1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2019 Intel Corporation
4 */
5
6#include <drm/drm_managed.h>
7#include <drm/intel-gtt.h>
8
9#include "gem/i915_gem_internal.h"
10#include "gem/i915_gem_lmem.h"
11
12#include "i915_drv.h"
13#include "i915_perf_oa_regs.h"
14#include "i915_reg.h"
15#include "intel_context.h"
16#include "intel_engine_pm.h"
17#include "intel_engine_regs.h"
18#include "intel_ggtt_gmch.h"
19#include "intel_gt.h"
20#include "intel_gt_buffer_pool.h"
21#include "intel_gt_clock_utils.h"
22#include "intel_gt_debugfs.h"
23#include "intel_gt_mcr.h"
24#include "intel_gt_pm.h"
25#include "intel_gt_print.h"
26#include "intel_gt_regs.h"
27#include "intel_gt_requests.h"
28#include "intel_migrate.h"
29#include "intel_mocs.h"
30#include "intel_pci_config.h"
31#include "intel_rc6.h"
32#include "intel_renderstate.h"
33#include "intel_rps.h"
34#include "intel_sa_media.h"
35#include "intel_gt_sysfs.h"
36#include "intel_tlb.h"
37#include "intel_uncore.h"
38#include "shmem_utils.h"
39
40void intel_gt_common_init_early(struct intel_gt *gt)
41{
42	spin_lock_init(gt->irq_lock);
43
44	INIT_LIST_HEAD(&gt->closed_vma);
45	spin_lock_init(&gt->closed_lock);
46
47	init_llist_head(&gt->watchdog.list);
48	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49
50	intel_gt_init_buffer_pool(gt);
51	intel_gt_init_reset(gt);
52	intel_gt_init_requests(gt);
53	intel_gt_init_timelines(gt);
54	intel_gt_init_tlb(gt);
55	intel_gt_pm_init_early(gt);
56
57	intel_wopcm_init_early(&gt->wopcm);
58	intel_uc_init_early(&gt->uc);
59	intel_rps_init_early(&gt->rps);
60}
61
62/* Preliminary initialization of Tile 0 */
63int intel_root_gt_init_early(struct drm_i915_private *i915)
64{
65	struct intel_gt *gt = to_gt(i915);
66
67	gt->i915 = i915;
68	gt->uncore = &i915->uncore;
69	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
70	if (!gt->irq_lock)
71		return -ENOMEM;
72
73	intel_gt_common_init_early(gt);
74
75	return 0;
76}
77
78static int intel_gt_probe_lmem(struct intel_gt *gt)
79{
80	struct drm_i915_private *i915 = gt->i915;
81	unsigned int instance = gt->info.id;
82	int id = INTEL_REGION_LMEM_0 + instance;
83	struct intel_memory_region *mem;
84	int err;
85
86	mem = intel_gt_setup_lmem(gt);
87	if (IS_ERR(mem)) {
88		err = PTR_ERR(mem);
89		if (err == -ENODEV)
90			return 0;
91
92		gt_err(gt, "Failed to setup region(%d) type=%d\n",
93		       err, INTEL_MEMORY_LOCAL);
94		return err;
95	}
96
97	mem->id = id;
98	mem->instance = instance;
99
100	intel_memory_region_set_name(mem, "local%u", mem->instance);
101
102	GEM_BUG_ON(!HAS_REGION(i915, id));
103	GEM_BUG_ON(i915->mm.regions[id]);
104	i915->mm.regions[id] = mem;
105
106	return 0;
107}
108
109int intel_gt_assign_ggtt(struct intel_gt *gt)
110{
111	/* Media GT shares primary GT's GGTT */
112	if (gt->type == GT_MEDIA) {
113		gt->ggtt = to_gt(gt->i915)->ggtt;
114	} else {
115		gt->ggtt = i915_ggtt_create(gt->i915);
116		if (IS_ERR(gt->ggtt))
117			return PTR_ERR(gt->ggtt);
118	}
119
120	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
121
122	return 0;
123}
124
125int intel_gt_init_mmio(struct intel_gt *gt)
126{
127	intel_gt_init_clock_frequency(gt);
128
129	intel_uc_init_mmio(&gt->uc);
130	intel_sseu_info_init(gt);
131	intel_gt_mcr_init(gt);
132
133	return intel_engines_init_mmio(gt);
134}
135
136static void init_unused_ring(struct intel_gt *gt, u32 base)
137{
138	struct intel_uncore *uncore = gt->uncore;
139
140	intel_uncore_write(uncore, RING_CTL(base), 0);
141	intel_uncore_write(uncore, RING_HEAD(base), 0);
142	intel_uncore_write(uncore, RING_TAIL(base), 0);
143	intel_uncore_write(uncore, RING_START(base), 0);
144}
145
146static void init_unused_rings(struct intel_gt *gt)
147{
148	struct drm_i915_private *i915 = gt->i915;
149
150	if (IS_I830(i915)) {
151		init_unused_ring(gt, PRB1_BASE);
152		init_unused_ring(gt, SRB0_BASE);
153		init_unused_ring(gt, SRB1_BASE);
154		init_unused_ring(gt, SRB2_BASE);
155		init_unused_ring(gt, SRB3_BASE);
156	} else if (GRAPHICS_VER(i915) == 2) {
157		init_unused_ring(gt, SRB0_BASE);
158		init_unused_ring(gt, SRB1_BASE);
159	} else if (GRAPHICS_VER(i915) == 3) {
160		init_unused_ring(gt, PRB1_BASE);
161		init_unused_ring(gt, PRB2_BASE);
162	}
163}
164
165int intel_gt_init_hw(struct intel_gt *gt)
166{
167	struct drm_i915_private *i915 = gt->i915;
168	struct intel_uncore *uncore = gt->uncore;
169	int ret;
170
171	gt->last_init_time = ktime_get();
172
173	/* Double layer security blanket, see i915_gem_init() */
174	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
175
176	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
177		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
178
179	if (IS_HASWELL(i915))
180		intel_uncore_write(uncore,
181				   HSW_MI_PREDICATE_RESULT_2,
182				   IS_HASWELL_GT3(i915) ?
183				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
184
185	/* Apply the GT workarounds... */
186	intel_gt_apply_workarounds(gt);
187	/* ...and determine whether they are sticking. */
188	intel_gt_verify_workarounds(gt, "init");
189
190	intel_gt_init_swizzling(gt);
191
192	/*
193	 * At least 830 can leave some of the unused rings
194	 * "active" (ie. head != tail) after resume which
195	 * will prevent c3 entry. Makes sure all unused rings
196	 * are totally idle.
197	 */
198	init_unused_rings(gt);
199
200	ret = i915_ppgtt_init_hw(gt);
201	if (ret) {
202		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
203		goto out;
204	}
205
206	/* We can't enable contexts until all firmware is loaded */
207	ret = intel_uc_init_hw(&gt->uc);
208	if (ret) {
209		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
210		goto out;
211	}
212
213	intel_mocs_init(gt);
214
215out:
216	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
217	return ret;
218}
219
220static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
221{
222	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
223	GEN6_RING_FAULT_REG_POSTING_READ(engine);
224}
225
226i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
227{
228	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
229	if (GRAPHICS_VER(gt->i915) < 11)
230		return INVALID_MMIO_REG;
231
232	return gt->type == GT_MEDIA ?
233		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
234}
235
236void
237intel_gt_clear_error_registers(struct intel_gt *gt,
238			       intel_engine_mask_t engine_mask)
239{
240	struct drm_i915_private *i915 = gt->i915;
241	struct intel_uncore *uncore = gt->uncore;
242	u32 eir;
243
244	if (GRAPHICS_VER(i915) != 2)
245		intel_uncore_write(uncore, PGTBL_ER, 0);
246
247	if (GRAPHICS_VER(i915) < 4)
248		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
249	else
250		intel_uncore_write(uncore, IPEIR_I965, 0);
251
252	intel_uncore_write(uncore, EIR, 0);
253	eir = intel_uncore_read(uncore, EIR);
254	if (eir) {
255		/*
256		 * some errors might have become stuck,
257		 * mask them.
258		 */
259		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
260		intel_uncore_rmw(uncore, EMR, 0, eir);
261		intel_uncore_write(uncore, GEN2_IIR,
262				   I915_MASTER_ERROR_INTERRUPT);
263	}
264
265	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
266		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
267					   RING_FAULT_VALID, 0);
268		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
269	} else if (GRAPHICS_VER(i915) >= 12) {
270		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
271		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
272	} else if (GRAPHICS_VER(i915) >= 8) {
273		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
274		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
275	} else if (GRAPHICS_VER(i915) >= 6) {
276		struct intel_engine_cs *engine;
277		enum intel_engine_id id;
278
279		for_each_engine_masked(engine, gt, engine_mask, id)
280			gen6_clear_engine_error_register(engine);
281	}
282}
283
284static void gen6_check_faults(struct intel_gt *gt)
285{
286	struct intel_engine_cs *engine;
287	enum intel_engine_id id;
288	u32 fault;
289
290	for_each_engine(engine, gt, id) {
291		fault = GEN6_RING_FAULT_REG_READ(engine);
292		if (fault & RING_FAULT_VALID) {
293			gt_dbg(gt, "Unexpected fault\n"
294			       "\tAddr: 0x%08lx\n"
295			       "\tAddress space: %s\n"
296			       "\tSource ID: %d\n"
297			       "\tType: %d\n",
298			       fault & PAGE_MASK,
299			       fault & RING_FAULT_GTTSEL_MASK ?
300			       "GGTT" : "PPGTT",
301			       RING_FAULT_SRCID(fault),
302			       RING_FAULT_FAULT_TYPE(fault));
303		}
304	}
305}
306
307static void xehp_check_faults(struct intel_gt *gt)
308{
309	u32 fault;
310
311	/*
312	 * Although the fault register now lives in an MCR register range,
313	 * the GAM registers are special and we only truly need to read
314	 * the "primary" GAM instance rather than handling each instance
315	 * individually.  intel_gt_mcr_read_any() will automatically steer
316	 * toward the primary instance.
317	 */
318	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
319	if (fault & RING_FAULT_VALID) {
320		u32 fault_data0, fault_data1;
321		u64 fault_addr;
322
323		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
324		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
325
326		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
327			     ((u64)fault_data0 << 12);
328
329		gt_dbg(gt, "Unexpected fault\n"
330		       "\tAddr: 0x%08x_%08x\n"
331		       "\tAddress space: %s\n"
332		       "\tEngine ID: %d\n"
333		       "\tSource ID: %d\n"
334		       "\tType: %d\n",
335		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
336		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
337		       GEN8_RING_FAULT_ENGINE_ID(fault),
338		       RING_FAULT_SRCID(fault),
339		       RING_FAULT_FAULT_TYPE(fault));
340	}
341}
342
343static void gen8_check_faults(struct intel_gt *gt)
344{
345	struct intel_uncore *uncore = gt->uncore;
346	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
347	u32 fault;
348
349	if (GRAPHICS_VER(gt->i915) >= 12) {
350		fault_reg = GEN12_RING_FAULT_REG;
351		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
352		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
353	} else {
354		fault_reg = GEN8_RING_FAULT_REG;
355		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
356		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
357	}
358
359	fault = intel_uncore_read(uncore, fault_reg);
360	if (fault & RING_FAULT_VALID) {
361		u32 fault_data0, fault_data1;
362		u64 fault_addr;
363
364		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
365		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
366
367		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
368			     ((u64)fault_data0 << 12);
369
370		gt_dbg(gt, "Unexpected fault\n"
371		       "\tAddr: 0x%08x_%08x\n"
372		       "\tAddress space: %s\n"
373		       "\tEngine ID: %d\n"
374		       "\tSource ID: %d\n"
375		       "\tType: %d\n",
376		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
377		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
378		       GEN8_RING_FAULT_ENGINE_ID(fault),
379		       RING_FAULT_SRCID(fault),
380		       RING_FAULT_FAULT_TYPE(fault));
381	}
382}
383
384void intel_gt_check_and_clear_faults(struct intel_gt *gt)
385{
386	struct drm_i915_private *i915 = gt->i915;
387
388	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
389	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
390		xehp_check_faults(gt);
391	else if (GRAPHICS_VER(i915) >= 8)
392		gen8_check_faults(gt);
393	else if (GRAPHICS_VER(i915) >= 6)
394		gen6_check_faults(gt);
395	else
396		return;
397
398	intel_gt_clear_error_registers(gt, ALL_ENGINES);
399}
400
401void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
402{
403	struct intel_uncore *uncore = gt->uncore;
404	intel_wakeref_t wakeref;
405
406	/*
407	 * No actual flushing is required for the GTT write domain for reads
408	 * from the GTT domain. Writes to it "immediately" go to main memory
409	 * as far as we know, so there's no chipset flush. It also doesn't
410	 * land in the GPU render cache.
411	 *
412	 * However, we do have to enforce the order so that all writes through
413	 * the GTT land before any writes to the device, such as updates to
414	 * the GATT itself.
415	 *
416	 * We also have to wait a bit for the writes to land from the GTT.
417	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
418	 * timing. This issue has only been observed when switching quickly
419	 * between GTT writes and CPU reads from inside the kernel on recent hw,
420	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
421	 * system agents we cannot reproduce this behaviour, until Cannonlake
422	 * that was!).
423	 */
424
425	wmb();
426
427	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
428		return;
429
430	intel_gt_chipset_flush(gt);
431
432	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
433		unsigned long flags;
434
435		spin_lock_irqsave(&uncore->lock, flags);
436		intel_uncore_posting_read_fw(uncore,
437					     RING_HEAD(RENDER_RING_BASE));
438		spin_unlock_irqrestore(&uncore->lock, flags);
439	}
440}
441
442void intel_gt_chipset_flush(struct intel_gt *gt)
443{
444	wmb();
445	if (GRAPHICS_VER(gt->i915) < 6)
446		intel_ggtt_gmch_flush();
447}
448
449void intel_gt_driver_register(struct intel_gt *gt)
450{
451	intel_gsc_init(&gt->gsc, gt->i915);
452
453	intel_rps_driver_register(&gt->rps);
454
455	intel_gt_debugfs_register(gt);
456	intel_gt_sysfs_register(gt);
457}
458
459static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
460{
461	struct drm_i915_private *i915 = gt->i915;
462	struct drm_i915_gem_object *obj;
463	struct i915_vma *vma;
464	int ret;
465
466	obj = i915_gem_object_create_lmem(i915, size,
467					  I915_BO_ALLOC_VOLATILE |
468					  I915_BO_ALLOC_GPU_ONLY);
469	if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
470		obj = i915_gem_object_create_stolen(i915, size);
471	if (IS_ERR(obj))
472		obj = i915_gem_object_create_internal(i915, size);
473	if (IS_ERR(obj)) {
474		gt_err(gt, "Failed to allocate scratch page\n");
475		return PTR_ERR(obj);
476	}
477
478	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
479	if (IS_ERR(vma)) {
480		ret = PTR_ERR(vma);
481		goto err_unref;
482	}
483
484	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
485	if (ret)
486		goto err_unref;
487
488	gt->scratch = i915_vma_make_unshrinkable(vma);
489
490	return 0;
491
492err_unref:
493	i915_gem_object_put(obj);
494	return ret;
495}
496
497static void intel_gt_fini_scratch(struct intel_gt *gt)
498{
499	i915_vma_unpin_and_release(&gt->scratch, 0);
500}
501
502static struct i915_address_space *kernel_vm(struct intel_gt *gt)
503{
504	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
505		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
506	else
507		return i915_vm_get(&gt->ggtt->vm);
508}
509
510static int __engines_record_defaults(struct intel_gt *gt)
511{
512	struct i915_request *requests[I915_NUM_ENGINES] = {};
513	struct intel_engine_cs *engine;
514	enum intel_engine_id id;
515	int err = 0;
516
517	/*
518	 * As we reset the gpu during very early sanitisation, the current
519	 * register state on the GPU should reflect its defaults values.
520	 * We load a context onto the hw (with restore-inhibit), then switch
521	 * over to a second context to save that default register state. We
522	 * can then prime every new context with that state so they all start
523	 * from the same default HW values.
524	 */
525
526	for_each_engine(engine, gt, id) {
527		struct intel_renderstate so;
528		struct intel_context *ce;
529		struct i915_request *rq;
530
531		/* We must be able to switch to something! */
532		GEM_BUG_ON(!engine->kernel_context);
533
534		ce = intel_context_create(engine);
535		if (IS_ERR(ce)) {
536			err = PTR_ERR(ce);
537			goto out;
538		}
539
540		err = intel_renderstate_init(&so, ce);
541		if (err)
542			goto err;
543
544		rq = i915_request_create(ce);
545		if (IS_ERR(rq)) {
546			err = PTR_ERR(rq);
547			goto err_fini;
548		}
549
550		err = intel_engine_emit_ctx_wa(rq);
551		if (err)
552			goto err_rq;
553
554		err = intel_renderstate_emit(&so, rq);
555		if (err)
556			goto err_rq;
557
558err_rq:
559		requests[id] = i915_request_get(rq);
560		i915_request_add(rq);
561err_fini:
562		intel_renderstate_fini(&so, ce);
563err:
564		if (err) {
565			intel_context_put(ce);
566			goto out;
567		}
568	}
569
570	/* Flush the default context image to memory, and enable powersaving. */
571	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
572		err = -EIO;
573		goto out;
574	}
575
576	for (id = 0; id < ARRAY_SIZE(requests); id++) {
577		struct i915_request *rq;
578		struct file *state;
579
580		rq = requests[id];
581		if (!rq)
582			continue;
583
584		if (rq->fence.error) {
585			err = -EIO;
586			goto out;
587		}
588
589		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
590		if (!rq->context->state)
591			continue;
592
593		/* Keep a copy of the state's backing pages; free the obj */
594		state = shmem_create_from_object(rq->context->state->obj);
595		if (IS_ERR(state)) {
596			err = PTR_ERR(state);
597			goto out;
598		}
599		rq->engine->default_state = state;
600	}
601
602out:
603	/*
604	 * If we have to abandon now, we expect the engines to be idle
605	 * and ready to be torn-down. The quickest way we can accomplish
606	 * this is by declaring ourselves wedged.
607	 */
608	if (err)
609		intel_gt_set_wedged(gt);
610
611	for (id = 0; id < ARRAY_SIZE(requests); id++) {
612		struct intel_context *ce;
613		struct i915_request *rq;
614
615		rq = requests[id];
616		if (!rq)
617			continue;
618
619		ce = rq->context;
620		i915_request_put(rq);
621		intel_context_put(ce);
622	}
623	return err;
624}
625
626static int __engines_verify_workarounds(struct intel_gt *gt)
627{
628	struct intel_engine_cs *engine;
629	enum intel_engine_id id;
630	int err = 0;
631
632	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
633		return 0;
634
635	for_each_engine(engine, gt, id) {
636		if (intel_engine_verify_workarounds(engine, "load"))
637			err = -EIO;
638	}
639
640	/* Flush and restore the kernel context for safety */
641	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
642		err = -EIO;
643
644	return err;
645}
646
647static void __intel_gt_disable(struct intel_gt *gt)
648{
649	intel_gt_set_wedged_on_fini(gt);
650
651	intel_gt_suspend_prepare(gt);
652	intel_gt_suspend_late(gt);
653
654	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
655}
656
657int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
658{
659	long remaining_timeout;
660
661	/* If the device is asleep, we have no requests outstanding */
662	if (!intel_gt_pm_is_awake(gt))
663		return 0;
664
665	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
666							   &remaining_timeout)) > 0) {
667		cond_resched();
668		if (signal_pending(current))
669			return -EINTR;
670	}
671
672	if (timeout)
673		return timeout;
674
675	if (remaining_timeout < 0)
676		remaining_timeout = 0;
677
678	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
679}
680
681int intel_gt_init(struct intel_gt *gt)
682{
683	int err;
684
685	err = i915_inject_probe_error(gt->i915, -ENODEV);
686	if (err)
687		return err;
688
689	intel_gt_init_workarounds(gt);
690
691	/*
692	 * This is just a security blanket to placate dragons.
693	 * On some systems, we very sporadically observe that the first TLBs
694	 * used by the CS may be stale, despite us poking the TLB reset. If
695	 * we hold the forcewake during initialisation these problems
696	 * just magically go away.
697	 */
698	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
699
700	err = intel_gt_init_scratch(gt,
701				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
702	if (err)
703		goto out_fw;
704
705	intel_gt_pm_init(gt);
706
707	gt->vm = kernel_vm(gt);
708	if (!gt->vm) {
709		err = -ENOMEM;
710		goto err_pm;
711	}
712
713	intel_set_mocs_index(gt);
714
715	err = intel_engines_init(gt);
716	if (err)
717		goto err_engines;
718
719	err = intel_uc_init(&gt->uc);
720	if (err)
721		goto err_engines;
722
723	err = intel_gt_resume(gt);
724	if (err)
725		goto err_uc_init;
726
727	err = intel_gt_init_hwconfig(gt);
728	if (err)
729		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
730
731	err = __engines_record_defaults(gt);
732	if (err)
733		goto err_gt;
734
735	err = __engines_verify_workarounds(gt);
736	if (err)
737		goto err_gt;
738
739	err = i915_inject_probe_error(gt->i915, -EIO);
740	if (err)
741		goto err_gt;
742
743	intel_uc_init_late(&gt->uc);
744
745	intel_migrate_init(&gt->migrate, gt);
746
747	goto out_fw;
748err_gt:
749	__intel_gt_disable(gt);
750	intel_uc_fini_hw(&gt->uc);
751err_uc_init:
752	intel_uc_fini(&gt->uc);
753err_engines:
754	intel_engines_release(gt);
755	i915_vm_put(fetch_and_zero(&gt->vm));
756err_pm:
757	intel_gt_pm_fini(gt);
758	intel_gt_fini_scratch(gt);
759out_fw:
760	if (err)
761		intel_gt_set_wedged_on_init(gt);
762	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
763	return err;
764}
765
766void intel_gt_driver_remove(struct intel_gt *gt)
767{
768	__intel_gt_disable(gt);
769
770	intel_migrate_fini(&gt->migrate);
771	intel_uc_driver_remove(&gt->uc);
772
773	intel_engines_release(gt);
774
775	intel_gt_flush_buffer_pool(gt);
776}
777
778void intel_gt_driver_unregister(struct intel_gt *gt)
779{
780	intel_wakeref_t wakeref;
781
782	intel_gt_sysfs_unregister(gt);
783	intel_rps_driver_unregister(&gt->rps);
784	intel_gsc_fini(&gt->gsc);
785
786	/*
787	 * If we unload the driver and wedge before the GSC worker is complete,
788	 * the worker will hit an error on its submission to the GSC engine and
789	 * then exit. This is hard to hit for a user, but it is reproducible
790	 * with skipping selftests. The error is handled gracefully by the
791	 * worker, so there are no functional issues, but we still end up with
792	 * an error message in dmesg, which is something we want to avoid as
793	 * this is a supported scenario. We could modify the worker to better
794	 * handle a wedging occurring during its execution, but that gets
795	 * complicated for a couple of reasons:
796	 * - We do want the error on runtime wedging, because there are
797	 *   implications for subsystems outside of GT (i.e., PXP, HDCP), it's
798	 *   only the error on driver unload that we want to silence.
799	 * - The worker is responsible for multiple submissions (GSC FW load,
800	 *   HuC auth, SW proxy), so all of those will have to be adapted to
801	 *   handle the wedged_on_fini scenario.
802	 * Therefore, it's much simpler to just wait for the worker to be done
803	 * before wedging on driver removal, also considering that the worker
804	 * will likely already be idle in the great majority of non-selftest
805	 * scenarios.
806	 */
807	intel_gsc_uc_flush_work(&gt->uc.gsc);
808
809	/*
810	 * Upon unregistering the device to prevent any new users, cancel
811	 * all in-flight requests so that we can quickly unbind the active
812	 * resources.
813	 */
814	intel_gt_set_wedged_on_fini(gt);
815
816	/* Scrub all HW state upon release */
817	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
818		__intel_gt_reset(gt, ALL_ENGINES);
819}
820
821void intel_gt_driver_release(struct intel_gt *gt)
822{
823	struct i915_address_space *vm;
824
825	vm = fetch_and_zero(&gt->vm);
826	if (vm) /* FIXME being called twice on error paths :( */
827		i915_vm_put(vm);
828
829	intel_wa_list_free(&gt->wa_list);
830	intel_gt_pm_fini(gt);
831	intel_gt_fini_scratch(gt);
832	intel_gt_fini_buffer_pool(gt);
833	intel_gt_fini_hwconfig(gt);
834}
835
836void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
837{
838	struct intel_gt *gt;
839	unsigned int id;
840
841	/* We need to wait for inflight RCU frees to release their grip */
842	rcu_barrier();
843
844	for_each_gt(gt, i915, id) {
845		intel_uc_driver_late_release(&gt->uc);
846		intel_gt_fini_requests(gt);
847		intel_gt_fini_reset(gt);
848		intel_gt_fini_timelines(gt);
849		intel_gt_fini_tlb(gt);
850		intel_engines_free(gt);
851	}
852}
853
854static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
855{
856	int ret;
857
858	if (!gt_is_root(gt)) {
859		struct intel_uncore *uncore;
860		spinlock_t *irq_lock;
861
862		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
863		if (!uncore)
864			return -ENOMEM;
865
866		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
867		if (!irq_lock)
868			return -ENOMEM;
869
870		gt->uncore = uncore;
871		gt->irq_lock = irq_lock;
872
873		intel_gt_common_init_early(gt);
874	}
875
876	intel_uncore_init_early(gt->uncore, gt);
877
878	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
879	if (ret)
880		return ret;
881
882	gt->phys_addr = phys_addr;
883
884	return 0;
885}
886
887int intel_gt_probe_all(struct drm_i915_private *i915)
888{
889	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
890	struct intel_gt *gt = to_gt(i915);
891	const struct intel_gt_definition *gtdef;
892	phys_addr_t phys_addr;
893	unsigned int mmio_bar;
894	unsigned int i;
895	int ret;
896
897	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
898	phys_addr = pci_resource_start(pdev, mmio_bar);
899
900	/*
901	 * We always have at least one primary GT on any device
902	 * and it has been already initialized early during probe
903	 * in i915_driver_probe()
904	 */
905	gt->i915 = i915;
906	gt->name = "Primary GT";
907	gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
908
909	gt_dbg(gt, "Setting up %s\n", gt->name);
910	ret = intel_gt_tile_setup(gt, phys_addr);
911	if (ret)
912		return ret;
913
914	i915->gt[0] = gt;
915
916	if (!HAS_EXTRA_GT_LIST(i915))
917		return 0;
918
919	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
920	     gtdef->name != NULL;
921	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
922		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
923		if (!gt) {
924			ret = -ENOMEM;
925			goto err;
926		}
927
928		gt->i915 = i915;
929		gt->name = gtdef->name;
930		gt->type = gtdef->type;
931		gt->info.engine_mask = gtdef->engine_mask;
932		gt->info.id = i;
933
934		gt_dbg(gt, "Setting up %s\n", gt->name);
935		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
936						  gtdef->mapping_base,
937						  SZ_16M,
938						  pci_resource_len(pdev, mmio_bar)))) {
939			ret = -ENODEV;
940			goto err;
941		}
942
943		switch (gtdef->type) {
944		case GT_TILE:
945			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
946			break;
947
948		case GT_MEDIA:
949			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
950						     gtdef->gsi_offset);
951			break;
952
953		case GT_PRIMARY:
954			/* Primary GT should not appear in extra GT list */
955		default:
956			MISSING_CASE(gtdef->type);
957			ret = -ENODEV;
958		}
959
960		if (ret)
961			goto err;
962
963		i915->gt[i] = gt;
964	}
965
966	return 0;
967
968err:
969	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
970	return ret;
971}
972
973int intel_gt_tiles_init(struct drm_i915_private *i915)
974{
975	struct intel_gt *gt;
976	unsigned int id;
977	int ret;
978
979	for_each_gt(gt, i915, id) {
980		ret = intel_gt_probe_lmem(gt);
981		if (ret)
982			return ret;
983	}
984
985	return 0;
986}
987
988void intel_gt_info_print(const struct intel_gt_info *info,
989			 struct drm_printer *p)
990{
991	drm_printf(p, "available engines: %x\n", info->engine_mask);
992
993	intel_sseu_dump(&info->sseu, p);
994}
995
996enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
997					      struct drm_i915_gem_object *obj,
998					      bool always_coherent)
999{
1000	/*
1001	 * Wa_22016122933: always return I915_MAP_WC for Media
1002	 * version 13.0 when the object is on the Media GT
1003	 */
1004	if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
1005		return I915_MAP_WC;
1006	if (HAS_LLC(gt->i915) || always_coherent)
1007		return I915_MAP_WB;
1008	else
1009		return I915_MAP_WC;
1010}
1011