2422	 * Render clock gating must be disabled when OA is enabled to
2423	 * count the events from non-render domain. Unit level clock
2424	 * gating for RCS should also be disabled.
2425	 */
2426	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2427			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2428	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2429			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2430
2431	return emit_oa_config(stream,
2432			      stream->oa_config, oa_context(stream),
2433			      active);
2434}
2435
2436static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2437{
2438	struct intel_uncore *uncore = stream->uncore;
2439
2440	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2441			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2442	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2443			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2444
2445	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2446}
2447
2448static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2449			      i915_reg_t reg)
2450{
2451	u32 mmio = i915_mmio_reg_offset(reg);
2452	int i;
2453
2454	/*
2455	 * This arbitrary default will select the 'EU FPU0 Pipeline
2456	 * Active' event. In the future it's anticipated that there
2457	 * will be an explicit 'No Event' we can select, but not yet...
2458	 */
2459	if (!oa_config)
2460		return 0;
2461
2462	for (i = 0; i < oa_config->flex_regs_len; i++) {
2463		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2464			return oa_config->flex_regs[i].value;
2465	}
2466
2467	return 0;
2468}
2469/*
2470 * NB: It must always remain pointer safe to run this even if the OA unit
2471 * has been disabled.
2472 *
2473 * It's fine to put out-of-date values into these per-context registers
2474 * in the case that the OA unit has been disabled.
2475 */
2476static void
2477gen8_update_reg_state_unlocked(const struct intel_context *ce,
2478			       const struct i915_perf_stream *stream)
2479{
2480	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2481	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2482	/* The MMIO offsets for Flex EU registers aren't contiguous */
2483	static const i915_reg_t flex_regs[] = {
2484		EU_PERF_CNTL0,
2485		EU_PERF_CNTL1,
2486		EU_PERF_CNTL2,
2487		EU_PERF_CNTL3,
2488		EU_PERF_CNTL4,
2489		EU_PERF_CNTL5,
2490		EU_PERF_CNTL6,
2491	};
2492	u32 *reg_state = ce->lrc_reg_state;
2493	int i;
2494
2495	reg_state[ctx_oactxctrl + 1] =
2496		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2497		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2498		GEN8_OA_COUNTER_RESUME;
2499
2500	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2501		reg_state[ctx_flexeu0 + i * 2 + 1] =
2502			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2503}
2504
2505struct flex {
2506	i915_reg_t reg;
2507	u32 offset;
2508	u32 value;
2509};
2510
2511static int
2512gen8_store_flex(struct i915_request *rq,
2513		struct intel_context *ce,
2514		const struct flex *flex, unsigned int count)
2515{
2516	u32 offset;
2517	u32 *cs;
2518
2519	cs = intel_ring_begin(rq, 4 * count);
2520	if (IS_ERR(cs))
2521		return PTR_ERR(cs);
2522
2523	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2524	do {
2525		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2526		*cs++ = offset + flex->offset * sizeof(u32);
2527		*cs++ = 0;
2528		*cs++ = flex->value;
2529	} while (flex++, --count);
2530
2531	intel_ring_advance(rq, cs);
2532
2533	return 0;
2534}
2535
2536static int
2537gen8_load_flex(struct i915_request *rq,
2538	       struct intel_context *ce,
2539	       const struct flex *flex, unsigned int count)
2540{
2541	u32 *cs;
2542
2543	GEM_BUG_ON(!count || count > 63);
2544
2545	cs = intel_ring_begin(rq, 2 * count + 2);
2546	if (IS_ERR(cs))
2547		return PTR_ERR(cs);
2548
2549	*cs++ = MI_LOAD_REGISTER_IMM(count);
2550	do {
2551		*cs++ = i915_mmio_reg_offset(flex->reg);
2552		*cs++ = flex->value;
2553	} while (flex++, --count);
2554	*cs++ = MI_NOOP;
2555
2556	intel_ring_advance(rq, cs);
2557
2558	return 0;
2559}
2560
2561static int gen8_modify_context(struct intel_context *ce,
2562			       const struct flex *flex, unsigned int count)
2563{
2564	struct i915_request *rq;
2565	int err;
2566
2567	rq = intel_engine_create_kernel_request(ce->engine);
2568	if (IS_ERR(rq))
2569		return PTR_ERR(rq);
2570
2571	/* Serialise with the remote context */
2572	err = intel_context_prepare_remote_request(ce, rq);
2573	if (err == 0)
2574		err = gen8_store_flex(rq, ce, flex, count);
2575
2576	i915_request_add(rq);
2577	return err;
2578}
2579
2580static int
2581gen8_modify_self(struct intel_context *ce,
2582		 const struct flex *flex, unsigned int count,
2583		 struct i915_active *active)
2584{
2585	struct i915_request *rq;
2586	int err;
2587
2588	intel_engine_pm_get(ce->engine);
2589	rq = i915_request_create(ce);
2590	intel_engine_pm_put(ce->engine);
2591	if (IS_ERR(rq))
2592		return PTR_ERR(rq);
2593
2594	if (!IS_ERR_OR_NULL(active)) {
2595		err = i915_active_add_request(active, rq);
2596		if (err)
2597			goto err_add_request;
2598	}
2599
2600	err = gen8_load_flex(rq, ce, flex, count);
2601	if (err)
2602		goto err_add_request;
2603
2604err_add_request:
2605	i915_request_add(rq);
2606	return err;
2607}
2608
2609static int gen8_configure_context(struct i915_perf_stream *stream,
2610				  struct i915_gem_context *ctx,
2611				  struct flex *flex, unsigned int count)
2612{
2613	struct i915_gem_engines_iter it;
2614	struct intel_context *ce;
2615	int err = 0;
2616
2617	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2618		GEM_BUG_ON(ce == ce->engine->kernel_context);
2619
2620		if (ce->engine->class != RENDER_CLASS)
2621			continue;
2622
2623		/* Otherwise OA settings will be set upon first use */
2624		if (!intel_context_pin_if_active(ce))
2625			continue;
2626
2627		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2628		err = gen8_modify_context(ce, flex, count);
2629
2630		intel_context_unpin(ce);
2631		if (err)
2632			break;
2633	}
2634	i915_gem_context_unlock_engines(ctx);
2635
2636	return err;
2637}
2638
2639static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2640				       struct i915_active *active)
2641{
2642	int err;
2643	struct intel_context *ce = stream->pinned_ctx;
2644	u32 format = stream->oa_buffer.format->format;
2645	u32 offset = stream->perf->ctx_oactxctrl_offset;
2646	struct flex regs_context[] = {
2647		{
2648			GEN8_OACTXCONTROL,
2649			offset + 1,
2650			active ? GEN8_OA_COUNTER_RESUME : 0,
2651		},
2652	};
2653	/* Offsets in regs_lri are not used since this configuration is only
2654	 * applied using LRI. Initialize the correct offsets for posterity.
2655	 */
2656#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2657	struct flex regs_lri[] = {
2658		{
2659			GEN12_OAR_OACONTROL,
2660			GEN12_OAR_OACONTROL_OFFSET + 1,
2661			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2662			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2663		},
2664		{
2665			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2666			CTX_CONTEXT_CONTROL,
2667			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2668				      active ?
2669				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2670				      0)
2671		},
2672	};
2673
2674	/* Modify the context image of pinned context with regs_context */
2675	err = intel_context_lock_pinned(ce);
2676	if (err)
2677		return err;
2678
2679	err = gen8_modify_context(ce, regs_context,
2680				  ARRAY_SIZE(regs_context));
2681	intel_context_unlock_pinned(ce);
2682	if (err)
2683		return err;
2684
2685	/* Apply regs_lri using LRI with pinned context */
2686	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2687}
2688
2689/*
2690 * Manages updating the per-context aspects of the OA stream
2691 * configuration across all contexts.
2692 *
2693 * The awkward consideration here is that OACTXCONTROL controls the
2694 * exponent for periodic sampling which is primarily used for system
2695 * wide profiling where we'd like a consistent sampling period even in
2696 * the face of context switches.
2697 *
2698 * Our approach of updating the register state context (as opposed to
2699 * say using a workaround batch buffer) ensures that the hardware
2700 * won't automatically reload an out-of-date timer exponent even
2701 * transiently before a WA BB could be parsed.
2702 *
2703 * This function needs to:
2704 * - Ensure the currently running context's per-context OA state is
2705 *   updated
2706 * - Ensure that all existing contexts will have the correct per-context
2707 *   OA state if they are scheduled for use.
2708 * - Ensure any new contexts will be initialized with the correct
2709 *   per-context OA state.
2710 *
2711 * Note: it's only the RCS/Render context that has any OA state.
2712 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2713 */
2714static int
2715oa_configure_all_contexts(struct i915_perf_stream *stream,
2716			  struct flex *regs,
2717			  size_t num_regs,
2718			  struct i915_active *active)
2719{
2720	struct drm_i915_private *i915 = stream->perf->i915;
2721	struct intel_engine_cs *engine;
2722	struct intel_gt *gt = stream->engine->gt;
2723	struct i915_gem_context *ctx, *cn;
2724	int err;
2725
2726	lockdep_assert_held(&gt->perf.lock);
2727
2728	/*
2729	 * The OA register config is setup through the context image. This image
2730	 * might be written to by the GPU on context switch (in particular on
2731	 * lite-restore). This means we can't safely update a context's image,
2732	 * if this context is scheduled/submitted to run on the GPU.
2733	 *
2734	 * We could emit the OA register config through the batch buffer but
2735	 * this might leave small interval of time where the OA unit is
2736	 * configured at an invalid sampling period.
2737	 *
2738	 * Note that since we emit all requests from a single ring, there
2739	 * is still an implicit global barrier here that may cause a high
2740	 * priority context to wait for an otherwise independent low priority
2741	 * context. Contexts idle at the time of reconfiguration are not
2742	 * trapped behind the barrier.
2743	 */
2744	spin_lock(&i915->gem.contexts.lock);
2745	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2746		if (!kref_get_unless_zero(&ctx->ref))
2747			continue;
2748
2749		spin_unlock(&i915->gem.contexts.lock);
2750
2751		err = gen8_configure_context(stream, ctx, regs, num_regs);
2752		if (err) {
2753			i915_gem_context_put(ctx);
2754			return err;
2755		}
2756
2757		spin_lock(&i915->gem.contexts.lock);
2758		list_safe_reset_next(ctx, cn, link);
2759		i915_gem_context_put(ctx);
2760	}
2761	spin_unlock(&i915->gem.contexts.lock);
2762
2763	/*
2764	 * After updating all other contexts, we need to modify ourselves.
2765	 * If we don't modify the kernel_context, we do not get events while
2766	 * idle.
2767	 */
2768	for_each_uabi_engine(engine, i915) {
2769		struct intel_context *ce = engine->kernel_context;
2770
2771		if (engine->class != RENDER_CLASS)
2772			continue;
2773
2774		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2775
2776		err = gen8_modify_self(ce, regs, num_regs, active);
2777		if (err)
2778			return err;
2779	}
2780
2781	return 0;
2782}
2783
2784static int
2785gen12_configure_all_contexts(struct i915_perf_stream *stream,
2786			     const struct i915_oa_config *oa_config,
2787			     struct i915_active *active)
2788{
2789	struct flex regs[] = {
2790		{
2791			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2792			CTX_R_PWR_CLK_STATE,
2793		},
2794	};
2795
2796	if (stream->engine->class != RENDER_CLASS)
2797		return 0;
2798
2799	return oa_configure_all_contexts(stream,
2800					 regs, ARRAY_SIZE(regs),
2801					 active);
2802}
2803
2804static int
2805lrc_configure_all_contexts(struct i915_perf_stream *stream,
2806			   const struct i915_oa_config *oa_config,
2807			   struct i915_active *active)
2808{
2809	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2810	/* The MMIO offsets for Flex EU registers aren't contiguous */
2811	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2812#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2813	struct flex regs[] = {
2814		{
2815			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2816			CTX_R_PWR_CLK_STATE,
2817		},
2818		{
2819			GEN8_OACTXCONTROL,
2820			ctx_oactxctrl + 1,
2821		},
2822		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2823		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2824		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2825		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2826		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2827		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2828		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2829	};
2830#undef ctx_flexeuN
2831	int i;
2832
2833	regs[1].value =
2834		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2835		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2836		GEN8_OA_COUNTER_RESUME;
2837
2838	for (i = 2; i < ARRAY_SIZE(regs); i++)
2839		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2840
2841	return oa_configure_all_contexts(stream,
2842					 regs, ARRAY_SIZE(regs),
2843					 active);
2844}
2845
2846static int
2847gen8_enable_metric_set(struct i915_perf_stream *stream,
2848		       struct i915_active *active)
2849{
2850	struct intel_uncore *uncore = stream->uncore;
2851	struct i915_oa_config *oa_config = stream->oa_config;
2852	int ret;
2853
2854	/*
2855	 * We disable slice/unslice clock ratio change reports on SKL since
2856	 * they are too noisy. The HW generates a lot of redundant reports
2857	 * where the ratio hasn't really changed causing a lot of redundant
2858	 * work to processes and increasing the chances we'll hit buffer
2859	 * overruns.
2860	 *
2861	 * Although we don't currently use the 'disable overrun' OABUFFER
2862	 * feature it's worth noting that clock ratio reports have to be
2863	 * disabled before considering to use that feature since the HW doesn't
2864	 * correctly block these reports.
2865	 *
2866	 * Currently none of the high-level metrics we have depend on knowing
2867	 * this ratio to normalize.
2868	 *
2869	 * Note: This register is not power context saved and restored, but
2870	 * that's OK considering that we disable RC6 while the OA unit is
2871	 * enabled.
2872	 *
2873	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2874	 * be read back from automatically triggered reports, as part of the
2875	 * RPT_ID field.
2876	 */
2877	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2878		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2879				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2880						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2881	}
2882
2883	/*
2884	 * Update all contexts prior writing the mux configurations as we need
2885	 * to make sure all slices/subslices are ON before writing to NOA
2886	 * registers.
2887	 */
2888	ret = lrc_configure_all_contexts(stream, oa_config, active);
2889	if (ret)
2890		return ret;
2891
2892	return emit_oa_config(stream,
2893			      stream->oa_config, oa_context(stream),
2894			      active);
2895}
2896
2897static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2898{
2899	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2900			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2901			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2902}
2903
2904static int
2905gen12_enable_metric_set(struct i915_perf_stream *stream,
2906			struct i915_active *active)
2907{
2908	struct drm_i915_private *i915 = stream->perf->i915;
2909	struct intel_uncore *uncore = stream->uncore;
2910	struct i915_oa_config *oa_config = stream->oa_config;
2911	bool periodic = stream->periodic;
2912	u32 period_exponent = stream->period_exponent;
2913	u32 sqcnt1;
2914	int ret;
2915
2916	/*
2917	 * Wa_1508761755:xehpsdv, dg2
2918	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2919	 * Disable thread stall DOP gating and EU DOP gating.
2920	 */
2921	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2922		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2923					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2924		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2925				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2926	}
2927
2928	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2929			   /* Disable clk ratio reports, like previous Gens. */
2930			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2931					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2932			   /*
2933			    * If the user didn't require OA reports, instruct
2934			    * the hardware not to emit ctx switch reports.
2935			    */
2936			   oag_report_ctx_switches(stream));
2937
2938	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2939			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2940			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2941			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2942			    : 0);
2943
2944	/*
2945	 * Initialize Super Queue Internal Cnt Register
2946	 * Set PMON Enable in order to collect valid metrics.
2947	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2948	 */
2949	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2950		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2951
2952	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2953
2954	/*
2955	 * Update all contexts prior writing the mux configurations as we need
2956	 * to make sure all slices/subslices are ON before writing to NOA
2957	 * registers.
2958	 */
2959	ret = gen12_configure_all_contexts(stream, oa_config, active);
2960	if (ret)
2961		return ret;
2962
2963	/*
2964	 * For Gen12, performance counters are context
2965	 * saved/restored. Only enable it for the context that
2966	 * requested this.
2967	 */
2968	if (stream->ctx) {
2969		ret = gen12_configure_oar_context(stream, active);
2970		if (ret)
2971			return ret;
2972	}
2973
2974	return emit_oa_config(stream,
2975			      stream->oa_config, oa_context(stream),
2976			      active);
2977}
2978
2979static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2980{
2981	struct intel_uncore *uncore = stream->uncore;
2982
2983	/* Reset all contexts' slices/subslices configurations. */
2984	lrc_configure_all_contexts(stream, NULL, NULL);
2985
2986	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2987}
2988
2989static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2990{
2991	struct intel_uncore *uncore = stream->uncore;
2992
2993	/* Reset all contexts' slices/subslices configurations. */
2994	lrc_configure_all_contexts(stream, NULL, NULL);
2995
2996	/* Make sure we disable noa to save power. */
2997	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2998}
2999
3000static void gen12_disable_metric_set(struct i915_perf_stream *stream)
3001{
3002	struct intel_uncore *uncore = stream->uncore;
3003	struct drm_i915_private *i915 = stream->perf->i915;
3004	u32 sqcnt1;
3005
3006	/*
3007	 * Wa_1508761755:xehpsdv, dg2
3008	 * Enable thread stall DOP gating and EU DOP gating.
3009	 */
3010	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
3011		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
3012					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
3013		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
3014				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
3015	}
3016
3017	/* Reset all contexts' slices/subslices configurations. */
3018	gen12_configure_all_contexts(stream, NULL, NULL);
3019
3020	/* disable the context save/restore or OAR counters */
3021	if (stream->ctx)
3022		gen12_configure_oar_context(stream, NULL);
3023
3024	/* Make sure we disable noa to save power. */
3025	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
3026
3027	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
3028		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3029
3030	/* Reset PMON Enable to save power. */
3031	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3032}
3033
3034static void gen7_oa_enable(struct i915_perf_stream *stream)
3035{
3036	struct intel_uncore *uncore = stream->uncore;
3037	struct i915_gem_context *ctx = stream->ctx;
3038	u32 ctx_id = stream->specific_ctx_id;
3039	bool periodic = stream->periodic;
3040	u32 period_exponent = stream->period_exponent;
3041	u32 report_format = stream->oa_buffer.format->format;
3042
3043	/*
3044	 * Reset buf pointers so we don't forward reports from before now.
3045	 *
3046	 * Think carefully if considering trying to avoid this, since it
3047	 * also ensures status flags and the buffer itself are cleared
3048	 * in error paths, and we have checks for invalid reports based
3049	 * on the assumption that certain fields are written to zeroed
3050	 * memory which this helps maintains.
3051	 */
3052	gen7_init_oa_buffer(stream);
3053
3054	intel_uncore_write(uncore, GEN7_OACONTROL,
3055			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3056			   (period_exponent <<
3057			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3058			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3059			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3060			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3061			   GEN7_OACONTROL_ENABLE);
3062}
3063
3064static void gen8_oa_enable(struct i915_perf_stream *stream)
3065{
3066	struct intel_uncore *uncore = stream->uncore;
3067	u32 report_format = stream->oa_buffer.format->format;
3068
3069	/*
3070	 * Reset buf pointers so we don't forward reports from before now.
3071	 *
3072	 * Think carefully if considering trying to avoid this, since it
3073	 * also ensures status flags and the buffer itself are cleared
3074	 * in error paths, and we have checks for invalid reports based
3075	 * on the assumption that certain fields are written to zeroed
3076	 * memory which this helps maintains.
3077	 */
3078	gen8_init_oa_buffer(stream);
3079
3080	/*
3081	 * Note: we don't rely on the hardware to perform single context
3082	 * filtering and instead filter on the cpu based on the context-id
3083	 * field of reports
3084	 */
3085	intel_uncore_write(uncore, GEN8_OACONTROL,
3086			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3087			   GEN8_OA_COUNTER_ENABLE);
3088}
3089
3090static void gen12_oa_enable(struct i915_perf_stream *stream)
3091{
3092	const struct i915_perf_regs *regs;
3093	u32 val;
3094
3095	/*
3096	 * If we don't want OA reports from the OA buffer, then we don't even
3097	 * need to program the OAG unit.
3098	 */
3099	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3100		return;
3101
3102	gen12_init_oa_buffer(stream);
3103
3104	regs = __oa_regs(stream);
3105	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3106	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3107
3108	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3109}
3110
3111/**
3112 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3113 * @stream: An i915 perf stream opened for OA metrics
3114 *
3115 * [Re]enables hardware periodic sampling according to the period configured
3116 * when opening the stream. This also starts a hrtimer that will periodically
3117 * check for data in the circular OA buffer for notifying userspace (e.g.
3118 * during a read() or poll()).
3119 */
3120static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3121{
3122	stream->pollin = false;
3123
3124	stream->perf->ops.oa_enable(stream);
3125
3126	if (stream->sample_flags & SAMPLE_OA_REPORT)
3127		hrtimer_start(&stream->poll_check_timer,
3128			      ns_to_ktime(stream->poll_oa_period),
3129			      HRTIMER_MODE_REL_PINNED);
3130}
3131
3132static void gen7_oa_disable(struct i915_perf_stream *stream)
3133{
3134	struct intel_uncore *uncore = stream->uncore;
3135
3136	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3137	if (intel_wait_for_register(uncore,
3138				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3139				    50))
3140		drm_err(&stream->perf->i915->drm,
3141			"wait for OA to be disabled timed out\n");
3142}
3143
3144static void gen8_oa_disable(struct i915_perf_stream *stream)
3145{
3146	struct intel_uncore *uncore = stream->uncore;
3147
3148	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3149	if (intel_wait_for_register(uncore,
3150				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3151				    50))
3152		drm_err(&stream->perf->i915->drm,
3153			"wait for OA to be disabled timed out\n");
3154}
3155
3156static void gen12_oa_disable(struct i915_perf_stream *stream)
3157{
3158	struct intel_uncore *uncore = stream->uncore;
3159
3160	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3161	if (intel_wait_for_register(uncore,
3162				    __oa_regs(stream)->oa_ctrl,
3163				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3164				    50))
3165		drm_err(&stream->perf->i915->drm,
3166			"wait for OA to be disabled timed out\n");
3167
3168	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3169	if (intel_wait_for_register(uncore,
3170				    GEN12_OA_TLB_INV_CR,
3171				    1, 0,
3172				    50))
3173		drm_err(&stream->perf->i915->drm,
3174			"wait for OA tlb invalidate timed out\n");
3175}
3176
3177/**
3178 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3179 * @stream: An i915 perf stream opened for OA metrics
3180 *
3181 * Stops the OA unit from periodically writing counter reports into the
3182 * circular OA buffer. This also stops the hrtimer that periodically checks for
3183 * data in the circular OA buffer, for notifying userspace.
3184 */
3185static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3186{
3187	stream->perf->ops.oa_disable(stream);
3188
3189	if (stream->sample_flags & SAMPLE_OA_REPORT)
3190		hrtimer_cancel(&stream->poll_check_timer);
3191}
3192
3193static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3194	.destroy = i915_oa_stream_destroy,
3195	.enable = i915_oa_stream_enable,
3196	.disable = i915_oa_stream_disable,
3197	.wait_unlocked = i915_oa_wait_unlocked,
3198	.poll_wait = i915_oa_poll_wait,
3199	.read = i915_oa_read,
3200};
3201
3202static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3203{
3204	struct i915_active *active;
3205	int err;
3206
3207	active = i915_active_create();
3208	if (!active)
3209		return -ENOMEM;
3210
3211	err = stream->perf->ops.enable_metric_set(stream, active);
3212	if (err == 0)
3213		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3214
3215	i915_active_put(active);
3216	return err;
3217}
3218
3219static void
3220get_default_sseu_config(struct intel_sseu *out_sseu,
3221			struct intel_engine_cs *engine)
3222{
3223	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3224
3225	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3226
3227	if (GRAPHICS_VER(engine->i915) == 11) {
3228		/*
3229		 * We only need subslice count so it doesn't matter which ones
3230		 * we select - just turn off low bits in the amount of half of
3231		 * all available subslices per slice.
3232		 */
3233		out_sseu->subslice_mask =
3234			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3235		out_sseu->slice_mask = 0x1;
3236	}
3237}
3238
3239static int
3240get_sseu_config(struct intel_sseu *out_sseu,
3241		struct intel_engine_cs *engine,
3242		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3243{
3244	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3245	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3246		return -EINVAL;
3247
3248	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3249}
3250
3251/*
3252 * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3253 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3254 * cases, return the adjusted CS timestamp frequency to the user.
3255 */
3256u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3257{
3258	/*
3259	 * Wa_18013179988:dg2
3260	 * Wa_14015846243:mtl
3261	 */
3262	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3263		intel_wakeref_t wakeref;
3264		u32 reg, shift;
3265
3266		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3267			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3268
3269		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3270				      reg);
3271
3272		return to_gt(i915)->clock_frequency << (3 - shift);
3273	}
3274
3275	return to_gt(i915)->clock_frequency;
3276}
3277
3278/**
3279 * i915_oa_stream_init - validate combined props for OA stream and init
3280 * @stream: An i915 perf stream
3281 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3282 * @props: The property state that configures stream (individually validated)
3283 *
3284 * While read_properties_unlocked() validates properties in isolation it
3285 * doesn't ensure that the combination necessarily makes sense.
3286 *
3287 * At this point it has been determined that userspace wants a stream of
3288 * OA metrics, but still we need to further validate the combined
3289 * properties are OK.
3290 *
3291 * If the configuration makes sense then we can allocate memory for
3292 * a circular OA buffer and apply the requested metric set configuration.
3293 *
3294 * Returns: zero on success or a negative error code.
3295 */
3296static int i915_oa_stream_init(struct i915_perf_stream *stream,
3297			       struct drm_i915_perf_open_param *param,
3298			       struct perf_open_properties *props)
3299{
3300	struct drm_i915_private *i915 = stream->perf->i915;
3301	struct i915_perf *perf = stream->perf;
3302	struct i915_perf_group *g;
3303	struct intel_gt *gt;
3304	int ret;
3305
3306	if (!props->engine) {
3307		drm_dbg(&stream->perf->i915->drm,
3308			"OA engine not specified\n");
3309		return -EINVAL;
3310	}
3311	gt = props->engine->gt;
3312	g = props->engine->oa_group;
3313
3314	/*
3315	 * If the sysfs metrics/ directory wasn't registered for some
3316	 * reason then don't let userspace try their luck with config
3317	 * IDs
3318	 */
3319	if (!perf->metrics_kobj) {
3320		drm_dbg(&stream->perf->i915->drm,
3321			"OA metrics weren't advertised via sysfs\n");
3322		return -EINVAL;
3323	}
3324
3325	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3326	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3327		drm_dbg(&stream->perf->i915->drm,
3328			"Only OA report sampling supported\n");
3329		return -EINVAL;
3330	}
3331
3332	if (!perf->ops.enable_metric_set) {
3333		drm_dbg(&stream->perf->i915->drm,
3334			"OA unit not supported\n");
3335		return -ENODEV;
3336	}
3337
3338	/*
3339	 * To avoid the complexity of having to accurately filter
3340	 * counter reports and marshal to the appropriate client
3341	 * we currently only allow exclusive access
3342	 */
3343	if (g->exclusive_stream) {
3344		drm_dbg(&stream->perf->i915->drm,
3345			"OA unit already in use\n");
3346		return -EBUSY;
3347	}
3348
3349	if (!props->oa_format) {
3350		drm_dbg(&stream->perf->i915->drm,
3351			"OA report format not specified\n");
3352		return -EINVAL;
3353	}
3354
3355	stream->engine = props->engine;
3356	stream->uncore = stream->engine->gt->uncore;
3357
3358	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3359
3360	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3361	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3362		return -EINVAL;
3363
3364	stream->sample_flags = props->sample_flags;
3365	stream->sample_size += stream->oa_buffer.format->size;
3366
3367	stream->hold_preemption = props->hold_preemption;
3368
3369	stream->periodic = props->oa_periodic;
3370	if (stream->periodic)
3371		stream->period_exponent = props->oa_period_exponent;
3372
3373	if (stream->ctx) {
3374		ret = oa_get_render_ctx_id(stream);
3375		if (ret) {
3376			drm_dbg(&stream->perf->i915->drm,
3377				"Invalid context id to filter with\n");
3378			return ret;
3379		}
3380	}
3381
3382	ret = alloc_noa_wait(stream);
3383	if (ret) {
3384		drm_dbg(&stream->perf->i915->drm,
3385			"Unable to allocate NOA wait batch buffer\n");
3386		goto err_noa_wait_alloc;
3387	}
3388
3389	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3390	if (!stream->oa_config) {
3391		drm_dbg(&stream->perf->i915->drm,
3392			"Invalid OA config id=%i\n", props->metrics_set);
3393		ret = -EINVAL;
3394		goto err_config;
3395	}
3396
3397	/* PRM - observability performance counters:
3398	 *
3399	 *   OACONTROL, performance counter enable, note:
3400	 *
3401	 *   "When this bit is set, in order to have coherent counts,
3402	 *   RC6 power state and trunk clock gating must be disabled.
3403	 *   This can be achieved by programming MMIO registers as
3404	 *   0xA094=0 and 0xA090[31]=1"
3405	 *
3406	 *   In our case we are expecting that taking pm + FORCEWAKE
3407	 *   references will effectively disable RC6.
3408	 */
3409	intel_engine_pm_get(stream->engine);
3410	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3411
3412	/*
3413	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3414	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3415	 * mode.
3416	 */
3417	if (intel_uc_uses_guc_rc(&gt->uc) &&
3418	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3419	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3420		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3421							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3422		if (ret) {
3423			drm_dbg(&stream->perf->i915->drm,
3424				"Unable to override gucrc mode\n");
3425			goto err_gucrc;
3426		}
3427
3428		stream->override_gucrc = true;
3429	}
3430
3431	ret = alloc_oa_buffer(stream);
3432	if (ret)
3433		goto err_oa_buf_alloc;
3434
3435	stream->ops = &i915_oa_stream_ops;
3436
3437	stream->engine->gt->perf.sseu = props->sseu;
3438	WRITE_ONCE(g->exclusive_stream, stream);
3439
3440	ret = i915_perf_stream_enable_sync(stream);
3441	if (ret) {
3442		drm_dbg(&stream->perf->i915->drm,
3443			"Unable to enable metric set\n");
3444		goto err_enable;
3445	}
3446
3447	drm_dbg(&stream->perf->i915->drm,
3448		"opening stream oa config uuid=%s\n",
3449		  stream->oa_config->uuid);
3450
3451	hrtimer_init(&stream->poll_check_timer,
3452		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3453	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3454	init_waitqueue_head(&stream->poll_wq);
3455	spin_lock_init(&stream->oa_buffer.ptr_lock);
3456	mutex_init(&stream->lock);
3457
3458	return 0;
3459
3460err_enable:
3461	WRITE_ONCE(g->exclusive_stream, NULL);
3462	perf->ops.disable_metric_set(stream);
3463
3464	free_oa_buffer(stream);
3465
3466err_oa_buf_alloc:
3467	if (stream->override_gucrc)
3468		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3469
3470err_gucrc:
3471	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3472	intel_engine_pm_put(stream->engine);
3473
3474	free_oa_configs(stream);
3475
3476err_config:
3477	free_noa_wait(stream);
3478
3479err_noa_wait_alloc:
3480	if (stream->ctx)
3481		oa_put_render_ctx_id(stream);
3482
3483	return ret;
3484}
3485
3486void i915_oa_init_reg_state(const struct intel_context *ce,
3487			    const struct intel_engine_cs *engine)
3488{
3489	struct i915_perf_stream *stream;
3490
3491	if (engine->class != RENDER_CLASS)
3492		return;
3493
3494	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3495	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3496	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3497		gen8_update_reg_state_unlocked(ce, stream);
3498}
3499
3500/**
3501 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3502 * @file: An i915 perf stream file
3503 * @buf: destination buffer given by userspace
3504 * @count: the number of bytes userspace wants to read
3505 * @ppos: (inout) file seek position (unused)
3506 *
3507 * The entry point for handling a read() on a stream file descriptor from
3508 * userspace. Most of the work is left to the i915_perf_read_locked() and
3509 * &i915_perf_stream_ops->read but to save having stream implementations (of
3510 * which we might have multiple later) we handle blocking read here.
3511 *
3512 * We can also consistently treat trying to read from a disabled stream
3513 * as an IO error so implementations can assume the stream is enabled
3514 * while reading.
3515 *
3516 * Returns: The number of bytes copied or a negative error code on failure.
3517 */
3518static ssize_t i915_perf_read(struct file *file,
3519			      char __user *buf,
3520			      size_t count,
3521			      loff_t *ppos)
3522{
3523	struct i915_perf_stream *stream = file->private_data;
3524	size_t offset = 0;
3525	int ret;
3526
3527	/* To ensure it's handled consistently we simply treat all reads of a
3528	 * disabled stream as an error. In particular it might otherwise lead
3529	 * to a deadlock for blocking file descriptors...
3530	 */
3531	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3532		return -EIO;
3533
3534	if (!(file->f_flags & O_NONBLOCK)) {
3535		/* There's the small chance of false positives from
3536		 * stream->ops->wait_unlocked.
3537		 *
3538		 * E.g. with single context filtering since we only wait until
3539		 * oabuffer has >= 1 report we don't immediately know whether
3540		 * any reports really belong to the current context
3541		 */
3542		do {
3543			ret = stream->ops->wait_unlocked(stream);
3544			if (ret)
3545				return ret;
3546
3547			mutex_lock(&stream->lock);
3548			ret = stream->ops->read(stream, buf, count, &offset);
3549			mutex_unlock(&stream->lock);
3550		} while (!offset && !ret);
3551	} else {
3552		mutex_lock(&stream->lock);
3553		ret = stream->ops->read(stream, buf, count, &offset);
3554		mutex_unlock(&stream->lock);
3555	}
3556
3557	/* We allow the poll checking to sometimes report false positive EPOLLIN
3558	 * events where we might actually report EAGAIN on read() if there's
3559	 * not really any data available. In this situation though we don't
3560	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3561	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3562	 * effectively ensures we back off until the next hrtimer callback
3563	 * before reporting another EPOLLIN event.
3564	 * The exception to this is if ops->read() returned -ENOSPC which means
3565	 * that more OA data is available than could fit in the user provided
3566	 * buffer. In this case we want the next poll() call to not block.
3567	 */
3568	if (ret != -ENOSPC)
3569		stream->pollin = false;
3570
3571	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3572	return offset ?: (ret ?: -EAGAIN);
3573}
3574
3575static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3576{
3577	struct i915_perf_stream *stream =
3578		container_of(hrtimer, typeof(*stream), poll_check_timer);
3579
3580	if (oa_buffer_check_unlocked(stream)) {
3581		stream->pollin = true;
3582		wake_up(&stream->poll_wq);
3583	}
3584
3585	hrtimer_forward_now(hrtimer,
3586			    ns_to_ktime(stream->poll_oa_period));
3587
3588	return HRTIMER_RESTART;
3589}
3590
3591/**
3592 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3593 * @stream: An i915 perf stream
3594 * @file: An i915 perf stream file
3595 * @wait: poll() state table
3596 *
3597 * For handling userspace polling on an i915 perf stream, this calls through to
3598 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3599 * will be woken for new stream data.
3600 *
3601 * Returns: any poll events that are ready without sleeping
3602 */
3603static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3604				      struct file *file,
3605				      poll_table *wait)
3606{
3607	__poll_t events = 0;
3608
3609	stream->ops->poll_wait(stream, file, wait);
3610
3611	/* Note: we don't explicitly check whether there's something to read
3612	 * here since this path may be very hot depending on what else
3613	 * userspace is polling, or on the timeout in use. We rely solely on
3614	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3615	 * samples to read.
3616	 */
3617	if (stream->pollin)
3618		events |= EPOLLIN;
3619
3620	return events;
3621}
3622
3623/**
3624 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3625 * @file: An i915 perf stream file
3626 * @wait: poll() state table
3627 *
3628 * For handling userspace polling on an i915 perf stream, this ensures
3629 * poll_wait() gets called with a wait queue that will be woken for new stream
3630 * data.
3631 *
3632 * Note: Implementation deferred to i915_perf_poll_locked()
3633 *
3634 * Returns: any poll events that are ready without sleeping
3635 */
3636static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3637{
3638	struct i915_perf_stream *stream = file->private_data;
3639	__poll_t ret;
3640
3641	mutex_lock(&stream->lock);
3642	ret = i915_perf_poll_locked(stream, file, wait);
3643	mutex_unlock(&stream->lock);
3644
3645	return ret;
3646}
3647
3648/**
3649 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3650 * @stream: A disabled i915 perf stream
3651 *
3652 * [Re]enables the associated capture of data for this stream.
3653 *
3654 * If a stream was previously enabled then there's currently no intention
3655 * to provide userspace any guarantee about the preservation of previously
3656 * buffered data.
3657 */
3658static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3659{
3660	if (stream->enabled)
3661		return;
3662
3663	/* Allow stream->ops->enable() to refer to this */
3664	stream->enabled = true;
3665
3666	if (stream->ops->enable)
3667		stream->ops->enable(stream);
3668
3669	if (stream->hold_preemption)
3670		intel_context_set_nopreempt(stream->pinned_ctx);
3671}
3672
3673/**
3674 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3675 * @stream: An enabled i915 perf stream
3676 *
3677 * Disables the associated capture of data for this stream.
3678 *
3679 * The intention is that disabling an re-enabling a stream will ideally be
3680 * cheaper than destroying and re-opening a stream with the same configuration,
3681 * though there are no formal guarantees about what state or buffered data
3682 * must be retained between disabling and re-enabling a stream.
3683 *
3684 * Note: while a stream is disabled it's considered an error for userspace
3685 * to attempt to read from the stream (-EIO).
3686 */
3687static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3688{
3689	if (!stream->enabled)
3690		return;
3691
3692	/* Allow stream->ops->disable() to refer to this */
3693	stream->enabled = false;
3694
3695	if (stream->hold_preemption)
3696		intel_context_clear_nopreempt(stream->pinned_ctx);
3697
3698	if (stream->ops->disable)
3699		stream->ops->disable(stream);
3700}
3701
3702static long i915_perf_config_locked(struct i915_perf_stream *stream,
3703				    unsigned long metrics_set)
3704{
3705	struct i915_oa_config *config;
3706	long ret = stream->oa_config->id;
3707
3708	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3709	if (!config)
3710		return -EINVAL;
3711
3712	if (config != stream->oa_config) {
3713		int err;
3714
3715		/*
3716		 * If OA is bound to a specific context, emit the
3717		 * reconfiguration inline from that context. The update
3718		 * will then be ordered with respect to submission on that
3719		 * context.
3720		 *
3721		 * When set globally, we use a low priority kernel context,
3722		 * so it will effectively take effect when idle.
3723		 */
3724		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3725		if (!err)
3726			config = xchg(&stream->oa_config, config);
3727		else
3728			ret = err;
3729	}
3730
3731	i915_oa_config_put(config);
3732
3733	return ret;
3734}
3735
3736/**
3737 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3738 * @stream: An i915 perf stream
3739 * @cmd: the ioctl request
3740 * @arg: the ioctl data
3741 *
3742 * Returns: zero on success or a negative error code. Returns -EINVAL for
3743 * an unknown ioctl request.
3744 */
3745static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3746				   unsigned int cmd,
3747				   unsigned long arg)
3748{
3749	switch (cmd) {
3750	case I915_PERF_IOCTL_ENABLE:
3751		i915_perf_enable_locked(stream);
3752		return 0;
3753	case I915_PERF_IOCTL_DISABLE:
3754		i915_perf_disable_locked(stream);
3755		return 0;
3756	case I915_PERF_IOCTL_CONFIG:
3757		return i915_perf_config_locked(stream, arg);
3758	}
3759
3760	return -EINVAL;
3761}
3762
3763/**
3764 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3765 * @file: An i915 perf stream file
3766 * @cmd: the ioctl request
3767 * @arg: the ioctl data
3768 *
3769 * Implementation deferred to i915_perf_ioctl_locked().
3770 *
3771 * Returns: zero on success or a negative error code. Returns -EINVAL for
3772 * an unknown ioctl request.
3773 */
3774static long i915_perf_ioctl(struct file *file,
3775			    unsigned int cmd,
3776			    unsigned long arg)
3777{
3778	struct i915_perf_stream *stream = file->private_data;
3779	long ret;
3780
3781	mutex_lock(&stream->lock);
3782	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3783	mutex_unlock(&stream->lock);
3784
3785	return ret;
3786}
3787
3788/**
3789 * i915_perf_destroy_locked - destroy an i915 perf stream
3790 * @stream: An i915 perf stream
3791 *
3792 * Frees all resources associated with the given i915 perf @stream, disabling
3793 * any associated data capture in the process.
3794 *
3795 * Note: The &gt->perf.lock mutex has been taken to serialize
3796 * with any non-file-operation driver hooks.
3797 */
3798static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3799{
3800	if (stream->enabled)
3801		i915_perf_disable_locked(stream);
3802
3803	if (stream->ops->destroy)
3804		stream->ops->destroy(stream);
3805
3806	if (stream->ctx)
3807		i915_gem_context_put(stream->ctx);
3808
3809	kfree(stream);
3810}
3811
3812/**
3813 * i915_perf_release - handles userspace close() of a stream file
3814 * @inode: anonymous inode associated with file
3815 * @file: An i915 perf stream file
3816 *
3817 * Cleans up any resources associated with an open i915 perf stream file.
3818 *
3819 * NB: close() can't really fail from the userspace point of view.
3820 *
3821 * Returns: zero on success or a negative error code.
3822 */
3823static int i915_perf_release(struct inode *inode, struct file *file)
3824{
3825	struct i915_perf_stream *stream = file->private_data;
3826	struct i915_perf *perf = stream->perf;
3827	struct intel_gt *gt = stream->engine->gt;
3828
3829	/*
3830	 * Within this call, we know that the fd is being closed and we have no
3831	 * other user of stream->lock. Use the perf lock to destroy the stream
3832	 * here.
3833	 */
3834	mutex_lock(&gt->perf.lock);
3835	i915_perf_destroy_locked(stream);
3836	mutex_unlock(&gt->perf.lock);
3837
3838	/* Release the reference the perf stream kept on the driver. */
3839	drm_dev_put(&perf->i915->drm);
3840
3841	return 0;
3842}
3843
3844
3845static const struct file_operations fops = {
3846	.owner		= THIS_MODULE,
3847	.llseek		= no_llseek,
3848	.release	= i915_perf_release,
3849	.poll		= i915_perf_poll,
3850	.read		= i915_perf_read,
3851	.unlocked_ioctl	= i915_perf_ioctl,
3852	/* Our ioctl have no arguments, so it's safe to use the same function
3853	 * to handle 32bits compatibility.
3854	 */
3855	.compat_ioctl   = i915_perf_ioctl,
3856};
3857
3858
3859/**
3860 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3861 * @perf: i915 perf instance
3862 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3863 * @props: individually validated u64 property value pairs
3864 * @file: drm file
3865 *
3866 * See i915_perf_ioctl_open() for interface details.
3867 *
3868 * Implements further stream config validation and stream initialization on
3869 * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3870 * taken to serialize with any non-file-operation driver hooks.
3871 *
3872 * Note: at this point the @props have only been validated in isolation and
3873 * it's still necessary to validate that the combination of properties makes
3874 * sense.
3875 *
3876 * In the case where userspace is interested in OA unit metrics then further
3877 * config validation and stream initialization details will be handled by
3878 * i915_oa_stream_init(). The code here should only validate config state that
3879 * will be relevant to all stream types / backends.
3880 *
3881 * Returns: zero on success or a negative error code.
3882 */
3883static int
3884i915_perf_open_ioctl_locked(struct i915_perf *perf,
3885			    struct drm_i915_perf_open_param *param,
3886			    struct perf_open_properties *props,
3887			    struct drm_file *file)
3888{
3889	struct i915_gem_context *specific_ctx = NULL;
3890	struct i915_perf_stream *stream = NULL;
3891	unsigned long f_flags = 0;
3892	bool privileged_op = true;
3893	int stream_fd;
3894	int ret;
3895
3896	if (props->single_context) {
3897		u32 ctx_handle = props->ctx_handle;
3898		struct drm_i915_file_private *file_priv = file->driver_priv;
3899
3900		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3901		if (IS_ERR(specific_ctx)) {
3902			drm_dbg(&perf->i915->drm,
3903				"Failed to look up context with ID %u for opening perf stream\n",
3904				  ctx_handle);
3905			ret = PTR_ERR(specific_ctx);
3906			goto err;
3907		}
3908	}
3909
3910	/*
3911	 * On Haswell the OA unit supports clock gating off for a specific
3912	 * context and in this mode there's no visibility of metrics for the
3913	 * rest of the system, which we consider acceptable for a
3914	 * non-privileged client.
3915	 *
3916	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3917	 * specific context and the kernel can't securely stop the counters
3918	 * from updating as system-wide / global values. Even though we can
3919	 * filter reports based on the included context ID we can't block
3920	 * clients from seeing the raw / global counter values via
3921	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3922	 * enable the OA unit by default.
3923	 *
3924	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3925	 * per context basis. So we can relax requirements there if the user
3926	 * doesn't request global stream access (i.e. query based sampling
3927	 * using MI_RECORD_PERF_COUNT.
3928	 */
3929	if (IS_HASWELL(perf->i915) && specific_ctx)
3930		privileged_op = false;
3931	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3932		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3933		privileged_op = false;
3934
3935	if (props->hold_preemption) {
3936		if (!props->single_context) {
3937			drm_dbg(&perf->i915->drm,
3938				"preemption disable with no context\n");
3939			ret = -EINVAL;
3940			goto err;
3941		}
3942		privileged_op = true;
3943	}
3944
3945	/*
3946	 * Asking for SSEU configuration is a priviliged operation.
3947	 */
3948	if (props->has_sseu)
3949		privileged_op = true;
3950	else
3951		get_default_sseu_config(&props->sseu, props->engine);
3952
3953	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3954	 * we check a dev.i915.perf_stream_paranoid sysctl option
3955	 * to determine if it's ok to access system wide OA counters
3956	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3957	 */
3958	if (privileged_op &&
3959	    i915_perf_stream_paranoid && !perfmon_capable()) {
3960		drm_dbg(&perf->i915->drm,
3961			"Insufficient privileges to open i915 perf stream\n");
3962		ret = -EACCES;
3963		goto err_ctx;
3964	}
3965
3966	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3967	if (!stream) {
3968		ret = -ENOMEM;
3969		goto err_ctx;
3970	}
3971
3972	stream->perf = perf;
3973	stream->ctx = specific_ctx;
3974	stream->poll_oa_period = props->poll_oa_period;
3975
3976	ret = i915_oa_stream_init(stream, param, props);
3977	if (ret)
3978		goto err_alloc;
3979
3980	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3981	 * to have _stream_init check the combination of sample flags more
3982	 * thoroughly, but still this is the expected result at this point.
3983	 */
3984	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3985		ret = -ENODEV;
3986		goto err_flags;
3987	}
3988
3989	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3990		f_flags |= O_CLOEXEC;
3991	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3992		f_flags |= O_NONBLOCK;
3993
3994	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3995	if (stream_fd < 0) {
3996		ret = stream_fd;
3997		goto err_flags;
3998	}
3999
4000	if (!(param->flags & I915_PERF_FLAG_DISABLED))
4001		i915_perf_enable_locked(stream);
4002
4003	/* Take a reference on the driver that will be kept with stream_fd
4004	 * until its release.
4005	 */
4006	drm_dev_get(&perf->i915->drm);
4007
4008	return stream_fd;
4009
4010err_flags:
4011	if (stream->ops->destroy)
4012		stream->ops->destroy(stream);
4013err_alloc:
4014	kfree(stream);
4015err_ctx:
4016	if (specific_ctx)
4017		i915_gem_context_put(specific_ctx);
4018err:
4019	return ret;
4020}
4021
4022static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
4023{
4024	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
4025	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
4026
4027	return div_u64(nom + den - 1, den);
4028}
4029
4030static __always_inline bool
4031oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4032{
4033	return test_bit(format, perf->format_mask);
4034}
4035
4036static __always_inline void
4037oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4038{
4039	__set_bit(format, perf->format_mask);
4040}
4041
4042/**
4043 * read_properties_unlocked - validate + copy userspace stream open properties
4044 * @perf: i915 perf instance
4045 * @uprops: The array of u64 key value pairs given by userspace
4046 * @n_props: The number of key value pairs expected in @uprops
4047 * @props: The stream configuration built up while validating properties
4048 *
4049 * Note this function only validates properties in isolation it doesn't
4050 * validate that the combination of properties makes sense or that all
4051 * properties necessary for a particular kind of stream have been set.
4052 *
4053 * Note that there currently aren't any ordering requirements for properties so
4054 * we shouldn't validate or assume anything about ordering here. This doesn't
4055 * rule out defining new properties with ordering requirements in the future.
4056 */
4057static int read_properties_unlocked(struct i915_perf *perf,
4058				    u64 __user *uprops,
4059				    u32 n_props,
4060				    struct perf_open_properties *props)
4061{
4062	struct drm_i915_gem_context_param_sseu user_sseu;
4063	const struct i915_oa_format *f;
4064	u64 __user *uprop = uprops;
4065	bool config_instance = false;
4066	bool config_class = false;
4067	bool config_sseu = false;
4068	u8 class, instance;
4069	u32 i;
4070	int ret;
4071
4072	memset(props, 0, sizeof(struct perf_open_properties));
4073	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4074
4075	/* Considering that ID = 0 is reserved and assuming that we don't
4076	 * (currently) expect any configurations to ever specify duplicate
4077	 * values for a particular property ID then the last _PROP_MAX value is
4078	 * one greater than the maximum number of properties we expect to get
4079	 * from userspace.
4080	 */
4081	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4082		drm_dbg(&perf->i915->drm,
4083			"Invalid number of i915 perf properties given\n");
4084		return -EINVAL;
4085	}
4086
4087	/* Defaults when class:instance is not passed */
4088	class = I915_ENGINE_CLASS_RENDER;
4089	instance = 0;
4090
4091	for (i = 0; i < n_props; i++) {
4092		u64 oa_period, oa_freq_hz;
4093		u64 id, value;
4094
4095		ret = get_user(id, uprop);
4096		if (ret)
4097			return ret;
4098
4099		ret = get_user(value, uprop + 1);
4100		if (ret)
4101			return ret;
4102
4103		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4104			drm_dbg(&perf->i915->drm,
4105				"Unknown i915 perf property ID\n");
4106			return -EINVAL;
4107		}
4108
4109		switch ((enum drm_i915_perf_property_id)id) {
4110		case DRM_I915_PERF_PROP_CTX_HANDLE:
4111			props->single_context = 1;
4112			props->ctx_handle = value;
4113			break;
4114		case DRM_I915_PERF_PROP_SAMPLE_OA:
4115			if (value)
4116				props->sample_flags |= SAMPLE_OA_REPORT;
4117			break;
4118		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4119			if (value == 0) {
4120				drm_dbg(&perf->i915->drm,
4121					"Unknown OA metric set ID\n");
4122				return -EINVAL;
4123			}
4124			props->metrics_set = value;
4125			break;
4126		case DRM_I915_PERF_PROP_OA_FORMAT:
4127			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4128				drm_dbg(&perf->i915->drm,
4129					"Out-of-range OA report format %llu\n",
4130					  value);
4131				return -EINVAL;
4132			}
4133			if (!oa_format_valid(perf, value)) {
4134				drm_dbg(&perf->i915->drm,
4135					"Unsupported OA report format %llu\n",
4136					  value);
4137				return -EINVAL;
4138			}
4139			props->oa_format = value;
4140			break;
4141		case DRM_I915_PERF_PROP_OA_EXPONENT:
4142			if (value > OA_EXPONENT_MAX) {
4143				drm_dbg(&perf->i915->drm,
4144					"OA timer exponent too high (> %u)\n",
4145					 OA_EXPONENT_MAX);
4146				return -EINVAL;
4147			}
4148
4149			/* Theoretically we can program the OA unit to sample
4150			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4151			 * for BXT. We don't allow such high sampling
4152			 * frequencies by default unless root.
4153			 */
4154
4155			BUILD_BUG_ON(sizeof(oa_period) != 8);
4156			oa_period = oa_exponent_to_ns(perf, value);
4157
4158			/* This check is primarily to ensure that oa_period <=
4159			 * UINT32_MAX (before passing to do_div which only
4160			 * accepts a u32 denominator), but we can also skip
4161			 * checking anything < 1Hz which implicitly can't be
4162			 * limited via an integer oa_max_sample_rate.
4163			 */
4164			if (oa_period <= NSEC_PER_SEC) {
4165				u64 tmp = NSEC_PER_SEC;
4166				do_div(tmp, oa_period);
4167				oa_freq_hz = tmp;
4168			} else
4169				oa_freq_hz = 0;
4170
4171			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4172				drm_dbg(&perf->i915->drm,
4173					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4174					  i915_oa_max_sample_rate);
4175				return -EACCES;
4176			}
4177
4178			props->oa_periodic = true;
4179			props->oa_period_exponent = value;
4180			break;
4181		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4182			props->hold_preemption = !!value;
4183			break;
4184		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4185			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4186				drm_dbg(&perf->i915->drm,
4187					"SSEU config not supported on gfx %x\n",
4188					GRAPHICS_VER_FULL(perf->i915));
4189				return -ENODEV;
4190			}
4191
4192			if (copy_from_user(&user_sseu,
4193					   u64_to_user_ptr(value),
4194					   sizeof(user_sseu))) {
4195				drm_dbg(&perf->i915->drm,
4196					"Unable to copy global sseu parameter\n");
4197				return -EFAULT;
4198			}
4199			config_sseu = true;
4200			break;
4201		}
4202		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4203			if (value < 100000 /* 100us */) {
4204				drm_dbg(&perf->i915->drm,
4205					"OA availability timer too small (%lluns < 100us)\n",
4206					  value);
4207				return -EINVAL;
4208			}
4209			props->poll_oa_period = value;
4210			break;
4211		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4212			class = (u8)value;
4213			config_class = true;
4214			break;
4215		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4216			instance = (u8)value;
4217			config_instance = true;
4218			break;
4219		default:
4220			MISSING_CASE(id);
4221			return -EINVAL;
4222		}
4223
4224		uprop += 2;
4225	}
4226
4227	if ((config_class && !config_instance) ||
4228	    (config_instance && !config_class)) {
4229		drm_dbg(&perf->i915->drm,
4230			"OA engine-class and engine-instance parameters must be passed together\n");
4231		return -EINVAL;
4232	}
4233
4234	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4235	if (!props->engine) {
4236		drm_dbg(&perf->i915->drm,
4237			"OA engine class and instance invalid %d:%d\n",
4238			class, instance);
4239		return -EINVAL;
4240	}
4241
4242	if (!engine_supports_oa(props->engine)) {
4243		drm_dbg(&perf->i915->drm,
4244			"Engine not supported by OA %d:%d\n",
4245			class, instance);
4246		return -EINVAL;
4247	}
4248
4249	/*
4250	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4251	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4252	 * does not work as expected.
4253	 */
4254	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4255	    props->engine->oa_group->type == TYPE_OAM &&
4256	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4257		drm_dbg(&perf->i915->drm,
4258			"OAM requires media C6 to be disabled in BIOS\n");
4259		return -EINVAL;
4260	}
4261
4262	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4263	f = &perf->oa_formats[i];
4264	if (!engine_supports_oa_format(props->engine, f->type)) {
4265		drm_dbg(&perf->i915->drm,
4266			"Invalid OA format %d for class %d\n",
4267			f->type, props->engine->class);
4268		return -EINVAL;
4269	}
4270
4271	if (config_sseu) {
4272		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4273		if (ret) {
4274			drm_dbg(&perf->i915->drm,
4275				"Invalid SSEU configuration\n");
4276			return ret;
4277		}
4278		props->has_sseu = true;
4279	}
4280
4281	return 0;
4282}
4283
4284/**
4285 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4286 * @dev: drm device
4287 * @data: ioctl data copied from userspace (unvalidated)
4288 * @file: drm file
4289 *
4290 * Validates the stream open parameters given by userspace including flags
4291 * and an array of u64 key, value pair properties.
4292 *
4293 * Very little is assumed up front about the nature of the stream being
4294 * opened (for instance we don't assume it's for periodic OA unit metrics). An
4295 * i915-perf stream is expected to be a suitable interface for other forms of
4296 * buffered data written by the GPU besides periodic OA metrics.
4297 *
4298 * Note we copy the properties from userspace outside of the i915 perf
4299 * mutex to avoid an awkward lockdep with mmap_lock.
4300 *
4301 * Most of the implementation details are handled by
4302 * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4303 * mutex for serializing with any non-file-operation driver hooks.
4304 *
4305 * Return: A newly opened i915 Perf stream file descriptor or negative
4306 * error code on failure.
4307 */
4308int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4309			 struct drm_file *file)
4310{
4311	struct i915_perf *perf = &to_i915(dev)->perf;
4312	struct drm_i915_perf_open_param *param = data;
4313	struct intel_gt *gt;
4314	struct perf_open_properties props;
4315	u32 known_open_flags;
4316	int ret;
4317
4318	if (!perf->i915)
4319		return -ENOTSUPP;
4320
4321	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4322			   I915_PERF_FLAG_FD_NONBLOCK |
4323			   I915_PERF_FLAG_DISABLED;
4324	if (param->flags & ~known_open_flags) {
4325		drm_dbg(&perf->i915->drm,
4326			"Unknown drm_i915_perf_open_param flag\n");
4327		return -EINVAL;
4328	}
4329
4330	ret = read_properties_unlocked(perf,
4331				       u64_to_user_ptr(param->properties_ptr),
4332				       param->num_properties,
4333				       &props);
4334	if (ret)
4335		return ret;
4336
4337	gt = props.engine->gt;
4338
4339	mutex_lock(&gt->perf.lock);
4340	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4341	mutex_unlock(&gt->perf.lock);
4342
4343	return ret;
4344}
4345
4346/**
4347 * i915_perf_register - exposes i915-perf to userspace
4348 * @i915: i915 device instance
4349 *
4350 * In particular OA metric sets are advertised under a sysfs metrics/
4351 * directory allowing userspace to enumerate valid IDs that can be
4352 * used to open an i915-perf stream.
4353 */
4354void i915_perf_register(struct drm_i915_private *i915)
4355{
4356	struct i915_perf *perf = &i915->perf;
4357	struct intel_gt *gt = to_gt(i915);
4358
4359	if (!perf->i915)
4360		return;
4361
4362	/* To be sure we're synchronized with an attempted
4363	 * i915_perf_open_ioctl(); considering that we register after
4364	 * being exposed to userspace.
4365	 */
4366	mutex_lock(&gt->perf.lock);
4367
4368	perf->metrics_kobj =
4369		kobject_create_and_add("metrics",
4370				       &i915->drm.primary->kdev->kobj);
4371
4372	mutex_unlock(&gt->perf.lock);
4373}
4374
4375/**
4376 * i915_perf_unregister - hide i915-perf from userspace
4377 * @i915: i915 device instance
4378 *
4379 * i915-perf state cleanup is split up into an 'unregister' and
4380 * 'deinit' phase where the interface is first hidden from
4381 * userspace by i915_perf_unregister() before cleaning up
4382 * remaining state in i915_perf_fini().
4383 */
4384void i915_perf_unregister(struct drm_i915_private *i915)
4385{
4386	struct i915_perf *perf = &i915->perf;
4387
4388	if (!perf->metrics_kobj)
4389		return;
4390
4391	kobject_put(perf->metrics_kobj);
4392	perf->metrics_kobj = NULL;
4393}
4394
4395static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4396{
4397	static const i915_reg_t flex_eu_regs[] = {
4398		EU_PERF_CNTL0,
4399		EU_PERF_CNTL1,
4400		EU_PERF_CNTL2,
4401		EU_PERF_CNTL3,
4402		EU_PERF_CNTL4,
4403		EU_PERF_CNTL5,
4404		EU_PERF_CNTL6,
4405	};
4406	int i;
4407
4408	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4409		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4410			return true;
4411	}
4412	return false;
4413}
4414
4415static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4416{
4417	while (table->start || table->end) {
4418		if (addr >= table->start && addr <= table->end)
4419			return true;
4420
4421		table++;
4422	}
4423
4424	return false;
4425}
4426
4427#define REG_EQUAL(addr, mmio) \
4428	((addr) == i915_mmio_reg_offset(mmio))
4429
4430static const struct i915_range gen7_oa_b_counters[] = {
4431	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4432	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4433	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4434	{}
4435};
4436
4437static const struct i915_range gen12_oa_b_counters[] = {
4438	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4439	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4440	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4441	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4442	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4443	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4444	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4445	{}
4446};
4447
4448static const struct i915_range mtl_oam_b_counters[] = {
4449	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4450	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4451	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4452	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4453	{}
4454};
4455
4456static const struct i915_range xehp_oa_b_counters[] = {
4457	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4458	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4459	{}
4460};
4461
4462static const struct i915_range gen7_oa_mux_regs[] = {
4463	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4464	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4465	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4466	{}
4467};
4468
4469static const struct i915_range hsw_oa_mux_regs[] = {
4470	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4471	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4472	{ .start = 0x25100, .end = 0x2ff90 },
4473	{}
4474};
4475
4476static const struct i915_range chv_oa_mux_regs[] = {
4477	{ .start = 0x182300, .end = 0x1823a4 },
4478	{}
4479};
4480
4481static const struct i915_range gen8_oa_mux_regs[] = {
4482	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4483	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4484	{}
4485};
4486
4487static const struct i915_range gen11_oa_mux_regs[] = {
4488	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4489	{}
4490};
4491
4492static const struct i915_range gen12_oa_mux_regs[] = {
4493	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4494	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4495	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4496	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4497	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4498	{}
4499};
4500
4501/*
4502 * Ref: 14010536224:
4503 * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4504 */
4505static const struct i915_range mtl_oa_mux_regs[] = {
4506	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4507	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4508	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4509	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4510	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4511	{}
4512};
4513
4514static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4515{
4516	return reg_in_range_table(addr, gen7_oa_b_counters);
4517}
4518
4519static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4520{
4521	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4522		reg_in_range_table(addr, gen8_oa_mux_regs);
4523}
4524
4525static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4526{
4527	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4528		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4529		reg_in_range_table(addr, gen11_oa_mux_regs);
4530}
4531
4532static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4533{
4534	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4535		reg_in_range_table(addr, hsw_oa_mux_regs);
4536}
4537
4538static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4539{
4540	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4541		reg_in_range_table(addr, chv_oa_mux_regs);
4542}
4543
4544static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4545{
4546	return reg_in_range_table(addr, gen12_oa_b_counters);
4547}
4548
4549static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4550{
4551	if (HAS_OAM(perf->i915) &&
4552	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4553		return reg_in_range_table(addr, mtl_oam_b_counters);
4554
4555	return false;
4556}
4557
4558static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4559{
4560	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4561		reg_in_range_table(addr, gen12_oa_b_counters) ||
4562		mtl_is_valid_oam_b_counter_addr(perf, addr);
4563}
4564
4565static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4566{
4567	if (IS_METEORLAKE(perf->i915))
4568		return reg_in_range_table(addr, mtl_oa_mux_regs);
4569	else
4570		return reg_in_range_table(addr, gen12_oa_mux_regs);
4571}
4572
4573static u32 mask_reg_value(u32 reg, u32 val)
4574{
4575	/* HALF_SLICE_CHICKEN2 is programmed with a the
4576	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4577	 * programmed by userspace doesn't change this.
4578	 */
4579	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4580		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4581
4582	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4583	 * indicated by its name and a bunch of selection fields used by OA
4584	 * configs.
4585	 */
4586	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4587		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4588
4589	return val;
4590}
4591
4592static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4593					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4594					 u32 __user *regs,
4595					 u32 n_regs)
4596{
4597	struct i915_oa_reg *oa_regs;
4598	int err;
4599	u32 i;
4600
4601	if (!n_regs)
4602		return NULL;
4603
4604	/* No is_valid function means we're not allowing any register to be programmed. */
4605	GEM_BUG_ON(!is_valid);
4606	if (!is_valid)
4607		return ERR_PTR(-EINVAL);
4608
4609	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4610	if (!oa_regs)
4611		return ERR_PTR(-ENOMEM);
4612
4613	for (i = 0; i < n_regs; i++) {
4614		u32 addr, value;
4615
4616		err = get_user(addr, regs);
4617		if (err)
4618			goto addr_err;
4619
4620		if (!is_valid(perf, addr)) {
4621			drm_dbg(&perf->i915->drm,
4622				"Invalid oa_reg address: %X\n", addr);
4623			err = -EINVAL;
4624			goto addr_err;
4625		}
4626
4627		err = get_user(value, regs + 1);
4628		if (err)
4629			goto addr_err;
4630
4631		oa_regs[i].addr = _MMIO(addr);
4632		oa_regs[i].value = mask_reg_value(addr, value);
4633
4634		regs += 2;
4635	}
4636
4637	return oa_regs;
4638
4639addr_err:
4640	kfree(oa_regs);
4641	return ERR_PTR(err);
4642}
4643
4644static ssize_t show_dynamic_id(struct kobject *kobj,
4645			       struct kobj_attribute *attr,
4646			       char *buf)
4647{
4648	struct i915_oa_config *oa_config =
4649		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4650
4651	return sprintf(buf, "%d\n", oa_config->id);
4652}
4653
4654static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4655					 struct i915_oa_config *oa_config)
4656{
4657	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4658	oa_config->sysfs_metric_id.attr.name = "id";
4659	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4660	oa_config->sysfs_metric_id.show = show_dynamic_id;
4661	oa_config->sysfs_metric_id.store = NULL;
4662
4663	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4664	oa_config->attrs[1] = NULL;
4665
4666	oa_config->sysfs_metric.name = oa_config->uuid;
4667	oa_config->sysfs_metric.attrs = oa_config->attrs;
4668
4669	return sysfs_create_group(perf->metrics_kobj,
4670				  &oa_config->sysfs_metric);
4671}
4672
4673/**
4674 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4675 * @dev: drm device
4676 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4677 *        userspace (unvalidated)
4678 * @file: drm file
4679 *
4680 * Validates the submitted OA register to be saved into a new OA config that
4681 * can then be used for programming the OA unit and its NOA network.
4682 *
4683 * Returns: A new allocated config number to be used with the perf open ioctl
4684 * or a negative error code on failure.
4685 */
4686int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4687			       struct drm_file *file)
4688{
4689	struct i915_perf *perf = &to_i915(dev)->perf;
4690	struct drm_i915_perf_oa_config *args = data;
4691	struct i915_oa_config *oa_config, *tmp;
4692	struct i915_oa_reg *regs;
4693	int err, id;
4694
4695	if (!perf->i915)
4696		return -ENOTSUPP;
4697
4698	if (!perf->metrics_kobj) {
4699		drm_dbg(&perf->i915->drm,
4700			"OA metrics weren't advertised via sysfs\n");
4701		return -EINVAL;
4702	}
4703
4704	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4705		drm_dbg(&perf->i915->drm,
4706			"Insufficient privileges to add i915 OA config\n");
4707		return -EACCES;
4708	}
4709
4710	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4711	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4712	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4713		drm_dbg(&perf->i915->drm,
4714			"No OA registers given\n");
4715		return -EINVAL;
4716	}
4717
4718	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4719	if (!oa_config) {
4720		drm_dbg(&perf->i915->drm,
4721			"Failed to allocate memory for the OA config\n");
4722		return -ENOMEM;
4723	}
4724
4725	oa_config->perf = perf;
4726	kref_init(&oa_config->ref);
4727
4728	if (!uuid_is_valid(args->uuid)) {
4729		drm_dbg(&perf->i915->drm,
4730			"Invalid uuid format for OA config\n");
4731		err = -EINVAL;
4732		goto reg_err;
4733	}
4734
4735	/* Last character in oa_config->uuid will be 0 because oa_config is
4736	 * kzalloc.
4737	 */
4738	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4739
4740	oa_config->mux_regs_len = args->n_mux_regs;
4741	regs = alloc_oa_regs(perf,
4742			     perf->ops.is_valid_mux_reg,
4743			     u64_to_user_ptr(args->mux_regs_ptr),
4744			     args->n_mux_regs);
4745
4746	if (IS_ERR(regs)) {
4747		drm_dbg(&perf->i915->drm,
4748			"Failed to create OA config for mux_regs\n");
4749		err = PTR_ERR(regs);
4750		goto reg_err;
4751	}
4752	oa_config->mux_regs = regs;
4753
4754	oa_config->b_counter_regs_len = args->n_boolean_regs;
4755	regs = alloc_oa_regs(perf,
4756			     perf->ops.is_valid_b_counter_reg,
4757			     u64_to_user_ptr(args->boolean_regs_ptr),
4758			     args->n_boolean_regs);
4759
4760	if (IS_ERR(regs)) {
4761		drm_dbg(&perf->i915->drm,
4762			"Failed to create OA config for b_counter_regs\n");
4763		err = PTR_ERR(regs);
4764		goto reg_err;
4765	}
4766	oa_config->b_counter_regs = regs;
4767
4768	if (GRAPHICS_VER(perf->i915) < 8) {
4769		if (args->n_flex_regs != 0) {
4770			err = -EINVAL;
4771			goto reg_err;
4772		}
4773	} else {
4774		oa_config->flex_regs_len = args->n_flex_regs;
4775		regs = alloc_oa_regs(perf,
4776				     perf->ops.is_valid_flex_reg,
4777				     u64_to_user_ptr(args->flex_regs_ptr),
4778				     args->n_flex_regs);
4779
4780		if (IS_ERR(regs)) {
4781			drm_dbg(&perf->i915->drm,
4782				"Failed to create OA config for flex_regs\n");
4783			err = PTR_ERR(regs);
4784			goto reg_err;
4785		}
4786		oa_config->flex_regs = regs;
4787	}
4788
4789	err = mutex_lock_interruptible(&perf->metrics_lock);
4790	if (err)
4791		goto reg_err;
4792
4793	/* We shouldn't have too many configs, so this iteration shouldn't be
4794	 * too costly.
4795	 */
4796	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4797		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4798			drm_dbg(&perf->i915->drm,
4799				"OA config already exists with this uuid\n");
4800			err = -EADDRINUSE;
4801			goto sysfs_err;
4802		}
4803	}
4804
4805	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4806	if (err) {
4807		drm_dbg(&perf->i915->drm,
4808			"Failed to create sysfs entry for OA config\n");
4809		goto sysfs_err;
4810	}
4811
4812	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4813	oa_config->id = idr_alloc(&perf->metrics_idr,
4814				  oa_config, 2,
4815				  0, GFP_KERNEL);
4816	if (oa_config->id < 0) {
4817		drm_dbg(&perf->i915->drm,
4818			"Failed to create sysfs entry for OA config\n");
4819		err = oa_config->id;
4820		goto sysfs_err;
4821	}
4822	id = oa_config->id;
4823
4824	drm_dbg(&perf->i915->drm,
4825		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4826	mutex_unlock(&perf->metrics_lock);
4827
4828	return id;
4829
4830sysfs_err:
4831	mutex_unlock(&perf->metrics_lock);
4832reg_err:
4833	i915_oa_config_put(oa_config);
4834	drm_dbg(&perf->i915->drm,
4835		"Failed to add new OA config\n");
4836	return err;
4837}
4838
4839/**
4840 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4841 * @dev: drm device
4842 * @data: ioctl data (pointer to u64 integer) copied from userspace
4843 * @file: drm file
4844 *
4845 * Configs can be removed while being used, the will stop appearing in sysfs
4846 * and their content will be freed when the stream using the config is closed.
4847 *
4848 * Returns: 0 on success or a negative error code on failure.
4849 */
4850int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4851				  struct drm_file *file)
4852{
4853	struct i915_perf *perf = &to_i915(dev)->perf;
4854	u64 *arg = data;
4855	struct i915_oa_config *oa_config;
4856	int ret;
4857
4858	if (!perf->i915)
4859		return -ENOTSUPP;
4860
4861	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4862		drm_dbg(&perf->i915->drm,
4863			"Insufficient privileges to remove i915 OA config\n");
4864		return -EACCES;
4865	}
4866
4867	ret = mutex_lock_interruptible(&perf->metrics_lock);
4868	if (ret)
4869		return ret;
4870
4871	oa_config = idr_find(&perf->metrics_idr, *arg);
4872	if (!oa_config) {
4873		drm_dbg(&perf->i915->drm,
4874			"Failed to remove unknown OA config\n");
4875		ret = -ENOENT;
4876		goto err_unlock;
4877	}
4878
4879	GEM_BUG_ON(*arg != oa_config->id);
4880
4881	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4882
4883	idr_remove(&perf->metrics_idr, *arg);
4884
4885	mutex_unlock(&perf->metrics_lock);
4886
4887	drm_dbg(&perf->i915->drm,
4888		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4889
4890	i915_oa_config_put(oa_config);
4891
4892	return 0;
4893
4894err_unlock:
4895	mutex_unlock(&perf->metrics_lock);
4896	return ret;
4897}
4898
4899static struct ctl_table oa_table[] = {
4900	{
4901	 .procname = "perf_stream_paranoid",
4902	 .data = &i915_perf_stream_paranoid,
4903	 .maxlen = sizeof(i915_perf_stream_paranoid),
4904	 .mode = 0644,
4905	 .proc_handler = proc_dointvec_minmax,
4906	 .extra1 = SYSCTL_ZERO,
4907	 .extra2 = SYSCTL_ONE,
4908	 },
4909	{
4910	 .procname = "oa_max_sample_rate",
4911	 .data = &i915_oa_max_sample_rate,
4912	 .maxlen = sizeof(i915_oa_max_sample_rate),
4913	 .mode = 0644,
4914	 .proc_handler = proc_dointvec_minmax,
4915	 .extra1 = SYSCTL_ZERO,
4916	 .extra2 = &oa_sample_rate_hard_limit,
4917	 },
4918	{}
4919};
4920
4921static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4922{
4923	return 1;
4924}
4925
4926static u32 __oam_engine_group(struct intel_engine_cs *engine)
4927{
4928	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4929		/*
4930		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4931		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4932		 */
4933		drm_WARN_ON(&engine->i915->drm,
4934			    engine->gt->type != GT_MEDIA);
4935
4936		return PERF_GROUP_OAM_SAMEDIA_0;
4937	}
4938
4939	return PERF_GROUP_INVALID;
4940}
4941
4942static u32 __oa_engine_group(struct intel_engine_cs *engine)
4943{
4944	switch (engine->class) {
4945	case RENDER_CLASS:
4946		return PERF_GROUP_OAG;
4947
4948	case VIDEO_DECODE_CLASS:
4949	case VIDEO_ENHANCEMENT_CLASS:
4950		return __oam_engine_group(engine);
4951
4952	default:
4953		return PERF_GROUP_INVALID;
4954	}
4955}
4956
4957static struct i915_perf_regs __oam_regs(u32 base)
4958{
4959	return (struct i915_perf_regs) {
4960		base,
4961		GEN12_OAM_HEAD_POINTER(base),
4962		GEN12_OAM_TAIL_POINTER(base),
4963		GEN12_OAM_BUFFER(base),
4964		GEN12_OAM_CONTEXT_CONTROL(base),
4965		GEN12_OAM_CONTROL(base),
4966		GEN12_OAM_DEBUG(base),
4967		GEN12_OAM_STATUS(base),
4968		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4969	};
4970}
4971
4972static struct i915_perf_regs __oag_regs(void)
4973{
4974	return (struct i915_perf_regs) {
4975		0,
4976		GEN12_OAG_OAHEADPTR,
4977		GEN12_OAG_OATAILPTR,
4978		GEN12_OAG_OABUFFER,
4979		GEN12_OAG_OAGLBCTXCTRL,
4980		GEN12_OAG_OACONTROL,
4981		GEN12_OAG_OA_DEBUG,
4982		GEN12_OAG_OASTATUS,
4983		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4984	};
4985}
4986
4987static void oa_init_groups(struct intel_gt *gt)
4988{
4989	int i, num_groups = gt->perf.num_perf_groups;
4990
4991	for (i = 0; i < num_groups; i++) {
4992		struct i915_perf_group *g = &gt->perf.group[i];
4993
4994		/* Fused off engines can result in a group with num_engines == 0 */
4995		if (g->num_engines == 0)
4996			continue;
4997
4998		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4999			g->regs = __oag_regs();
5000			g->type = TYPE_OAG;
5001		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
5002			g->regs = __oam_regs(mtl_oa_base[i]);
5003			g->type = TYPE_OAM;
5004		}
5005	}
5006}
5007
5008static int oa_init_gt(struct intel_gt *gt)
5009{
5010	u32 num_groups = num_perf_groups_per_gt(gt);
5011	struct intel_engine_cs *engine;
5012	struct i915_perf_group *g;
5013	intel_engine_mask_t tmp;
5014
5015	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
5016	if (!g)
5017		return -ENOMEM;
5018
5019	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
5020		u32 index = __oa_engine_group(engine);
5021
5022		engine->oa_group = NULL;
5023		if (index < num_groups) {
5024			g[index].num_engines++;
5025			engine->oa_group = &g[index];
5026		}
5027	}
5028
5029	gt->perf.num_perf_groups = num_groups;
5030	gt->perf.group = g;
5031
5032	oa_init_groups(gt);
5033
5034	return 0;
5035}
5036
5037static int oa_init_engine_groups(struct i915_perf *perf)
5038{
5039	struct intel_gt *gt;
5040	int i, ret;
5041
5042	for_each_gt(gt, perf->i915, i) {
5043		ret = oa_init_gt(gt);
5044		if (ret)
5045			return ret;
5046	}
5047
5048	return 0;
5049}
5050
5051static void oa_init_supported_formats(struct i915_perf *perf)
5052{
5053	struct drm_i915_private *i915 = perf->i915;
5054	enum intel_platform platform = INTEL_INFO(i915)->platform;
5055
5056	switch (platform) {
5057	case INTEL_HASWELL:
5058		oa_format_add(perf, I915_OA_FORMAT_A13);
5059		oa_format_add(perf, I915_OA_FORMAT_A13);
5060		oa_format_add(perf, I915_OA_FORMAT_A29);
5061		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5062		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5063		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5064		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5065		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5066		break;
5067
5068	case INTEL_BROADWELL:
5069	case INTEL_CHERRYVIEW:
5070	case INTEL_SKYLAKE:
5071	case INTEL_BROXTON:
5072	case INTEL_KABYLAKE:
5073	case INTEL_GEMINILAKE:
5074	case INTEL_COFFEELAKE:
5075	case INTEL_COMETLAKE:
5076	case INTEL_ICELAKE:
5077	case INTEL_ELKHARTLAKE:
5078	case INTEL_JASPERLAKE:
5079	case INTEL_TIGERLAKE:
5080	case INTEL_ROCKETLAKE:
5081	case INTEL_DG1:
5082	case INTEL_ALDERLAKE_S:
5083	case INTEL_ALDERLAKE_P:
5084		oa_format_add(perf, I915_OA_FORMAT_A12);
5085		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5086		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5087		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5088		break;
5089
5090	case INTEL_DG2:
5091		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5092		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5093		break;
5094
5095	case INTEL_METEORLAKE:
5096		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5097		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5098		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5099		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5100		break;
5101
5102	default:
5103		MISSING_CASE(platform);
5104	}
5105}
5106
5107static void i915_perf_init_info(struct drm_i915_private *i915)
5108{
5109	struct i915_perf *perf = &i915->perf;
5110
5111	switch (GRAPHICS_VER(i915)) {
5112	case 8:
5113		perf->ctx_oactxctrl_offset = 0x120;
5114		perf->ctx_flexeu0_offset = 0x2ce;
5115		perf->gen8_valid_ctx_bit = BIT(25);
5116		break;
5117	case 9:
5118		perf->ctx_oactxctrl_offset = 0x128;
5119		perf->ctx_flexeu0_offset = 0x3de;
5120		perf->gen8_valid_ctx_bit = BIT(16);
5121		break;
5122	case 11:
5123		perf->ctx_oactxctrl_offset = 0x124;
5124		perf->ctx_flexeu0_offset = 0x78e;
5125		perf->gen8_valid_ctx_bit = BIT(16);
5126		break;
5127	case 12:
5128		perf->gen8_valid_ctx_bit = BIT(16);
5129		/*
5130		 * Calculate offset at runtime in oa_pin_context for gen12 and
5131		 * cache the value in perf->ctx_oactxctrl_offset.
5132		 */
5133		break;
5134	default:
5135		MISSING_CASE(GRAPHICS_VER(i915));
5136	}
5137}
5138
5139/**
5140 * i915_perf_init - initialize i915-perf state on module bind
5141 * @i915: i915 device instance
5142 *
5143 * Initializes i915-perf state without exposing anything to userspace.
5144 *
5145 * Note: i915-perf initialization is split into an 'init' and 'register'
5146 * phase with the i915_perf_register() exposing state to userspace.
5147 */
5148int i915_perf_init(struct drm_i915_private *i915)
5149{
5150	struct i915_perf *perf = &i915->perf;
5151
5152	perf->oa_formats = oa_formats;
5153	if (IS_HASWELL(i915)) {
5154		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5155		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5156		perf->ops.is_valid_flex_reg = NULL;
5157		perf->ops.enable_metric_set = hsw_enable_metric_set;
5158		perf->ops.disable_metric_set = hsw_disable_metric_set;
5159		perf->ops.oa_enable = gen7_oa_enable;
5160		perf->ops.oa_disable = gen7_oa_disable;
5161		perf->ops.read = gen7_oa_read;
5162		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5163	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5164		/* Note: that although we could theoretically also support the
5165		 * legacy ringbuffer mode on BDW (and earlier iterations of
5166		 * this driver, before upstreaming did this) it didn't seem
5167		 * worth the complexity to maintain now that BDW+ enable
5168		 * execlist mode by default.
5169		 */
5170		perf->ops.read = gen8_oa_read;
5171		i915_perf_init_info(i915);
5172
5173		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5174			perf->ops.is_valid_b_counter_reg =
5175				gen7_is_valid_b_counter_addr;
5176			perf->ops.is_valid_mux_reg =
5177				gen8_is_valid_mux_addr;
5178			perf->ops.is_valid_flex_reg =
5179				gen8_is_valid_flex_addr;
5180
5181			if (IS_CHERRYVIEW(i915)) {
5182				perf->ops.is_valid_mux_reg =
5183					chv_is_valid_mux_addr;
5184			}
5185
5186			perf->ops.oa_enable = gen8_oa_enable;
5187			perf->ops.oa_disable = gen8_oa_disable;
5188			perf->ops.enable_metric_set = gen8_enable_metric_set;
5189			perf->ops.disable_metric_set = gen8_disable_metric_set;
5190			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5191		} else if (GRAPHICS_VER(i915) == 11) {
5192			perf->ops.is_valid_b_counter_reg =
5193				gen7_is_valid_b_counter_addr;
5194			perf->ops.is_valid_mux_reg =
5195				gen11_is_valid_mux_addr;
5196			perf->ops.is_valid_flex_reg =
5197				gen8_is_valid_flex_addr;
5198
5199			perf->ops.oa_enable = gen8_oa_enable;
5200			perf->ops.oa_disable = gen8_oa_disable;
5201			perf->ops.enable_metric_set = gen8_enable_metric_set;
5202			perf->ops.disable_metric_set = gen11_disable_metric_set;
5203			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5204		} else if (GRAPHICS_VER(i915) == 12) {
5205			perf->ops.is_valid_b_counter_reg =
5206				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5207				xehp_is_valid_b_counter_addr :
5208				gen12_is_valid_b_counter_addr;
5209			perf->ops.is_valid_mux_reg =
5210				gen12_is_valid_mux_addr;
5211			perf->ops.is_valid_flex_reg =
5212				gen8_is_valid_flex_addr;
5213
5214			perf->ops.oa_enable = gen12_oa_enable;
5215			perf->ops.oa_disable = gen12_oa_disable;
5216			perf->ops.enable_metric_set = gen12_enable_metric_set;
5217			perf->ops.disable_metric_set = gen12_disable_metric_set;
5218			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5219		}
5220	}
5221
5222	if (perf->ops.enable_metric_set) {
5223		struct intel_gt *gt;
5224		int i, ret;
5225
5226		for_each_gt(gt, i915, i)
5227			mutex_init(&gt->perf.lock);
5228
5229		/* Choose a representative limit */
5230		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5231
5232		mutex_init(&perf->metrics_lock);
5233		idr_init_base(&perf->metrics_idr, 1);
5234
5235		/* We set up some ratelimit state to potentially throttle any
5236		 * _NOTES about spurious, invalid OA reports which we don't
5237		 * forward to userspace.
5238		 *
5239		 * We print a _NOTE about any throttling when closing the
5240		 * stream instead of waiting until driver _fini which no one
5241		 * would ever see.
5242		 *
5243		 * Using the same limiting factors as printk_ratelimit()
5244		 */
5245		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5246		/* Since we use a DRM_NOTE for spurious reports it would be
5247		 * inconsistent to let __ratelimit() automatically print a
5248		 * warning for throttling.
5249		 */
5250		ratelimit_set_flags(&perf->spurious_report_rs,
5251				    RATELIMIT_MSG_ON_RELEASE);
5252
5253		ratelimit_state_init(&perf->tail_pointer_race,
5254				     5 * HZ, 10);
5255		ratelimit_set_flags(&perf->tail_pointer_race,
5256				    RATELIMIT_MSG_ON_RELEASE);
5257
5258		atomic64_set(&perf->noa_programming_delay,
5259			     500 * 1000 /* 500us */);
5260
5261		perf->i915 = i915;
5262
5263		ret = oa_init_engine_groups(perf);
5264		if (ret) {
5265			drm_err(&i915->drm,
5266				"OA initialization failed %d\n", ret);
5267			return ret;
5268		}
5269
5270		oa_init_supported_formats(perf);
5271	}
5272
5273	return 0;
5274}
5275
5276static int destroy_config(int id, void *p, void *data)
5277{
5278	i915_oa_config_put(p);
5279	return 0;
5280}
5281
5282int i915_perf_sysctl_register(void)
5283{
5284	sysctl_header = register_sysctl("dev/i915", oa_table);
5285	return 0;
5286}
5287
5288void i915_perf_sysctl_unregister(void)
5289{
5290	unregister_sysctl_table(sysctl_header);
5291}
5292
5293/**
5294 * i915_perf_fini - Counter part to i915_perf_init()
5295 * @i915: i915 device instance
5296 */
5297void i915_perf_fini(struct drm_i915_private *i915)
5298{
5299	struct i915_perf *perf = &i915->perf;
5300	struct intel_gt *gt;
5301	int i;
5302
5303	if (!perf->i915)
5304		return;
5305
5306	for_each_gt(gt, perf->i915, i)
5307		kfree(gt->perf.group);
5308
5309	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5310	idr_destroy(&perf->metrics_idr);
5311
5312	memset(&perf->ops, 0, sizeof(perf->ops));
5313	perf->i915 = NULL;
5314}
5315
5316/**
5317 * i915_perf_ioctl_version - Version of the i915-perf subsystem
5318 * @i915: The i915 device
5319 *
5320 * This version number is used by userspace to detect available features.
5321 */
5322int i915_perf_ioctl_version(struct drm_i915_private *i915)
5323{
5324	/*
5325	 * 1: Initial version
5326	 *   I915_PERF_IOCTL_ENABLE
5327	 *   I915_PERF_IOCTL_DISABLE
5328	 *
5329	 * 2: Added runtime modification of OA config.
5330	 *   I915_PERF_IOCTL_CONFIG
5331	 *
5332	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5333	 *    preemption on a particular context so that performance data is
5334	 *    accessible from a delta of MI_RPC reports without looking at the
5335	 *    OA buffer.
5336	 *
5337	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5338	 *    be run for the duration of the performance recording based on
5339	 *    their SSEU configuration.
5340	 *
5341	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5342	 *    interval for the hrtimer used to check for OA data.
5343	 *
5344	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5345	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5346	 *
5347	 * 7: Add support for video decode and enhancement classes.
5348	 */
5349
5350	/*
5351	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5352	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5353	 * to indicate that OA media is not supported.
5354	 */
5355	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5356		struct intel_gt *gt;
5357		int i;
5358
5359		for_each_gt(gt, i915, i) {
5360			if (gt->type == GT_MEDIA &&
5361			    intel_check_bios_c6_setup(&gt->rc6))
5362				return 6;
5363		}
5364	}
5365
5366	return 7;
5367}
5368
5369#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5370#include "selftests/i915_perf.c"
5371#endif
5372