162306a36Sopenharmony_ci/*
262306a36Sopenharmony_ci * SPDX-License-Identifier: MIT
362306a36Sopenharmony_ci *
462306a36Sopenharmony_ci * Copyright © 2019 Intel Corporation
562306a36Sopenharmony_ci */
662306a36Sopenharmony_ci
762306a36Sopenharmony_ci#include <linux/debugobjects.h>
862306a36Sopenharmony_ci
962306a36Sopenharmony_ci#include "gt/intel_context.h"
1062306a36Sopenharmony_ci#include "gt/intel_engine_heartbeat.h"
1162306a36Sopenharmony_ci#include "gt/intel_engine_pm.h"
1262306a36Sopenharmony_ci#include "gt/intel_ring.h"
1362306a36Sopenharmony_ci
1462306a36Sopenharmony_ci#include "i915_drv.h"
1562306a36Sopenharmony_ci#include "i915_active.h"
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_ci/*
1862306a36Sopenharmony_ci * Active refs memory management
1962306a36Sopenharmony_ci *
2062306a36Sopenharmony_ci * To be more economical with memory, we reap all the i915_active trees as
2162306a36Sopenharmony_ci * they idle (when we know the active requests are inactive) and allocate the
2262306a36Sopenharmony_ci * nodes from a local slab cache to hopefully reduce the fragmentation.
2362306a36Sopenharmony_ci */
2462306a36Sopenharmony_cistatic struct kmem_cache *slab_cache;
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_cistruct active_node {
2762306a36Sopenharmony_ci	struct rb_node node;
2862306a36Sopenharmony_ci	struct i915_active_fence base;
2962306a36Sopenharmony_ci	struct i915_active *ref;
3062306a36Sopenharmony_ci	u64 timeline;
3162306a36Sopenharmony_ci};
3262306a36Sopenharmony_ci
3362306a36Sopenharmony_ci#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_cistatic inline struct active_node *
3662306a36Sopenharmony_cinode_from_active(struct i915_active_fence *active)
3762306a36Sopenharmony_ci{
3862306a36Sopenharmony_ci	return container_of(active, struct active_node, base);
3962306a36Sopenharmony_ci}
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_ci#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
4262306a36Sopenharmony_ci
4362306a36Sopenharmony_cistatic inline bool is_barrier(const struct i915_active_fence *active)
4462306a36Sopenharmony_ci{
4562306a36Sopenharmony_ci	return IS_ERR(rcu_access_pointer(active->fence));
4662306a36Sopenharmony_ci}
4762306a36Sopenharmony_ci
4862306a36Sopenharmony_cistatic inline struct llist_node *barrier_to_ll(struct active_node *node)
4962306a36Sopenharmony_ci{
5062306a36Sopenharmony_ci	GEM_BUG_ON(!is_barrier(&node->base));
5162306a36Sopenharmony_ci	return (struct llist_node *)&node->base.cb.node;
5262306a36Sopenharmony_ci}
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_cistatic inline struct intel_engine_cs *
5562306a36Sopenharmony_ci__barrier_to_engine(struct active_node *node)
5662306a36Sopenharmony_ci{
5762306a36Sopenharmony_ci	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
5862306a36Sopenharmony_ci}
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_cistatic inline struct intel_engine_cs *
6162306a36Sopenharmony_cibarrier_to_engine(struct active_node *node)
6262306a36Sopenharmony_ci{
6362306a36Sopenharmony_ci	GEM_BUG_ON(!is_barrier(&node->base));
6462306a36Sopenharmony_ci	return __barrier_to_engine(node);
6562306a36Sopenharmony_ci}
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_cistatic inline struct active_node *barrier_from_ll(struct llist_node *x)
6862306a36Sopenharmony_ci{
6962306a36Sopenharmony_ci	return container_of((struct list_head *)x,
7062306a36Sopenharmony_ci			    struct active_node, base.cb.node);
7162306a36Sopenharmony_ci}
7262306a36Sopenharmony_ci
7362306a36Sopenharmony_ci#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
7462306a36Sopenharmony_ci
7562306a36Sopenharmony_cistatic void *active_debug_hint(void *addr)
7662306a36Sopenharmony_ci{
7762306a36Sopenharmony_ci	struct i915_active *ref = addr;
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_ci	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
8062306a36Sopenharmony_ci}
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_cistatic const struct debug_obj_descr active_debug_desc = {
8362306a36Sopenharmony_ci	.name = "i915_active",
8462306a36Sopenharmony_ci	.debug_hint = active_debug_hint,
8562306a36Sopenharmony_ci};
8662306a36Sopenharmony_ci
8762306a36Sopenharmony_cistatic void debug_active_init(struct i915_active *ref)
8862306a36Sopenharmony_ci{
8962306a36Sopenharmony_ci	debug_object_init(ref, &active_debug_desc);
9062306a36Sopenharmony_ci}
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_cistatic void debug_active_activate(struct i915_active *ref)
9362306a36Sopenharmony_ci{
9462306a36Sopenharmony_ci	lockdep_assert_held(&ref->tree_lock);
9562306a36Sopenharmony_ci	debug_object_activate(ref, &active_debug_desc);
9662306a36Sopenharmony_ci}
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_cistatic void debug_active_deactivate(struct i915_active *ref)
9962306a36Sopenharmony_ci{
10062306a36Sopenharmony_ci	lockdep_assert_held(&ref->tree_lock);
10162306a36Sopenharmony_ci	if (!atomic_read(&ref->count)) /* after the last dec */
10262306a36Sopenharmony_ci		debug_object_deactivate(ref, &active_debug_desc);
10362306a36Sopenharmony_ci}
10462306a36Sopenharmony_ci
10562306a36Sopenharmony_cistatic void debug_active_fini(struct i915_active *ref)
10662306a36Sopenharmony_ci{
10762306a36Sopenharmony_ci	debug_object_free(ref, &active_debug_desc);
10862306a36Sopenharmony_ci}
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_cistatic void debug_active_assert(struct i915_active *ref)
11162306a36Sopenharmony_ci{
11262306a36Sopenharmony_ci	debug_object_assert_init(ref, &active_debug_desc);
11362306a36Sopenharmony_ci}
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci#else
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_cistatic inline void debug_active_init(struct i915_active *ref) { }
11862306a36Sopenharmony_cistatic inline void debug_active_activate(struct i915_active *ref) { }
11962306a36Sopenharmony_cistatic inline void debug_active_deactivate(struct i915_active *ref) { }
12062306a36Sopenharmony_cistatic inline void debug_active_fini(struct i915_active *ref) { }
12162306a36Sopenharmony_cistatic inline void debug_active_assert(struct i915_active *ref) { }
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci#endif
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_cistatic void
12662306a36Sopenharmony_ci__active_retire(struct i915_active *ref)
12762306a36Sopenharmony_ci{
12862306a36Sopenharmony_ci	struct rb_root root = RB_ROOT;
12962306a36Sopenharmony_ci	struct active_node *it, *n;
13062306a36Sopenharmony_ci	unsigned long flags;
13162306a36Sopenharmony_ci
13262306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_ci	/* return the unused nodes to our slabcache -- flushing the allocator */
13562306a36Sopenharmony_ci	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
13662306a36Sopenharmony_ci		return;
13762306a36Sopenharmony_ci
13862306a36Sopenharmony_ci	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
13962306a36Sopenharmony_ci	debug_active_deactivate(ref);
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	/* Even if we have not used the cache, we may still have a barrier */
14262306a36Sopenharmony_ci	if (!ref->cache)
14362306a36Sopenharmony_ci		ref->cache = fetch_node(ref->tree.rb_node);
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci	/* Keep the MRU cached node for reuse */
14662306a36Sopenharmony_ci	if (ref->cache) {
14762306a36Sopenharmony_ci		/* Discard all other nodes in the tree */
14862306a36Sopenharmony_ci		rb_erase(&ref->cache->node, &ref->tree);
14962306a36Sopenharmony_ci		root = ref->tree;
15062306a36Sopenharmony_ci
15162306a36Sopenharmony_ci		/* Rebuild the tree with only the cached node */
15262306a36Sopenharmony_ci		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
15362306a36Sopenharmony_ci		rb_insert_color(&ref->cache->node, &ref->tree);
15462306a36Sopenharmony_ci		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
15562306a36Sopenharmony_ci
15662306a36Sopenharmony_ci		/* Make the cached node available for reuse with any timeline */
15762306a36Sopenharmony_ci		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
15862306a36Sopenharmony_ci	}
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci	spin_unlock_irqrestore(&ref->tree_lock, flags);
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci	/* After the final retire, the entire struct may be freed */
16362306a36Sopenharmony_ci	if (ref->retire)
16462306a36Sopenharmony_ci		ref->retire(ref);
16562306a36Sopenharmony_ci
16662306a36Sopenharmony_ci	/* ... except if you wait on it, you must manage your own references! */
16762306a36Sopenharmony_ci	wake_up_var(ref);
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	/* Finally free the discarded timeline tree  */
17062306a36Sopenharmony_ci	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
17162306a36Sopenharmony_ci		GEM_BUG_ON(i915_active_fence_isset(&it->base));
17262306a36Sopenharmony_ci		kmem_cache_free(slab_cache, it);
17362306a36Sopenharmony_ci	}
17462306a36Sopenharmony_ci}
17562306a36Sopenharmony_ci
17662306a36Sopenharmony_cistatic void
17762306a36Sopenharmony_ciactive_work(struct work_struct *wrk)
17862306a36Sopenharmony_ci{
17962306a36Sopenharmony_ci	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
18062306a36Sopenharmony_ci
18162306a36Sopenharmony_ci	GEM_BUG_ON(!atomic_read(&ref->count));
18262306a36Sopenharmony_ci	if (atomic_add_unless(&ref->count, -1, 1))
18362306a36Sopenharmony_ci		return;
18462306a36Sopenharmony_ci
18562306a36Sopenharmony_ci	__active_retire(ref);
18662306a36Sopenharmony_ci}
18762306a36Sopenharmony_ci
18862306a36Sopenharmony_cistatic void
18962306a36Sopenharmony_ciactive_retire(struct i915_active *ref)
19062306a36Sopenharmony_ci{
19162306a36Sopenharmony_ci	GEM_BUG_ON(!atomic_read(&ref->count));
19262306a36Sopenharmony_ci	if (atomic_add_unless(&ref->count, -1, 1))
19362306a36Sopenharmony_ci		return;
19462306a36Sopenharmony_ci
19562306a36Sopenharmony_ci	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
19662306a36Sopenharmony_ci		queue_work(system_unbound_wq, &ref->work);
19762306a36Sopenharmony_ci		return;
19862306a36Sopenharmony_ci	}
19962306a36Sopenharmony_ci
20062306a36Sopenharmony_ci	__active_retire(ref);
20162306a36Sopenharmony_ci}
20262306a36Sopenharmony_ci
20362306a36Sopenharmony_cistatic inline struct dma_fence **
20462306a36Sopenharmony_ci__active_fence_slot(struct i915_active_fence *active)
20562306a36Sopenharmony_ci{
20662306a36Sopenharmony_ci	return (struct dma_fence ** __force)&active->fence;
20762306a36Sopenharmony_ci}
20862306a36Sopenharmony_ci
20962306a36Sopenharmony_cistatic inline bool
21062306a36Sopenharmony_ciactive_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
21162306a36Sopenharmony_ci{
21262306a36Sopenharmony_ci	struct i915_active_fence *active =
21362306a36Sopenharmony_ci		container_of(cb, typeof(*active), cb);
21462306a36Sopenharmony_ci
21562306a36Sopenharmony_ci	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
21662306a36Sopenharmony_ci}
21762306a36Sopenharmony_ci
21862306a36Sopenharmony_cistatic void
21962306a36Sopenharmony_cinode_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
22062306a36Sopenharmony_ci{
22162306a36Sopenharmony_ci	if (active_fence_cb(fence, cb))
22262306a36Sopenharmony_ci		active_retire(container_of(cb, struct active_node, base.cb)->ref);
22362306a36Sopenharmony_ci}
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_cistatic void
22662306a36Sopenharmony_ciexcl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
22762306a36Sopenharmony_ci{
22862306a36Sopenharmony_ci	if (active_fence_cb(fence, cb))
22962306a36Sopenharmony_ci		active_retire(container_of(cb, struct i915_active, excl.cb));
23062306a36Sopenharmony_ci}
23162306a36Sopenharmony_ci
23262306a36Sopenharmony_cistatic struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
23362306a36Sopenharmony_ci{
23462306a36Sopenharmony_ci	struct active_node *it;
23562306a36Sopenharmony_ci
23662306a36Sopenharmony_ci	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
23762306a36Sopenharmony_ci
23862306a36Sopenharmony_ci	/*
23962306a36Sopenharmony_ci	 * We track the most recently used timeline to skip a rbtree search
24062306a36Sopenharmony_ci	 * for the common case, under typical loads we never need the rbtree
24162306a36Sopenharmony_ci	 * at all. We can reuse the last slot if it is empty, that is
24262306a36Sopenharmony_ci	 * after the previous activity has been retired, or if it matches the
24362306a36Sopenharmony_ci	 * current timeline.
24462306a36Sopenharmony_ci	 */
24562306a36Sopenharmony_ci	it = READ_ONCE(ref->cache);
24662306a36Sopenharmony_ci	if (it) {
24762306a36Sopenharmony_ci		u64 cached = READ_ONCE(it->timeline);
24862306a36Sopenharmony_ci
24962306a36Sopenharmony_ci		/* Once claimed, this slot will only belong to this idx */
25062306a36Sopenharmony_ci		if (cached == idx)
25162306a36Sopenharmony_ci			return it;
25262306a36Sopenharmony_ci
25362306a36Sopenharmony_ci		/*
25462306a36Sopenharmony_ci		 * An unclaimed cache [.timeline=0] can only be claimed once.
25562306a36Sopenharmony_ci		 *
25662306a36Sopenharmony_ci		 * If the value is already non-zero, some other thread has
25762306a36Sopenharmony_ci		 * claimed the cache and we know that is does not match our
25862306a36Sopenharmony_ci		 * idx. If, and only if, the timeline is currently zero is it
25962306a36Sopenharmony_ci		 * worth competing to claim it atomically for ourselves (for
26062306a36Sopenharmony_ci		 * only the winner of that race will cmpxchg return the old
26162306a36Sopenharmony_ci		 * value of 0).
26262306a36Sopenharmony_ci		 */
26362306a36Sopenharmony_ci		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
26462306a36Sopenharmony_ci			return it;
26562306a36Sopenharmony_ci	}
26662306a36Sopenharmony_ci
26762306a36Sopenharmony_ci	BUILD_BUG_ON(offsetof(typeof(*it), node));
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_ci	/* While active, the tree can only be built; not destroyed */
27062306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ci	it = fetch_node(ref->tree.rb_node);
27362306a36Sopenharmony_ci	while (it) {
27462306a36Sopenharmony_ci		if (it->timeline < idx) {
27562306a36Sopenharmony_ci			it = fetch_node(it->node.rb_right);
27662306a36Sopenharmony_ci		} else if (it->timeline > idx) {
27762306a36Sopenharmony_ci			it = fetch_node(it->node.rb_left);
27862306a36Sopenharmony_ci		} else {
27962306a36Sopenharmony_ci			WRITE_ONCE(ref->cache, it);
28062306a36Sopenharmony_ci			break;
28162306a36Sopenharmony_ci		}
28262306a36Sopenharmony_ci	}
28362306a36Sopenharmony_ci
28462306a36Sopenharmony_ci	/* NB: If the tree rotated beneath us, we may miss our target. */
28562306a36Sopenharmony_ci	return it;
28662306a36Sopenharmony_ci}
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_cistatic struct i915_active_fence *
28962306a36Sopenharmony_ciactive_instance(struct i915_active *ref, u64 idx)
29062306a36Sopenharmony_ci{
29162306a36Sopenharmony_ci	struct active_node *node;
29262306a36Sopenharmony_ci	struct rb_node **p, *parent;
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci	node = __active_lookup(ref, idx);
29562306a36Sopenharmony_ci	if (likely(node))
29662306a36Sopenharmony_ci		return &node->base;
29762306a36Sopenharmony_ci
29862306a36Sopenharmony_ci	spin_lock_irq(&ref->tree_lock);
29962306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_ci	parent = NULL;
30262306a36Sopenharmony_ci	p = &ref->tree.rb_node;
30362306a36Sopenharmony_ci	while (*p) {
30462306a36Sopenharmony_ci		parent = *p;
30562306a36Sopenharmony_ci
30662306a36Sopenharmony_ci		node = rb_entry(parent, struct active_node, node);
30762306a36Sopenharmony_ci		if (node->timeline == idx)
30862306a36Sopenharmony_ci			goto out;
30962306a36Sopenharmony_ci
31062306a36Sopenharmony_ci		if (node->timeline < idx)
31162306a36Sopenharmony_ci			p = &parent->rb_right;
31262306a36Sopenharmony_ci		else
31362306a36Sopenharmony_ci			p = &parent->rb_left;
31462306a36Sopenharmony_ci	}
31562306a36Sopenharmony_ci
31662306a36Sopenharmony_ci	/*
31762306a36Sopenharmony_ci	 * XXX: We should preallocate this before i915_active_ref() is ever
31862306a36Sopenharmony_ci	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
31962306a36Sopenharmony_ci	 */
32062306a36Sopenharmony_ci	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
32162306a36Sopenharmony_ci	if (!node)
32262306a36Sopenharmony_ci		goto out;
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_ci	__i915_active_fence_init(&node->base, NULL, node_retire);
32562306a36Sopenharmony_ci	node->ref = ref;
32662306a36Sopenharmony_ci	node->timeline = idx;
32762306a36Sopenharmony_ci
32862306a36Sopenharmony_ci	rb_link_node(&node->node, parent, p);
32962306a36Sopenharmony_ci	rb_insert_color(&node->node, &ref->tree);
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ciout:
33262306a36Sopenharmony_ci	WRITE_ONCE(ref->cache, node);
33362306a36Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
33462306a36Sopenharmony_ci
33562306a36Sopenharmony_ci	return &node->base;
33662306a36Sopenharmony_ci}
33762306a36Sopenharmony_ci
33862306a36Sopenharmony_civoid __i915_active_init(struct i915_active *ref,
33962306a36Sopenharmony_ci			int (*active)(struct i915_active *ref),
34062306a36Sopenharmony_ci			void (*retire)(struct i915_active *ref),
34162306a36Sopenharmony_ci			unsigned long flags,
34262306a36Sopenharmony_ci			struct lock_class_key *mkey,
34362306a36Sopenharmony_ci			struct lock_class_key *wkey)
34462306a36Sopenharmony_ci{
34562306a36Sopenharmony_ci	debug_active_init(ref);
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_ci	ref->flags = flags;
34862306a36Sopenharmony_ci	ref->active = active;
34962306a36Sopenharmony_ci	ref->retire = retire;
35062306a36Sopenharmony_ci
35162306a36Sopenharmony_ci	spin_lock_init(&ref->tree_lock);
35262306a36Sopenharmony_ci	ref->tree = RB_ROOT;
35362306a36Sopenharmony_ci	ref->cache = NULL;
35462306a36Sopenharmony_ci
35562306a36Sopenharmony_ci	init_llist_head(&ref->preallocated_barriers);
35662306a36Sopenharmony_ci	atomic_set(&ref->count, 0);
35762306a36Sopenharmony_ci	__mutex_init(&ref->mutex, "i915_active", mkey);
35862306a36Sopenharmony_ci	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
35962306a36Sopenharmony_ci	INIT_WORK(&ref->work, active_work);
36062306a36Sopenharmony_ci#if IS_ENABLED(CONFIG_LOCKDEP)
36162306a36Sopenharmony_ci	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
36262306a36Sopenharmony_ci#endif
36362306a36Sopenharmony_ci}
36462306a36Sopenharmony_ci
36562306a36Sopenharmony_cistatic bool ____active_del_barrier(struct i915_active *ref,
36662306a36Sopenharmony_ci				   struct active_node *node,
36762306a36Sopenharmony_ci				   struct intel_engine_cs *engine)
36862306a36Sopenharmony_ci
36962306a36Sopenharmony_ci{
37062306a36Sopenharmony_ci	struct llist_node *head = NULL, *tail = NULL;
37162306a36Sopenharmony_ci	struct llist_node *pos, *next;
37262306a36Sopenharmony_ci
37362306a36Sopenharmony_ci	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
37462306a36Sopenharmony_ci
37562306a36Sopenharmony_ci	/*
37662306a36Sopenharmony_ci	 * Rebuild the llist excluding our node. We may perform this
37762306a36Sopenharmony_ci	 * outside of the kernel_context timeline mutex and so someone
37862306a36Sopenharmony_ci	 * else may be manipulating the engine->barrier_tasks, in
37962306a36Sopenharmony_ci	 * which case either we or they will be upset :)
38062306a36Sopenharmony_ci	 *
38162306a36Sopenharmony_ci	 * A second __active_del_barrier() will report failure to claim
38262306a36Sopenharmony_ci	 * the active_node and the caller will just shrug and know not to
38362306a36Sopenharmony_ci	 * claim ownership of its node.
38462306a36Sopenharmony_ci	 *
38562306a36Sopenharmony_ci	 * A concurrent i915_request_add_active_barriers() will miss adding
38662306a36Sopenharmony_ci	 * any of the tasks, but we will try again on the next -- and since
38762306a36Sopenharmony_ci	 * we are actively using the barrier, we know that there will be
38862306a36Sopenharmony_ci	 * at least another opportunity when we idle.
38962306a36Sopenharmony_ci	 */
39062306a36Sopenharmony_ci	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
39162306a36Sopenharmony_ci		if (node == barrier_from_ll(pos)) {
39262306a36Sopenharmony_ci			node = NULL;
39362306a36Sopenharmony_ci			continue;
39462306a36Sopenharmony_ci		}
39562306a36Sopenharmony_ci
39662306a36Sopenharmony_ci		pos->next = head;
39762306a36Sopenharmony_ci		head = pos;
39862306a36Sopenharmony_ci		if (!tail)
39962306a36Sopenharmony_ci			tail = pos;
40062306a36Sopenharmony_ci	}
40162306a36Sopenharmony_ci	if (head)
40262306a36Sopenharmony_ci		llist_add_batch(head, tail, &engine->barrier_tasks);
40362306a36Sopenharmony_ci
40462306a36Sopenharmony_ci	return !node;
40562306a36Sopenharmony_ci}
40662306a36Sopenharmony_ci
40762306a36Sopenharmony_cistatic bool
40862306a36Sopenharmony_ci__active_del_barrier(struct i915_active *ref, struct active_node *node)
40962306a36Sopenharmony_ci{
41062306a36Sopenharmony_ci	return ____active_del_barrier(ref, node, barrier_to_engine(node));
41162306a36Sopenharmony_ci}
41262306a36Sopenharmony_ci
41362306a36Sopenharmony_cistatic bool
41462306a36Sopenharmony_cireplace_barrier(struct i915_active *ref, struct i915_active_fence *active)
41562306a36Sopenharmony_ci{
41662306a36Sopenharmony_ci	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
41762306a36Sopenharmony_ci		return false;
41862306a36Sopenharmony_ci
41962306a36Sopenharmony_ci	/*
42062306a36Sopenharmony_ci	 * This request is on the kernel_context timeline, and so
42162306a36Sopenharmony_ci	 * we can use it to substitute for the pending idle-barrer
42262306a36Sopenharmony_ci	 * request that we want to emit on the kernel_context.
42362306a36Sopenharmony_ci	 */
42462306a36Sopenharmony_ci	return __active_del_barrier(ref, node_from_active(active));
42562306a36Sopenharmony_ci}
42662306a36Sopenharmony_ci
42762306a36Sopenharmony_ciint i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
42862306a36Sopenharmony_ci{
42962306a36Sopenharmony_ci	u64 idx = i915_request_timeline(rq)->fence_context;
43062306a36Sopenharmony_ci	struct dma_fence *fence = &rq->fence;
43162306a36Sopenharmony_ci	struct i915_active_fence *active;
43262306a36Sopenharmony_ci	int err;
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_ci	/* Prevent reaping in case we malloc/wait while building the tree */
43562306a36Sopenharmony_ci	err = i915_active_acquire(ref);
43662306a36Sopenharmony_ci	if (err)
43762306a36Sopenharmony_ci		return err;
43862306a36Sopenharmony_ci
43962306a36Sopenharmony_ci	do {
44062306a36Sopenharmony_ci		active = active_instance(ref, idx);
44162306a36Sopenharmony_ci		if (!active) {
44262306a36Sopenharmony_ci			err = -ENOMEM;
44362306a36Sopenharmony_ci			goto out;
44462306a36Sopenharmony_ci		}
44562306a36Sopenharmony_ci
44662306a36Sopenharmony_ci		if (replace_barrier(ref, active)) {
44762306a36Sopenharmony_ci			RCU_INIT_POINTER(active->fence, NULL);
44862306a36Sopenharmony_ci			atomic_dec(&ref->count);
44962306a36Sopenharmony_ci		}
45062306a36Sopenharmony_ci	} while (unlikely(is_barrier(active)));
45162306a36Sopenharmony_ci
45262306a36Sopenharmony_ci	fence = __i915_active_fence_set(active, fence);
45362306a36Sopenharmony_ci	if (!fence)
45462306a36Sopenharmony_ci		__i915_active_acquire(ref);
45562306a36Sopenharmony_ci	else
45662306a36Sopenharmony_ci		dma_fence_put(fence);
45762306a36Sopenharmony_ci
45862306a36Sopenharmony_ciout:
45962306a36Sopenharmony_ci	i915_active_release(ref);
46062306a36Sopenharmony_ci	return err;
46162306a36Sopenharmony_ci}
46262306a36Sopenharmony_ci
46362306a36Sopenharmony_cistatic struct dma_fence *
46462306a36Sopenharmony_ci__i915_active_set_fence(struct i915_active *ref,
46562306a36Sopenharmony_ci			struct i915_active_fence *active,
46662306a36Sopenharmony_ci			struct dma_fence *fence)
46762306a36Sopenharmony_ci{
46862306a36Sopenharmony_ci	struct dma_fence *prev;
46962306a36Sopenharmony_ci
47062306a36Sopenharmony_ci	if (replace_barrier(ref, active)) {
47162306a36Sopenharmony_ci		RCU_INIT_POINTER(active->fence, fence);
47262306a36Sopenharmony_ci		return NULL;
47362306a36Sopenharmony_ci	}
47462306a36Sopenharmony_ci
47562306a36Sopenharmony_ci	prev = __i915_active_fence_set(active, fence);
47662306a36Sopenharmony_ci	if (!prev)
47762306a36Sopenharmony_ci		__i915_active_acquire(ref);
47862306a36Sopenharmony_ci
47962306a36Sopenharmony_ci	return prev;
48062306a36Sopenharmony_ci}
48162306a36Sopenharmony_ci
48262306a36Sopenharmony_cistruct dma_fence *
48362306a36Sopenharmony_cii915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
48462306a36Sopenharmony_ci{
48562306a36Sopenharmony_ci	/* We expect the caller to manage the exclusive timeline ordering */
48662306a36Sopenharmony_ci	return __i915_active_set_fence(ref, &ref->excl, f);
48762306a36Sopenharmony_ci}
48862306a36Sopenharmony_ci
48962306a36Sopenharmony_cibool i915_active_acquire_if_busy(struct i915_active *ref)
49062306a36Sopenharmony_ci{
49162306a36Sopenharmony_ci	debug_active_assert(ref);
49262306a36Sopenharmony_ci	return atomic_add_unless(&ref->count, 1, 0);
49362306a36Sopenharmony_ci}
49462306a36Sopenharmony_ci
49562306a36Sopenharmony_cistatic void __i915_active_activate(struct i915_active *ref)
49662306a36Sopenharmony_ci{
49762306a36Sopenharmony_ci	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
49862306a36Sopenharmony_ci	if (!atomic_fetch_inc(&ref->count))
49962306a36Sopenharmony_ci		debug_active_activate(ref);
50062306a36Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
50162306a36Sopenharmony_ci}
50262306a36Sopenharmony_ci
50362306a36Sopenharmony_ciint i915_active_acquire(struct i915_active *ref)
50462306a36Sopenharmony_ci{
50562306a36Sopenharmony_ci	int err;
50662306a36Sopenharmony_ci
50762306a36Sopenharmony_ci	if (i915_active_acquire_if_busy(ref))
50862306a36Sopenharmony_ci		return 0;
50962306a36Sopenharmony_ci
51062306a36Sopenharmony_ci	if (!ref->active) {
51162306a36Sopenharmony_ci		__i915_active_activate(ref);
51262306a36Sopenharmony_ci		return 0;
51362306a36Sopenharmony_ci	}
51462306a36Sopenharmony_ci
51562306a36Sopenharmony_ci	err = mutex_lock_interruptible(&ref->mutex);
51662306a36Sopenharmony_ci	if (err)
51762306a36Sopenharmony_ci		return err;
51862306a36Sopenharmony_ci
51962306a36Sopenharmony_ci	if (likely(!i915_active_acquire_if_busy(ref))) {
52062306a36Sopenharmony_ci		err = ref->active(ref);
52162306a36Sopenharmony_ci		if (!err)
52262306a36Sopenharmony_ci			__i915_active_activate(ref);
52362306a36Sopenharmony_ci	}
52462306a36Sopenharmony_ci
52562306a36Sopenharmony_ci	mutex_unlock(&ref->mutex);
52662306a36Sopenharmony_ci
52762306a36Sopenharmony_ci	return err;
52862306a36Sopenharmony_ci}
52962306a36Sopenharmony_ci
53062306a36Sopenharmony_ciint i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
53162306a36Sopenharmony_ci{
53262306a36Sopenharmony_ci	struct i915_active_fence *active;
53362306a36Sopenharmony_ci	int err;
53462306a36Sopenharmony_ci
53562306a36Sopenharmony_ci	err = i915_active_acquire(ref);
53662306a36Sopenharmony_ci	if (err)
53762306a36Sopenharmony_ci		return err;
53862306a36Sopenharmony_ci
53962306a36Sopenharmony_ci	active = active_instance(ref, idx);
54062306a36Sopenharmony_ci	if (!active) {
54162306a36Sopenharmony_ci		i915_active_release(ref);
54262306a36Sopenharmony_ci		return -ENOMEM;
54362306a36Sopenharmony_ci	}
54462306a36Sopenharmony_ci
54562306a36Sopenharmony_ci	return 0; /* return with active ref */
54662306a36Sopenharmony_ci}
54762306a36Sopenharmony_ci
54862306a36Sopenharmony_civoid i915_active_release(struct i915_active *ref)
54962306a36Sopenharmony_ci{
55062306a36Sopenharmony_ci	debug_active_assert(ref);
55162306a36Sopenharmony_ci	active_retire(ref);
55262306a36Sopenharmony_ci}
55362306a36Sopenharmony_ci
55462306a36Sopenharmony_cistatic void enable_signaling(struct i915_active_fence *active)
55562306a36Sopenharmony_ci{
55662306a36Sopenharmony_ci	struct dma_fence *fence;
55762306a36Sopenharmony_ci
55862306a36Sopenharmony_ci	if (unlikely(is_barrier(active)))
55962306a36Sopenharmony_ci		return;
56062306a36Sopenharmony_ci
56162306a36Sopenharmony_ci	fence = i915_active_fence_get(active);
56262306a36Sopenharmony_ci	if (!fence)
56362306a36Sopenharmony_ci		return;
56462306a36Sopenharmony_ci
56562306a36Sopenharmony_ci	dma_fence_enable_sw_signaling(fence);
56662306a36Sopenharmony_ci	dma_fence_put(fence);
56762306a36Sopenharmony_ci}
56862306a36Sopenharmony_ci
56962306a36Sopenharmony_cistatic int flush_barrier(struct active_node *it)
57062306a36Sopenharmony_ci{
57162306a36Sopenharmony_ci	struct intel_engine_cs *engine;
57262306a36Sopenharmony_ci
57362306a36Sopenharmony_ci	if (likely(!is_barrier(&it->base)))
57462306a36Sopenharmony_ci		return 0;
57562306a36Sopenharmony_ci
57662306a36Sopenharmony_ci	engine = __barrier_to_engine(it);
57762306a36Sopenharmony_ci	smp_rmb(); /* serialise with add_active_barriers */
57862306a36Sopenharmony_ci	if (!is_barrier(&it->base))
57962306a36Sopenharmony_ci		return 0;
58062306a36Sopenharmony_ci
58162306a36Sopenharmony_ci	return intel_engine_flush_barriers(engine);
58262306a36Sopenharmony_ci}
58362306a36Sopenharmony_ci
58462306a36Sopenharmony_cistatic int flush_lazy_signals(struct i915_active *ref)
58562306a36Sopenharmony_ci{
58662306a36Sopenharmony_ci	struct active_node *it, *n;
58762306a36Sopenharmony_ci	int err = 0;
58862306a36Sopenharmony_ci
58962306a36Sopenharmony_ci	enable_signaling(&ref->excl);
59062306a36Sopenharmony_ci	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
59162306a36Sopenharmony_ci		err = flush_barrier(it); /* unconnected idle barrier? */
59262306a36Sopenharmony_ci		if (err)
59362306a36Sopenharmony_ci			break;
59462306a36Sopenharmony_ci
59562306a36Sopenharmony_ci		enable_signaling(&it->base);
59662306a36Sopenharmony_ci	}
59762306a36Sopenharmony_ci
59862306a36Sopenharmony_ci	return err;
59962306a36Sopenharmony_ci}
60062306a36Sopenharmony_ci
60162306a36Sopenharmony_ciint __i915_active_wait(struct i915_active *ref, int state)
60262306a36Sopenharmony_ci{
60362306a36Sopenharmony_ci	might_sleep();
60462306a36Sopenharmony_ci
60562306a36Sopenharmony_ci	/* Any fence added after the wait begins will not be auto-signaled */
60662306a36Sopenharmony_ci	if (i915_active_acquire_if_busy(ref)) {
60762306a36Sopenharmony_ci		int err;
60862306a36Sopenharmony_ci
60962306a36Sopenharmony_ci		err = flush_lazy_signals(ref);
61062306a36Sopenharmony_ci		i915_active_release(ref);
61162306a36Sopenharmony_ci		if (err)
61262306a36Sopenharmony_ci			return err;
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci		if (___wait_var_event(ref, i915_active_is_idle(ref),
61562306a36Sopenharmony_ci				      state, 0, 0, schedule()))
61662306a36Sopenharmony_ci			return -EINTR;
61762306a36Sopenharmony_ci	}
61862306a36Sopenharmony_ci
61962306a36Sopenharmony_ci	/*
62062306a36Sopenharmony_ci	 * After the wait is complete, the caller may free the active.
62162306a36Sopenharmony_ci	 * We have to flush any concurrent retirement before returning.
62262306a36Sopenharmony_ci	 */
62362306a36Sopenharmony_ci	flush_work(&ref->work);
62462306a36Sopenharmony_ci	return 0;
62562306a36Sopenharmony_ci}
62662306a36Sopenharmony_ci
62762306a36Sopenharmony_cistatic int __await_active(struct i915_active_fence *active,
62862306a36Sopenharmony_ci			  int (*fn)(void *arg, struct dma_fence *fence),
62962306a36Sopenharmony_ci			  void *arg)
63062306a36Sopenharmony_ci{
63162306a36Sopenharmony_ci	struct dma_fence *fence;
63262306a36Sopenharmony_ci
63362306a36Sopenharmony_ci	if (is_barrier(active)) /* XXX flush the barrier? */
63462306a36Sopenharmony_ci		return 0;
63562306a36Sopenharmony_ci
63662306a36Sopenharmony_ci	fence = i915_active_fence_get(active);
63762306a36Sopenharmony_ci	if (fence) {
63862306a36Sopenharmony_ci		int err;
63962306a36Sopenharmony_ci
64062306a36Sopenharmony_ci		err = fn(arg, fence);
64162306a36Sopenharmony_ci		dma_fence_put(fence);
64262306a36Sopenharmony_ci		if (err < 0)
64362306a36Sopenharmony_ci			return err;
64462306a36Sopenharmony_ci	}
64562306a36Sopenharmony_ci
64662306a36Sopenharmony_ci	return 0;
64762306a36Sopenharmony_ci}
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_cistruct wait_barrier {
65062306a36Sopenharmony_ci	struct wait_queue_entry base;
65162306a36Sopenharmony_ci	struct i915_active *ref;
65262306a36Sopenharmony_ci};
65362306a36Sopenharmony_ci
65462306a36Sopenharmony_cistatic int
65562306a36Sopenharmony_cibarrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
65662306a36Sopenharmony_ci{
65762306a36Sopenharmony_ci	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
65862306a36Sopenharmony_ci
65962306a36Sopenharmony_ci	if (i915_active_is_idle(wb->ref)) {
66062306a36Sopenharmony_ci		list_del(&wq->entry);
66162306a36Sopenharmony_ci		i915_sw_fence_complete(wq->private);
66262306a36Sopenharmony_ci		kfree(wq);
66362306a36Sopenharmony_ci	}
66462306a36Sopenharmony_ci
66562306a36Sopenharmony_ci	return 0;
66662306a36Sopenharmony_ci}
66762306a36Sopenharmony_ci
66862306a36Sopenharmony_cistatic int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
66962306a36Sopenharmony_ci{
67062306a36Sopenharmony_ci	struct wait_barrier *wb;
67162306a36Sopenharmony_ci
67262306a36Sopenharmony_ci	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
67362306a36Sopenharmony_ci	if (unlikely(!wb))
67462306a36Sopenharmony_ci		return -ENOMEM;
67562306a36Sopenharmony_ci
67662306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
67762306a36Sopenharmony_ci	if (!i915_sw_fence_await(fence)) {
67862306a36Sopenharmony_ci		kfree(wb);
67962306a36Sopenharmony_ci		return -EINVAL;
68062306a36Sopenharmony_ci	}
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	wb->base.flags = 0;
68362306a36Sopenharmony_ci	wb->base.func = barrier_wake;
68462306a36Sopenharmony_ci	wb->base.private = fence;
68562306a36Sopenharmony_ci	wb->ref = ref;
68662306a36Sopenharmony_ci
68762306a36Sopenharmony_ci	add_wait_queue(__var_waitqueue(ref), &wb->base);
68862306a36Sopenharmony_ci	return 0;
68962306a36Sopenharmony_ci}
69062306a36Sopenharmony_ci
69162306a36Sopenharmony_cistatic int await_active(struct i915_active *ref,
69262306a36Sopenharmony_ci			unsigned int flags,
69362306a36Sopenharmony_ci			int (*fn)(void *arg, struct dma_fence *fence),
69462306a36Sopenharmony_ci			void *arg, struct i915_sw_fence *barrier)
69562306a36Sopenharmony_ci{
69662306a36Sopenharmony_ci	int err = 0;
69762306a36Sopenharmony_ci
69862306a36Sopenharmony_ci	if (!i915_active_acquire_if_busy(ref))
69962306a36Sopenharmony_ci		return 0;
70062306a36Sopenharmony_ci
70162306a36Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_EXCL &&
70262306a36Sopenharmony_ci	    rcu_access_pointer(ref->excl.fence)) {
70362306a36Sopenharmony_ci		err = __await_active(&ref->excl, fn, arg);
70462306a36Sopenharmony_ci		if (err)
70562306a36Sopenharmony_ci			goto out;
70662306a36Sopenharmony_ci	}
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
70962306a36Sopenharmony_ci		struct active_node *it, *n;
71062306a36Sopenharmony_ci
71162306a36Sopenharmony_ci		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
71262306a36Sopenharmony_ci			err = __await_active(&it->base, fn, arg);
71362306a36Sopenharmony_ci			if (err)
71462306a36Sopenharmony_ci				goto out;
71562306a36Sopenharmony_ci		}
71662306a36Sopenharmony_ci	}
71762306a36Sopenharmony_ci
71862306a36Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
71962306a36Sopenharmony_ci		err = flush_lazy_signals(ref);
72062306a36Sopenharmony_ci		if (err)
72162306a36Sopenharmony_ci			goto out;
72262306a36Sopenharmony_ci
72362306a36Sopenharmony_ci		err = __await_barrier(ref, barrier);
72462306a36Sopenharmony_ci		if (err)
72562306a36Sopenharmony_ci			goto out;
72662306a36Sopenharmony_ci	}
72762306a36Sopenharmony_ci
72862306a36Sopenharmony_ciout:
72962306a36Sopenharmony_ci	i915_active_release(ref);
73062306a36Sopenharmony_ci	return err;
73162306a36Sopenharmony_ci}
73262306a36Sopenharmony_ci
73362306a36Sopenharmony_cistatic int rq_await_fence(void *arg, struct dma_fence *fence)
73462306a36Sopenharmony_ci{
73562306a36Sopenharmony_ci	return i915_request_await_dma_fence(arg, fence);
73662306a36Sopenharmony_ci}
73762306a36Sopenharmony_ci
73862306a36Sopenharmony_ciint i915_request_await_active(struct i915_request *rq,
73962306a36Sopenharmony_ci			      struct i915_active *ref,
74062306a36Sopenharmony_ci			      unsigned int flags)
74162306a36Sopenharmony_ci{
74262306a36Sopenharmony_ci	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
74362306a36Sopenharmony_ci}
74462306a36Sopenharmony_ci
74562306a36Sopenharmony_cistatic int sw_await_fence(void *arg, struct dma_fence *fence)
74662306a36Sopenharmony_ci{
74762306a36Sopenharmony_ci	return i915_sw_fence_await_dma_fence(arg, fence, 0,
74862306a36Sopenharmony_ci					     GFP_NOWAIT | __GFP_NOWARN);
74962306a36Sopenharmony_ci}
75062306a36Sopenharmony_ci
75162306a36Sopenharmony_ciint i915_sw_fence_await_active(struct i915_sw_fence *fence,
75262306a36Sopenharmony_ci			       struct i915_active *ref,
75362306a36Sopenharmony_ci			       unsigned int flags)
75462306a36Sopenharmony_ci{
75562306a36Sopenharmony_ci	return await_active(ref, flags, sw_await_fence, fence, fence);
75662306a36Sopenharmony_ci}
75762306a36Sopenharmony_ci
75862306a36Sopenharmony_civoid i915_active_fini(struct i915_active *ref)
75962306a36Sopenharmony_ci{
76062306a36Sopenharmony_ci	debug_active_fini(ref);
76162306a36Sopenharmony_ci	GEM_BUG_ON(atomic_read(&ref->count));
76262306a36Sopenharmony_ci	GEM_BUG_ON(work_pending(&ref->work));
76362306a36Sopenharmony_ci	mutex_destroy(&ref->mutex);
76462306a36Sopenharmony_ci
76562306a36Sopenharmony_ci	if (ref->cache)
76662306a36Sopenharmony_ci		kmem_cache_free(slab_cache, ref->cache);
76762306a36Sopenharmony_ci}
76862306a36Sopenharmony_ci
76962306a36Sopenharmony_cistatic inline bool is_idle_barrier(struct active_node *node, u64 idx)
77062306a36Sopenharmony_ci{
77162306a36Sopenharmony_ci	return node->timeline == idx && !i915_active_fence_isset(&node->base);
77262306a36Sopenharmony_ci}
77362306a36Sopenharmony_ci
77462306a36Sopenharmony_cistatic struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
77562306a36Sopenharmony_ci{
77662306a36Sopenharmony_ci	struct rb_node *prev, *p;
77762306a36Sopenharmony_ci
77862306a36Sopenharmony_ci	if (RB_EMPTY_ROOT(&ref->tree))
77962306a36Sopenharmony_ci		return NULL;
78062306a36Sopenharmony_ci
78162306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
78262306a36Sopenharmony_ci
78362306a36Sopenharmony_ci	/*
78462306a36Sopenharmony_ci	 * Try to reuse any existing barrier nodes already allocated for this
78562306a36Sopenharmony_ci	 * i915_active, due to overlapping active phases there is likely a
78662306a36Sopenharmony_ci	 * node kept alive (as we reuse before parking). We prefer to reuse
78762306a36Sopenharmony_ci	 * completely idle barriers (less hassle in manipulating the llists),
78862306a36Sopenharmony_ci	 * but otherwise any will do.
78962306a36Sopenharmony_ci	 */
79062306a36Sopenharmony_ci	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
79162306a36Sopenharmony_ci		p = &ref->cache->node;
79262306a36Sopenharmony_ci		goto match;
79362306a36Sopenharmony_ci	}
79462306a36Sopenharmony_ci
79562306a36Sopenharmony_ci	prev = NULL;
79662306a36Sopenharmony_ci	p = ref->tree.rb_node;
79762306a36Sopenharmony_ci	while (p) {
79862306a36Sopenharmony_ci		struct active_node *node =
79962306a36Sopenharmony_ci			rb_entry(p, struct active_node, node);
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_ci		if (is_idle_barrier(node, idx))
80262306a36Sopenharmony_ci			goto match;
80362306a36Sopenharmony_ci
80462306a36Sopenharmony_ci		prev = p;
80562306a36Sopenharmony_ci		if (node->timeline < idx)
80662306a36Sopenharmony_ci			p = READ_ONCE(p->rb_right);
80762306a36Sopenharmony_ci		else
80862306a36Sopenharmony_ci			p = READ_ONCE(p->rb_left);
80962306a36Sopenharmony_ci	}
81062306a36Sopenharmony_ci
81162306a36Sopenharmony_ci	/*
81262306a36Sopenharmony_ci	 * No quick match, but we did find the leftmost rb_node for the
81362306a36Sopenharmony_ci	 * kernel_context. Walk the rb_tree in-order to see if there were
81462306a36Sopenharmony_ci	 * any idle-barriers on this timeline that we missed, or just use
81562306a36Sopenharmony_ci	 * the first pending barrier.
81662306a36Sopenharmony_ci	 */
81762306a36Sopenharmony_ci	for (p = prev; p; p = rb_next(p)) {
81862306a36Sopenharmony_ci		struct active_node *node =
81962306a36Sopenharmony_ci			rb_entry(p, struct active_node, node);
82062306a36Sopenharmony_ci		struct intel_engine_cs *engine;
82162306a36Sopenharmony_ci
82262306a36Sopenharmony_ci		if (node->timeline > idx)
82362306a36Sopenharmony_ci			break;
82462306a36Sopenharmony_ci
82562306a36Sopenharmony_ci		if (node->timeline < idx)
82662306a36Sopenharmony_ci			continue;
82762306a36Sopenharmony_ci
82862306a36Sopenharmony_ci		if (is_idle_barrier(node, idx))
82962306a36Sopenharmony_ci			goto match;
83062306a36Sopenharmony_ci
83162306a36Sopenharmony_ci		/*
83262306a36Sopenharmony_ci		 * The list of pending barriers is protected by the
83362306a36Sopenharmony_ci		 * kernel_context timeline, which notably we do not hold
83462306a36Sopenharmony_ci		 * here. i915_request_add_active_barriers() may consume
83562306a36Sopenharmony_ci		 * the barrier before we claim it, so we have to check
83662306a36Sopenharmony_ci		 * for success.
83762306a36Sopenharmony_ci		 */
83862306a36Sopenharmony_ci		engine = __barrier_to_engine(node);
83962306a36Sopenharmony_ci		smp_rmb(); /* serialise with add_active_barriers */
84062306a36Sopenharmony_ci		if (is_barrier(&node->base) &&
84162306a36Sopenharmony_ci		    ____active_del_barrier(ref, node, engine))
84262306a36Sopenharmony_ci			goto match;
84362306a36Sopenharmony_ci	}
84462306a36Sopenharmony_ci
84562306a36Sopenharmony_ci	return NULL;
84662306a36Sopenharmony_ci
84762306a36Sopenharmony_cimatch:
84862306a36Sopenharmony_ci	spin_lock_irq(&ref->tree_lock);
84962306a36Sopenharmony_ci	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
85062306a36Sopenharmony_ci	if (p == &ref->cache->node)
85162306a36Sopenharmony_ci		WRITE_ONCE(ref->cache, NULL);
85262306a36Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
85362306a36Sopenharmony_ci
85462306a36Sopenharmony_ci	return rb_entry(p, struct active_node, node);
85562306a36Sopenharmony_ci}
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_ciint i915_active_acquire_preallocate_barrier(struct i915_active *ref,
85862306a36Sopenharmony_ci					    struct intel_engine_cs *engine)
85962306a36Sopenharmony_ci{
86062306a36Sopenharmony_ci	intel_engine_mask_t tmp, mask = engine->mask;
86162306a36Sopenharmony_ci	struct llist_node *first = NULL, *last = NULL;
86262306a36Sopenharmony_ci	struct intel_gt *gt = engine->gt;
86362306a36Sopenharmony_ci
86462306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
86562306a36Sopenharmony_ci
86662306a36Sopenharmony_ci	/* Wait until the previous preallocation is completed */
86762306a36Sopenharmony_ci	while (!llist_empty(&ref->preallocated_barriers))
86862306a36Sopenharmony_ci		cond_resched();
86962306a36Sopenharmony_ci
87062306a36Sopenharmony_ci	/*
87162306a36Sopenharmony_ci	 * Preallocate a node for each physical engine supporting the target
87262306a36Sopenharmony_ci	 * engine (remember virtual engines have more than one sibling).
87362306a36Sopenharmony_ci	 * We can then use the preallocated nodes in
87462306a36Sopenharmony_ci	 * i915_active_acquire_barrier()
87562306a36Sopenharmony_ci	 */
87662306a36Sopenharmony_ci	GEM_BUG_ON(!mask);
87762306a36Sopenharmony_ci	for_each_engine_masked(engine, gt, mask, tmp) {
87862306a36Sopenharmony_ci		u64 idx = engine->kernel_context->timeline->fence_context;
87962306a36Sopenharmony_ci		struct llist_node *prev = first;
88062306a36Sopenharmony_ci		struct active_node *node;
88162306a36Sopenharmony_ci
88262306a36Sopenharmony_ci		rcu_read_lock();
88362306a36Sopenharmony_ci		node = reuse_idle_barrier(ref, idx);
88462306a36Sopenharmony_ci		rcu_read_unlock();
88562306a36Sopenharmony_ci		if (!node) {
88662306a36Sopenharmony_ci			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
88762306a36Sopenharmony_ci			if (!node)
88862306a36Sopenharmony_ci				goto unwind;
88962306a36Sopenharmony_ci
89062306a36Sopenharmony_ci			RCU_INIT_POINTER(node->base.fence, NULL);
89162306a36Sopenharmony_ci			node->base.cb.func = node_retire;
89262306a36Sopenharmony_ci			node->timeline = idx;
89362306a36Sopenharmony_ci			node->ref = ref;
89462306a36Sopenharmony_ci		}
89562306a36Sopenharmony_ci
89662306a36Sopenharmony_ci		if (!i915_active_fence_isset(&node->base)) {
89762306a36Sopenharmony_ci			/*
89862306a36Sopenharmony_ci			 * Mark this as being *our* unconnected proto-node.
89962306a36Sopenharmony_ci			 *
90062306a36Sopenharmony_ci			 * Since this node is not in any list, and we have
90162306a36Sopenharmony_ci			 * decoupled it from the rbtree, we can reuse the
90262306a36Sopenharmony_ci			 * request to indicate this is an idle-barrier node
90362306a36Sopenharmony_ci			 * and then we can use the rb_node and list pointers
90462306a36Sopenharmony_ci			 * for our tracking of the pending barrier.
90562306a36Sopenharmony_ci			 */
90662306a36Sopenharmony_ci			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
90762306a36Sopenharmony_ci			node->base.cb.node.prev = (void *)engine;
90862306a36Sopenharmony_ci			__i915_active_acquire(ref);
90962306a36Sopenharmony_ci		}
91062306a36Sopenharmony_ci		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
91162306a36Sopenharmony_ci
91262306a36Sopenharmony_ci		GEM_BUG_ON(barrier_to_engine(node) != engine);
91362306a36Sopenharmony_ci		first = barrier_to_ll(node);
91462306a36Sopenharmony_ci		first->next = prev;
91562306a36Sopenharmony_ci		if (!last)
91662306a36Sopenharmony_ci			last = first;
91762306a36Sopenharmony_ci		intel_engine_pm_get(engine);
91862306a36Sopenharmony_ci	}
91962306a36Sopenharmony_ci
92062306a36Sopenharmony_ci	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
92162306a36Sopenharmony_ci	llist_add_batch(first, last, &ref->preallocated_barriers);
92262306a36Sopenharmony_ci
92362306a36Sopenharmony_ci	return 0;
92462306a36Sopenharmony_ci
92562306a36Sopenharmony_ciunwind:
92662306a36Sopenharmony_ci	while (first) {
92762306a36Sopenharmony_ci		struct active_node *node = barrier_from_ll(first);
92862306a36Sopenharmony_ci
92962306a36Sopenharmony_ci		first = first->next;
93062306a36Sopenharmony_ci
93162306a36Sopenharmony_ci		atomic_dec(&ref->count);
93262306a36Sopenharmony_ci		intel_engine_pm_put(barrier_to_engine(node));
93362306a36Sopenharmony_ci
93462306a36Sopenharmony_ci		kmem_cache_free(slab_cache, node);
93562306a36Sopenharmony_ci	}
93662306a36Sopenharmony_ci	return -ENOMEM;
93762306a36Sopenharmony_ci}
93862306a36Sopenharmony_ci
93962306a36Sopenharmony_civoid i915_active_acquire_barrier(struct i915_active *ref)
94062306a36Sopenharmony_ci{
94162306a36Sopenharmony_ci	struct llist_node *pos, *next;
94262306a36Sopenharmony_ci	unsigned long flags;
94362306a36Sopenharmony_ci
94462306a36Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
94562306a36Sopenharmony_ci
94662306a36Sopenharmony_ci	/*
94762306a36Sopenharmony_ci	 * Transfer the list of preallocated barriers into the
94862306a36Sopenharmony_ci	 * i915_active rbtree, but only as proto-nodes. They will be
94962306a36Sopenharmony_ci	 * populated by i915_request_add_active_barriers() to point to the
95062306a36Sopenharmony_ci	 * request that will eventually release them.
95162306a36Sopenharmony_ci	 */
95262306a36Sopenharmony_ci	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
95362306a36Sopenharmony_ci		struct active_node *node = barrier_from_ll(pos);
95462306a36Sopenharmony_ci		struct intel_engine_cs *engine = barrier_to_engine(node);
95562306a36Sopenharmony_ci		struct rb_node **p, *parent;
95662306a36Sopenharmony_ci
95762306a36Sopenharmony_ci		spin_lock_irqsave_nested(&ref->tree_lock, flags,
95862306a36Sopenharmony_ci					 SINGLE_DEPTH_NESTING);
95962306a36Sopenharmony_ci		parent = NULL;
96062306a36Sopenharmony_ci		p = &ref->tree.rb_node;
96162306a36Sopenharmony_ci		while (*p) {
96262306a36Sopenharmony_ci			struct active_node *it;
96362306a36Sopenharmony_ci
96462306a36Sopenharmony_ci			parent = *p;
96562306a36Sopenharmony_ci
96662306a36Sopenharmony_ci			it = rb_entry(parent, struct active_node, node);
96762306a36Sopenharmony_ci			if (it->timeline < node->timeline)
96862306a36Sopenharmony_ci				p = &parent->rb_right;
96962306a36Sopenharmony_ci			else
97062306a36Sopenharmony_ci				p = &parent->rb_left;
97162306a36Sopenharmony_ci		}
97262306a36Sopenharmony_ci		rb_link_node(&node->node, parent, p);
97362306a36Sopenharmony_ci		rb_insert_color(&node->node, &ref->tree);
97462306a36Sopenharmony_ci		spin_unlock_irqrestore(&ref->tree_lock, flags);
97562306a36Sopenharmony_ci
97662306a36Sopenharmony_ci		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
97762306a36Sopenharmony_ci		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
97862306a36Sopenharmony_ci		intel_engine_pm_put_delay(engine, 2);
97962306a36Sopenharmony_ci	}
98062306a36Sopenharmony_ci}
98162306a36Sopenharmony_ci
98262306a36Sopenharmony_cistatic struct dma_fence **ll_to_fence_slot(struct llist_node *node)
98362306a36Sopenharmony_ci{
98462306a36Sopenharmony_ci	return __active_fence_slot(&barrier_from_ll(node)->base);
98562306a36Sopenharmony_ci}
98662306a36Sopenharmony_ci
98762306a36Sopenharmony_civoid i915_request_add_active_barriers(struct i915_request *rq)
98862306a36Sopenharmony_ci{
98962306a36Sopenharmony_ci	struct intel_engine_cs *engine = rq->engine;
99062306a36Sopenharmony_ci	struct llist_node *node, *next;
99162306a36Sopenharmony_ci	unsigned long flags;
99262306a36Sopenharmony_ci
99362306a36Sopenharmony_ci	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
99462306a36Sopenharmony_ci	GEM_BUG_ON(intel_engine_is_virtual(engine));
99562306a36Sopenharmony_ci	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
99662306a36Sopenharmony_ci
99762306a36Sopenharmony_ci	node = llist_del_all(&engine->barrier_tasks);
99862306a36Sopenharmony_ci	if (!node)
99962306a36Sopenharmony_ci		return;
100062306a36Sopenharmony_ci	/*
100162306a36Sopenharmony_ci	 * Attach the list of proto-fences to the in-flight request such
100262306a36Sopenharmony_ci	 * that the parent i915_active will be released when this request
100362306a36Sopenharmony_ci	 * is retired.
100462306a36Sopenharmony_ci	 */
100562306a36Sopenharmony_ci	spin_lock_irqsave(&rq->lock, flags);
100662306a36Sopenharmony_ci	llist_for_each_safe(node, next, node) {
100762306a36Sopenharmony_ci		/* serialise with reuse_idle_barrier */
100862306a36Sopenharmony_ci		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
100962306a36Sopenharmony_ci		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
101062306a36Sopenharmony_ci	}
101162306a36Sopenharmony_ci	spin_unlock_irqrestore(&rq->lock, flags);
101262306a36Sopenharmony_ci}
101362306a36Sopenharmony_ci
101462306a36Sopenharmony_ci/*
101562306a36Sopenharmony_ci * __i915_active_fence_set: Update the last active fence along its timeline
101662306a36Sopenharmony_ci * @active: the active tracker
101762306a36Sopenharmony_ci * @fence: the new fence (under construction)
101862306a36Sopenharmony_ci *
101962306a36Sopenharmony_ci * Records the new @fence as the last active fence along its timeline in
102062306a36Sopenharmony_ci * this active tracker, moving the tracking callbacks from the previous
102162306a36Sopenharmony_ci * fence onto this one. Gets and returns a reference to the previous fence
102262306a36Sopenharmony_ci * (if not already completed), which the caller must put after making sure
102362306a36Sopenharmony_ci * that it is executed before the new fence. To ensure that the order of
102462306a36Sopenharmony_ci * fences within the timeline of the i915_active_fence is understood, it
102562306a36Sopenharmony_ci * should be locked by the caller.
102662306a36Sopenharmony_ci */
102762306a36Sopenharmony_cistruct dma_fence *
102862306a36Sopenharmony_ci__i915_active_fence_set(struct i915_active_fence *active,
102962306a36Sopenharmony_ci			struct dma_fence *fence)
103062306a36Sopenharmony_ci{
103162306a36Sopenharmony_ci	struct dma_fence *prev;
103262306a36Sopenharmony_ci	unsigned long flags;
103362306a36Sopenharmony_ci
103462306a36Sopenharmony_ci	/*
103562306a36Sopenharmony_ci	 * In case of fences embedded in i915_requests, their memory is
103662306a36Sopenharmony_ci	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
103762306a36Sopenharmony_ci	 * by new requests.  Then, there is a risk of passing back a pointer
103862306a36Sopenharmony_ci	 * to a new, completely unrelated fence that reuses the same memory
103962306a36Sopenharmony_ci	 * while tracked under a different active tracker.  Combined with i915
104062306a36Sopenharmony_ci	 * perf open/close operations that build await dependencies between
104162306a36Sopenharmony_ci	 * engine kernel context requests and user requests from different
104262306a36Sopenharmony_ci	 * timelines, this can lead to dependency loops and infinite waits.
104362306a36Sopenharmony_ci	 *
104462306a36Sopenharmony_ci	 * As a countermeasure, we try to get a reference to the active->fence
104562306a36Sopenharmony_ci	 * first, so if we succeed and pass it back to our user then it is not
104662306a36Sopenharmony_ci	 * released and potentially reused by an unrelated request before the
104762306a36Sopenharmony_ci	 * user has a chance to set up an await dependency on it.
104862306a36Sopenharmony_ci	 */
104962306a36Sopenharmony_ci	prev = i915_active_fence_get(active);
105062306a36Sopenharmony_ci	if (fence == prev)
105162306a36Sopenharmony_ci		return fence;
105262306a36Sopenharmony_ci
105362306a36Sopenharmony_ci	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
105462306a36Sopenharmony_ci
105562306a36Sopenharmony_ci	/*
105662306a36Sopenharmony_ci	 * Consider that we have two threads arriving (A and B), with
105762306a36Sopenharmony_ci	 * C already resident as the active->fence.
105862306a36Sopenharmony_ci	 *
105962306a36Sopenharmony_ci	 * Both A and B have got a reference to C or NULL, depending on the
106062306a36Sopenharmony_ci	 * timing of the interrupt handler.  Let's assume that if A has got C
106162306a36Sopenharmony_ci	 * then it has locked C first (before B).
106262306a36Sopenharmony_ci	 *
106362306a36Sopenharmony_ci	 * Note the strong ordering of the timeline also provides consistent
106462306a36Sopenharmony_ci	 * nesting rules for the fence->lock; the inner lock is always the
106562306a36Sopenharmony_ci	 * older lock.
106662306a36Sopenharmony_ci	 */
106762306a36Sopenharmony_ci	spin_lock_irqsave(fence->lock, flags);
106862306a36Sopenharmony_ci	if (prev)
106962306a36Sopenharmony_ci		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
107062306a36Sopenharmony_ci
107162306a36Sopenharmony_ci	/*
107262306a36Sopenharmony_ci	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
107362306a36Sopenharmony_ci	 * something else, depending on the timing of other threads and/or
107462306a36Sopenharmony_ci	 * interrupt handler.  If not the same as before then A unlocks C if
107562306a36Sopenharmony_ci	 * applicable and retries, starting from an attempt to get a new
107662306a36Sopenharmony_ci	 * active->fence.  Meanwhile, B follows the same path as A.
107762306a36Sopenharmony_ci	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
107862306a36Sopenharmony_ci	 * active->fence, locks it as soon as A completes, and possibly
107962306a36Sopenharmony_ci	 * succeeds with cmpxchg.
108062306a36Sopenharmony_ci	 */
108162306a36Sopenharmony_ci	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
108262306a36Sopenharmony_ci		if (prev) {
108362306a36Sopenharmony_ci			spin_unlock(prev->lock);
108462306a36Sopenharmony_ci			dma_fence_put(prev);
108562306a36Sopenharmony_ci		}
108662306a36Sopenharmony_ci		spin_unlock_irqrestore(fence->lock, flags);
108762306a36Sopenharmony_ci
108862306a36Sopenharmony_ci		prev = i915_active_fence_get(active);
108962306a36Sopenharmony_ci		GEM_BUG_ON(prev == fence);
109062306a36Sopenharmony_ci
109162306a36Sopenharmony_ci		spin_lock_irqsave(fence->lock, flags);
109262306a36Sopenharmony_ci		if (prev)
109362306a36Sopenharmony_ci			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
109462306a36Sopenharmony_ci	}
109562306a36Sopenharmony_ci
109662306a36Sopenharmony_ci	/*
109762306a36Sopenharmony_ci	 * If prev is NULL then the previous fence must have been signaled
109862306a36Sopenharmony_ci	 * and we know that we are first on the timeline.  If it is still
109962306a36Sopenharmony_ci	 * present then, having the lock on that fence already acquired, we
110062306a36Sopenharmony_ci	 * serialise with the interrupt handler, in the process of removing it
110162306a36Sopenharmony_ci	 * from any future interrupt callback.  A will then wait on C before
110262306a36Sopenharmony_ci	 * executing (if present).
110362306a36Sopenharmony_ci	 *
110462306a36Sopenharmony_ci	 * As B is second, it sees A as the previous fence and so waits for
110562306a36Sopenharmony_ci	 * it to complete its transition and takes over the occupancy for
110662306a36Sopenharmony_ci	 * itself -- remembering that it needs to wait on A before executing.
110762306a36Sopenharmony_ci	 */
110862306a36Sopenharmony_ci	if (prev) {
110962306a36Sopenharmony_ci		__list_del_entry(&active->cb.node);
111062306a36Sopenharmony_ci		spin_unlock(prev->lock); /* serialise with prev->cb_list */
111162306a36Sopenharmony_ci	}
111262306a36Sopenharmony_ci	list_add_tail(&active->cb.node, &fence->cb_list);
111362306a36Sopenharmony_ci	spin_unlock_irqrestore(fence->lock, flags);
111462306a36Sopenharmony_ci
111562306a36Sopenharmony_ci	return prev;
111662306a36Sopenharmony_ci}
111762306a36Sopenharmony_ci
111862306a36Sopenharmony_ciint i915_active_fence_set(struct i915_active_fence *active,
111962306a36Sopenharmony_ci			  struct i915_request *rq)
112062306a36Sopenharmony_ci{
112162306a36Sopenharmony_ci	struct dma_fence *fence;
112262306a36Sopenharmony_ci	int err = 0;
112362306a36Sopenharmony_ci
112462306a36Sopenharmony_ci	/* Must maintain timeline ordering wrt previous active requests */
112562306a36Sopenharmony_ci	fence = __i915_active_fence_set(active, &rq->fence);
112662306a36Sopenharmony_ci	if (fence) {
112762306a36Sopenharmony_ci		err = i915_request_await_dma_fence(rq, fence);
112862306a36Sopenharmony_ci		dma_fence_put(fence);
112962306a36Sopenharmony_ci	}
113062306a36Sopenharmony_ci
113162306a36Sopenharmony_ci	return err;
113262306a36Sopenharmony_ci}
113362306a36Sopenharmony_ci
113462306a36Sopenharmony_civoid i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
113562306a36Sopenharmony_ci{
113662306a36Sopenharmony_ci	active_fence_cb(fence, cb);
113762306a36Sopenharmony_ci}
113862306a36Sopenharmony_ci
113962306a36Sopenharmony_cistruct auto_active {
114062306a36Sopenharmony_ci	struct i915_active base;
114162306a36Sopenharmony_ci	struct kref ref;
114262306a36Sopenharmony_ci};
114362306a36Sopenharmony_ci
114462306a36Sopenharmony_cistruct i915_active *i915_active_get(struct i915_active *ref)
114562306a36Sopenharmony_ci{
114662306a36Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), base);
114762306a36Sopenharmony_ci
114862306a36Sopenharmony_ci	kref_get(&aa->ref);
114962306a36Sopenharmony_ci	return &aa->base;
115062306a36Sopenharmony_ci}
115162306a36Sopenharmony_ci
115262306a36Sopenharmony_cistatic void auto_release(struct kref *ref)
115362306a36Sopenharmony_ci{
115462306a36Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
115562306a36Sopenharmony_ci
115662306a36Sopenharmony_ci	i915_active_fini(&aa->base);
115762306a36Sopenharmony_ci	kfree(aa);
115862306a36Sopenharmony_ci}
115962306a36Sopenharmony_ci
116062306a36Sopenharmony_civoid i915_active_put(struct i915_active *ref)
116162306a36Sopenharmony_ci{
116262306a36Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), base);
116362306a36Sopenharmony_ci
116462306a36Sopenharmony_ci	kref_put(&aa->ref, auto_release);
116562306a36Sopenharmony_ci}
116662306a36Sopenharmony_ci
116762306a36Sopenharmony_cistatic int auto_active(struct i915_active *ref)
116862306a36Sopenharmony_ci{
116962306a36Sopenharmony_ci	i915_active_get(ref);
117062306a36Sopenharmony_ci	return 0;
117162306a36Sopenharmony_ci}
117262306a36Sopenharmony_ci
117362306a36Sopenharmony_cistatic void auto_retire(struct i915_active *ref)
117462306a36Sopenharmony_ci{
117562306a36Sopenharmony_ci	i915_active_put(ref);
117662306a36Sopenharmony_ci}
117762306a36Sopenharmony_ci
117862306a36Sopenharmony_cistruct i915_active *i915_active_create(void)
117962306a36Sopenharmony_ci{
118062306a36Sopenharmony_ci	struct auto_active *aa;
118162306a36Sopenharmony_ci
118262306a36Sopenharmony_ci	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
118362306a36Sopenharmony_ci	if (!aa)
118462306a36Sopenharmony_ci		return NULL;
118562306a36Sopenharmony_ci
118662306a36Sopenharmony_ci	kref_init(&aa->ref);
118762306a36Sopenharmony_ci	i915_active_init(&aa->base, auto_active, auto_retire, 0);
118862306a36Sopenharmony_ci
118962306a36Sopenharmony_ci	return &aa->base;
119062306a36Sopenharmony_ci}
119162306a36Sopenharmony_ci
119262306a36Sopenharmony_ci#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
119362306a36Sopenharmony_ci#include "selftests/i915_active.c"
119462306a36Sopenharmony_ci#endif
119562306a36Sopenharmony_ci
119662306a36Sopenharmony_civoid i915_active_module_exit(void)
119762306a36Sopenharmony_ci{
119862306a36Sopenharmony_ci	kmem_cache_destroy(slab_cache);
119962306a36Sopenharmony_ci}
120062306a36Sopenharmony_ci
120162306a36Sopenharmony_ciint __init i915_active_module_init(void)
120262306a36Sopenharmony_ci{
120362306a36Sopenharmony_ci	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
120462306a36Sopenharmony_ci	if (!slab_cache)
120562306a36Sopenharmony_ci		return -ENOMEM;
120662306a36Sopenharmony_ci
120762306a36Sopenharmony_ci	return 0;
120862306a36Sopenharmony_ci}
1209