1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2022 Intel Corporation
4 */
5
6#include <drm/drm_blend.h>
7
8#include "i915_drv.h"
9#include "i915_fixed.h"
10#include "i915_reg.h"
11#include "i9xx_wm.h"
12#include "intel_atomic.h"
13#include "intel_atomic_plane.h"
14#include "intel_bw.h"
15#include "intel_crtc.h"
16#include "intel_de.h"
17#include "intel_display.h"
18#include "intel_display_power.h"
19#include "intel_display_types.h"
20#include "intel_fb.h"
21#include "intel_pcode.h"
22#include "intel_wm.h"
23#include "skl_watermark.h"
24#include "skl_watermark_regs.h"
25
26static void skl_sagv_disable(struct drm_i915_private *i915);
27
28/* Stores plane specific WM parameters */
29struct skl_wm_params {
30	bool x_tiled, y_tiled;
31	bool rc_surface;
32	bool is_planar;
33	u32 width;
34	u8 cpp;
35	u32 plane_pixel_rate;
36	u32 y_min_scanlines;
37	u32 plane_bytes_per_line;
38	uint_fixed_16_16_t plane_blocks_per_line;
39	uint_fixed_16_16_t y_tile_minimum;
40	u32 linetime_us;
41	u32 dbuf_block_size;
42};
43
44u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
45{
46	u8 enabled_slices = 0;
47	enum dbuf_slice slice;
48
49	for_each_dbuf_slice(i915, slice) {
50		if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
51			enabled_slices |= BIT(slice);
52	}
53
54	return enabled_slices;
55}
56
57/*
58 * FIXME: We still don't have the proper code detect if we need to apply the WA,
59 * so assume we'll always need it in order to avoid underruns.
60 */
61static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
62{
63	return DISPLAY_VER(i915) == 9;
64}
65
66static bool
67intel_has_sagv(struct drm_i915_private *i915)
68{
69	return HAS_SAGV(i915) &&
70		i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
71}
72
73static u32
74intel_sagv_block_time(struct drm_i915_private *i915)
75{
76	if (DISPLAY_VER(i915) >= 14) {
77		u32 val;
78
79		val = intel_de_read(i915, MTL_LATENCY_SAGV);
80
81		return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
82	} else if (DISPLAY_VER(i915) >= 12) {
83		u32 val = 0;
84		int ret;
85
86		ret = snb_pcode_read(&i915->uncore,
87				     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
88				     &val, NULL);
89		if (ret) {
90			drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
91			return 0;
92		}
93
94		return val;
95	} else if (DISPLAY_VER(i915) == 11) {
96		return 10;
97	} else if (HAS_SAGV(i915)) {
98		return 30;
99	} else {
100		return 0;
101	}
102}
103
104static void intel_sagv_init(struct drm_i915_private *i915)
105{
106	if (!HAS_SAGV(i915))
107		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
108
109	/*
110	 * Probe to see if we have working SAGV control.
111	 * For icl+ this was already determined by intel_bw_init_hw().
112	 */
113	if (DISPLAY_VER(i915) < 11)
114		skl_sagv_disable(i915);
115
116	drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
117
118	i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
119
120	drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
121		    str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
122
123	/* avoid overflow when adding with wm0 latency/etc. */
124	if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
125		     "Excessive SAGV block time %u, ignoring\n",
126		     i915->display.sagv.block_time_us))
127		i915->display.sagv.block_time_us = 0;
128
129	if (!intel_has_sagv(i915))
130		i915->display.sagv.block_time_us = 0;
131}
132
133/*
134 * SAGV dynamically adjusts the system agent voltage and clock frequencies
135 * depending on power and performance requirements. The display engine access
136 * to system memory is blocked during the adjustment time. Because of the
137 * blocking time, having this enabled can cause full system hangs and/or pipe
138 * underruns if we don't meet all of the following requirements:
139 *
140 *  - <= 1 pipe enabled
141 *  - All planes can enable watermarks for latencies >= SAGV engine block time
142 *  - We're not using an interlaced display configuration
143 */
144static void skl_sagv_enable(struct drm_i915_private *i915)
145{
146	int ret;
147
148	if (!intel_has_sagv(i915))
149		return;
150
151	if (i915->display.sagv.status == I915_SAGV_ENABLED)
152		return;
153
154	drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
155	ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
156			      GEN9_SAGV_ENABLE);
157
158	/* We don't need to wait for SAGV when enabling */
159
160	/*
161	 * Some skl systems, pre-release machines in particular,
162	 * don't actually have SAGV.
163	 */
164	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
165		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
166		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
167		return;
168	} else if (ret < 0) {
169		drm_err(&i915->drm, "Failed to enable SAGV\n");
170		return;
171	}
172
173	i915->display.sagv.status = I915_SAGV_ENABLED;
174}
175
176static void skl_sagv_disable(struct drm_i915_private *i915)
177{
178	int ret;
179
180	if (!intel_has_sagv(i915))
181		return;
182
183	if (i915->display.sagv.status == I915_SAGV_DISABLED)
184		return;
185
186	drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
187	/* bspec says to keep retrying for at least 1 ms */
188	ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
189				GEN9_SAGV_DISABLE,
190				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
191				1);
192	/*
193	 * Some skl systems, pre-release machines in particular,
194	 * don't actually have SAGV.
195	 */
196	if (IS_SKYLAKE(i915) && ret == -ENXIO) {
197		drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
198		i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
199		return;
200	} else if (ret < 0) {
201		drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
202		return;
203	}
204
205	i915->display.sagv.status = I915_SAGV_DISABLED;
206}
207
208static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
209{
210	struct drm_i915_private *i915 = to_i915(state->base.dev);
211	const struct intel_bw_state *new_bw_state =
212		intel_atomic_get_new_bw_state(state);
213
214	if (!new_bw_state)
215		return;
216
217	if (!intel_can_enable_sagv(i915, new_bw_state))
218		skl_sagv_disable(i915);
219}
220
221static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
222{
223	struct drm_i915_private *i915 = to_i915(state->base.dev);
224	const struct intel_bw_state *new_bw_state =
225		intel_atomic_get_new_bw_state(state);
226
227	if (!new_bw_state)
228		return;
229
230	if (intel_can_enable_sagv(i915, new_bw_state))
231		skl_sagv_enable(i915);
232}
233
234static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
235{
236	struct drm_i915_private *i915 = to_i915(state->base.dev);
237	const struct intel_bw_state *old_bw_state =
238		intel_atomic_get_old_bw_state(state);
239	const struct intel_bw_state *new_bw_state =
240		intel_atomic_get_new_bw_state(state);
241	u16 old_mask, new_mask;
242
243	if (!new_bw_state)
244		return;
245
246	old_mask = old_bw_state->qgv_points_mask;
247	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
248
249	if (old_mask == new_mask)
250		return;
251
252	WARN_ON(!new_bw_state->base.changed);
253
254	drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
255		    old_mask, new_mask);
256
257	/*
258	 * Restrict required qgv points before updating the configuration.
259	 * According to BSpec we can't mask and unmask qgv points at the same
260	 * time. Also masking should be done before updating the configuration
261	 * and unmasking afterwards.
262	 */
263	icl_pcode_restrict_qgv_points(i915, new_mask);
264}
265
266static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
267{
268	struct drm_i915_private *i915 = to_i915(state->base.dev);
269	const struct intel_bw_state *old_bw_state =
270		intel_atomic_get_old_bw_state(state);
271	const struct intel_bw_state *new_bw_state =
272		intel_atomic_get_new_bw_state(state);
273	u16 old_mask, new_mask;
274
275	if (!new_bw_state)
276		return;
277
278	old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
279	new_mask = new_bw_state->qgv_points_mask;
280
281	if (old_mask == new_mask)
282		return;
283
284	WARN_ON(!new_bw_state->base.changed);
285
286	drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
287		    old_mask, new_mask);
288
289	/*
290	 * Allow required qgv points after updating the configuration.
291	 * According to BSpec we can't mask and unmask qgv points at the same
292	 * time. Also masking should be done before updating the configuration
293	 * and unmasking afterwards.
294	 */
295	icl_pcode_restrict_qgv_points(i915, new_mask);
296}
297
298void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
299{
300	struct drm_i915_private *i915 = to_i915(state->base.dev);
301
302	/*
303	 * Just return if we can't control SAGV or don't have it.
304	 * This is different from situation when we have SAGV but just can't
305	 * afford it due to DBuf limitation - in case if SAGV is completely
306	 * disabled in a BIOS, we are not even allowed to send a PCode request,
307	 * as it will throw an error. So have to check it here.
308	 */
309	if (!intel_has_sagv(i915))
310		return;
311
312	if (DISPLAY_VER(i915) >= 11)
313		icl_sagv_pre_plane_update(state);
314	else
315		skl_sagv_pre_plane_update(state);
316}
317
318void intel_sagv_post_plane_update(struct intel_atomic_state *state)
319{
320	struct drm_i915_private *i915 = to_i915(state->base.dev);
321
322	/*
323	 * Just return if we can't control SAGV or don't have it.
324	 * This is different from situation when we have SAGV but just can't
325	 * afford it due to DBuf limitation - in case if SAGV is completely
326	 * disabled in a BIOS, we are not even allowed to send a PCode request,
327	 * as it will throw an error. So have to check it here.
328	 */
329	if (!intel_has_sagv(i915))
330		return;
331
332	if (DISPLAY_VER(i915) >= 11)
333		icl_sagv_post_plane_update(state);
334	else
335		skl_sagv_post_plane_update(state);
336}
337
338static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
339{
340	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
341	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
342	enum plane_id plane_id;
343	int max_level = INT_MAX;
344
345	if (!intel_has_sagv(i915))
346		return false;
347
348	if (!crtc_state->hw.active)
349		return true;
350
351	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
352		return false;
353
354	for_each_plane_id_on_crtc(crtc, plane_id) {
355		const struct skl_plane_wm *wm =
356			&crtc_state->wm.skl.optimal.planes[plane_id];
357		int level;
358
359		/* Skip this plane if it's not enabled */
360		if (!wm->wm[0].enable)
361			continue;
362
363		/* Find the highest enabled wm level for this plane */
364		for (level = i915->display.wm.num_levels - 1;
365		     !wm->wm[level].enable; --level)
366		     { }
367
368		/* Highest common enabled wm level for all planes */
369		max_level = min(level, max_level);
370	}
371
372	/* No enabled planes? */
373	if (max_level == INT_MAX)
374		return true;
375
376	for_each_plane_id_on_crtc(crtc, plane_id) {
377		const struct skl_plane_wm *wm =
378			&crtc_state->wm.skl.optimal.planes[plane_id];
379
380		/*
381		 * All enabled planes must have enabled a common wm level that
382		 * can tolerate memory latencies higher than sagv_block_time_us
383		 */
384		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
385			return false;
386	}
387
388	return true;
389}
390
391static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
392{
393	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394	enum plane_id plane_id;
395
396	if (!crtc_state->hw.active)
397		return true;
398
399	for_each_plane_id_on_crtc(crtc, plane_id) {
400		const struct skl_plane_wm *wm =
401			&crtc_state->wm.skl.optimal.planes[plane_id];
402
403		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
404			return false;
405	}
406
407	return true;
408}
409
410static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
411{
412	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
413	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
414
415	if (!i915->params.enable_sagv)
416		return false;
417
418	if (DISPLAY_VER(i915) >= 12)
419		return tgl_crtc_can_enable_sagv(crtc_state);
420	else
421		return skl_crtc_can_enable_sagv(crtc_state);
422}
423
424bool intel_can_enable_sagv(struct drm_i915_private *i915,
425			   const struct intel_bw_state *bw_state)
426{
427	if (DISPLAY_VER(i915) < 11 &&
428	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
429		return false;
430
431	return bw_state->pipe_sagv_reject == 0;
432}
433
434static int intel_compute_sagv_mask(struct intel_atomic_state *state)
435{
436	struct drm_i915_private *i915 = to_i915(state->base.dev);
437	int ret;
438	struct intel_crtc *crtc;
439	struct intel_crtc_state *new_crtc_state;
440	struct intel_bw_state *new_bw_state = NULL;
441	const struct intel_bw_state *old_bw_state = NULL;
442	int i;
443
444	for_each_new_intel_crtc_in_state(state, crtc,
445					 new_crtc_state, i) {
446		new_bw_state = intel_atomic_get_bw_state(state);
447		if (IS_ERR(new_bw_state))
448			return PTR_ERR(new_bw_state);
449
450		old_bw_state = intel_atomic_get_old_bw_state(state);
451
452		if (intel_crtc_can_enable_sagv(new_crtc_state))
453			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
454		else
455			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
456	}
457
458	if (!new_bw_state)
459		return 0;
460
461	new_bw_state->active_pipes =
462		intel_calc_active_pipes(state, old_bw_state->active_pipes);
463
464	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
465		ret = intel_atomic_lock_global_state(&new_bw_state->base);
466		if (ret)
467			return ret;
468	}
469
470	if (intel_can_enable_sagv(i915, new_bw_state) !=
471	    intel_can_enable_sagv(i915, old_bw_state)) {
472		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
473		if (ret)
474			return ret;
475	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
476		ret = intel_atomic_lock_global_state(&new_bw_state->base);
477		if (ret)
478			return ret;
479	}
480
481	for_each_new_intel_crtc_in_state(state, crtc,
482					 new_crtc_state, i) {
483		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
484
485		/*
486		 * We store use_sagv_wm in the crtc state rather than relying on
487		 * that bw state since we have no convenient way to get at the
488		 * latter from the plane commit hooks (especially in the legacy
489		 * cursor case)
490		 */
491		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
492			DISPLAY_VER(i915) >= 12 &&
493			intel_can_enable_sagv(i915, new_bw_state);
494	}
495
496	return 0;
497}
498
499static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
500			      u16 start, u16 end)
501{
502	entry->start = start;
503	entry->end = end;
504
505	return end;
506}
507
508static int intel_dbuf_slice_size(struct drm_i915_private *i915)
509{
510	return DISPLAY_INFO(i915)->dbuf.size /
511		hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
512}
513
514static void
515skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
516			 struct skl_ddb_entry *ddb)
517{
518	int slice_size = intel_dbuf_slice_size(i915);
519
520	if (!slice_mask) {
521		ddb->start = 0;
522		ddb->end = 0;
523		return;
524	}
525
526	ddb->start = (ffs(slice_mask) - 1) * slice_size;
527	ddb->end = fls(slice_mask) * slice_size;
528
529	WARN_ON(ddb->start >= ddb->end);
530	WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
531}
532
533static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
534{
535	struct skl_ddb_entry ddb;
536
537	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
538		slice_mask = BIT(DBUF_S1);
539	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
540		slice_mask = BIT(DBUF_S3);
541
542	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
543
544	return ddb.start;
545}
546
547u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
548			    const struct skl_ddb_entry *entry)
549{
550	int slice_size = intel_dbuf_slice_size(i915);
551	enum dbuf_slice start_slice, end_slice;
552	u8 slice_mask = 0;
553
554	if (!skl_ddb_entry_size(entry))
555		return 0;
556
557	start_slice = entry->start / slice_size;
558	end_slice = (entry->end - 1) / slice_size;
559
560	/*
561	 * Per plane DDB entry can in a really worst case be on multiple slices
562	 * but single entry is anyway contigious.
563	 */
564	while (start_slice <= end_slice) {
565		slice_mask |= BIT(start_slice);
566		start_slice++;
567	}
568
569	return slice_mask;
570}
571
572static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
573{
574	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
575	int hdisplay, vdisplay;
576
577	if (!crtc_state->hw.active)
578		return 0;
579
580	/*
581	 * Watermark/ddb requirement highly depends upon width of the
582	 * framebuffer, So instead of allocating DDB equally among pipes
583	 * distribute DDB based on resolution/width of the display.
584	 */
585	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
586
587	return hdisplay;
588}
589
590static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
591				    enum pipe for_pipe,
592				    unsigned int *weight_start,
593				    unsigned int *weight_end,
594				    unsigned int *weight_total)
595{
596	struct drm_i915_private *i915 =
597		to_i915(dbuf_state->base.state->base.dev);
598	enum pipe pipe;
599
600	*weight_start = 0;
601	*weight_end = 0;
602	*weight_total = 0;
603
604	for_each_pipe(i915, pipe) {
605		int weight = dbuf_state->weight[pipe];
606
607		/*
608		 * Do not account pipes using other slice sets
609		 * luckily as of current BSpec slice sets do not partially
610		 * intersect(pipes share either same one slice or same slice set
611		 * i.e no partial intersection), so it is enough to check for
612		 * equality for now.
613		 */
614		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
615			continue;
616
617		*weight_total += weight;
618		if (pipe < for_pipe) {
619			*weight_start += weight;
620			*weight_end += weight;
621		} else if (pipe == for_pipe) {
622			*weight_end += weight;
623		}
624	}
625}
626
627static int
628skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
629{
630	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
631	unsigned int weight_total, weight_start, weight_end;
632	const struct intel_dbuf_state *old_dbuf_state =
633		intel_atomic_get_old_dbuf_state(state);
634	struct intel_dbuf_state *new_dbuf_state =
635		intel_atomic_get_new_dbuf_state(state);
636	struct intel_crtc_state *crtc_state;
637	struct skl_ddb_entry ddb_slices;
638	enum pipe pipe = crtc->pipe;
639	unsigned int mbus_offset = 0;
640	u32 ddb_range_size;
641	u32 dbuf_slice_mask;
642	u32 start, end;
643	int ret;
644
645	if (new_dbuf_state->weight[pipe] == 0) {
646		skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
647		goto out;
648	}
649
650	dbuf_slice_mask = new_dbuf_state->slices[pipe];
651
652	skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
653	mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
654	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
655
656	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
657				&weight_start, &weight_end, &weight_total);
658
659	start = ddb_range_size * weight_start / weight_total;
660	end = ddb_range_size * weight_end / weight_total;
661
662	skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
663			   ddb_slices.start - mbus_offset + start,
664			   ddb_slices.start - mbus_offset + end);
665
666out:
667	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
668	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
669				&new_dbuf_state->ddb[pipe]))
670		return 0;
671
672	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
673	if (ret)
674		return ret;
675
676	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
677	if (IS_ERR(crtc_state))
678		return PTR_ERR(crtc_state);
679
680	/*
681	 * Used for checking overlaps, so we need absolute
682	 * offsets instead of MBUS relative offsets.
683	 */
684	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
685	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
686
687	drm_dbg_kms(&i915->drm,
688		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
689		    crtc->base.base.id, crtc->base.name,
690		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
691		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
692		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
693		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
694
695	return 0;
696}
697
698static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
699				 int width, const struct drm_format_info *format,
700				 u64 modifier, unsigned int rotation,
701				 u32 plane_pixel_rate, struct skl_wm_params *wp,
702				 int color_plane);
703
704static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
705				 struct intel_plane *plane,
706				 int level,
707				 unsigned int latency,
708				 const struct skl_wm_params *wp,
709				 const struct skl_wm_level *result_prev,
710				 struct skl_wm_level *result /* out */);
711
712static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
713				   const struct skl_wm_params *wp)
714{
715	unsigned int latency = i915->display.wm.skl_latency[level];
716
717	if (latency == 0)
718		return 0;
719
720	/*
721	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
722	 * Display WA #1141: kbl,cfl
723	 */
724	if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
725	    skl_watermark_ipc_enabled(i915))
726		latency += 4;
727
728	if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
729		latency += 15;
730
731	return latency;
732}
733
734static unsigned int
735skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
736		      int num_active)
737{
738	struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
739	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
740	struct skl_wm_level wm = {};
741	int ret, min_ddb_alloc = 0;
742	struct skl_wm_params wp;
743	int level;
744
745	ret = skl_compute_wm_params(crtc_state, 256,
746				    drm_format_info(DRM_FORMAT_ARGB8888),
747				    DRM_FORMAT_MOD_LINEAR,
748				    DRM_MODE_ROTATE_0,
749				    crtc_state->pixel_rate, &wp, 0);
750	drm_WARN_ON(&i915->drm, ret);
751
752	for (level = 0; level < i915->display.wm.num_levels; level++) {
753		unsigned int latency = skl_wm_latency(i915, level, &wp);
754
755		skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
756		if (wm.min_ddb_alloc == U16_MAX)
757			break;
758
759		min_ddb_alloc = wm.min_ddb_alloc;
760	}
761
762	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
763}
764
765static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
766{
767	skl_ddb_entry_init(entry,
768			   REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
769			   REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
770	if (entry->end)
771		entry->end++;
772}
773
774static void
775skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
776			   const enum pipe pipe,
777			   const enum plane_id plane_id,
778			   struct skl_ddb_entry *ddb,
779			   struct skl_ddb_entry *ddb_y)
780{
781	u32 val;
782
783	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
784	if (plane_id == PLANE_CURSOR) {
785		val = intel_de_read(i915, CUR_BUF_CFG(pipe));
786		skl_ddb_entry_init_from_hw(ddb, val);
787		return;
788	}
789
790	val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
791	skl_ddb_entry_init_from_hw(ddb, val);
792
793	if (DISPLAY_VER(i915) >= 11)
794		return;
795
796	val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
797	skl_ddb_entry_init_from_hw(ddb_y, val);
798}
799
800static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
801				      struct skl_ddb_entry *ddb,
802				      struct skl_ddb_entry *ddb_y)
803{
804	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
805	enum intel_display_power_domain power_domain;
806	enum pipe pipe = crtc->pipe;
807	intel_wakeref_t wakeref;
808	enum plane_id plane_id;
809
810	power_domain = POWER_DOMAIN_PIPE(pipe);
811	wakeref = intel_display_power_get_if_enabled(i915, power_domain);
812	if (!wakeref)
813		return;
814
815	for_each_plane_id_on_crtc(crtc, plane_id)
816		skl_ddb_get_hw_plane_state(i915, pipe,
817					   plane_id,
818					   &ddb[plane_id],
819					   &ddb_y[plane_id]);
820
821	intel_display_power_put(i915, power_domain, wakeref);
822}
823
824struct dbuf_slice_conf_entry {
825	u8 active_pipes;
826	u8 dbuf_mask[I915_MAX_PIPES];
827	bool join_mbus;
828};
829
830/*
831 * Table taken from Bspec 12716
832 * Pipes do have some preferred DBuf slice affinity,
833 * plus there are some hardcoded requirements on how
834 * those should be distributed for multipipe scenarios.
835 * For more DBuf slices algorithm can get even more messy
836 * and less readable, so decided to use a table almost
837 * as is from BSpec itself - that way it is at least easier
838 * to compare, change and check.
839 */
840static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
841/* Autogenerated with igt/tools/intel_dbuf_map tool: */
842{
843	{
844		.active_pipes = BIT(PIPE_A),
845		.dbuf_mask = {
846			[PIPE_A] = BIT(DBUF_S1),
847		},
848	},
849	{
850		.active_pipes = BIT(PIPE_B),
851		.dbuf_mask = {
852			[PIPE_B] = BIT(DBUF_S1),
853		},
854	},
855	{
856		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
857		.dbuf_mask = {
858			[PIPE_A] = BIT(DBUF_S1),
859			[PIPE_B] = BIT(DBUF_S2),
860		},
861	},
862	{
863		.active_pipes = BIT(PIPE_C),
864		.dbuf_mask = {
865			[PIPE_C] = BIT(DBUF_S2),
866		},
867	},
868	{
869		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
870		.dbuf_mask = {
871			[PIPE_A] = BIT(DBUF_S1),
872			[PIPE_C] = BIT(DBUF_S2),
873		},
874	},
875	{
876		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
877		.dbuf_mask = {
878			[PIPE_B] = BIT(DBUF_S1),
879			[PIPE_C] = BIT(DBUF_S2),
880		},
881	},
882	{
883		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
884		.dbuf_mask = {
885			[PIPE_A] = BIT(DBUF_S1),
886			[PIPE_B] = BIT(DBUF_S1),
887			[PIPE_C] = BIT(DBUF_S2),
888		},
889	},
890	{}
891};
892
893/*
894 * Table taken from Bspec 49255
895 * Pipes do have some preferred DBuf slice affinity,
896 * plus there are some hardcoded requirements on how
897 * those should be distributed for multipipe scenarios.
898 * For more DBuf slices algorithm can get even more messy
899 * and less readable, so decided to use a table almost
900 * as is from BSpec itself - that way it is at least easier
901 * to compare, change and check.
902 */
903static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
904/* Autogenerated with igt/tools/intel_dbuf_map tool: */
905{
906	{
907		.active_pipes = BIT(PIPE_A),
908		.dbuf_mask = {
909			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
910		},
911	},
912	{
913		.active_pipes = BIT(PIPE_B),
914		.dbuf_mask = {
915			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
916		},
917	},
918	{
919		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
920		.dbuf_mask = {
921			[PIPE_A] = BIT(DBUF_S2),
922			[PIPE_B] = BIT(DBUF_S1),
923		},
924	},
925	{
926		.active_pipes = BIT(PIPE_C),
927		.dbuf_mask = {
928			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
929		},
930	},
931	{
932		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
933		.dbuf_mask = {
934			[PIPE_A] = BIT(DBUF_S1),
935			[PIPE_C] = BIT(DBUF_S2),
936		},
937	},
938	{
939		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
940		.dbuf_mask = {
941			[PIPE_B] = BIT(DBUF_S1),
942			[PIPE_C] = BIT(DBUF_S2),
943		},
944	},
945	{
946		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
947		.dbuf_mask = {
948			[PIPE_A] = BIT(DBUF_S1),
949			[PIPE_B] = BIT(DBUF_S1),
950			[PIPE_C] = BIT(DBUF_S2),
951		},
952	},
953	{
954		.active_pipes = BIT(PIPE_D),
955		.dbuf_mask = {
956			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
957		},
958	},
959	{
960		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
961		.dbuf_mask = {
962			[PIPE_A] = BIT(DBUF_S1),
963			[PIPE_D] = BIT(DBUF_S2),
964		},
965	},
966	{
967		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
968		.dbuf_mask = {
969			[PIPE_B] = BIT(DBUF_S1),
970			[PIPE_D] = BIT(DBUF_S2),
971		},
972	},
973	{
974		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
975		.dbuf_mask = {
976			[PIPE_A] = BIT(DBUF_S1),
977			[PIPE_B] = BIT(DBUF_S1),
978			[PIPE_D] = BIT(DBUF_S2),
979		},
980	},
981	{
982		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
983		.dbuf_mask = {
984			[PIPE_C] = BIT(DBUF_S1),
985			[PIPE_D] = BIT(DBUF_S2),
986		},
987	},
988	{
989		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
990		.dbuf_mask = {
991			[PIPE_A] = BIT(DBUF_S1),
992			[PIPE_C] = BIT(DBUF_S2),
993			[PIPE_D] = BIT(DBUF_S2),
994		},
995	},
996	{
997		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
998		.dbuf_mask = {
999			[PIPE_B] = BIT(DBUF_S1),
1000			[PIPE_C] = BIT(DBUF_S2),
1001			[PIPE_D] = BIT(DBUF_S2),
1002		},
1003	},
1004	{
1005		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1006		.dbuf_mask = {
1007			[PIPE_A] = BIT(DBUF_S1),
1008			[PIPE_B] = BIT(DBUF_S1),
1009			[PIPE_C] = BIT(DBUF_S2),
1010			[PIPE_D] = BIT(DBUF_S2),
1011		},
1012	},
1013	{}
1014};
1015
1016static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1017	{
1018		.active_pipes = BIT(PIPE_A),
1019		.dbuf_mask = {
1020			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1021		},
1022	},
1023	{
1024		.active_pipes = BIT(PIPE_B),
1025		.dbuf_mask = {
1026			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1027		},
1028	},
1029	{
1030		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1031		.dbuf_mask = {
1032			[PIPE_A] = BIT(DBUF_S1),
1033			[PIPE_B] = BIT(DBUF_S2),
1034		},
1035	},
1036	{
1037		.active_pipes = BIT(PIPE_C),
1038		.dbuf_mask = {
1039			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1040		},
1041	},
1042	{
1043		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1044		.dbuf_mask = {
1045			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1046			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1047		},
1048	},
1049	{
1050		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1051		.dbuf_mask = {
1052			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1053			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1054		},
1055	},
1056	{
1057		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1058		.dbuf_mask = {
1059			[PIPE_A] = BIT(DBUF_S1),
1060			[PIPE_B] = BIT(DBUF_S2),
1061			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1062		},
1063	},
1064	{
1065		.active_pipes = BIT(PIPE_D),
1066		.dbuf_mask = {
1067			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1068		},
1069	},
1070	{
1071		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1072		.dbuf_mask = {
1073			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1074			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1075		},
1076	},
1077	{
1078		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1079		.dbuf_mask = {
1080			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1081			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1082		},
1083	},
1084	{
1085		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1086		.dbuf_mask = {
1087			[PIPE_A] = BIT(DBUF_S1),
1088			[PIPE_B] = BIT(DBUF_S2),
1089			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1090		},
1091	},
1092	{
1093		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1094		.dbuf_mask = {
1095			[PIPE_C] = BIT(DBUF_S3),
1096			[PIPE_D] = BIT(DBUF_S4),
1097		},
1098	},
1099	{
1100		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1101		.dbuf_mask = {
1102			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1103			[PIPE_C] = BIT(DBUF_S3),
1104			[PIPE_D] = BIT(DBUF_S4),
1105		},
1106	},
1107	{
1108		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1109		.dbuf_mask = {
1110			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1111			[PIPE_C] = BIT(DBUF_S3),
1112			[PIPE_D] = BIT(DBUF_S4),
1113		},
1114	},
1115	{
1116		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1117		.dbuf_mask = {
1118			[PIPE_A] = BIT(DBUF_S1),
1119			[PIPE_B] = BIT(DBUF_S2),
1120			[PIPE_C] = BIT(DBUF_S3),
1121			[PIPE_D] = BIT(DBUF_S4),
1122		},
1123	},
1124	{}
1125};
1126
1127static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1128	/*
1129	 * Keep the join_mbus cases first so check_mbus_joined()
1130	 * will prefer them over the !join_mbus cases.
1131	 */
1132	{
1133		.active_pipes = BIT(PIPE_A),
1134		.dbuf_mask = {
1135			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1136		},
1137		.join_mbus = true,
1138	},
1139	{
1140		.active_pipes = BIT(PIPE_B),
1141		.dbuf_mask = {
1142			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1143		},
1144		.join_mbus = true,
1145	},
1146	{
1147		.active_pipes = BIT(PIPE_A),
1148		.dbuf_mask = {
1149			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1150		},
1151		.join_mbus = false,
1152	},
1153	{
1154		.active_pipes = BIT(PIPE_B),
1155		.dbuf_mask = {
1156			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1157		},
1158		.join_mbus = false,
1159	},
1160	{
1161		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1162		.dbuf_mask = {
1163			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1164			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1165		},
1166	},
1167	{
1168		.active_pipes = BIT(PIPE_C),
1169		.dbuf_mask = {
1170			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1171		},
1172	},
1173	{
1174		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1175		.dbuf_mask = {
1176			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1177			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1178		},
1179	},
1180	{
1181		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1182		.dbuf_mask = {
1183			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1184			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1185		},
1186	},
1187	{
1188		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1189		.dbuf_mask = {
1190			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1191			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1192			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1193		},
1194	},
1195	{
1196		.active_pipes = BIT(PIPE_D),
1197		.dbuf_mask = {
1198			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1199		},
1200	},
1201	{
1202		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1203		.dbuf_mask = {
1204			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1205			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1206		},
1207	},
1208	{
1209		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1210		.dbuf_mask = {
1211			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1212			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1213		},
1214	},
1215	{
1216		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1217		.dbuf_mask = {
1218			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1219			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1220			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1221		},
1222	},
1223	{
1224		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1225		.dbuf_mask = {
1226			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1227			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1228		},
1229	},
1230	{
1231		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1232		.dbuf_mask = {
1233			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1234			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1235			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1236		},
1237	},
1238	{
1239		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1240		.dbuf_mask = {
1241			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1242			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1243			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1244		},
1245	},
1246	{
1247		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1248		.dbuf_mask = {
1249			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1250			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1251			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1252			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1253		},
1254	},
1255	{}
1256
1257};
1258
1259static bool check_mbus_joined(u8 active_pipes,
1260			      const struct dbuf_slice_conf_entry *dbuf_slices)
1261{
1262	int i;
1263
1264	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1265		if (dbuf_slices[i].active_pipes == active_pipes)
1266			return dbuf_slices[i].join_mbus;
1267	}
1268	return false;
1269}
1270
1271static bool adlp_check_mbus_joined(u8 active_pipes)
1272{
1273	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1274}
1275
1276static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1277			      const struct dbuf_slice_conf_entry *dbuf_slices)
1278{
1279	int i;
1280
1281	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1282		if (dbuf_slices[i].active_pipes == active_pipes &&
1283		    dbuf_slices[i].join_mbus == join_mbus)
1284			return dbuf_slices[i].dbuf_mask[pipe];
1285	}
1286	return 0;
1287}
1288
1289/*
1290 * This function finds an entry with same enabled pipe configuration and
1291 * returns correspondent DBuf slice mask as stated in BSpec for particular
1292 * platform.
1293 */
1294static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1295{
1296	/*
1297	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1298	 * required calculating "pipe ratio" in order to determine
1299	 * if one or two slices can be used for single pipe configurations
1300	 * as additional constraint to the existing table.
1301	 * However based on recent info, it should be not "pipe ratio"
1302	 * but rather ratio between pixel_rate and cdclk with additional
1303	 * constants, so for now we are using only table until this is
1304	 * clarified. Also this is the reason why crtc_state param is
1305	 * still here - we will need it once those additional constraints
1306	 * pop up.
1307	 */
1308	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1309				   icl_allowed_dbufs);
1310}
1311
1312static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1313{
1314	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1315				   tgl_allowed_dbufs);
1316}
1317
1318static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1319{
1320	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1321				   adlp_allowed_dbufs);
1322}
1323
1324static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1325{
1326	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1327				   dg2_allowed_dbufs);
1328}
1329
1330static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1331{
1332	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1333	enum pipe pipe = crtc->pipe;
1334
1335	if (IS_DG2(i915))
1336		return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1337	else if (DISPLAY_VER(i915) >= 13)
1338		return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1339	else if (DISPLAY_VER(i915) == 12)
1340		return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1341	else if (DISPLAY_VER(i915) == 11)
1342		return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1343	/*
1344	 * For anything else just return one slice yet.
1345	 * Should be extended for other platforms.
1346	 */
1347	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1348}
1349
1350static bool
1351use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1352		     struct intel_plane *plane)
1353{
1354	struct drm_i915_private *i915 = to_i915(plane->base.dev);
1355
1356	return DISPLAY_VER(i915) >= 13 &&
1357	       crtc_state->uapi.async_flip &&
1358	       plane->async_flip;
1359}
1360
1361static u64
1362skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1363{
1364	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1365	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1366	enum plane_id plane_id;
1367	u64 data_rate = 0;
1368
1369	for_each_plane_id_on_crtc(crtc, plane_id) {
1370		if (plane_id == PLANE_CURSOR)
1371			continue;
1372
1373		data_rate += crtc_state->rel_data_rate[plane_id];
1374
1375		if (DISPLAY_VER(i915) < 11)
1376			data_rate += crtc_state->rel_data_rate_y[plane_id];
1377	}
1378
1379	return data_rate;
1380}
1381
1382static const struct skl_wm_level *
1383skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1384		   enum plane_id plane_id,
1385		   int level)
1386{
1387	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1388
1389	if (level == 0 && pipe_wm->use_sagv_wm)
1390		return &wm->sagv.wm0;
1391
1392	return &wm->wm[level];
1393}
1394
1395static const struct skl_wm_level *
1396skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1397		   enum plane_id plane_id)
1398{
1399	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1400
1401	if (pipe_wm->use_sagv_wm)
1402		return &wm->sagv.trans_wm;
1403
1404	return &wm->trans_wm;
1405}
1406
1407/*
1408 * We only disable the watermarks for each plane if
1409 * they exceed the ddb allocation of said plane. This
1410 * is done so that we don't end up touching cursor
1411 * watermarks needlessly when some other plane reduces
1412 * our max possible watermark level.
1413 *
1414 * Bspec has this to say about the PLANE_WM enable bit:
1415 * "All the watermarks at this level for all enabled
1416 *  planes must be enabled before the level will be used."
1417 * So this is actually safe to do.
1418 */
1419static void
1420skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1421{
1422	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1423		memset(wm, 0, sizeof(*wm));
1424}
1425
1426static void
1427skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1428			const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1429{
1430	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1431	    uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1432		memset(wm, 0, sizeof(*wm));
1433		memset(uv_wm, 0, sizeof(*uv_wm));
1434	}
1435}
1436
1437static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1438				const struct skl_plane_wm *wm)
1439{
1440	/*
1441	 * Wa_1408961008:icl, ehl
1442	 * Wa_14012656716:tgl, adl
1443	 * Wa_14017887344:icl
1444	 * Wa_14017868169:adl, tgl
1445	 * Due to some power saving optimizations, different subsystems
1446	 * like PSR, might still use even disabled wm level registers,
1447	 * for "reference", so lets keep at least the values sane.
1448	 * Considering amount of WA requiring us to do similar things, was
1449	 * decided to simply do it for all of the platforms, as those wm
1450	 * levels are disabled, this isn't going to do harm anyway.
1451	 */
1452	return level > 0 && !wm->wm[level].enable;
1453}
1454
1455struct skl_plane_ddb_iter {
1456	u64 data_rate;
1457	u16 start, size;
1458};
1459
1460static void
1461skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1462		       struct skl_ddb_entry *ddb,
1463		       const struct skl_wm_level *wm,
1464		       u64 data_rate)
1465{
1466	u16 size, extra = 0;
1467
1468	if (data_rate) {
1469		extra = min_t(u16, iter->size,
1470			      DIV64_U64_ROUND_UP(iter->size * data_rate,
1471						 iter->data_rate));
1472		iter->size -= extra;
1473		iter->data_rate -= data_rate;
1474	}
1475
1476	/*
1477	 * Keep ddb entry of all disabled planes explicitly zeroed
1478	 * to avoid skl_ddb_add_affected_planes() adding them to
1479	 * the state when other planes change their allocations.
1480	 */
1481	size = wm->min_ddb_alloc + extra;
1482	if (size)
1483		iter->start = skl_ddb_entry_init(ddb, iter->start,
1484						 iter->start + size);
1485}
1486
1487static int
1488skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1489			    struct intel_crtc *crtc)
1490{
1491	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1492	struct intel_crtc_state *crtc_state =
1493		intel_atomic_get_new_crtc_state(state, crtc);
1494	const struct intel_dbuf_state *dbuf_state =
1495		intel_atomic_get_new_dbuf_state(state);
1496	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1497	int num_active = hweight8(dbuf_state->active_pipes);
1498	struct skl_plane_ddb_iter iter;
1499	enum plane_id plane_id;
1500	u16 cursor_size;
1501	u32 blocks;
1502	int level;
1503
1504	/* Clear the partitioning for disabled planes. */
1505	memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1506	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1507
1508	if (!crtc_state->hw.active)
1509		return 0;
1510
1511	iter.start = alloc->start;
1512	iter.size = skl_ddb_entry_size(alloc);
1513	if (iter.size == 0)
1514		return 0;
1515
1516	/* Allocate fixed number of blocks for cursor. */
1517	cursor_size = skl_cursor_allocation(crtc_state, num_active);
1518	iter.size -= cursor_size;
1519	skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1520			   alloc->end - cursor_size, alloc->end);
1521
1522	iter.data_rate = skl_total_relative_data_rate(crtc_state);
1523
1524	/*
1525	 * Find the highest watermark level for which we can satisfy the block
1526	 * requirement of active planes.
1527	 */
1528	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1529		blocks = 0;
1530		for_each_plane_id_on_crtc(crtc, plane_id) {
1531			const struct skl_plane_wm *wm =
1532				&crtc_state->wm.skl.optimal.planes[plane_id];
1533
1534			if (plane_id == PLANE_CURSOR) {
1535				const struct skl_ddb_entry *ddb =
1536					&crtc_state->wm.skl.plane_ddb[plane_id];
1537
1538				if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1539					drm_WARN_ON(&i915->drm,
1540						    wm->wm[level].min_ddb_alloc != U16_MAX);
1541					blocks = U32_MAX;
1542					break;
1543				}
1544				continue;
1545			}
1546
1547			blocks += wm->wm[level].min_ddb_alloc;
1548			blocks += wm->uv_wm[level].min_ddb_alloc;
1549		}
1550
1551		if (blocks <= iter.size) {
1552			iter.size -= blocks;
1553			break;
1554		}
1555	}
1556
1557	if (level < 0) {
1558		drm_dbg_kms(&i915->drm,
1559			    "Requested display configuration exceeds system DDB limitations");
1560		drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1561			    blocks, iter.size);
1562		return -EINVAL;
1563	}
1564
1565	/* avoid the WARN later when we don't allocate any extra DDB */
1566	if (iter.data_rate == 0)
1567		iter.size = 0;
1568
1569	/*
1570	 * Grant each plane the blocks it requires at the highest achievable
1571	 * watermark level, plus an extra share of the leftover blocks
1572	 * proportional to its relative data rate.
1573	 */
1574	for_each_plane_id_on_crtc(crtc, plane_id) {
1575		struct skl_ddb_entry *ddb =
1576			&crtc_state->wm.skl.plane_ddb[plane_id];
1577		struct skl_ddb_entry *ddb_y =
1578			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1579		const struct skl_plane_wm *wm =
1580			&crtc_state->wm.skl.optimal.planes[plane_id];
1581
1582		if (plane_id == PLANE_CURSOR)
1583			continue;
1584
1585		if (DISPLAY_VER(i915) < 11 &&
1586		    crtc_state->nv12_planes & BIT(plane_id)) {
1587			skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1588					       crtc_state->rel_data_rate_y[plane_id]);
1589			skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1590					       crtc_state->rel_data_rate[plane_id]);
1591		} else {
1592			skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1593					       crtc_state->rel_data_rate[plane_id]);
1594		}
1595	}
1596	drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1597
1598	/*
1599	 * When we calculated watermark values we didn't know how high
1600	 * of a level we'd actually be able to hit, so we just marked
1601	 * all levels as "enabled."  Go back now and disable the ones
1602	 * that aren't actually possible.
1603	 */
1604	for (level++; level < i915->display.wm.num_levels; level++) {
1605		for_each_plane_id_on_crtc(crtc, plane_id) {
1606			const struct skl_ddb_entry *ddb =
1607				&crtc_state->wm.skl.plane_ddb[plane_id];
1608			const struct skl_ddb_entry *ddb_y =
1609				&crtc_state->wm.skl.plane_ddb_y[plane_id];
1610			struct skl_plane_wm *wm =
1611				&crtc_state->wm.skl.optimal.planes[plane_id];
1612
1613			if (DISPLAY_VER(i915) < 11 &&
1614			    crtc_state->nv12_planes & BIT(plane_id))
1615				skl_check_nv12_wm_level(&wm->wm[level],
1616							&wm->uv_wm[level],
1617							ddb_y, ddb);
1618			else
1619				skl_check_wm_level(&wm->wm[level], ddb);
1620
1621			if (skl_need_wm_copy_wa(i915, level, wm)) {
1622				wm->wm[level].blocks = wm->wm[level - 1].blocks;
1623				wm->wm[level].lines = wm->wm[level - 1].lines;
1624				wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1625			}
1626		}
1627	}
1628
1629	/*
1630	 * Go back and disable the transition and SAGV watermarks
1631	 * if it turns out we don't have enough DDB blocks for them.
1632	 */
1633	for_each_plane_id_on_crtc(crtc, plane_id) {
1634		const struct skl_ddb_entry *ddb =
1635			&crtc_state->wm.skl.plane_ddb[plane_id];
1636		const struct skl_ddb_entry *ddb_y =
1637			&crtc_state->wm.skl.plane_ddb_y[plane_id];
1638		struct skl_plane_wm *wm =
1639			&crtc_state->wm.skl.optimal.planes[plane_id];
1640
1641		if (DISPLAY_VER(i915) < 11 &&
1642		    crtc_state->nv12_planes & BIT(plane_id)) {
1643			skl_check_wm_level(&wm->trans_wm, ddb_y);
1644		} else {
1645			WARN_ON(skl_ddb_entry_size(ddb_y));
1646
1647			skl_check_wm_level(&wm->trans_wm, ddb);
1648		}
1649
1650		skl_check_wm_level(&wm->sagv.wm0, ddb);
1651		skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1652	}
1653
1654	return 0;
1655}
1656
1657/*
1658 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1659 * for the read latency) and cpp should always be <= 8, so that
1660 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1661 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1662 */
1663static uint_fixed_16_16_t
1664skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1665	       u8 cpp, u32 latency, u32 dbuf_block_size)
1666{
1667	u32 wm_intermediate_val;
1668	uint_fixed_16_16_t ret;
1669
1670	if (latency == 0)
1671		return FP_16_16_MAX;
1672
1673	wm_intermediate_val = latency * pixel_rate * cpp;
1674	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1675
1676	if (DISPLAY_VER(i915) >= 10)
1677		ret = add_fixed16_u32(ret, 1);
1678
1679	return ret;
1680}
1681
1682static uint_fixed_16_16_t
1683skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1684	       uint_fixed_16_16_t plane_blocks_per_line)
1685{
1686	u32 wm_intermediate_val;
1687	uint_fixed_16_16_t ret;
1688
1689	if (latency == 0)
1690		return FP_16_16_MAX;
1691
1692	wm_intermediate_val = latency * pixel_rate;
1693	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1694					   pipe_htotal * 1000);
1695	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1696	return ret;
1697}
1698
1699static uint_fixed_16_16_t
1700intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1701{
1702	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1703	u32 pixel_rate;
1704	u32 crtc_htotal;
1705	uint_fixed_16_16_t linetime_us;
1706
1707	if (!crtc_state->hw.active)
1708		return u32_to_fixed16(0);
1709
1710	pixel_rate = crtc_state->pixel_rate;
1711
1712	if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1713		return u32_to_fixed16(0);
1714
1715	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1716	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1717
1718	return linetime_us;
1719}
1720
1721static int
1722skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1723		      int width, const struct drm_format_info *format,
1724		      u64 modifier, unsigned int rotation,
1725		      u32 plane_pixel_rate, struct skl_wm_params *wp,
1726		      int color_plane)
1727{
1728	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1729	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1730	u32 interm_pbpl;
1731
1732	/* only planar format has two planes */
1733	if (color_plane == 1 &&
1734	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1735		drm_dbg_kms(&i915->drm,
1736			    "Non planar format have single plane\n");
1737		return -EINVAL;
1738	}
1739
1740	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1741	wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1742		intel_fb_is_tiled_modifier(modifier);
1743	wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1744	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1745
1746	wp->width = width;
1747	if (color_plane == 1 && wp->is_planar)
1748		wp->width /= 2;
1749
1750	wp->cpp = format->cpp[color_plane];
1751	wp->plane_pixel_rate = plane_pixel_rate;
1752
1753	if (DISPLAY_VER(i915) >= 11 &&
1754	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
1755		wp->dbuf_block_size = 256;
1756	else
1757		wp->dbuf_block_size = 512;
1758
1759	if (drm_rotation_90_or_270(rotation)) {
1760		switch (wp->cpp) {
1761		case 1:
1762			wp->y_min_scanlines = 16;
1763			break;
1764		case 2:
1765			wp->y_min_scanlines = 8;
1766			break;
1767		case 4:
1768			wp->y_min_scanlines = 4;
1769			break;
1770		default:
1771			MISSING_CASE(wp->cpp);
1772			return -EINVAL;
1773		}
1774	} else {
1775		wp->y_min_scanlines = 4;
1776	}
1777
1778	if (skl_needs_memory_bw_wa(i915))
1779		wp->y_min_scanlines *= 2;
1780
1781	wp->plane_bytes_per_line = wp->width * wp->cpp;
1782	if (wp->y_tiled) {
1783		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1784					   wp->y_min_scanlines,
1785					   wp->dbuf_block_size);
1786
1787		if (DISPLAY_VER(i915) >= 10)
1788			interm_pbpl++;
1789
1790		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1791							wp->y_min_scanlines);
1792	} else {
1793		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1794					   wp->dbuf_block_size);
1795
1796		if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1797			interm_pbpl++;
1798
1799		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1800	}
1801
1802	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1803					     wp->plane_blocks_per_line);
1804
1805	wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1806
1807	return 0;
1808}
1809
1810static int
1811skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1812			    const struct intel_plane_state *plane_state,
1813			    struct skl_wm_params *wp, int color_plane)
1814{
1815	const struct drm_framebuffer *fb = plane_state->hw.fb;
1816	int width;
1817
1818	/*
1819	 * Src coordinates are already rotated by 270 degrees for
1820	 * the 90/270 degree plane rotation cases (to match the
1821	 * GTT mapping), hence no need to account for rotation here.
1822	 */
1823	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1824
1825	return skl_compute_wm_params(crtc_state, width,
1826				     fb->format, fb->modifier,
1827				     plane_state->hw.rotation,
1828				     intel_plane_pixel_rate(crtc_state, plane_state),
1829				     wp, color_plane);
1830}
1831
1832static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1833{
1834	if (DISPLAY_VER(i915) >= 10)
1835		return true;
1836
1837	/* The number of lines are ignored for the level 0 watermark. */
1838	return level > 0;
1839}
1840
1841static int skl_wm_max_lines(struct drm_i915_private *i915)
1842{
1843	if (DISPLAY_VER(i915) >= 13)
1844		return 255;
1845	else
1846		return 31;
1847}
1848
1849static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1850				 struct intel_plane *plane,
1851				 int level,
1852				 unsigned int latency,
1853				 const struct skl_wm_params *wp,
1854				 const struct skl_wm_level *result_prev,
1855				 struct skl_wm_level *result /* out */)
1856{
1857	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1858	uint_fixed_16_16_t method1, method2;
1859	uint_fixed_16_16_t selected_result;
1860	u32 blocks, lines, min_ddb_alloc = 0;
1861
1862	if (latency == 0 ||
1863	    (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1864		/* reject it */
1865		result->min_ddb_alloc = U16_MAX;
1866		return;
1867	}
1868
1869	method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1870				 wp->cpp, latency, wp->dbuf_block_size);
1871	method2 = skl_wm_method2(wp->plane_pixel_rate,
1872				 crtc_state->hw.pipe_mode.crtc_htotal,
1873				 latency,
1874				 wp->plane_blocks_per_line);
1875
1876	if (wp->y_tiled) {
1877		selected_result = max_fixed16(method2, wp->y_tile_minimum);
1878	} else {
1879		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1880		     wp->dbuf_block_size < 1) &&
1881		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1882			selected_result = method2;
1883		} else if (latency >= wp->linetime_us) {
1884			if (DISPLAY_VER(i915) == 9)
1885				selected_result = min_fixed16(method1, method2);
1886			else
1887				selected_result = method2;
1888		} else {
1889			selected_result = method1;
1890		}
1891	}
1892
1893	blocks = fixed16_to_u32_round_up(selected_result) + 1;
1894	/*
1895	 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1896	 * as there will be at minimum one line for lines configuration. This
1897	 * is a work around for FIFO underruns observed with resolutions like
1898	 * 4k 60 Hz in single channel DRAM configurations.
1899	 *
1900	 * As per the Bspec 49325, if the ddb allocation can hold at least
1901	 * one plane_blocks_per_line, we should have selected method2 in
1902	 * the above logic. Assuming that modern versions have enough dbuf
1903	 * and method2 guarantees blocks equivalent to at least 1 line,
1904	 * select the blocks as plane_blocks_per_line.
1905	 *
1906	 * TODO: Revisit the logic when we have better understanding on DRAM
1907	 * channels' impact on the level 0 memory latency and the relevant
1908	 * wm calculations.
1909	 */
1910	if (skl_wm_has_lines(i915, level))
1911		blocks = max(blocks,
1912			     fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1913	lines = div_round_up_fixed16(selected_result,
1914				     wp->plane_blocks_per_line);
1915
1916	if (DISPLAY_VER(i915) == 9) {
1917		/* Display WA #1125: skl,bxt,kbl */
1918		if (level == 0 && wp->rc_surface)
1919			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1920
1921		/* Display WA #1126: skl,bxt,kbl */
1922		if (level >= 1 && level <= 7) {
1923			if (wp->y_tiled) {
1924				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1925				lines += wp->y_min_scanlines;
1926			} else {
1927				blocks++;
1928			}
1929
1930			/*
1931			 * Make sure result blocks for higher latency levels are
1932			 * at least as high as level below the current level.
1933			 * Assumption in DDB algorithm optimization for special
1934			 * cases. Also covers Display WA #1125 for RC.
1935			 */
1936			if (result_prev->blocks > blocks)
1937				blocks = result_prev->blocks;
1938		}
1939	}
1940
1941	if (DISPLAY_VER(i915) >= 11) {
1942		if (wp->y_tiled) {
1943			int extra_lines;
1944
1945			if (lines % wp->y_min_scanlines == 0)
1946				extra_lines = wp->y_min_scanlines;
1947			else
1948				extra_lines = wp->y_min_scanlines * 2 -
1949					lines % wp->y_min_scanlines;
1950
1951			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1952								 wp->plane_blocks_per_line);
1953		} else {
1954			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1955		}
1956	}
1957
1958	if (!skl_wm_has_lines(i915, level))
1959		lines = 0;
1960
1961	if (lines > skl_wm_max_lines(i915)) {
1962		/* reject it */
1963		result->min_ddb_alloc = U16_MAX;
1964		return;
1965	}
1966
1967	/*
1968	 * If lines is valid, assume we can use this watermark level
1969	 * for now.  We'll come back and disable it after we calculate the
1970	 * DDB allocation if it turns out we don't actually have enough
1971	 * blocks to satisfy it.
1972	 */
1973	result->blocks = blocks;
1974	result->lines = lines;
1975	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1976	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1977	result->enable = true;
1978
1979	if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
1980		result->can_sagv = latency >= i915->display.sagv.block_time_us;
1981}
1982
1983static void
1984skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
1985		      struct intel_plane *plane,
1986		      const struct skl_wm_params *wm_params,
1987		      struct skl_wm_level *levels)
1988{
1989	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1990	struct skl_wm_level *result_prev = &levels[0];
1991	int level;
1992
1993	for (level = 0; level < i915->display.wm.num_levels; level++) {
1994		struct skl_wm_level *result = &levels[level];
1995		unsigned int latency = skl_wm_latency(i915, level, wm_params);
1996
1997		skl_compute_plane_wm(crtc_state, plane, level, latency,
1998				     wm_params, result_prev, result);
1999
2000		result_prev = result;
2001	}
2002}
2003
2004static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2005				struct intel_plane *plane,
2006				const struct skl_wm_params *wm_params,
2007				struct skl_plane_wm *plane_wm)
2008{
2009	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2010	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2011	struct skl_wm_level *levels = plane_wm->wm;
2012	unsigned int latency = 0;
2013
2014	if (i915->display.sagv.block_time_us)
2015		latency = i915->display.sagv.block_time_us +
2016			skl_wm_latency(i915, 0, wm_params);
2017
2018	skl_compute_plane_wm(crtc_state, plane, 0, latency,
2019			     wm_params, &levels[0],
2020			     sagv_wm);
2021}
2022
2023static void skl_compute_transition_wm(struct drm_i915_private *i915,
2024				      struct skl_wm_level *trans_wm,
2025				      const struct skl_wm_level *wm0,
2026				      const struct skl_wm_params *wp)
2027{
2028	u16 trans_min, trans_amount, trans_y_tile_min;
2029	u16 wm0_blocks, trans_offset, blocks;
2030
2031	/* Transition WM don't make any sense if ipc is disabled */
2032	if (!skl_watermark_ipc_enabled(i915))
2033		return;
2034
2035	/*
2036	 * WaDisableTWM:skl,kbl,cfl,bxt
2037	 * Transition WM are not recommended by HW team for GEN9
2038	 */
2039	if (DISPLAY_VER(i915) == 9)
2040		return;
2041
2042	if (DISPLAY_VER(i915) >= 11)
2043		trans_min = 4;
2044	else
2045		trans_min = 14;
2046
2047	/* Display WA #1140: glk,cnl */
2048	if (DISPLAY_VER(i915) == 10)
2049		trans_amount = 0;
2050	else
2051		trans_amount = 10; /* This is configurable amount */
2052
2053	trans_offset = trans_min + trans_amount;
2054
2055	/*
2056	 * The spec asks for Selected Result Blocks for wm0 (the real value),
2057	 * not Result Blocks (the integer value). Pay attention to the capital
2058	 * letters. The value wm_l0->blocks is actually Result Blocks, but
2059	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2060	 * and since we later will have to get the ceiling of the sum in the
2061	 * transition watermarks calculation, we can just pretend Selected
2062	 * Result Blocks is Result Blocks minus 1 and it should work for the
2063	 * current platforms.
2064	 */
2065	wm0_blocks = wm0->blocks - 1;
2066
2067	if (wp->y_tiled) {
2068		trans_y_tile_min =
2069			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2070		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2071	} else {
2072		blocks = wm0_blocks + trans_offset;
2073	}
2074	blocks++;
2075
2076	/*
2077	 * Just assume we can enable the transition watermark.  After
2078	 * computing the DDB we'll come back and disable it if that
2079	 * assumption turns out to be false.
2080	 */
2081	trans_wm->blocks = blocks;
2082	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2083	trans_wm->enable = true;
2084}
2085
2086static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2087				     const struct intel_plane_state *plane_state,
2088				     struct intel_plane *plane, int color_plane)
2089{
2090	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2091	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2092	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2093	struct skl_wm_params wm_params;
2094	int ret;
2095
2096	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2097					  &wm_params, color_plane);
2098	if (ret)
2099		return ret;
2100
2101	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2102
2103	skl_compute_transition_wm(i915, &wm->trans_wm,
2104				  &wm->wm[0], &wm_params);
2105
2106	if (DISPLAY_VER(i915) >= 12) {
2107		tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2108
2109		skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2110					  &wm->sagv.wm0, &wm_params);
2111	}
2112
2113	return 0;
2114}
2115
2116static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2117				 const struct intel_plane_state *plane_state,
2118				 struct intel_plane *plane)
2119{
2120	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2121	struct skl_wm_params wm_params;
2122	int ret;
2123
2124	wm->is_planar = true;
2125
2126	/* uv plane watermarks must also be validated for NV12/Planar */
2127	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2128					  &wm_params, 1);
2129	if (ret)
2130		return ret;
2131
2132	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2133
2134	return 0;
2135}
2136
2137static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2138			      const struct intel_plane_state *plane_state)
2139{
2140	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2141	enum plane_id plane_id = plane->id;
2142	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2143	const struct drm_framebuffer *fb = plane_state->hw.fb;
2144	int ret;
2145
2146	memset(wm, 0, sizeof(*wm));
2147
2148	if (!intel_wm_plane_visible(crtc_state, plane_state))
2149		return 0;
2150
2151	ret = skl_build_plane_wm_single(crtc_state, plane_state,
2152					plane, 0);
2153	if (ret)
2154		return ret;
2155
2156	if (fb->format->is_yuv && fb->format->num_planes > 1) {
2157		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2158					    plane);
2159		if (ret)
2160			return ret;
2161	}
2162
2163	return 0;
2164}
2165
2166static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2167			      const struct intel_plane_state *plane_state)
2168{
2169	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2170	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2171	enum plane_id plane_id = plane->id;
2172	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2173	int ret;
2174
2175	/* Watermarks calculated in master */
2176	if (plane_state->planar_slave)
2177		return 0;
2178
2179	memset(wm, 0, sizeof(*wm));
2180
2181	if (plane_state->planar_linked_plane) {
2182		const struct drm_framebuffer *fb = plane_state->hw.fb;
2183
2184		drm_WARN_ON(&i915->drm,
2185			    !intel_wm_plane_visible(crtc_state, plane_state));
2186		drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2187			    fb->format->num_planes == 1);
2188
2189		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2190						plane_state->planar_linked_plane, 0);
2191		if (ret)
2192			return ret;
2193
2194		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2195						plane, 1);
2196		if (ret)
2197			return ret;
2198	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2199		ret = skl_build_plane_wm_single(crtc_state, plane_state,
2200						plane, 0);
2201		if (ret)
2202			return ret;
2203	}
2204
2205	return 0;
2206}
2207
2208static bool
2209skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2210			int wm0_lines, int latency)
2211{
2212	const struct drm_display_mode *adjusted_mode =
2213		&crtc_state->hw.adjusted_mode;
2214
2215	/* FIXME missing scaler and DSC pre-fill time */
2216	return crtc_state->framestart_delay +
2217		intel_usecs_to_scanlines(adjusted_mode, latency) +
2218		wm0_lines >
2219		adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2220}
2221
2222static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2223{
2224	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2225	enum plane_id plane_id;
2226	int wm0_lines = 0;
2227
2228	for_each_plane_id_on_crtc(crtc, plane_id) {
2229		const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2230
2231		/* FIXME what about !skl_wm_has_lines() platforms? */
2232		wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2233	}
2234
2235	return wm0_lines;
2236}
2237
2238static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2239				       int wm0_lines)
2240{
2241	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2242	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2243	int level;
2244
2245	for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2246		int latency;
2247
2248		/* FIXME should we care about the latency w/a's? */
2249		latency = skl_wm_latency(i915, level, NULL);
2250		if (latency == 0)
2251			continue;
2252
2253		/* FIXME is it correct to use 0 latency for wm0 here? */
2254		if (level == 0)
2255			latency = 0;
2256
2257		if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2258			return level;
2259	}
2260
2261	return -EINVAL;
2262}
2263
2264static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2265{
2266	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2267	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2268	int wm0_lines, level;
2269
2270	if (!crtc_state->hw.active)
2271		return 0;
2272
2273	wm0_lines = skl_max_wm0_lines(crtc_state);
2274
2275	level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2276	if (level < 0)
2277		return level;
2278
2279	/*
2280	 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2281	 * based on whether we're limited by the vblank duration.
2282	 */
2283	crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2284
2285	for (level++; level < i915->display.wm.num_levels; level++) {
2286		enum plane_id plane_id;
2287
2288		for_each_plane_id_on_crtc(crtc, plane_id) {
2289			struct skl_plane_wm *wm =
2290				&crtc_state->wm.skl.optimal.planes[plane_id];
2291
2292			/*
2293			 * FIXME just clear enable or flag the entire
2294			 * thing as bad via min_ddb_alloc=U16_MAX?
2295			 */
2296			wm->wm[level].enable = false;
2297			wm->uv_wm[level].enable = false;
2298		}
2299	}
2300
2301	if (DISPLAY_VER(i915) >= 12 &&
2302	    i915->display.sagv.block_time_us &&
2303	    skl_is_vblank_too_short(crtc_state, wm0_lines,
2304				    i915->display.sagv.block_time_us)) {
2305		enum plane_id plane_id;
2306
2307		for_each_plane_id_on_crtc(crtc, plane_id) {
2308			struct skl_plane_wm *wm =
2309				&crtc_state->wm.skl.optimal.planes[plane_id];
2310
2311			wm->sagv.wm0.enable = false;
2312			wm->sagv.trans_wm.enable = false;
2313		}
2314	}
2315
2316	return 0;
2317}
2318
2319static int skl_build_pipe_wm(struct intel_atomic_state *state,
2320			     struct intel_crtc *crtc)
2321{
2322	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2323	struct intel_crtc_state *crtc_state =
2324		intel_atomic_get_new_crtc_state(state, crtc);
2325	const struct intel_plane_state *plane_state;
2326	struct intel_plane *plane;
2327	int ret, i;
2328
2329	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2330		/*
2331		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2332		 * instead but we don't populate that correctly for NV12 Y
2333		 * planes so for now hack this.
2334		 */
2335		if (plane->pipe != crtc->pipe)
2336			continue;
2337
2338		if (DISPLAY_VER(i915) >= 11)
2339			ret = icl_build_plane_wm(crtc_state, plane_state);
2340		else
2341			ret = skl_build_plane_wm(crtc_state, plane_state);
2342		if (ret)
2343			return ret;
2344	}
2345
2346	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2347
2348	return skl_wm_check_vblank(crtc_state);
2349}
2350
2351static void skl_ddb_entry_write(struct drm_i915_private *i915,
2352				i915_reg_t reg,
2353				const struct skl_ddb_entry *entry)
2354{
2355	if (entry->end)
2356		intel_de_write_fw(i915, reg,
2357				  PLANE_BUF_END(entry->end - 1) |
2358				  PLANE_BUF_START(entry->start));
2359	else
2360		intel_de_write_fw(i915, reg, 0);
2361}
2362
2363static void skl_write_wm_level(struct drm_i915_private *i915,
2364			       i915_reg_t reg,
2365			       const struct skl_wm_level *level)
2366{
2367	u32 val = 0;
2368
2369	if (level->enable)
2370		val |= PLANE_WM_EN;
2371	if (level->ignore_lines)
2372		val |= PLANE_WM_IGNORE_LINES;
2373	val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
2374	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
2375
2376	intel_de_write_fw(i915, reg, val);
2377}
2378
2379void skl_write_plane_wm(struct intel_plane *plane,
2380			const struct intel_crtc_state *crtc_state)
2381{
2382	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2383	enum plane_id plane_id = plane->id;
2384	enum pipe pipe = plane->pipe;
2385	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2386	const struct skl_ddb_entry *ddb =
2387		&crtc_state->wm.skl.plane_ddb[plane_id];
2388	const struct skl_ddb_entry *ddb_y =
2389		&crtc_state->wm.skl.plane_ddb_y[plane_id];
2390	int level;
2391
2392	for (level = 0; level < i915->display.wm.num_levels; level++)
2393		skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level),
2394				   skl_plane_wm_level(pipe_wm, plane_id, level));
2395
2396	skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id),
2397			   skl_plane_trans_wm(pipe_wm, plane_id));
2398
2399	if (HAS_HW_SAGV_WM(i915)) {
2400		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2401
2402		skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id),
2403				   &wm->sagv.wm0);
2404		skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id),
2405				   &wm->sagv.trans_wm);
2406	}
2407
2408	skl_ddb_entry_write(i915,
2409			    PLANE_BUF_CFG(pipe, plane_id), ddb);
2410
2411	if (DISPLAY_VER(i915) < 11)
2412		skl_ddb_entry_write(i915,
2413				    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
2414}
2415
2416void skl_write_cursor_wm(struct intel_plane *plane,
2417			 const struct intel_crtc_state *crtc_state)
2418{
2419	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2420	enum plane_id plane_id = plane->id;
2421	enum pipe pipe = plane->pipe;
2422	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2423	const struct skl_ddb_entry *ddb =
2424		&crtc_state->wm.skl.plane_ddb[plane_id];
2425	int level;
2426
2427	for (level = 0; level < i915->display.wm.num_levels; level++)
2428		skl_write_wm_level(i915, CUR_WM(pipe, level),
2429				   skl_plane_wm_level(pipe_wm, plane_id, level));
2430
2431	skl_write_wm_level(i915, CUR_WM_TRANS(pipe),
2432			   skl_plane_trans_wm(pipe_wm, plane_id));
2433
2434	if (HAS_HW_SAGV_WM(i915)) {
2435		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2436
2437		skl_write_wm_level(i915, CUR_WM_SAGV(pipe),
2438				   &wm->sagv.wm0);
2439		skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe),
2440				   &wm->sagv.trans_wm);
2441	}
2442
2443	skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb);
2444}
2445
2446static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2447				const struct skl_wm_level *l2)
2448{
2449	return l1->enable == l2->enable &&
2450		l1->ignore_lines == l2->ignore_lines &&
2451		l1->lines == l2->lines &&
2452		l1->blocks == l2->blocks;
2453}
2454
2455static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2456				const struct skl_plane_wm *wm1,
2457				const struct skl_plane_wm *wm2)
2458{
2459	int level;
2460
2461	for (level = 0; level < i915->display.wm.num_levels; level++) {
2462		/*
2463		 * We don't check uv_wm as the hardware doesn't actually
2464		 * use it. It only gets used for calculating the required
2465		 * ddb allocation.
2466		 */
2467		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2468			return false;
2469	}
2470
2471	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2472		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2473		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2474}
2475
2476static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2477				    const struct skl_ddb_entry *b)
2478{
2479	return a->start < b->end && b->start < a->end;
2480}
2481
2482static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2483				const struct skl_ddb_entry *b)
2484{
2485	if (a->end && b->end) {
2486		a->start = min(a->start, b->start);
2487		a->end = max(a->end, b->end);
2488	} else if (b->end) {
2489		a->start = b->start;
2490		a->end = b->end;
2491	}
2492}
2493
2494bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2495				 const struct skl_ddb_entry *entries,
2496				 int num_entries, int ignore_idx)
2497{
2498	int i;
2499
2500	for (i = 0; i < num_entries; i++) {
2501		if (i != ignore_idx &&
2502		    skl_ddb_entries_overlap(ddb, &entries[i]))
2503			return true;
2504	}
2505
2506	return false;
2507}
2508
2509static int
2510skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
2511			    struct intel_crtc_state *new_crtc_state)
2512{
2513	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
2514	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2515	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2516	struct intel_plane *plane;
2517
2518	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2519		struct intel_plane_state *plane_state;
2520		enum plane_id plane_id = plane->id;
2521
2522		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2523					&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2524		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2525					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2526			continue;
2527
2528		plane_state = intel_atomic_get_plane_state(state, plane);
2529		if (IS_ERR(plane_state))
2530			return PTR_ERR(plane_state);
2531
2532		new_crtc_state->update_planes |= BIT(plane_id);
2533		new_crtc_state->async_flip_planes = 0;
2534		new_crtc_state->do_async_flip = false;
2535	}
2536
2537	return 0;
2538}
2539
2540static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2541{
2542	struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2543	u8 enabled_slices;
2544	enum pipe pipe;
2545
2546	/*
2547	 * FIXME: For now we always enable slice S1 as per
2548	 * the Bspec display initialization sequence.
2549	 */
2550	enabled_slices = BIT(DBUF_S1);
2551
2552	for_each_pipe(i915, pipe)
2553		enabled_slices |= dbuf_state->slices[pipe];
2554
2555	return enabled_slices;
2556}
2557
2558static int
2559skl_compute_ddb(struct intel_atomic_state *state)
2560{
2561	struct drm_i915_private *i915 = to_i915(state->base.dev);
2562	const struct intel_dbuf_state *old_dbuf_state;
2563	struct intel_dbuf_state *new_dbuf_state = NULL;
2564	const struct intel_crtc_state *old_crtc_state;
2565	struct intel_crtc_state *new_crtc_state;
2566	struct intel_crtc *crtc;
2567	int ret, i;
2568
2569	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2570		new_dbuf_state = intel_atomic_get_dbuf_state(state);
2571		if (IS_ERR(new_dbuf_state))
2572			return PTR_ERR(new_dbuf_state);
2573
2574		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2575		break;
2576	}
2577
2578	if (!new_dbuf_state)
2579		return 0;
2580
2581	new_dbuf_state->active_pipes =
2582		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2583
2584	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2585		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2586		if (ret)
2587			return ret;
2588	}
2589
2590	if (HAS_MBUS_JOINING(i915))
2591		new_dbuf_state->joined_mbus =
2592			adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2593
2594	for_each_intel_crtc(&i915->drm, crtc) {
2595		enum pipe pipe = crtc->pipe;
2596
2597		new_dbuf_state->slices[pipe] =
2598			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2599						new_dbuf_state->joined_mbus);
2600
2601		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2602			continue;
2603
2604		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2605		if (ret)
2606			return ret;
2607	}
2608
2609	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2610
2611	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2612	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2613		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2614		if (ret)
2615			return ret;
2616
2617		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2618			/* TODO: Implement vblank synchronized MBUS joining changes */
2619			ret = intel_modeset_all_pipes(state, "MBUS joining change");
2620			if (ret)
2621				return ret;
2622		}
2623
2624		drm_dbg_kms(&i915->drm,
2625			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2626			    old_dbuf_state->enabled_slices,
2627			    new_dbuf_state->enabled_slices,
2628			    DISPLAY_INFO(i915)->dbuf.slice_mask,
2629			    str_yes_no(old_dbuf_state->joined_mbus),
2630			    str_yes_no(new_dbuf_state->joined_mbus));
2631	}
2632
2633	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2634		enum pipe pipe = crtc->pipe;
2635
2636		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2637
2638		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2639			continue;
2640
2641		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2642		if (ret)
2643			return ret;
2644	}
2645
2646	for_each_intel_crtc(&i915->drm, crtc) {
2647		ret = skl_crtc_allocate_ddb(state, crtc);
2648		if (ret)
2649			return ret;
2650	}
2651
2652	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2653					    new_crtc_state, i) {
2654		ret = skl_crtc_allocate_plane_ddb(state, crtc);
2655		if (ret)
2656			return ret;
2657
2658		ret = skl_ddb_add_affected_planes(old_crtc_state,
2659						  new_crtc_state);
2660		if (ret)
2661			return ret;
2662	}
2663
2664	return 0;
2665}
2666
2667static char enast(bool enable)
2668{
2669	return enable ? '*' : ' ';
2670}
2671
2672static void
2673skl_print_wm_changes(struct intel_atomic_state *state)
2674{
2675	struct drm_i915_private *i915 = to_i915(state->base.dev);
2676	const struct intel_crtc_state *old_crtc_state;
2677	const struct intel_crtc_state *new_crtc_state;
2678	struct intel_plane *plane;
2679	struct intel_crtc *crtc;
2680	int i;
2681
2682	if (!drm_debug_enabled(DRM_UT_KMS))
2683		return;
2684
2685	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2686					    new_crtc_state, i) {
2687		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2688
2689		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2690		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2691
2692		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2693			enum plane_id plane_id = plane->id;
2694			const struct skl_ddb_entry *old, *new;
2695
2696			old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2697			new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2698
2699			if (skl_ddb_entry_equal(old, new))
2700				continue;
2701
2702			drm_dbg_kms(&i915->drm,
2703				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2704				    plane->base.base.id, plane->base.name,
2705				    old->start, old->end, new->start, new->end,
2706				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2707		}
2708
2709		for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2710			enum plane_id plane_id = plane->id;
2711			const struct skl_plane_wm *old_wm, *new_wm;
2712
2713			old_wm = &old_pipe_wm->planes[plane_id];
2714			new_wm = &new_pipe_wm->planes[plane_id];
2715
2716			if (skl_plane_wm_equals(i915, old_wm, new_wm))
2717				continue;
2718
2719			drm_dbg_kms(&i915->drm,
2720				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2721				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2722				    plane->base.base.id, plane->base.name,
2723				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2724				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2725				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2726				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2727				    enast(old_wm->trans_wm.enable),
2728				    enast(old_wm->sagv.wm0.enable),
2729				    enast(old_wm->sagv.trans_wm.enable),
2730				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2731				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2732				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2733				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2734				    enast(new_wm->trans_wm.enable),
2735				    enast(new_wm->sagv.wm0.enable),
2736				    enast(new_wm->sagv.trans_wm.enable));
2737
2738			drm_dbg_kms(&i915->drm,
2739				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2740				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2741				    plane->base.base.id, plane->base.name,
2742				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2743				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2744				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2745				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2746				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2747				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2748				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2749				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2750				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2751				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2752				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2753				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2754				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2755				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2756				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2757				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2758				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2759				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2760				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2761				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2762				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2763				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2764
2765			drm_dbg_kms(&i915->drm,
2766				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2767				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2768				    plane->base.base.id, plane->base.name,
2769				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2770				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2771				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2772				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2773				    old_wm->trans_wm.blocks,
2774				    old_wm->sagv.wm0.blocks,
2775				    old_wm->sagv.trans_wm.blocks,
2776				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2777				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2778				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2779				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2780				    new_wm->trans_wm.blocks,
2781				    new_wm->sagv.wm0.blocks,
2782				    new_wm->sagv.trans_wm.blocks);
2783
2784			drm_dbg_kms(&i915->drm,
2785				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2786				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2787				    plane->base.base.id, plane->base.name,
2788				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2789				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2790				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2791				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2792				    old_wm->trans_wm.min_ddb_alloc,
2793				    old_wm->sagv.wm0.min_ddb_alloc,
2794				    old_wm->sagv.trans_wm.min_ddb_alloc,
2795				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2796				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2797				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2798				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2799				    new_wm->trans_wm.min_ddb_alloc,
2800				    new_wm->sagv.wm0.min_ddb_alloc,
2801				    new_wm->sagv.trans_wm.min_ddb_alloc);
2802		}
2803	}
2804}
2805
2806static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2807					 const struct skl_pipe_wm *old_pipe_wm,
2808					 const struct skl_pipe_wm *new_pipe_wm)
2809{
2810	struct drm_i915_private *i915 = to_i915(plane->base.dev);
2811	int level;
2812
2813	for (level = 0; level < i915->display.wm.num_levels; level++) {
2814		/*
2815		 * We don't check uv_wm as the hardware doesn't actually
2816		 * use it. It only gets used for calculating the required
2817		 * ddb allocation.
2818		 */
2819		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2820					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2821			return false;
2822	}
2823
2824	if (HAS_HW_SAGV_WM(i915)) {
2825		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2826		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2827
2828		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2829		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2830			return false;
2831	}
2832
2833	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2834				   skl_plane_trans_wm(new_pipe_wm, plane->id));
2835}
2836
2837/*
2838 * To make sure the cursor watermark registers are always consistent
2839 * with our computed state the following scenario needs special
2840 * treatment:
2841 *
2842 * 1. enable cursor
2843 * 2. move cursor entirely offscreen
2844 * 3. disable cursor
2845 *
2846 * Step 2. does call .disable_plane() but does not zero the watermarks
2847 * (since we consider an offscreen cursor still active for the purposes
2848 * of watermarks). Step 3. would not normally call .disable_plane()
2849 * because the actual plane visibility isn't changing, and we don't
2850 * deallocate the cursor ddb until the pipe gets disabled. So we must
2851 * force step 3. to call .disable_plane() to update the watermark
2852 * registers properly.
2853 *
2854 * Other planes do not suffer from this issues as their watermarks are
2855 * calculated based on the actual plane visibility. The only time this
2856 * can trigger for the other planes is during the initial readout as the
2857 * default value of the watermarks registers is not zero.
2858 */
2859static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2860				      struct intel_crtc *crtc)
2861{
2862	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2863	const struct intel_crtc_state *old_crtc_state =
2864		intel_atomic_get_old_crtc_state(state, crtc);
2865	struct intel_crtc_state *new_crtc_state =
2866		intel_atomic_get_new_crtc_state(state, crtc);
2867	struct intel_plane *plane;
2868
2869	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2870		struct intel_plane_state *plane_state;
2871		enum plane_id plane_id = plane->id;
2872
2873		/*
2874		 * Force a full wm update for every plane on modeset.
2875		 * Required because the reset value of the wm registers
2876		 * is non-zero, whereas we want all disabled planes to
2877		 * have zero watermarks. So if we turn off the relevant
2878		 * power well the hardware state will go out of sync
2879		 * with the software state.
2880		 */
2881		if (!intel_crtc_needs_modeset(new_crtc_state) &&
2882		    skl_plane_selected_wm_equals(plane,
2883						 &old_crtc_state->wm.skl.optimal,
2884						 &new_crtc_state->wm.skl.optimal))
2885			continue;
2886
2887		plane_state = intel_atomic_get_plane_state(state, plane);
2888		if (IS_ERR(plane_state))
2889			return PTR_ERR(plane_state);
2890
2891		new_crtc_state->update_planes |= BIT(plane_id);
2892		new_crtc_state->async_flip_planes = 0;
2893		new_crtc_state->do_async_flip = false;
2894	}
2895
2896	return 0;
2897}
2898
2899static int
2900skl_compute_wm(struct intel_atomic_state *state)
2901{
2902	struct intel_crtc *crtc;
2903	struct intel_crtc_state __maybe_unused *new_crtc_state;
2904	int ret, i;
2905
2906	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2907		ret = skl_build_pipe_wm(state, crtc);
2908		if (ret)
2909			return ret;
2910	}
2911
2912	ret = skl_compute_ddb(state);
2913	if (ret)
2914		return ret;
2915
2916	ret = intel_compute_sagv_mask(state);
2917	if (ret)
2918		return ret;
2919
2920	/*
2921	 * skl_compute_ddb() will have adjusted the final watermarks
2922	 * based on how much ddb is available. Now we can actually
2923	 * check if the final watermarks changed.
2924	 */
2925	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2926		ret = skl_wm_add_affected_planes(state, crtc);
2927		if (ret)
2928			return ret;
2929	}
2930
2931	skl_print_wm_changes(state);
2932
2933	return 0;
2934}
2935
2936static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2937{
2938	level->enable = val & PLANE_WM_EN;
2939	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2940	level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2941	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
2942}
2943
2944static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
2945				     struct skl_pipe_wm *out)
2946{
2947	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2948	enum pipe pipe = crtc->pipe;
2949	enum plane_id plane_id;
2950	int level;
2951	u32 val;
2952
2953	for_each_plane_id_on_crtc(crtc, plane_id) {
2954		struct skl_plane_wm *wm = &out->planes[plane_id];
2955
2956		for (level = 0; level < i915->display.wm.num_levels; level++) {
2957			if (plane_id != PLANE_CURSOR)
2958				val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
2959			else
2960				val = intel_de_read(i915, CUR_WM(pipe, level));
2961
2962			skl_wm_level_from_reg_val(val, &wm->wm[level]);
2963		}
2964
2965		if (plane_id != PLANE_CURSOR)
2966			val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
2967		else
2968			val = intel_de_read(i915, CUR_WM_TRANS(pipe));
2969
2970		skl_wm_level_from_reg_val(val, &wm->trans_wm);
2971
2972		if (HAS_HW_SAGV_WM(i915)) {
2973			if (plane_id != PLANE_CURSOR)
2974				val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
2975			else
2976				val = intel_de_read(i915, CUR_WM_SAGV(pipe));
2977
2978			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
2979
2980			if (plane_id != PLANE_CURSOR)
2981				val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
2982			else
2983				val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
2984
2985			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
2986		} else if (DISPLAY_VER(i915) >= 12) {
2987			wm->sagv.wm0 = wm->wm[0];
2988			wm->sagv.trans_wm = wm->trans_wm;
2989		}
2990	}
2991}
2992
2993static void skl_wm_get_hw_state(struct drm_i915_private *i915)
2994{
2995	struct intel_dbuf_state *dbuf_state =
2996		to_intel_dbuf_state(i915->display.dbuf.obj.state);
2997	struct intel_crtc *crtc;
2998
2999	if (HAS_MBUS_JOINING(i915))
3000		dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
3001
3002	for_each_intel_crtc(&i915->drm, crtc) {
3003		struct intel_crtc_state *crtc_state =
3004			to_intel_crtc_state(crtc->base.state);
3005		enum pipe pipe = crtc->pipe;
3006		unsigned int mbus_offset;
3007		enum plane_id plane_id;
3008		u8 slices;
3009
3010		memset(&crtc_state->wm.skl.optimal, 0,
3011		       sizeof(crtc_state->wm.skl.optimal));
3012		if (crtc_state->hw.active)
3013			skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3014		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3015
3016		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3017
3018		for_each_plane_id_on_crtc(crtc, plane_id) {
3019			struct skl_ddb_entry *ddb =
3020				&crtc_state->wm.skl.plane_ddb[plane_id];
3021			struct skl_ddb_entry *ddb_y =
3022				&crtc_state->wm.skl.plane_ddb_y[plane_id];
3023
3024			if (!crtc_state->hw.active)
3025				continue;
3026
3027			skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3028						   plane_id, ddb, ddb_y);
3029
3030			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3031			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3032		}
3033
3034		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3035
3036		/*
3037		 * Used for checking overlaps, so we need absolute
3038		 * offsets instead of MBUS relative offsets.
3039		 */
3040		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3041						 dbuf_state->joined_mbus);
3042		mbus_offset = mbus_ddb_offset(i915, slices);
3043		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3044		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3045
3046		/* The slices actually used by the planes on the pipe */
3047		dbuf_state->slices[pipe] =
3048			skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3049
3050		drm_dbg_kms(&i915->drm,
3051			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3052			    crtc->base.base.id, crtc->base.name,
3053			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3054			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3055			    str_yes_no(dbuf_state->joined_mbus));
3056	}
3057
3058	dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3059}
3060
3061static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3062{
3063	const struct intel_dbuf_state *dbuf_state =
3064		to_intel_dbuf_state(i915->display.dbuf.obj.state);
3065	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3066	struct intel_crtc *crtc;
3067
3068	for_each_intel_crtc(&i915->drm, crtc) {
3069		const struct intel_crtc_state *crtc_state =
3070			to_intel_crtc_state(crtc->base.state);
3071
3072		entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3073	}
3074
3075	for_each_intel_crtc(&i915->drm, crtc) {
3076		const struct intel_crtc_state *crtc_state =
3077			to_intel_crtc_state(crtc->base.state);
3078		u8 slices;
3079
3080		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3081						 dbuf_state->joined_mbus);
3082		if (dbuf_state->slices[crtc->pipe] & ~slices)
3083			return true;
3084
3085		if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3086						I915_MAX_PIPES, crtc->pipe))
3087			return true;
3088	}
3089
3090	return false;
3091}
3092
3093static void skl_wm_sanitize(struct drm_i915_private *i915)
3094{
3095	struct intel_crtc *crtc;
3096
3097	/*
3098	 * On TGL/RKL (at least) the BIOS likes to assign the planes
3099	 * to the wrong DBUF slices. This will cause an infinite loop
3100	 * in skl_commit_modeset_enables() as it can't find a way to
3101	 * transition between the old bogus DBUF layout to the new
3102	 * proper DBUF layout without DBUF allocation overlaps between
3103	 * the planes (which cannot be allowed or else the hardware
3104	 * may hang). If we detect a bogus DBUF layout just turn off
3105	 * all the planes so that skl_commit_modeset_enables() can
3106	 * simply ignore them.
3107	 */
3108	if (!skl_dbuf_is_misconfigured(i915))
3109		return;
3110
3111	drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3112
3113	for_each_intel_crtc(&i915->drm, crtc) {
3114		struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3115		const struct intel_plane_state *plane_state =
3116			to_intel_plane_state(plane->base.state);
3117		struct intel_crtc_state *crtc_state =
3118			to_intel_crtc_state(crtc->base.state);
3119
3120		if (plane_state->uapi.visible)
3121			intel_plane_disable_noatomic(crtc, plane);
3122
3123		drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3124
3125		memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3126	}
3127}
3128
3129static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3130{
3131	skl_wm_get_hw_state(i915);
3132	skl_wm_sanitize(i915);
3133}
3134
3135void intel_wm_state_verify(struct intel_crtc *crtc,
3136			   struct intel_crtc_state *new_crtc_state)
3137{
3138	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3139	struct skl_hw_state {
3140		struct skl_ddb_entry ddb[I915_MAX_PLANES];
3141		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3142		struct skl_pipe_wm wm;
3143	} *hw;
3144	const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3145	struct intel_plane *plane;
3146	u8 hw_enabled_slices;
3147	int level;
3148
3149	if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3150		return;
3151
3152	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3153	if (!hw)
3154		return;
3155
3156	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3157
3158	skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3159
3160	hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3161
3162	if (DISPLAY_VER(i915) >= 11 &&
3163	    hw_enabled_slices != i915->display.dbuf.enabled_slices)
3164		drm_err(&i915->drm,
3165			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3166			i915->display.dbuf.enabled_slices,
3167			hw_enabled_slices);
3168
3169	for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3170		const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3171		const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3172
3173		/* Watermarks */
3174		for (level = 0; level < i915->display.wm.num_levels; level++) {
3175			hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3176			sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3177
3178			if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3179				continue;
3180
3181			drm_err(&i915->drm,
3182				"[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3183				plane->base.base.id, plane->base.name, level,
3184				sw_wm_level->enable,
3185				sw_wm_level->blocks,
3186				sw_wm_level->lines,
3187				hw_wm_level->enable,
3188				hw_wm_level->blocks,
3189				hw_wm_level->lines);
3190		}
3191
3192		hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3193		sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3194
3195		if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3196			drm_err(&i915->drm,
3197				"[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3198				plane->base.base.id, plane->base.name,
3199				sw_wm_level->enable,
3200				sw_wm_level->blocks,
3201				sw_wm_level->lines,
3202				hw_wm_level->enable,
3203				hw_wm_level->blocks,
3204				hw_wm_level->lines);
3205		}
3206
3207		hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3208		sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3209
3210		if (HAS_HW_SAGV_WM(i915) &&
3211		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3212			drm_err(&i915->drm,
3213				"[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3214				plane->base.base.id, plane->base.name,
3215				sw_wm_level->enable,
3216				sw_wm_level->blocks,
3217				sw_wm_level->lines,
3218				hw_wm_level->enable,
3219				hw_wm_level->blocks,
3220				hw_wm_level->lines);
3221		}
3222
3223		hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3224		sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3225
3226		if (HAS_HW_SAGV_WM(i915) &&
3227		    !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3228			drm_err(&i915->drm,
3229				"[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3230				plane->base.base.id, plane->base.name,
3231				sw_wm_level->enable,
3232				sw_wm_level->blocks,
3233				sw_wm_level->lines,
3234				hw_wm_level->enable,
3235				hw_wm_level->blocks,
3236				hw_wm_level->lines);
3237		}
3238
3239		/* DDB */
3240		hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3241		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3242
3243		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3244			drm_err(&i915->drm,
3245				"[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3246				plane->base.base.id, plane->base.name,
3247				sw_ddb_entry->start, sw_ddb_entry->end,
3248				hw_ddb_entry->start, hw_ddb_entry->end);
3249		}
3250	}
3251
3252	kfree(hw);
3253}
3254
3255bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3256{
3257	return i915->display.wm.ipc_enabled;
3258}
3259
3260void skl_watermark_ipc_update(struct drm_i915_private *i915)
3261{
3262	if (!HAS_IPC(i915))
3263		return;
3264
3265	intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3266		     skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3267}
3268
3269static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3270{
3271	/* Display WA #0477 WaDisableIPC: skl */
3272	if (IS_SKYLAKE(i915))
3273		return false;
3274
3275	/* Display WA #1141: SKL:all KBL:all CFL */
3276	if (IS_KABYLAKE(i915) ||
3277	    IS_COFFEELAKE(i915) ||
3278	    IS_COMETLAKE(i915))
3279		return i915->dram_info.symmetric_memory;
3280
3281	return true;
3282}
3283
3284void skl_watermark_ipc_init(struct drm_i915_private *i915)
3285{
3286	if (!HAS_IPC(i915))
3287		return;
3288
3289	i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3290
3291	skl_watermark_ipc_update(i915);
3292}
3293
3294static void
3295adjust_wm_latency(struct drm_i915_private *i915,
3296		  u16 wm[], int num_levels, int read_latency)
3297{
3298	bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3299	int i, level;
3300
3301	/*
3302	 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3303	 * need to be disabled. We make sure to sanitize the values out
3304	 * of the punit to satisfy this requirement.
3305	 */
3306	for (level = 1; level < num_levels; level++) {
3307		if (wm[level] == 0) {
3308			for (i = level + 1; i < num_levels; i++)
3309				wm[i] = 0;
3310
3311			num_levels = level;
3312			break;
3313		}
3314	}
3315
3316	/*
3317	 * WaWmMemoryReadLatency
3318	 *
3319	 * punit doesn't take into account the read latency so we need
3320	 * to add proper adjustement to each valid level we retrieve
3321	 * from the punit when level 0 response data is 0us.
3322	 */
3323	if (wm[0] == 0) {
3324		for (level = 0; level < num_levels; level++)
3325			wm[level] += read_latency;
3326	}
3327
3328	/*
3329	 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3330	 * If we could not get dimm info enable this WA to prevent from
3331	 * any underrun. If not able to get Dimm info assume 16GB dimm
3332	 * to avoid any underrun.
3333	 */
3334	if (wm_lv_0_adjust_needed)
3335		wm[0] += 1;
3336}
3337
3338static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3339{
3340	int num_levels = i915->display.wm.num_levels;
3341	u32 val;
3342
3343	val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3344	wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3345	wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3346
3347	val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3348	wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3349	wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3350
3351	val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3352	wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3353	wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3354
3355	adjust_wm_latency(i915, wm, num_levels, 6);
3356}
3357
3358static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3359{
3360	int num_levels = i915->display.wm.num_levels;
3361	int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3362	int mult = IS_DG2(i915) ? 2 : 1;
3363	u32 val;
3364	int ret;
3365
3366	/* read the first set of memory latencies[0:3] */
3367	val = 0; /* data0 to be programmed to 0 for first set */
3368	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3369	if (ret) {
3370		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3371		return;
3372	}
3373
3374	wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3375	wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3376	wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3377	wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3378
3379	/* read the second set of memory latencies[4:7] */
3380	val = 1; /* data0 to be programmed to 1 for second set */
3381	ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3382	if (ret) {
3383		drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3384		return;
3385	}
3386
3387	wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3388	wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3389	wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3390	wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3391
3392	adjust_wm_latency(i915, wm, num_levels, read_latency);
3393}
3394
3395static void skl_setup_wm_latency(struct drm_i915_private *i915)
3396{
3397	if (HAS_HW_SAGV_WM(i915))
3398		i915->display.wm.num_levels = 6;
3399	else
3400		i915->display.wm.num_levels = 8;
3401
3402	if (DISPLAY_VER(i915) >= 14)
3403		mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3404	else
3405		skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3406
3407	intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3408}
3409
3410static const struct intel_wm_funcs skl_wm_funcs = {
3411	.compute_global_watermarks = skl_compute_wm,
3412	.get_hw_state = skl_wm_get_hw_state_and_sanitize,
3413};
3414
3415void skl_wm_init(struct drm_i915_private *i915)
3416{
3417	intel_sagv_init(i915);
3418
3419	skl_setup_wm_latency(i915);
3420
3421	i915->display.funcs.wm = &skl_wm_funcs;
3422}
3423
3424static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3425{
3426	struct intel_dbuf_state *dbuf_state;
3427
3428	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3429	if (!dbuf_state)
3430		return NULL;
3431
3432	return &dbuf_state->base;
3433}
3434
3435static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3436				     struct intel_global_state *state)
3437{
3438	kfree(state);
3439}
3440
3441static const struct intel_global_state_funcs intel_dbuf_funcs = {
3442	.atomic_duplicate_state = intel_dbuf_duplicate_state,
3443	.atomic_destroy_state = intel_dbuf_destroy_state,
3444};
3445
3446struct intel_dbuf_state *
3447intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3448{
3449	struct drm_i915_private *i915 = to_i915(state->base.dev);
3450	struct intel_global_state *dbuf_state;
3451
3452	dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3453	if (IS_ERR(dbuf_state))
3454		return ERR_CAST(dbuf_state);
3455
3456	return to_intel_dbuf_state(dbuf_state);
3457}
3458
3459int intel_dbuf_init(struct drm_i915_private *i915)
3460{
3461	struct intel_dbuf_state *dbuf_state;
3462
3463	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3464	if (!dbuf_state)
3465		return -ENOMEM;
3466
3467	intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3468				     &dbuf_state->base, &intel_dbuf_funcs);
3469
3470	return 0;
3471}
3472
3473/*
3474 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
3475 * update the request state of all DBUS slices.
3476 */
3477static void update_mbus_pre_enable(struct intel_atomic_state *state)
3478{
3479	struct drm_i915_private *i915 = to_i915(state->base.dev);
3480	u32 mbus_ctl, dbuf_min_tracker_val;
3481	enum dbuf_slice slice;
3482	const struct intel_dbuf_state *dbuf_state =
3483		intel_atomic_get_new_dbuf_state(state);
3484
3485	if (!HAS_MBUS_JOINING(i915))
3486		return;
3487
3488	/*
3489	 * TODO: Implement vblank synchronized MBUS joining changes.
3490	 * Must be properly coordinated with dbuf reprogramming.
3491	 */
3492	if (dbuf_state->joined_mbus) {
3493		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
3494			MBUS_JOIN_PIPE_SELECT_NONE;
3495		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
3496	} else {
3497		mbus_ctl = MBUS_HASHING_MODE_2x2 |
3498			MBUS_JOIN_PIPE_SELECT_NONE;
3499		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
3500	}
3501
3502	intel_de_rmw(i915, MBUS_CTL,
3503		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3504		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3505
3506	for_each_dbuf_slice(i915, slice)
3507		intel_de_rmw(i915, DBUF_CTL_S(slice),
3508			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3509			     dbuf_min_tracker_val);
3510}
3511
3512void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3513{
3514	struct drm_i915_private *i915 = to_i915(state->base.dev);
3515	const struct intel_dbuf_state *new_dbuf_state =
3516		intel_atomic_get_new_dbuf_state(state);
3517	const struct intel_dbuf_state *old_dbuf_state =
3518		intel_atomic_get_old_dbuf_state(state);
3519
3520	if (!new_dbuf_state ||
3521	    (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3522	     new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3523		return;
3524
3525	WARN_ON(!new_dbuf_state->base.changed);
3526
3527	update_mbus_pre_enable(state);
3528	gen9_dbuf_slices_update(i915,
3529				old_dbuf_state->enabled_slices |
3530				new_dbuf_state->enabled_slices);
3531}
3532
3533void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3534{
3535	struct drm_i915_private *i915 = to_i915(state->base.dev);
3536	const struct intel_dbuf_state *new_dbuf_state =
3537		intel_atomic_get_new_dbuf_state(state);
3538	const struct intel_dbuf_state *old_dbuf_state =
3539		intel_atomic_get_old_dbuf_state(state);
3540
3541	if (!new_dbuf_state ||
3542	    (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3543	     new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3544		return;
3545
3546	WARN_ON(!new_dbuf_state->base.changed);
3547
3548	gen9_dbuf_slices_update(i915,
3549				new_dbuf_state->enabled_slices);
3550}
3551
3552static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3553{
3554	switch (pipe) {
3555	case PIPE_A:
3556		return !(active_pipes & BIT(PIPE_D));
3557	case PIPE_D:
3558		return !(active_pipes & BIT(PIPE_A));
3559	case PIPE_B:
3560		return !(active_pipes & BIT(PIPE_C));
3561	case PIPE_C:
3562		return !(active_pipes & BIT(PIPE_B));
3563	default: /* to suppress compiler warning */
3564		MISSING_CASE(pipe);
3565		break;
3566	}
3567
3568	return false;
3569}
3570
3571void intel_mbus_dbox_update(struct intel_atomic_state *state)
3572{
3573	struct drm_i915_private *i915 = to_i915(state->base.dev);
3574	const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3575	const struct intel_crtc_state *new_crtc_state;
3576	const struct intel_crtc *crtc;
3577	u32 val = 0;
3578	int i;
3579
3580	if (DISPLAY_VER(i915) < 11)
3581		return;
3582
3583	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3584	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3585	if (!new_dbuf_state ||
3586	    (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3587	     new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3588		return;
3589
3590	if (DISPLAY_VER(i915) >= 14)
3591		val |= MBUS_DBOX_I_CREDIT(2);
3592
3593	if (DISPLAY_VER(i915) >= 12) {
3594		val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3595		val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3596		val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3597	}
3598
3599	if (DISPLAY_VER(i915) >= 14)
3600		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3601						     MBUS_DBOX_A_CREDIT(8);
3602	else if (IS_ALDERLAKE_P(i915))
3603		/* Wa_22010947358:adl-p */
3604		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3605						     MBUS_DBOX_A_CREDIT(4);
3606	else
3607		val |= MBUS_DBOX_A_CREDIT(2);
3608
3609	if (DISPLAY_VER(i915) >= 14) {
3610		val |= MBUS_DBOX_B_CREDIT(0xA);
3611	} else if (IS_ALDERLAKE_P(i915)) {
3612		val |= MBUS_DBOX_BW_CREDIT(2);
3613		val |= MBUS_DBOX_B_CREDIT(8);
3614	} else if (DISPLAY_VER(i915) >= 12) {
3615		val |= MBUS_DBOX_BW_CREDIT(2);
3616		val |= MBUS_DBOX_B_CREDIT(12);
3617	} else {
3618		val |= MBUS_DBOX_BW_CREDIT(1);
3619		val |= MBUS_DBOX_B_CREDIT(8);
3620	}
3621
3622	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
3623		u32 pipe_val = val;
3624
3625		if (!new_crtc_state->hw.active)
3626			continue;
3627
3628		if (DISPLAY_VER(i915) >= 14) {
3629			if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3630							      new_dbuf_state->active_pipes))
3631				pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3632			else
3633				pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3634		}
3635
3636		intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3637	}
3638}
3639
3640static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3641{
3642	struct drm_i915_private *i915 = m->private;
3643
3644	seq_printf(m, "Isochronous Priority Control: %s\n",
3645		   str_yes_no(skl_watermark_ipc_enabled(i915)));
3646	return 0;
3647}
3648
3649static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3650{
3651	struct drm_i915_private *i915 = inode->i_private;
3652
3653	return single_open(file, skl_watermark_ipc_status_show, i915);
3654}
3655
3656static ssize_t skl_watermark_ipc_status_write(struct file *file,
3657					      const char __user *ubuf,
3658					      size_t len, loff_t *offp)
3659{
3660	struct seq_file *m = file->private_data;
3661	struct drm_i915_private *i915 = m->private;
3662	intel_wakeref_t wakeref;
3663	bool enable;
3664	int ret;
3665
3666	ret = kstrtobool_from_user(ubuf, len, &enable);
3667	if (ret < 0)
3668		return ret;
3669
3670	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3671		if (!skl_watermark_ipc_enabled(i915) && enable)
3672			drm_info(&i915->drm,
3673				 "Enabling IPC: WM will be proper only after next commit\n");
3674		i915->display.wm.ipc_enabled = enable;
3675		skl_watermark_ipc_update(i915);
3676	}
3677
3678	return len;
3679}
3680
3681static const struct file_operations skl_watermark_ipc_status_fops = {
3682	.owner = THIS_MODULE,
3683	.open = skl_watermark_ipc_status_open,
3684	.read = seq_read,
3685	.llseek = seq_lseek,
3686	.release = single_release,
3687	.write = skl_watermark_ipc_status_write
3688};
3689
3690static int intel_sagv_status_show(struct seq_file *m, void *unused)
3691{
3692	struct drm_i915_private *i915 = m->private;
3693	static const char * const sagv_status[] = {
3694		[I915_SAGV_UNKNOWN] = "unknown",
3695		[I915_SAGV_DISABLED] = "disabled",
3696		[I915_SAGV_ENABLED] = "enabled",
3697		[I915_SAGV_NOT_CONTROLLED] = "not controlled",
3698	};
3699
3700	seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3701	seq_printf(m, "SAGV modparam: %s\n", str_enabled_disabled(i915->params.enable_sagv));
3702	seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3703	seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3704
3705	return 0;
3706}
3707
3708DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3709
3710void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3711{
3712	struct drm_minor *minor = i915->drm.primary;
3713
3714	if (HAS_IPC(i915))
3715		debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3716				    &skl_watermark_ipc_status_fops);
3717
3718	if (HAS_SAGV(i915))
3719		debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3720				    &intel_sagv_status_fops);
3721}
3722